JP2004230225A - Method for treating ammonia-containing water - Google Patents
Method for treating ammonia-containing water Download PDFInfo
- Publication number
- JP2004230225A JP2004230225A JP2003019112A JP2003019112A JP2004230225A JP 2004230225 A JP2004230225 A JP 2004230225A JP 2003019112 A JP2003019112 A JP 2003019112A JP 2003019112 A JP2003019112 A JP 2003019112A JP 2004230225 A JP2004230225 A JP 2004230225A
- Authority
- JP
- Japan
- Prior art keywords
- ammonia
- anammox
- denitrification
- nitrogen
- bacteria
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Activated Sludge Processes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、アンモニア含有水の処理方法に係り、特に、アンモニア含有水の硝化脱窒処理に当たり、アンモニア性窒素を電子供与体とし亜硝酸性窒素を電子受容体とする独立栄養性脱窒細菌を利用することにより、処理コストの低減を図る方法に関する。
【0002】
【従来の技術】
排液中に含まれるアンモニア性窒素は河川、湖沼及び海洋などにおける富栄養化の原因物質の一つであり、排液処理工程で効率的に除去する必要がある。一般に、排水中のアンモニア性窒素は、アンモニア性窒素をアンモニア酸化細菌により亜硝酸性窒素に酸化し、更にこの亜硝酸性窒素を亜硝酸酸化細菌により硝酸性窒素に酸化する硝化工程と、これらの亜硝酸性窒素及び硝酸性窒素を従属栄養性細菌である脱窒菌により、有機物を電子(水素)供与体として利用して窒素ガスにまで分解する脱窒工程との2段階の生物反応を経て窒素ガスにまで分解される。
【0003】
具体的には、図1(a)に示す如く、原水を硝化槽1に導入して曝気下、硝化処理し、硝化処理水を脱窒槽2に導入して脱窒処理する。脱窒処理水は沈殿池3で固液分離し、分離水を処理水として取り出す。分離汚泥は必要に応じて一部を余剰汚泥として系外へ排出し、残部を硝化槽1に返送する。なお、図1(b)に示す如く、脱窒槽2を硝化槽1の前段に配置し、原水を脱窒槽2、硝化槽1の順で通水し、硝化槽1の流出水の一部を脱窒槽2に循環する方法もある。
【0004】
しかし、このような従来の硝化脱窒法では、硝化工程においてアンモニア性窒素を亜硝酸性窒素を経て硝酸性窒素に酸化するために多量の酸素を必要とし、硝化槽1への酸素供給のための曝気電力量が高い。また、アルカリ性のアンモニア性窒素を酸性の亜硝酸性窒素や硝酸性窒素に変換することから、pH条件を維持して生物活性を保つために多量のアルカリを硝化槽1に添加する必要がある。
【0005】
一方、脱窒槽2では、硝酸性窒素を窒素に転換するために、電子供与体としてメタノール等の有機物が多量に必要となる。また、脱窒槽2では、酸性の亜硝酸性窒素や硝酸性窒素が窒素として除去されるために、pH条件を維持して生物活性を保つための酸の添加も必要となる。
【0006】
このように、従来の硝化脱窒法では、硝化のための曝気量、脱窒のための有機物添加量、及び生物活性維持のための薬品(アルカリ及び酸)添加量が多く、このために電力費や薬剤費等のランニングコストが高いという欠点があった。
【0007】
このような硝化脱窒法に対して、近年、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする独立栄養性脱窒細菌を利用し、アンモニア性窒素と亜硝酸性窒素とを反応させて脱窒する方法が提案された。この方法であれば、有機物の添加は不要であるため、従属栄養性の脱窒菌を利用する方法と比べて、コストを低減することができる。
【0008】
この独立栄養性脱窒細菌(以下「ANAMMOX菌」と称す。)を利用する生物脱窒プロセス(ANAMMOXプロセス)は、Strous, M, et al., Appl. Microbiol. Biotechnol., 50, p.589−596 (1998) に報告されており、後述のANAMMOX反応式に示すような反応でアンモニア性窒素と亜硝酸性窒素が反応して窒素ガスに分解される。
【0009】
しかして、特開2001−293494号公報には、アンモニア酸化細菌とANAMMOX菌とが共存する汚泥を利用して一工程で硝化脱窒を行う方法が提案されている。
【0010】
【特許文献1】
特開2001−293494号公報
【0011】
【発明が解決しようとする課題】
特開2001−293494号公報には、ANAMMOX菌の表面をアンモニア酸化細菌が覆うように生物膜二重構造体を生成させた汚泥についての記載もなされているが、このような生物膜二重構造体をどのように生成させるかについての検討はなされておらず、また、特開2001−293494号公報記載の方法では、このような生物膜二重構造体を形成した汚泥により、一工程で硝化と脱窒を行うものであるために、処理条件の設定が容易ではなく、処理水水質の安定性において、より一層の改善が望まれる。また、後述のANAMMOX反応式からも明らかなように、ANAMMOX反応では、アンモニア性窒素と亜硝酸性窒素との反応で硝酸性窒素が生成するため、硝酸性窒素が残留することとなる。
【0012】
本発明は上記従来の問題点を解決し、アンモニア含有水の硝化脱窒処理に、ANAMMOX菌を有効に利用して処理コストの大幅な低減を図った上で、高水質な処理水を安定に得る方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
請求項1のアンモニア含有水の処理方法は、アンモニア含有水を硝化槽に通水してアンモニアを分解する方法において、該硝化槽内に、アンモニア性窒素を電子供与体とし亜硝酸性窒素を電子受容体として脱窒反応を行う脱窒細菌の包括固定ゲル、該脱窒細菌の自己造粒物、又は、該脱窒細菌を表面に担持した菌担持担体を保持し、該硝化槽内にて、該包括固定ゲル、自己造粒物、又は菌担持担体の表面をアンモニア酸化細菌で覆った生物膜二重構造体を生成させることを特徴とする。
【0014】
請求項2のアンモニア含有水の処理方法は、アンモニア含有水を硝化槽及び脱窒槽に通水してアンモニアを分解する方法において、該硝化槽内に、アンモニア性窒素を電子供与体とし亜硝酸性窒素を電子受容体として脱窒反応を行う脱窒細菌の包括固定ゲル、該脱窒細菌の自己造粒物、又は該脱窒細菌を表面に担持した菌担持担体を保持することを特徴とする。
【0015】
アンモニア性窒素を電子供与体とし亜硝酸性窒素を電子受容体として脱窒反応を行うANAMMOX菌の包括固定ゲル、又は自己造粒物、或いはこのANAMMOX菌を表面に担持した菌担持担体(以下、これらを「一次生物膜体」と称す場合がある。)を好気性の硝化槽内に保持すると、一次生物膜体の外周囲にアンモニア酸化細菌が付着してこれを覆う生物膜が生成し、生物膜二重構造体が形成される。この生物膜二重構造体では、外側のアンモニア酸化細菌による亜硝酸化反応で生じた亜硝酸性窒素と、残存するアンモニア性窒素とを、生物膜の内側の嫌気性雰囲気中に存在するANAMMOX菌により反応させて窒素に分解することができ、このANAMMOX菌による分解量に相当する酸素量や薬品使用量が削減される。
【0016】
以下に、本発明による曝気量、電力量及び薬剤使用量の低減効果を、硝化脱窒反応式に基いて説明する。
