[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4596533B2 - Wastewater treatment method - Google Patents

Wastewater treatment method Download PDF

Info

Publication number
JP4596533B2
JP4596533B2 JP2005116744A JP2005116744A JP4596533B2 JP 4596533 B2 JP4596533 B2 JP 4596533B2 JP 2005116744 A JP2005116744 A JP 2005116744A JP 2005116744 A JP2005116744 A JP 2005116744A JP 4596533 B2 JP4596533 B2 JP 4596533B2
Authority
JP
Japan
Prior art keywords
bacteria
granules
nitrifying
nitrifying bacteria
granule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005116744A
Other languages
Japanese (ja)
Other versions
JP2006289310A (en
Inventor
吉昭 長谷部
正浩 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2005116744A priority Critical patent/JP4596533B2/en
Publication of JP2006289310A publication Critical patent/JP2006289310A/en
Application granted granted Critical
Publication of JP4596533B2 publication Critical patent/JP4596533B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、アンモニア性窒素を含有する排水の処理方法に関し、とくに、グラニュール状微生物造粒体(以下、単にグラニュールと言う。)を使用した排水の処理方法に関する。   The present invention relates to a method for treating wastewater containing ammoniacal nitrogen, and more particularly, to a method for treating wastewater using a granular microbial granule (hereinafter simply referred to as granule).

近年、排水処理の分野においては、微生物の生理活性を利用して排水中の汚濁物質を無害な物質に変化させて処理を行う生物処理が多用されている。一般的な生物処理法としては活性汚泥法が主流であるが、通常の活性汚泥法においては系内の微生物濃度の高濃度化が困難であり、負荷を高く取ることができないため、大きな敷地面積が必要であること、生物相の管理が難しくバルキング等の処理性能悪化を生じやすいこと、大規模な沈殿設備が必要であること、余剰汚泥等の廃棄物発生量が多いことなどが問題視されてきた。   2. Description of the Related Art In recent years, in the field of wastewater treatment, biological treatment is frequently used in which treatment is performed by changing the pollutant in wastewater to harmless substances using the physiological activity of microorganisms. The activated sludge method is the mainstream as a general biological treatment method, but it is difficult to increase the concentration of microorganisms in the system with the normal activated sludge method. It is difficult to manage biota, it is difficult to manage the processing performance such as bulking, large-scale sedimentation facilities are required, and a large amount of waste such as excess sludge is generated. I came.

これらの問題を解決する技術として活性汚泥の固液分離を膜を用いて行う方法、スポンジや高分子担体等の微生物を付着させて処理を行う方法、微生物が自己造粒したいわゆるグラニュールを使用して処理を行う方法等が開発されてきた。中でもグラニュールを使用する方法は反応槽内に多量の微生物を保持しうるため、単位体積当たりの反応速度が速く、固液分離も容易なため注目されてきている(例えば、特許文献1)。
特開2002−336885号公報
As a technology to solve these problems, use a method of solid-liquid separation of activated sludge using membranes, a method of attaching microorganisms such as sponges and polymer carriers, and so-called granules that self-granulate microorganisms. A method for performing the processing has been developed. Among them, the method using granules has been attracting attention because it can retain a large amount of microorganisms in a reaction tank, and therefore has a high reaction rate per unit volume and easy solid-liquid separation (for example, Patent Document 1).
JP 2002-336885 A

ところが、グラニュールを使用した排水の生物処理は汚濁物質の高速処理が可能であるため、有効な方法であるが、グラニュールの形成が遅いことが問題視されてきた。とくに、アンモニア性窒素を好気条件下で微生物によって処理する場合にはアンモニア酸化細菌および亜硝酸酸化細菌を中心とした硝化菌を含有するグラニュールを形成させる必要があるが、これらの増殖速度が非常に遅く、また細胞外ポリマーの形成量が非常に少ないためグラニュール化が非常に困難であり、ほとんど実用化されていない。   However, biological treatment of wastewater using granules is an effective method because it can process pollutants at high speed, but slow formation of granules has been regarded as a problem. In particular, when ammoniacal nitrogen is treated with microorganisms under aerobic conditions, it is necessary to form granules containing nitrifying bacteria, mainly ammonia-oxidizing bacteria and nitrite-oxidizing bacteria. Since it is very slow and the amount of extracellular polymer formed is very small, it is very difficult to granulate and it has hardly been put into practical use.