【0017】
アンモニア酸化細菌、硝酸化細菌及び脱窒菌による従来の硝化脱窒法では、次のような反応が起こる。
[硝酸化反応(硝化槽内)]
NH4 ++2O2+2NaOH→NaNO3+Na++3H2O
[脱窒反応(脱窒槽内)]
NaNO3+2.5H2+HCl→0.5N2+NaCl+3H2O
【0018】
上記の反応は各槽で個別に行われるため、NaOH、HClがそれぞれ必要となり、NH4 +1モルの硝化脱窒のために酸素が2モル、苛性ソーダが2モル必要となる(なお、計算を簡単にするため、脱窒での塩酸使用量は苛性ソーダと当量とする)。
【0019】
これに対して、本発明では、生物膜二重構造体の形成により、生物膜の内側の嫌気性雰囲気中に存在するANAMMOX菌が、嫌気性条件下で、外側のアンモニア酸化細菌による下記亜硝酸化反応で生じた亜硝酸性窒素と、原水中のアンモニア性窒素とを下記ANAMMOX反応で反応させて脱窒する。
[亜硝酸化反応]
NH4 ++1.5O2+2NaOH→NaNO2+Na++3H2O
[ANAMMOX反応]
【0020】
従って、硝化槽では全体として、次のような反応が起こる。
【0021】
【0022】
即ち、NH4 +1モルの脱窒のために必要な酸素は0.853モル、苛性ソーダは1.14モルであり、従来法に比べて大幅に低減される(なお、計算を簡単にするため、脱窒での塩酸使用量は苛性ソーダと当量とする。)。
【0023】
【発明の実施の形態】
以下に本発明のアンモニア含有水の処理方法の実施の形態を詳細に説明する。
【0024】
まず、本発明において、硝化槽内に保持する一次生物膜体について説明する。本発明で用いる一次生物膜体は、次の▲1▼〜▲3▼である。なお、本発明においては、下記▲1▼〜▲3▼の一次生物膜体のうちの1種を硝化槽内に保持しても良く、2種以上を任意の割合で硝化槽内に保持しても良い。
【0025】
▲1▼ ANAMMOX菌の包括固定ゲル
▲2▼ ANAMMOX菌の自己造粒物
▲3▼ ANAMMOX菌を担体の表面に担持した菌担持担体
【0026】
▲1▼ANAMMOX菌の包括固定ゲルとしては、ポリビニルアルコール(PVA)、ポリアクリルアミド、光硬化性樹脂等の合成高分子や、カラギーナン、アルギン酸ソーダ等の天然高分子を高分子ゲル材料として用い、これにANAMMOX菌を固定化したものを用いることができる。高分子ゲル材料へのANAMMOX菌の固定化は、ゲル化する前の高分子材料とANAMMOX菌とを混合した後、得られた混合物を適当な方法でゲル化することにより行うことができ、このようにして得られたゲルを適当な形状に成形して包括固定ゲルとする。
【0027】
例えば、高分子ゲル材料としてPVAを用いる場合には、PVA溶液とANAMMOX菌とを混合したものを適当な容器に入れ、これを冷凍してゲル化し、その後共存水等の氷体を融解し、残留するゲルを細断して包括固定ゲルを作製する方法(PVA−冷凍法)、或いはPVA溶液とANAMMOX菌との混合物をホウ酸溶液中に滴下することによってゲル化して作製する方法(PVA−ホウ酸法)等が知られている。
【0028】
高分子ゲル材料にANAMMOX菌を固定して得られた包括固定ゲルは、円柱状、板状、繊維状、中空糸状等の任意の形状に成形することができる。
【0029】
▲2▼ANAMMOX菌の自己造粒物としては、常法に従って、ANAMMOX菌を自己造粒させることによって形成することができる。また、▲3▼ANAMMOX菌を担体の表面に担持した菌担持体についても常法に従って調製することができ、担体としては、活性炭、ゼオライト、スポンジ等の多孔質物質、三次元網状物体、ひも状物、球状物、フィルム状物等を用いることができる。
【0030】
なお、ANAMMOX菌の自己造粒物の場合、ANAMMOX菌だけでは自己造粒に期間を要するので、核となる物質を添加し、その核の周りにANAMMOX菌の生物膜を形成させることが望ましい。この場合、核として、例えば微生物自己造粒物や上述の担体等を挙げることができる。
【0031】
核として用いられる微生物自己造粒物としては、メタン菌グラニュール等の嫌気性微生物や従属栄養性脱窒菌等の自己造粒物を挙げることができる。メタン菌自己造粒物は、UASB(Upflow Anaerobic Sludge Blanket;上向流嫌気性汚泥床)法もしくはEGSB(Expanded Granule Sludge Bed;展開粒状汚泥床)法でメタン発酵が行われているメタン発酵槽で使用されているものを適用できる。また、従属栄養性脱窒自己造粒物は、USB方式の通常の脱窒槽で利用されるものを適用できる。これらの自己造粒物はそのままの状態で、又はその破砕物として用いることができる。ANAMMOX菌はこのような微生物自己造粒物に付着しやすく、自己造粒物の形成に要する時間が短縮される。また、核として非生物的な材料を用いるよりも経済的である。
【0032】
本発明で用いる一次生物膜体の形状には特に制限はなく、粒状(球状、立方体状、その他の異形形状)、ひも状、棒状等の長尺状、フィルム状等の平面形状等の多種多様の形状を採用することができ、その大きさについても任意であるが、取り扱い性、生物膜二重構造体の形成効率等の面から、次のような大きさであることが好ましい。
【0033】
粒状の場合:直径又は一辺の長さが3〜20mm
長尺状の場合:長さ3〜2000mm程度、太さ0.1〜5mmφ
平面状の場合:面積制限なし、厚み0.1〜5mm
【0034】
本発明のアンモニア含有水の処理方法は、このような一次生物膜体を硝化槽に投入し、これを硝化槽から流出しないように保持する。従って、硝化槽に一次生物膜体を投入したのみでは流出のおそれがある場合には、硝化槽に、一次生物膜体が流出しないように、スクリーンを設けることが好ましい。または、一次生物膜体を硝化液と共に流出させ、沈殿槽に導入して固液分離し、分離した一次生物膜体を硝化槽に戻してもよい。
【0035】
硝化槽への一次生物膜体の投入量は、原水中のアンモニア濃度や、処理水量等の硝化槽負荷等に応じて適宜決定されるが、通常の場合、MLSSとして500〜5000mg/Lとなるように投入することが好ましい。
【0036】
前述の如く、硝化槽に一次生物膜体を投入して保持することにより、一次生物膜体の表面にアンモニア酸化細菌の生物膜が形成され、ANAMMOX菌の一次生物膜体をアンモニア酸化細菌で覆った生物膜二重構造体により、アンモニア性窒素の亜硝酸化と、生成した亜硝酸性窒素と残留するアンモニア性窒素とのANAMMOX反応が行われる。このように、硝化槽内でアンモニア性窒素が分解されることにより、硝化に必要な曝気量とpH調整のためのアルカリ添加量を大幅に低減することができる。
【0037】
硝化処理水は、次いで脱窒槽に通水され、従来法と同様にして脱窒処理される。この脱窒処理に当たり、硝化槽では硝化により生成した亜硝酸性窒素の一部がANAMMOX菌により分解されているため、従来法に比べて脱窒槽でのメタノール等の水素供与体添加量、pH調整のための酸添加量は大幅に低減される。
【0038】
なお、本発明のアンモニア含有水の処理方法は、図1(a)に示す如く、硝化槽1及び脱窒槽2に順次通水して処理する方法であっても良く、図1(b)に示す如く、脱窒槽2及び硝化槽1に順次通水し、硝化槽1の流出水の一部を脱窒槽2に循環する方法であっても良い。また、後述の実施例に示す如く、後段に更に再曝気槽を設けて原水中のBOD成分を分解除去するものであっても良い。
【0039】
本発明で処理の対象となる被処理水はアンモニア性窒素を含む水であり、有機物、亜硝酸性窒素、硝酸性窒素、その他の不純物などを含んでいても良い。有機性窒素化合物を含む被処理水は、そのまま本発明に供しても良いが、嫌気性処理又は好気性処理などにより有機性窒素化合物をアンモニア性窒素に変換した後、本発明に供しても良い。本発明で処理の対象となる被処理水の例としては、し尿、下水、食品排水、肥料工場排水などが挙げられる。
【0040】
【実施例】
以下に比較例及び実施例を挙げて、本発明をより具体的に説明する。
【0041】
比較例1
図2に示す如く、硝化槽1、脱窒槽2、沈殿池3及び再曝気槽4で順次処理する硝化脱窒装置において、本発明を適用しない従来法では、硝化槽(容量350m3)1での曝気電力量及び苛性ソーダ添加量と、脱窒槽(容量240m3)2での35%塩酸添加量及びメタノール添加量を表1に示す条件として、アンモニア性窒素を100mg/L含む排水を100m3/hで処理して、表1に示す水質の処理水を得ていた。
【0042】
実施例1
比較例1において、一次生物膜体として、下記のものをMLSSとして1000mg/Lとなるように硝化槽1に添加し、曝気量を約1/2に低減して同様に処理を行ったところ、得られた処理水の水質は表1に示す通り比較例1の場合とほぼ同等であり、苛性ソーダ、35%塩酸及びメタノールの必要量も表1に示す通り、比較例1に比べて大幅に低減することができた。
【0043】
[一次生物膜体]
嫌気性グラニュールを核としてANAMMOX菌を自己造粒させたもの
形状:ほぼ球状(粒状)
粒径:2〜5mm
【0044】
なお、硝化槽2は、この一次生物膜体が槽外へ流出しないように、目幅2mmのウェッジワイヤスクリーンを流出口直前に設置した。
【0045】
【表1】
【0046】
表1より、本発明によれば、従来法に比べて曝気電力費を約半分に低減すると共に、苛性ソーダ使用量は65%に、35%塩酸使用量は70%に、メタノール使用量は25%に低減することができ、ランニングコストを大幅に低減することができることがわかる。
【0047】
【発明の効果】
以上詳述した通り、本発明のアンモニア含有水の処理方法によれば、アンモニア含有水を低コストで処理して良好な水質の処理水を安定に得ることができる。
【図面の簡単な説明】
【図1】一般的な硝化脱窒法を示す系統図である。
【図2】実施例1及び比較例1で用いた硝化脱窒装置を示す系統図である。
【符号の説明】
1 硝化槽
2 脱窒槽
3 沈殿池
4 再曝気槽[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for treating ammonia-containing water, and in particular, in nitrifying and denitrifying treatment of ammonia-containing water, an autotrophic denitrifying bacterium using ammonium nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. The present invention relates to a method for reducing a processing cost by utilizing the method.
[0002]
[Prior art]
Ammoniacal nitrogen contained in the effluent is one of the causative substances of eutrophication in rivers, lakes and oceans, and needs to be efficiently removed in the effluent treatment process. In general, ammonia nitrogen in wastewater is a nitrification step in which ammonia nitrogen is oxidized to nitrite nitrogen by ammonia oxidizing bacteria, and this nitrite nitrogen is oxidized to nitrate nitrogen by nitrite oxidizing bacteria. Nitrogen is passed through a two-stage biological reaction with a denitrification step in which nitrite and nitrate nitrogen are decomposed into nitrogen gas by using a heterotrophic bacterium, a denitrifying bacterium, by utilizing organic substances as electron (hydrogen) donors. Decomposes to gas.
[0003]
Specifically, as shown in FIG. 1 (a), raw water is introduced into a nitrification tank 1, subjected to nitrification under aeration, and nitrification-treated water is introduced into a denitrification tank 2 for denitrification. The denitrification treatment water is solid-liquid separated in the sedimentation basin 3 and the separated water is taken out as treatment water. A part of the separated sludge is discharged out of the system as surplus sludge as necessary, and the rest is returned to the nitrification tank 1. As shown in FIG. 1 (b), the denitrification tank 2 is disposed in front of the nitrification tank 1, raw water flows through the denitrification tank 2 and the nitrification tank 1 in this order, and a part of the effluent of the nitrification tank 1 is discharged. There is also a method of circulating in the denitrification tank 2.
[0004]
However, in such a conventional nitrification denitrification method, a large amount of oxygen is required to oxidize ammonia nitrogen to nitrate nitrogen through nitrite nitrogen in the nitrification step, so that oxygen supply to the nitrification tank 1 is required. Aeration power is high. Further, since alkaline ammonium nitrogen is converted into acidic nitrite nitrogen or nitrate nitrogen, it is necessary to add a large amount of alkali to the nitrification tank 1 in order to maintain pH conditions and maintain biological activity.