また、硝化菌グラニュールの核としてUASB(Upflow Anaerobic Sludge Blanket;上向流嫌気性スラッジブランケット)に代表される反応装置で形成される嫌気性細菌を主体とするグラニュールを投入することも考えられるが、嫌気性細菌を主体としており、好気性条件下では菌体が死滅するため、硝化菌を主体とするグラニュールへの生物相の移行がスムーズに進行しない恐れがある。   It is also possible to introduce granules mainly composed of anaerobic bacteria formed in a reactor represented by UASB (Upflow Anaerobic Sludge Blanket) as the core of nitrifying granules. However, since it is mainly composed of anaerobic bacteria and the cells die under aerobic conditions, there is a possibility that the transfer of the biota to the granule mainly composed of nitrifying bacteria does not proceed smoothly.

そこで本発明の課題は、これまで形成が困難であった好気条件下でも脱窒菌を含むグラニュールを確実にかつ迅速に形成させ、硝化性能を有するグラニュールを用いた生物処理を実用化可能とできる、排水の処理方法を提供することにある。   Therefore, the object of the present invention is to make it possible to reliably and quickly form granules containing denitrifying bacteria even under aerobic conditions that have been difficult to form so far, and it is possible to put biological treatment using granules with nitrification performance into practical use It is to provide a method for treating waste water.

上記課題を解決するために、本発明に係る排水の処理方法は、アンモニア性窒素を含有する排水を好気性条件下において硝化菌と接触させることにより硝化処理を行うに際し、有機物を基質として形成させた通性嫌気性細菌を主体した、主に脱窒菌を含むグラニュール、もしくはそのグラニュールの破砕物を核として投入することにより、前記主に脱窒菌を含むグラニュール表面に硝化菌を増殖させて硝化性能を有するグラニュールを形成させることを特徴とする方法からなる。 In order to solve the above-mentioned problems, the wastewater treatment method according to the present invention comprises forming an organic substance as a substrate when performing nitrification treatment by contacting wastewater containing ammonia nitrogen with nitrifying bacteria under aerobic conditions. The granules containing mainly denitrifying bacteria mainly containing facultative anaerobic bacteria, or the crushed material of the granules are introduced as nuclei, so that the nitrifying bacteria can be grown on the surface of the granules containing mainly denitrifying bacteria. And forming a granule having nitrification performance.

このような本発明に係る排水の処理方法においては、脱窒菌を含むグラニュールと共に硝化菌を含む水を添加することができる。硝化菌を含む水としては、硝化菌を培養液により培養して製剤化した微生物製剤、あるいは活性汚泥を用いることができる。   In the wastewater treatment method according to the present invention, water containing nitrifying bacteria can be added together with granules containing denitrifying bacteria. As the water containing nitrifying bacteria, a microbial preparation prepared by culturing nitrifying bacteria in a culture solution or activated sludge can be used.

すなわち、本発明では、通性嫌気性細菌を主体とする脱窒菌を含むグラニュールを有機物を基質として無酸素条件下で形成させ、本グラニュールもしくはその破砕物を投入することにより硝化菌をグラニュール表面に増殖させ、硝化性能を有するグラニュールを形成させることが可能であることを見出したものである。本グラニュールは通性嫌気性細菌を主体としているので、好気性条件下においても生育できるため、スムーズに硝化菌を主体としたグラニュールへの移行が可能である。   That is, in the present invention, granules containing denitrifying bacteria mainly composed of facultative anaerobic bacteria are formed under oxygen-free conditions using organic substances as a substrate, and the nitrifying bacteria are granulated by introducing the granules or crushed materials thereof. It has been found that it is possible to grow granules on the surface of the glass and to form granules having nitrification performance. Since this granule is mainly composed of facultative anaerobic bacteria, it can grow even under aerobic conditions, and therefore it can smoothly transition to a granule mainly composed of nitrifying bacteria.

このように、本発明に係る排水の処理方法によれば、これまで形成が困難であった系においても短期間でのグラニュール化が可能となり、目標とする効率のよい生物処理を行うことができる。したがって、本発明に係る方法を使用することにより、反応槽のコンパクト化、汚泥の脱水性の向上等が可能となり、結果として低コストでの実用的な排水処理を達成することができる。   Thus, according to the wastewater treatment method according to the present invention, granulation can be performed in a short period of time even in a system that has been difficult to form so far, and efficient target biological treatment can be performed. it can. Therefore, by using the method according to the present invention, it is possible to make the reaction tank compact and improve the dewaterability of sludge, and as a result, practical wastewater treatment can be achieved at low cost.