[0005]
On the other hand, in the denitrification tank 2, a large amount of an organic substance such as methanol is required as an electron donor in order to convert nitrate nitrogen into nitrogen. Further, in the denitrification tank 2, since acidic nitrite nitrogen and nitrate nitrogen are removed as nitrogen, it is necessary to add an acid for maintaining pH conditions and maintaining biological activity.
[0006]
As described above, in the conventional nitrification and denitrification method, the amount of aeration for nitrification, the amount of addition of organic substances for denitrification, and the amount of addition of chemicals (alkali and acid) for maintaining biological activity are large. There is a drawback that running costs such as drug costs and drug costs are high.
[0007]
In recent years, in response to such nitrification and denitrification methods, autotrophic denitrifying bacteria using ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor have been used. And a method of denitrification by reacting the same was proposed. This method does not require the addition of an organic substance, so that the cost can be reduced as compared with the method using heterotrophic denitrifying bacteria.
[0008]
The biological denitrification process (ANAMMOX process) using this autotrophic denitrifying bacterium (hereinafter referred to as “ANAMMOX bacteria”) is described in Straus, M, et al. , Appl. Microbiol. Biotechnol. , 50, p. 589-596 (1998), and ammonia nitrogen and nitrite nitrogen are reacted and decomposed into nitrogen gas by a reaction as shown in the following ANAMMOX reaction formula.
[0009]
Japanese Patent Application Laid-Open No. 2001-293494 proposes a method of performing nitrification and denitrification in one step by using sludge in which ammonia-oxidizing bacteria and ANAMMOX bacteria coexist.
[0010]
[Patent Document 1]
JP 2001-293494 A
[Problems to be solved by the invention]
Japanese Patent Application Laid-Open No. 2001-293494 also describes a sludge in which a biofilm double structure is formed so that the surface of an ANAMMOX bacterium is covered with ammonia-oxidizing bacteria. No study has been made on how to produce the body, and in the method described in Japanese Patent Application Laid-Open No. 2001-293494, nitrification is performed in one step by using sludge having such a biofilm double structure. Therefore, setting of treatment conditions is not easy, and further improvement in stability of treated water quality is desired. Further, as is apparent from the below-described ANAMMOX reaction formula, in the ANAMMOX reaction, nitrate nitrogen is generated by the reaction between ammonia nitrogen and nitrite nitrogen, so that nitrate nitrogen remains.
[0012]
The present invention solves the above-mentioned conventional problems and effectively uses ANAMMOX bacteria for nitrification and denitrification treatment of ammonia-containing water, thereby significantly reducing the treatment cost and stably treating high-quality treated water. The purpose is to provide a way to obtain.
[0013]
[Means for Solving the Problems]
The method for treating ammonia-containing water according to claim 1 is a method for decomposing ammonia by passing ammonia-containing water through a nitrification tank. In the nitrification tank, ammonia nitrogen is used as an electron donor and nitrite nitrogen is used as an electron. An entrapping fixed gel of a denitrifying bacterium that performs a denitrification reaction as a receptor, a self-granulated product of the denitrifying bacterium, or a bacteria-carrying carrier that has the denitrifying bacterium on its surface is held in the nitrification tank. And forming a biofilm double structure in which the surface of the entrapping fixed gel, the self-granulated substance, or the bacteria-carrying carrier is covered with ammonia-oxidizing bacteria.
[0014]
The method for treating ammonia-containing water according to claim 2 is a method for decomposing ammonia by passing ammonia-containing water through a nitrification tank and a denitrification tank. In the nitrification tank, ammonia nitrate is used as an electron donor and nitrite is added. An entrapping fixed gel of a denitrifying bacterium that performs a denitrification reaction using nitrogen as an electron acceptor, a self-granulated product of the denitrifying bacterium, or a bacteria-carrying carrier having the denitrifying bacterium on its surface is held. .
[0015]
An entrapping gel or self-granulated material of ANAMMOX bacteria that performs a denitrification reaction using ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor, or a bacteria-carrying carrier that carries the ANAMMOX bacteria on its surface (hereinafter, referred to as When these are referred to as “primary biofilm bodies” in an aerobic nitrification tank, ammonia-oxidizing bacteria adhere to the outer periphery of the primary biofilm bodies and form a biofilm covering the bacteria. A biofilm duplex is formed. In this biofilm double structure, the nitrite nitrogen generated by the nitrite reaction by the outer ammonia-oxidizing bacteria and the remaining ammonia nitrogen are combined with the ANAMMOX bacteria present in the anaerobic atmosphere inside the biofilm. To reduce the amount of oxygen and the amount of chemicals used corresponding to the amount of decomposition by the ANAMMOX bacteria.
[0016]
Hereinafter, the effects of the present invention for reducing the amount of aeration, the amount of electric power, and the amount of drug used will be described based on a nitrification denitrification reaction formula.
[0017]
In the conventional nitrification and denitrification method using ammonia-oxidizing bacteria, nitrifying bacteria, and denitrifying bacteria, the following reactions occur.
[Nitration reaction (in a nitrification tank)]
NH 4 + + 2O 2 + 2NaOH → NaNO 3 + Na + + 3H 2 O
[Denitrification reaction (in the denitrification tank)]
NaNO 3 + 2.5H 2 + HCl → 0.5N 2 + NaCl + 3H 2 O
[0018]
Since the above reaction is performed individually in each tank, NaOH and HCl are required, and 2 mol of oxygen and 2 mol of caustic soda are required for nitrification and denitrification of 1 mol of NH 4 +1 For simplicity, the amount of hydrochloric acid used in denitrification is equivalent to caustic soda).
[0019]
On the other hand, in the present invention, the formation of the biofilm double structure causes the ANAMMOX bacteria present in the anaerobic atmosphere inside the biofilm to undergo the following nitrite by the ammonia-oxidizing bacteria under the anaerobic condition. The nitrite nitrogen generated in the chemical reaction and the ammonia nitrogen in the raw water are reacted by the following ANAMOX reaction to denitrify.
[Nitrite reaction]
NH 4 + +1.5 O 2 + 2NaOH → NaNO 2 + Na + + 3H 2 O
[ANAMMOX reaction]
[0020]
Therefore, the following reaction occurs in the nitrification tank as a whole.
[0021]
[0022]
That is, oxygen required for denitrification of NH 4 +1 mol is 0.853 mol and caustic soda is 1.14 mol, which are greatly reduced as compared with the conventional method. The amount of hydrochloric acid used for denitrification is equivalent to caustic soda.)
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the method for treating ammonia-containing water of the present invention will be described in detail.
[0024]
First, in the present invention, a primary biofilm body held in a nitrification tank will be described. The primary biofilms used in the present invention are the following (1) to (3). In the present invention, one of the following primary biofilms (1) to (3) may be held in the nitrification tank, and two or more kinds may be held in the nitrification tank at an arbitrary ratio. May be.
[0025]
(1) An inclusive fixed gel of ANAMMOX bacteria (2) A self-granulated product of ANAMMOX bacteria (3) A bacteria-supported carrier in which ANAMMOX bacteria are supported on the surface of a carrier
{Circle around (1)} A synthetic gel such as polyvinyl alcohol (PVA), polyacrylamide, or a photo-curable resin, or a natural polymer such as carrageenan or sodium alginate is used as a polymer gel material for the inclusive fixation gel of the ANAMMOX bacteria. Can be used. The immobilization of the ANAMMOX bacteria on the polymer gel material can be performed by mixing the polymer material before gelation with the ANAMMOX bacteria and then gelling the resulting mixture by an appropriate method. The gel thus obtained is formed into an appropriate shape to obtain a comprehensive fixed gel.
[0027]
For example, when using PVA as a polymer gel material, a mixture of a PVA solution and an ANAMMOX bacterium is placed in an appropriate container, which is frozen and gelled, and then ice bodies such as coexisting water are melted. A method in which the remaining gel is shredded to prepare a comprehensive fixed gel (PVA-freezing method), or a method in which a mixture of a PVA solution and an ANAMMOX bacterium is dropped into a boric acid solution to form a gel (PVA- Boric acid method) and the like are known.
[0028]
The inclusive immobilized gel obtained by immobilizing the ANAMMOX bacteria on the polymer gel material can be formed into an arbitrary shape such as a columnar shape, a plate shape, a fiber shape, a hollow fiber shape, and the like.
[0029]
{Circle over (2)} The self-granulated material of the ANAMMOX bacteria can be formed by self-granulating the ANAMMOX bacteria according to a conventional method. In addition, (3) a bacterial carrier in which ANAMMOX bacteria are carried on the surface of a carrier can also be prepared according to a conventional method. Examples of the carrier include activated carbon, zeolites, sponges, and other porous materials, three-dimensional meshes, and strings. Objects, spheres, films and the like can be used.
[0030]
In the case of the self-granulated material of the ANAMMOX bacterium, the ANAMMOX bacterium alone requires a period of time for self-granulation, so it is preferable to add a substance serving as a nucleus and form a biofilm of the ANAMMOX bacterium around the nucleus. In this case, as the nucleus, for example, a microorganism self-granulated substance, the above-mentioned carrier, and the like can be given.
[0031]
Examples of the microorganism self-granulated material used as a core include anaerobic microorganisms such as methanogen granules and self-granulated materials such as heterotrophic denitrifying bacteria. The methane fermentation is carried out by methane fermentation in a UASB (Upflow Anaerobic Sludge Blanket) method or an EGSB (Expanded Granule Sludge Bed) method. The ones used can be applied. Further, as the heterotrophic denitrification self-granulating substance, a substance used in an ordinary USB type denitrification tank can be applied. These self-granulated products can be used as they are or as crushed products thereof. The ANAMMOX bacterium easily adheres to such a microorganism self-granulated substance, and the time required for forming the self-granulated substance is reduced. It is more economical than using non-living material as the core.
[0032]
There is no particular limitation on the shape of the primary biofilm used in the present invention, and a wide variety of shapes such as a granular shape (spherical shape, cubic shape, and other irregular shapes), a long shape such as a string shape, a rod shape, and a planar shape such as a film shape are provided. The shape can be adopted, and the size is also arbitrary. However, from the viewpoints of handleability, formation efficiency of the biofilm double structure, and the like, the following size is preferable.
[0033]
In the case of granular: 3 to 20 mm in diameter or length of one side
In the case of a long shape: about 3 to 2000 mm in length, 0.1 to 5 mm in thickness
In the case of a planar shape: no area limitation, thickness 0.1 to 5 mm
[0034]
According to the method for treating ammonia-containing water of the present invention, such a primary biofilm is charged into a nitrification tank and is held so as not to flow out of the nitrification tank. Therefore, when there is a risk of outflow simply by putting the primary biofilm into the nitrification tank, it is preferable to provide a screen in the nitrification tank so that the primary biofilm does not flow out. Alternatively, the primary biofilm may be discharged together with the nitrification solution, introduced into a precipitation tank, subjected to solid-liquid separation, and the separated primary biofilm may be returned to the nitrification tank.
[0035]
The amount of the primary biofilm added to the nitrification tank is appropriately determined according to the ammonia concentration in the raw water, the nitrification tank load such as the amount of treated water, and the like. In a normal case, the MLSS is 500 to 5000 mg / L. It is preferable to put in such a manner.
[0036]
As described above, by putting the primary biofilm into the nitrification tank and holding it, a biofilm of the ammonia-oxidizing bacteria is formed on the surface of the primary biofilm, and the primary biofilm of the ANAMMOX bacteria is covered with the ammonia-oxidizing bacteria. The nitrification of ammonia nitrogen and the ANAMMOX reaction between the generated nitrite nitrogen and the remaining ammonia nitrogen are performed by the biofilm double structure. As described above, by decomposing the ammoniacal nitrogen in the nitrification tank, the amount of aeration required for nitrification and the amount of alkali added for pH adjustment can be significantly reduced.
[0037]
The nitrified water is then passed through a denitrification tank and denitrified in the same manner as in the conventional method. During this denitrification treatment, part of the nitrite nitrogen generated by nitrification in the nitrification tank was decomposed by the ANAMMOX bacteria, so that the amount of added hydrogen donor such as methanol in the denitrification tank and the pH were adjusted as compared with the conventional method. The amount of acid added for is significantly reduced.
[0038]
As shown in FIG. 1 (a), the method for treating ammonia-containing water of the present invention may be a method in which water is passed through a nitrification tank 1 and a denitrification tank 2 sequentially. As shown in the figure, a method may be used in which water is sequentially passed through the denitrification tank 2 and the nitrification tank 1 and a part of the effluent of the nitrification tank 1 is circulated to the denitrification tank 2. Further, as shown in an example described later, a re-aeration tank may be further provided at a subsequent stage to decompose and remove BOD components in raw water.
[0039]
The target water to be treated in the present invention is water containing ammonia nitrogen, and may contain organic matter, nitrite nitrogen, nitrate nitrogen, other impurities, and the like. The water to be treated containing the organic nitrogen compound may be subjected to the present invention as it is, or may be subjected to the present invention after converting the organic nitrogen compound into ammonia nitrogen by anaerobic treatment or aerobic treatment or the like. . Examples of the water to be treated in the present invention include human waste, sewage, food wastewater, and fertilizer factory wastewater.