以下に、本発明の望ましい実施の形態について、とくに排水中のアンモニア性窒素を処理する場合について、詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail, particularly when ammoniacal nitrogen in waste water is treated.

<グラニュールの形成方法>
本発明で用いる脱窒菌を含むグラニュールは、有機物および硝酸性窒素もしくは亜硝酸性窒素を含有する水を生物反応槽に通水して作製される。一般に脱窒菌のグラニュールは硝化菌のグラニュールと比較して非常に作製が容易で、適切な濃度のアルコール類や酢酸塩等の有機物及び硝酸性窒素もしくは亜硝酸性窒素を含有する水を上向流で通水することによって、通常2週間から1ヶ月程度で形成される。本発明においてはこのグラニュールは他の事業場、工場等で作製したものや現場にて設置した反応槽によって作製することが可能である。また、硝化性能を有するグラニュールが必要な現場で脱窒菌のグラニュールを作成する場合には硝化反応槽を転用して作製することができる。この場合、あらかじめ無酸素条件下で、適切な負荷で有機物及び硝酸性窒素もしくは亜硝酸性窒素を含有する水を上向流で通水して脱窒菌のグラニュールを作製した後、アンモニア性窒素含有水および酸素を供給する。脱窒菌を含むグラニュールの径が大きい場合には破砕を行った後に投入する方法も非常に有効である。
<Granule formation method>
Granules containing denitrifying bacteria used in the present invention are produced by passing water containing organic matter and nitrate nitrogen or nitrite nitrogen through a biological reaction tank. In general, denitrifying granules are much easier to prepare than nitrifying granules, and water containing appropriate concentrations of organic substances such as alcohols and acetates and nitrate or nitrite nitrogen is added. It is usually formed in about 2 weeks to 1 month by passing water countercurrently. In the present invention, this granule can be produced by other business sites, factories or the like, or by reaction tanks installed on site. In addition, when a granule of denitrifying bacteria is prepared at a site where a granule having nitrification performance is required, it can be prepared by diverting the nitrification reaction tank. In this case, granulated denitrifying bacteria were prepared by passing water containing organic matter and nitrate nitrogen or nitrite nitrogen in an upward flow under anaerobic conditions in advance, and then adding ammonia nitrogen. Supply water and oxygen. In the case where the diameter of the granules containing denitrifying bacteria is large, it is also very effective to add them after crushing.

硝化菌のグラニュールにおいては、グラニュール表面からの酸素の拡散距離が有効微生物量に直接関わってくるため、比較的径は小さい方が結果として反応槽当たりの負荷を高く取ることが可能であるが、径が小さくなるに従い沈降速度が遅くなるため、径としては0.1〜1.0mm程度が特に有効である。また、脱窒菌のグラニュールを核として投入する場合、硝化菌源を同様に投入することが有効である。硝化菌源としては硝化菌を培養して作製した一般に販売されている微生物製剤や、活性汚泥等が効果的である。   In granulated nitrifying bacteria, the diffusion distance of oxygen from the granule surface is directly related to the amount of effective microorganisms, so a relatively small diameter can result in a higher load per reaction tank. However, since the sedimentation rate decreases as the diameter decreases, a diameter of about 0.1 to 1.0 mm is particularly effective. In addition, in the case where granules of denitrifying bacteria are used as nuclei, it is effective to similarly introduce nitrifying bacteria sources. Effective sources of nitrifying bacteria include generally marketed microbial preparations prepared by culturing nitrifying bacteria and activated sludge.

脱窒と異なり硝化の場合には、硝化菌の増殖に溶存酸素を必要とするため、グラニュール反応槽下部より空気もしくは酸素を供給する。装置形状に特に指定はなく、円筒状もしくは角型槽等の一般的なものが使用できるが、グラニュールを形成するためのせん断力を確保するため、グラニュールを形成する槽においては縦横比は1:1以上を確保することが望ましい。   In the case of nitrification unlike denitrification, since dissolved oxygen is required for the growth of nitrifying bacteria, air or oxygen is supplied from the lower part of the granule reaction tank. There is no particular designation for the shape of the device, and a general one such as a cylindrical or square tank can be used, but in order to secure shearing force for forming granules, the aspect ratio of the tank for forming granules is It is desirable to ensure 1: 1 or more.