[0040]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Comparative Examples and Examples.
[0041]
Comparative Example 1
As shown in FIG. 2, in a nitrification denitrification apparatus which sequentially processes in a nitrification tank 1, a denitrification tank 2, a sedimentation tank 3, and a re-aeration tank 4, in a conventional method to which the present invention is not applied, a nitrification tank (capacity: 350 m 3 ) 1 is used. and aeration amount of power and sodium hydroxide addition amount of the denitrification tank (capacity 240 m 3) 35% hydrochloric acid amount and methanol added amount of 2 as the conditions shown in Table 1, the waste water containing ammoniacal nitrogen 100mg / L 100m 3 / h to obtain treated water having the quality shown in Table 1.
[0042]
Example 1
In Comparative Example 1, as a primary biofilm, the following were added to the nitrification tank 1 so that the MLSS became 1000 mg / L, and the aeration amount was reduced to about 量, and the same treatment was performed. The quality of the obtained treated water is almost the same as that of Comparative Example 1 as shown in Table 1, and the required amounts of caustic soda, 35% hydrochloric acid and methanol are also greatly reduced as compared with Comparative Example 1 as shown in Table 1. We were able to.
[0043]
[Primary biofilm]
Self-granulated ANAMMOX bacteria with anaerobic granules as the core Shape: almost spherical (granular)
Particle size: 2-5mm
[0044]
The nitrification tank 2 was provided with a wedge wire screen having a mesh width of 2 mm immediately before the outlet so as to prevent the primary biofilm from flowing out of the tank.
[0045]
[Table 1]
[0046]
From Table 1, according to the present invention, the aeration power cost is reduced to about half compared with the conventional method, the amount of caustic soda used is reduced to 65%, the amount of 35% hydrochloric acid is reduced to 70%, and the amount of methanol is reduced to 25%. It can be seen that the running cost can be greatly reduced.
[0047]
【The invention's effect】
As described above in detail, according to the method for treating ammonia-containing water of the present invention, it is possible to treat ammonia-containing water at low cost and to obtain treated water of good quality in a stable manner.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a general nitrification and denitrification method.
FIG. 2 is a system diagram showing a nitrification denitrification apparatus used in Example 1 and Comparative Example 1.
[Explanation of symbols]
1 Nitrification tank 2 Denitrification tank 3 Sedimentation tank 4 Re-aeration tank
Claims (2)
該硝化槽内に、アンモニア性窒素を電子供与体とし亜硝酸性窒素を電子受容体として脱窒反応を行う脱窒細菌の包括固定ゲル、該脱窒細菌の自己造粒物、又は、該脱窒細菌を表面に担持した菌担持担体を保持し、
該硝化槽内にて、該包括固定ゲル、自己造粒物、又は菌担持担体の表面をアンモニア酸化細菌で覆った生物膜二重構造体を生成させることを特徴とするアンモニア含有水の処理方法。In a method of decomposing ammonia by passing ammonia-containing water through a nitrification tank,
In the nitrification tank, an entrapping fixed gel of a denitrifying bacterium that performs a denitrification reaction using ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor, a self-granulated product of the denitrification bacterium, or the denitrification bacterium Holding a bacteria-carrying carrier carrying the nitrifying bacteria on its surface,
A method for treating ammonia-containing water, comprising forming a biofilm double structure in which the surface of the entrapping fixed gel, self-granulated material, or bacteria-carrying carrier is covered with ammonia-oxidizing bacteria in the nitrification tank. .
該硝化槽内に、アンモニア性窒素を電子供与体とし亜硝酸性窒素を電子受容体として脱窒反応を行う脱窒細菌の包括固定ゲル、該脱窒細菌の自己造粒物、又は該脱窒細菌を表面に担持した菌担持担体を保持することを特徴とするアンモニア含有水の処理方法。In a method of decomposing ammonia by passing ammonia-containing water through a nitrification tank and a denitrification tank,
In the nitrification tank, an entrapping fixed gel of a denitrifying bacterium performing a denitrification reaction using ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor, a self-granulated product of the denitrification bacterium, or the denitrification A method for treating ammonia-containing water, comprising holding a bacteria-carrying carrier having bacteria on the surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003019112A JP4613474B2 (en) | 2003-01-28 | 2003-01-28 | Method for treating ammonia-containing water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003019112A JP4613474B2 (en) | 2003-01-28 | 2003-01-28 | Method for treating ammonia-containing water |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004230225A true JP2004230225A (en) | 2004-08-19 |
JP4613474B2 JP4613474B2 (en) | 2011-01-19 |
Family
ID=32949073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003019112A Expired - Fee Related JP4613474B2 (en) | 2003-01-28 | 2003-01-28 | Method for treating ammonia-containing water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4613474B2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006088092A (en) * | 2004-09-27 | 2006-04-06 | Kurita Water Ind Ltd | Method and apparatus for treating nitrogen-containing liquid |
JP2006122771A (en) * | 2004-10-27 | 2006-05-18 | Chuden Kankyo Technos Co Ltd | Fluid treatment method and fluid treatment system |
JP2006239572A (en) * | 2005-03-03 | 2006-09-14 | Hitachi Plant Technologies Ltd | Oxidation treatment method of nitrous acid-containing liquid |
JP2006239579A (en) * | 2005-03-03 | 2006-09-14 | Hitachi Plant Technologies Ltd | Oxidation treatment method of nitrous acid-containing liquid |
JP2006263719A (en) * | 2005-02-28 | 2006-10-05 | Hitachi Plant Technologies Ltd | Process and equipment for treating ammonia-containing liquid |
JP2006289310A (en) * | 2005-04-14 | 2006-10-26 | Japan Organo Co Ltd | Method for treating waste water |
JP2006320831A (en) * | 2005-05-18 | 2006-11-30 | Hitachi Plant Technologies Ltd | Apparatus for treating ammonia-containing liquid |
JP2007117967A (en) * | 2005-10-31 | 2007-05-17 | Asahi Breweries Ltd | Carrier for autotrophic ammonia oxidizing bacterium, ammonia nitrogen removing bacterium-deposited body and method for removing ammonia nitrogen |
KR100937496B1 (en) | 2008-01-09 | 2010-01-19 | 한국과학기술연구원 | Method for chemical granulation of anaerobic ammonium oxidizing bacteria |
JP2011056383A (en) * | 2009-09-09 | 2011-03-24 | Japan Organo Co Ltd | Treatment method of nitrogen containing water and treatment apparatus of nitrogen containing water |
EP2377819A1 (en) * | 2008-12-28 | 2011-10-19 | Metawater Co., Ltd. | Method and device for removing biological nitrogen and support therefor |
US8293109B2 (en) | 2009-03-25 | 2012-10-23 | Hitachi Plant Technologies, Ltd. | Wastewater treatment method |
US8303817B2 (en) | 2009-03-25 | 2012-11-06 | Hitachi Plant Technologies, Ltd. | Wastewater treatment method and wastewater treatment apparatus |
CN104192986A (en) * | 2014-08-01 | 2014-12-10 | 浙江大学 | Short-cut nitrification reactor with seepage and self-oxygenation bacterial blanket and wastewater treatment method of short-cut nitrification reactor |
CN105174436A (en) * | 2015-07-14 | 2015-12-23 | 江苏华杉环保科技有限公司 | Biofilm aeration reactor |
JP2018126694A (en) * | 2017-02-09 | 2018-08-16 | 学校法人 東洋大学 | Processing apparatus and processing method of nitrogen containing sewage |
CN110734138A (en) * | 2019-10-18 | 2020-01-31 | 长沙理工大学 | In-situ treatment method for freshwater aquaculture wastewater |
CN116750934A (en) * | 2023-08-18 | 2023-09-15 | 四川发展环境科学技术研究院有限公司 | Automatic control device and system based on anaerobic ammonia oxidation reaction |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62136292A (en) * | 1985-12-10 | 1987-06-19 | Takuma Co Ltd | Method for inclusive immobilization of biological reaction promoter and two-layer utilization of said promoter in sewage denitrifying operation |
JPH05130867A (en) * | 1991-11-12 | 1993-05-28 | Kuraray Co Ltd | Biocatalyst-immobilized gel |
JPH08192185A (en) * | 1995-01-17 | 1996-07-30 | Ebara Corp | Biologically nitrifying and denitrifying method |
JP2001104992A (en) * | 1999-10-12 | 2001-04-17 | Kurita Water Ind Ltd | Method and apparatus for bilogically removing nitrogen |
JP2001506535A (en) * | 1996-08-23 | 2001-05-22 | テクニシエ ウニベルジテイト デルフト | Method of treating wastewater containing ammonia |
JP2001293494A (en) * | 2000-04-11 | 2001-10-23 | Kurita Water Ind Ltd | Biological nitrogen removing method |
JP2002224688A (en) * | 2000-11-28 | 2002-08-13 | Kurita Water Ind Ltd | Denitrifying method and denitrifying apparatus |
JP2002263689A (en) * | 2001-03-13 | 2002-09-17 | Ebara Corp | Method for treating ammonia-containing waste water and device |
JP2002346593A (en) * | 2001-05-22 | 2002-12-03 | Kurita Water Ind Ltd | Method and apparatus for denitrification |
JP2002361285A (en) * | 2001-06-12 | 2002-12-17 | Kurita Water Ind Ltd | Denitrification method and denitrification equipment |
JP2003001292A (en) * | 2001-06-20 | 2003-01-07 | Kurita Water Ind Ltd | Biological denitrification method |
JP2003024982A (en) * | 2001-07-17 | 2003-01-28 | Kurita Water Ind Ltd | Biological denitrification method and biological denitrification apparatus |
JP2003053387A (en) * | 2001-08-10 | 2003-02-25 | Kurita Water Ind Ltd | Method for biologically removing nitrogen |
JP2003126888A (en) * | 2001-10-26 | 2003-05-07 | Ebara Corp | Method and device for treating wastewater containing nitrogen and phosphorus |
JP2003126886A (en) * | 2001-10-26 | 2003-05-07 | Ebara Corp | Biological denitrification method and device of the same |
JP2003154393A (en) * | 2001-11-22 | 2003-05-27 | Ebara Corp | Biological method for removing nitrogen and apparatus therefor |
JP2003154390A (en) * | 2001-11-22 | 2003-05-27 | Ebara Corp | Method and apparatus for treating ammonia-containing sewage |
JP2003154394A (en) * | 2001-11-22 | 2003-05-27 | Ebara Corp | Biological denitrification method and apparatus |
-
2003
- 2003-01-28 JP JP2003019112A patent/JP4613474B2/en not_active Expired - Fee Related
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62136292A (en) * | 1985-12-10 | 1987-06-19 | Takuma Co Ltd | Method for inclusive immobilization of biological reaction promoter and two-layer utilization of said promoter in sewage denitrifying operation |
JPH05130867A (en) * | 1991-11-12 | 1993-05-28 | Kuraray Co Ltd | Biocatalyst-immobilized gel |
JPH08192185A (en) * | 1995-01-17 | 1996-07-30 | Ebara Corp | Biologically nitrifying and denitrifying method |
JP2001506535A (en) * | 1996-08-23 | 2001-05-22 | テクニシエ ウニベルジテイト デルフト | Method of treating wastewater containing ammonia |
JP2001104992A (en) * | 1999-10-12 | 2001-04-17 | Kurita Water Ind Ltd | Method and apparatus for bilogically removing nitrogen |
JP2001293494A (en) * | 2000-04-11 | 2001-10-23 | Kurita Water Ind Ltd | Biological nitrogen removing method |
JP2002224688A (en) * | 2000-11-28 | 2002-08-13 | Kurita Water Ind Ltd | Denitrifying method and denitrifying apparatus |
JP2002263689A (en) * | 2001-03-13 | 2002-09-17 | Ebara Corp | Method for treating ammonia-containing waste water and device |
JP2002346593A (en) * | 2001-05-22 | 2002-12-03 | Kurita Water Ind Ltd | Method and apparatus for denitrification |
JP2002361285A (en) * | 2001-06-12 | 2002-12-17 | Kurita Water Ind Ltd | Denitrification method and denitrification equipment |
JP2003001292A (en) * | 2001-06-20 | 2003-01-07 | Kurita Water Ind Ltd | Biological denitrification method |
JP2003024982A (en) * | 2001-07-17 | 2003-01-28 | Kurita Water Ind Ltd | Biological denitrification method and biological denitrification apparatus |
JP2003053387A (en) * | 2001-08-10 | 2003-02-25 | Kurita Water Ind Ltd | Method for biologically removing nitrogen |
JP2003126888A (en) * | 2001-10-26 | 2003-05-07 | Ebara Corp | Method and device for treating wastewater containing nitrogen and phosphorus |
JP2003126886A (en) * | 2001-10-26 | 2003-05-07 | Ebara Corp | Biological denitrification method and device of the same |
JP2003154393A (en) * | 2001-11-22 | 2003-05-27 | Ebara Corp | Biological method for removing nitrogen and apparatus therefor |
JP2003154390A (en) * | 2001-11-22 | 2003-05-27 | Ebara Corp | Method and apparatus for treating ammonia-containing sewage |
JP2003154394A (en) * | 2001-11-22 | 2003-05-27 | Ebara Corp | Biological denitrification method and apparatus |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006088092A (en) * | 2004-09-27 | 2006-04-06 | Kurita Water Ind Ltd | Method and apparatus for treating nitrogen-containing liquid |