立ち上げ初期にはグラニュールが十分に形成されておらず、汚泥の比重が小さいため、汚泥は系外に流出する。このような汚泥は沈殿槽等によって濃縮して反応槽内に返送することが望ましい。また、反応槽上部に十分な大きさの固−気−液分離装置(GSS)を設置した場合には沈殿槽を省略することもできる。   At the initial stage of startup, the granules are not sufficiently formed and the sludge has a low specific gravity, so the sludge flows out of the system. Such sludge is preferably concentrated in a sedimentation tank or the like and returned to the reaction tank. In addition, when a sufficiently large solid-gas-liquid separator (GSS) is installed at the upper part of the reaction tank, the precipitation tank can be omitted.

このように脱窒菌を含むグラニュールを核として投入し表面に硝化菌を増殖させることによって徐々に生物相が脱窒菌を主体とするものから硝化菌を主体とするものへ変化し、最終的には高い硝化性能を有するグラニュールが形成される。   In this way, by introducing granules containing denitrifying bacteria as a nucleus and growing nitrifying bacteria on the surface, the biota gradually changes from those mainly composed of denitrifying bacteria to those mainly composed of denitrifying bacteria. Granules with high nitrification performance are formed.

<装置の構成>
アンモニア性窒素を含有した排水は通常反応装置内への負荷を安定化させるため、調整槽に一旦滞留させた後、一定流量で硝化反応槽へ送られる。排水中にアンモニア性窒素以外の有機物質や阻害物質がある場合には、あらかじめ問題のない程度まで処理を施しておくことが望ましい。また、pHは中性〜弱アルカリ性で処理することが望ましいため、必要に応じて排水のpHを調整する。
<Device configuration>
In order to stabilize the load into the reactor, the waste water containing ammonia nitrogen is usually once retained in the adjustment tank and then sent to the nitrification reaction tank at a constant flow rate. If there is an organic substance or inhibitor other than ammonia nitrogen in the wastewater, it is desirable to treat it to the extent that there is no problem in advance. Moreover, since it is desirable to process by neutrality-weak alkalinity, pH of waste water is adjusted as needed.

硝化反応槽内には脱窒菌を含むグラニュールが硝化菌グラニュールの核として充填されており、硝化反応は好気性条件下で進行するため、反応槽下部から空気もしくは酸素による曝気を行う。また、アンモニア性窒素の硝化に伴いアルカリ度を消費し、pHが低下するため、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウムなどのアルカリを添加する設備を設けることが望ましい。反応槽上部にはグラニュールの流出を防止するため固−気−液分離装置(GSS)を設置することが望ましい。   The nitrification reaction tank is filled with granules containing denitrifying bacteria as the nucleus of the nitrifying bacteria granule, and the nitrification reaction proceeds under aerobic conditions, so aeration with air or oxygen is performed from the lower part of the reaction tank. In addition, since alkalinity is consumed with the nitrification of ammoniacal nitrogen and the pH is lowered, it is desirable to provide equipment for adding an alkali such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate. It is desirable to install a solid-gas-liquid separator (GSS) in the upper part of the reaction tank in order to prevent granule outflow.

このように硝化菌グラニュールとアンモニア性窒素を含有する排水とを接触させることにより、アンモニア性窒素を硝酸もしくは亜硝酸にまで硝化することができる。硝酸もしくは亜硝酸は必要に応じて一般的な脱窒装置を使用することによって窒素ガスにまで変化させて系外へ放出することができる。   Thus, ammonia nitrogen can be nitrified to nitric acid or nitrous acid by bringing the nitrifying granules into contact with the waste water containing ammonia nitrogen. Nitric acid or nitrous acid can be discharged to the outside of the system by changing to nitrogen gas by using a general denitrification apparatus as required.

以下に本発明に係る方法を用いて行った実施例を示す。なお、この実施例は本発明の範囲を限定するものではない。   Examples carried out using the method according to the present invention are shown below. Note that this example does not limit the scope of the present invention.

実施例1
内径50mm、高さ3000mm、上部に固−気−液分離装置(GSS)を設置した反応槽を作製し、内部に下水処理場の活性汚泥をそれぞれ2000mg/Lとなるように投入した。また、内部には攪拌のため攪拌羽を設置し5rpmで攪拌を行った。本反応槽に硝酸性窒素200mg/Lおよびメタノール800mg/Lおよびリン30mg/Lを含有させた工業用水を上向流で通水した。約1ヶ月の通水により約1mmの脱窒菌を含有するグラニュールが形成された。
Example 1
A reaction tank having an inner diameter of 50 mm, a height of 3000 mm, and a solid-gas-liquid separator (GSS) installed in the upper part was prepared, and activated sludge from a sewage treatment plant was introduced therein so as to be 2000 mg / L each. Further, stirring blades were installed inside for stirring, and stirring was performed at 5 rpm. Industrial water containing nitrate nitrogen (200 mg / L), methanol (800 mg / L) and phosphorus (30 mg / L) was passed through the reactor in an upward flow. Granules containing about 1 mm of denitrifying bacteria were formed by passing water for about 1 month.

本反応槽に食品工場の排水処理設備より採取した活性汚泥を投入すると共に、アンモニア性窒素およびカルシウムをそれぞれ500mg/L含む排水を通水し、0.5L/minで曝気を行いながらグラニュールを作製した。   Activated sludge collected from the wastewater treatment facility of the food factory is put into this reaction tank, drainage containing 500 mg / L of ammonia nitrogen and calcium each is passed, and granules are produced while aeration is performed at 0.5 L / min. did.

比較例1
同様の反応槽を作製し、活性汚泥を投入すると共に脱窒菌を含むグラニュールがない条件下で、アンモニア性窒素およびカルシウムをそれぞれ500mg/L含む排水を通水し、0.5L/minで曝気を行った。活性汚泥の流出が顕著であったため、適宜流出した汚泥を反応槽に戻す操作を行った。
Comparative Example 1
Create a similar reaction tank, feed activated sludge and drain water containing 500 mg / L of ammonia nitrogen and calcium, respectively, under conditions where there are no granules containing denitrifying bacteria, and aerate at 0.5 L / min. went. Since the activated sludge flowed out significantly, an operation was performed to return the sludge that flowed out appropriately to the reaction tank.

〔結果〕
1ヵ月後、2ヵ月後の反応槽当たりの硝化活性を表1に示した。実施例1においては1ヵ月後において活性汚泥もほぼ消失し、グラニュールが槽内良好に形成され、また、硝化活性が上昇していることからもグラニュールの菌相が脱窒菌から硝化菌へと移行したものと推定された。これに対し、比較例1においては汚泥の増加および硝化活性の増加は若干見られたものの、グラニュールの形成は確認されなかった。
〔result〕
The nitrification activity per reaction tank after 1 month and 2 months later is shown in Table 1. In Example 1, the activated sludge almost disappears after one month, the granules are well formed in the tank, and the nitrification activity is increased, so that the bacterial flora of the granules changes from denitrifying bacteria to nitrifying bacteria. It was estimated that the On the other hand, in Comparative Example 1, although an increase in sludge and a slight increase in nitrification activity were observed, formation of granules was not confirmed.

Figure 0004596533
Figure 0004596533

Claims (4)

アンモニア性窒素を含有する排水を好気性条件下において硝化菌と接触させることにより硝化処理を行うに際し、有機物を基質として形成させた通性嫌気性細菌を主体とした、主に脱窒菌を含むグラニュール、もしくはそのグラニュールの破砕物を核として投入することにより、前記主に脱窒菌を含むグラニュール表面に硝化菌を増殖させて硝化性能を有するグラニュールを形成させることを特徴とする排水の処理方法。 When nitrification treatment is performed by contacting wastewater containing ammonia nitrogen with nitrifying bacteria under aerobic conditions, granulated mainly containing denitrifying bacteria mainly composed of facultative anaerobic bacteria formed using organic substances as a substrate. Or a crushed product of the granule as a nucleus, the nitrifying bacteria are propagated on the surface of the granule mainly containing denitrifying bacteria to form granules having nitrifying performance. Processing method. 前記主に脱窒菌を含むグラニュールと共に硝化菌を含む水を添加することを特徴とする、請求項に記載の排水の処理方法。 The method for treating waste water according to claim 1 , wherein water containing nitrifying bacteria is added together with the granules mainly containing denitrifying bacteria. 硝化菌を含む水が硝化菌を培養液により培養して製剤化した微生物製剤であることを特徴とする、請求項に記載の排水の処理方法。 The method for treating waste water according to claim 2 , wherein the water containing nitrifying bacteria is a microbial preparation prepared by culturing nitrifying bacteria in a culture solution. 硝化菌を含む水が活性汚泥であることを特徴とする、請求項に記載の排水の処理方法。 The water treatment method according to claim 2 , wherein the water containing nitrifying bacteria is activated sludge.
JP2005116744A 2005-04-14 2005-04-14 Wastewater treatment method Active JP4596533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005116744A JP4596533B2 (en) 2005-04-14 2005-04-14 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005116744A JP4596533B2 (en) 2005-04-14 2005-04-14 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2006289310A JP2006289310A (en) 2006-10-26
JP4596533B2 true JP4596533B2 (en) 2010-12-08

Family

ID=37410485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005116744A Active JP4596533B2 (en) 2005-04-14 2005-04-14 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4596533B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4925208B2 (en) * 2007-09-12 2012-04-25 学校法人早稲田大学 Aerobic granule formation method, water treatment method and water treatment apparatus
JP5205585B2 (en) * 2009-02-04 2013-06-05 エコ・アース・エンジニアリング株式会社 Pollutant purification method and purification facility

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001246397A (en) * 2000-03-03 2001-09-11 Kansai Paint Co Ltd Method for removing nitrogen in waste water
JP2002336885A (en) * 2001-05-21 2002-11-26 Kurita Water Ind Ltd Method for aerobic treatment of waste water
JP2003033788A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method for treating raw water containing phosphorus and ammoniacal nitrogen
JP2004230225A (en) * 2003-01-28 2004-08-19 Kurita Water Ind Ltd Method for treating ammonia-containing water
JP2004255269A (en) * 2003-02-25 2004-09-16 Kurita Water Ind Ltd Denitrification method and denitrification apparatus
JP2004283758A (en) * 2003-03-24 2004-10-14 Kurita Water Ind Ltd Biological denitrification method
JP2004298841A (en) * 2003-04-01 2004-10-28 Kurita Water Ind Ltd Method for treating nitrogen-containing wastewater

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001246397A (en) * 2000-03-03 2001-09-11 Kansai Paint Co Ltd Method for removing nitrogen in waste water
JP2002336885A (en) * 2001-05-21 2002-11-26 Kurita Water Ind Ltd Method for aerobic treatment of waste water
JP2003033788A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method for treating raw water containing phosphorus and ammoniacal nitrogen
JP2004230225A (en) * 2003-01-28 2004-08-19 Kurita Water Ind Ltd Method for treating ammonia-containing water
JP2004255269A (en) * 2003-02-25 2004-09-16 Kurita Water Ind Ltd Denitrification method and denitrification apparatus
JP2004283758A (en) * 2003-03-24 2004-10-14 Kurita Water Ind Ltd Biological denitrification method
JP2004298841A (en) * 2003-04-01 2004-10-28 Kurita Water Ind Ltd Method for treating nitrogen-containing wastewater

Also Published As

Publication number Publication date
JP2006289310A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP4224951B2 (en) Denitrification method
Hasan et al. On–off control of aeration time in the simultaneous removal of ammonia and manganese using a biological aerated filter system
JP4784873B2 (en) Anaerobic ammonia oxidation treatment method and apparatus
JP4925208B2 (en) Aerobic granule formation method, water treatment method and water treatment apparatus
JP4872171B2 (en) Biological denitrification equipment
JP4876343B2 (en) Denitrification method and denitrification apparatus
Bhuvanesh et al. Start-up and performance of a hybrid anoxic reactor for biological denitrification
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP2003053385A (en) Biological denitrification equipment
JP2006289311A (en) Method for treating drainage
JP2002001389A (en) Production process of biological membrane and continuous treatment equipment for inorganic ammonate containing wastewater, using the same membrane
JP2003024988A (en) Biological denitrification method
JP4596533B2 (en) Wastewater treatment method
TWI359794B (en)
JP5240465B2 (en) Storage system and storage method for anaerobic microorganism-immobilized carrier
JP2004255269A (en) Denitrification method and denitrification apparatus
KR100517095B1 (en) Wastewater Treatment Apparatus and Method
KR100292432B1 (en) Modified oxidation ditch for organic wastewater treatment
KR20150022188A (en) Method for fabricating of aerobic granule sludge and sequencing batch reactor apparatus
JP3858271B2 (en) Wastewater treatment method and apparatus
JP5199794B2 (en) Nitrogen-containing organic wastewater treatment method
TWI411584B (en) Method and apparatus for biologically treating organic matter-containing water
CA2922111C (en) Hybrid reactor and process for removing selenium
KR100202066B1 (en) Wastewater treatment method using biological 3 step digestion process in one reactor
KR20200092028A (en) Biofilm Core-shell structured particles having biofilm and Method for treating wastewater using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100917

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100917

R150 Certificate of patent or registration of utility model

Ref document number: 4596533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250