JP4691938B2 (en) * | 2004-09-27 | 2011-06-01 | 栗田工業株式会社 | Nitrogen-containing liquid processing method and apparatus |
JP2006122771A (en) * | 2004-10-27 | 2006-05-18 | Chuden Kankyo Technos Co Ltd | Fluid treatment method and fluid treatment system |
JP2006263719A (en) * | 2005-02-28 | 2006-10-05 | Hitachi Plant Technologies Ltd | Process and equipment for treating ammonia-containing liquid |
JP4632135B2 (en) * | 2005-02-28 | 2011-02-16 | 株式会社日立プラントテクノロジー | Method and apparatus for treating ammonia-containing liquid |
JP4618420B2 (en) * | 2005-03-03 | 2011-01-26 | 株式会社日立プラントテクノロジー | Method for oxidizing nitrous acid-containing liquid |
JP2006239572A (en) * | 2005-03-03 | 2006-09-14 | Hitachi Plant Technologies Ltd | Oxidation treatment method of nitrous acid-containing liquid |
JP2006239579A (en) * | 2005-03-03 | 2006-09-14 | Hitachi Plant Technologies Ltd | Oxidation treatment method of nitrous acid-containing liquid |
JP4618419B2 (en) * | 2005-03-03 | 2011-01-26 | 株式会社日立プラントテクノロジー | Method for oxidizing nitrous acid-containing liquid |
JP2006289310A (en) * | 2005-04-14 | 2006-10-26 | Japan Organo Co Ltd | Method for treating waste water |
JP4596533B2 (en) * | 2005-04-14 | 2010-12-08 | オルガノ株式会社 | Wastewater treatment method |
JP2006320831A (en) * | 2005-05-18 | 2006-11-30 | Hitachi Plant Technologies Ltd | Apparatus for treating ammonia-containing liquid |
JP2007117967A (en) * | 2005-10-31 | 2007-05-17 | Asahi Breweries Ltd | Carrier for autotrophic ammonia oxidizing bacterium, ammonia nitrogen removing bacterium-deposited body and method for removing ammonia nitrogen |
KR100937496B1 (en) | 2008-01-09 | 2010-01-19 | 한국과학기술연구원 | Method for chemical granulation of anaerobic ammonium oxidizing bacteria |
EP2377819A4 (en) * | 2008-12-28 | 2012-10-03 | Metawater Co Ltd | Method and device for removing biological nitrogen and support therefor |
EP2377819A1 (en) * | 2008-12-28 | 2011-10-19 | Metawater Co., Ltd. | Method and device for removing biological nitrogen and support therefor |
US8303817B2 (en) | 2009-03-25 | 2012-11-06 | Hitachi Plant Technologies, Ltd. | Wastewater treatment method and wastewater treatment apparatus |
US8293109B2 (en) | 2009-03-25 | 2012-10-23 | Hitachi Plant Technologies, Ltd. | Wastewater treatment method |
JP2011056383A (en) * | 2009-09-09 | 2011-03-24 | Japan Organo Co Ltd | Treatment method of nitrogen containing water and treatment apparatus of nitrogen containing water |
CN104192986A (en) * | 2014-08-01 | 2014-12-10 | 浙江大学 | Short-cut nitrification reactor with seepage and self-oxygenation bacterial blanket and wastewater treatment method of short-cut nitrification reactor |
CN104192986B (en) * | 2014-08-01 | 2016-01-20 | 浙江大学 | Seepage flow is from oxygenation bacterium blanket short distance nitration reactor and method of wastewater treatment thereof |
CN105174436A (en) * | 2015-07-14 | 2015-12-23 | 江苏华杉环保科技有限公司 | Biofilm aeration reactor |
JP2018126694A (en) * | 2017-02-09 | 2018-08-16 | 学校法人 東洋大学 | Processing apparatus and processing method of nitrogen containing sewage |
CN110734138A (en) * | 2019-10-18 | 2020-01-31 | 长沙理工大学 | In-situ treatment method for freshwater aquaculture wastewater |
CN116750934A (en) * | 2023-08-18 | 2023-09-15 | 四川发展环境科学技术研究院有限公司 | Automatic control device and system based on anaerobic ammonia oxidation reaction |
CN116750934B (en) * | 2023-08-18 | 2023-11-14 | 四川发展环境科学技术研究院有限公司 | Automatic control device and system based on anaerobic ammonia oxidation reaction |
Also Published As
Publication number | Publication date |
---|---|
JP4613474B2 (en) | 2011-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004230225A (en) | Method for treating ammonia-containing water | |
JP4572504B2 (en) | Biological denitrification method | |
US7897375B2 (en) | Method and apparatus for collecting and acclimatizing anaerobic ammonium oxidizing bacteria, and denitrifying water | |
Gao et al. | Biofilm carriers for anaerobic ammonium oxidation: Mechanisms, applications, and roles in mainstream systems | |
JP4784873B2 (en) | Anaerobic ammonia oxidation treatment method and apparatus | |
JP4224951B2 (en) | Denitrification method | |
CN1673121A (en) | Method and apparatus of removing nitrogen | |
JP4691938B2 (en) | Nitrogen-containing liquid processing method and apparatus | |
JP2005238166A (en) | Anaerobic ammonoxidation treatment method | |
JP2003245689A (en) | Method and apparatus for treating wastewater | |
JP4872171B2 (en) | Biological denitrification equipment | |
JP4867098B2 (en) | Biological denitrification method and apparatus | |
US6007720A (en) | Process for treatment of organic wastewater | |
JP4915036B2 (en) | Denitrification method and denitrification apparatus | |
JP2003053385A (en) | Biological denitrification equipment | |
JP4788645B2 (en) | Method of using nitrite type nitrification carrier, wastewater treatment method and wastewater treatment apparatus | |
JP2002001389A (en) | Production process of biological membrane and continuous treatment equipment for inorganic ammonate containing wastewater, using the same membrane | |
CN113213694A (en) | Microbial carrier system for sewage treatment and process method | |
JP2006325512A (en) | Waste water-treating system | |
CN1823014A (en) | Method of utilizing recovered magnesium ammonium phosphate and apparatus therefor | |
JPH0698356B2 (en) | Organic wastewater treatment method | |
JP3769772B2 (en) | Method for treating selenium-containing water | |
CN107162335A (en) | A kind of method for handling chitin pharmaceutical wastewater | |
JP3837757B2 (en) | Method for treating selenium-containing water | |
JP5199794B2 (en) | Nitrogen-containing organic wastewater treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071101 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090623 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100713 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100921 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101004 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4613474 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131029 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |