[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002336885A - Method for aerobic treatment of waste water - Google Patents

Method for aerobic treatment of waste water

Info

Publication number
JP2002336885A
JP2002336885A JP2001150764A JP2001150764A JP2002336885A JP 2002336885 A JP2002336885 A JP 2002336885A JP 2001150764 A JP2001150764 A JP 2001150764A JP 2001150764 A JP2001150764 A JP 2001150764A JP 2002336885 A JP2002336885 A JP 2002336885A
Authority
JP
Japan
Prior art keywords
sludge
carrier
aerobic
aeration tank
aerobic treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001150764A
Other languages
Japanese (ja)
Other versions
JP4899253B2 (en
Inventor
Takaaki Tokutomi
孝明 徳富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001150764A priority Critical patent/JP4899253B2/en
Publication of JP2002336885A publication Critical patent/JP2002336885A/en
Application granted granted Critical
Publication of JP4899253B2 publication Critical patent/JP4899253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for aerobic treatment of waste water so that the water can be efficiently treated at a low cost by using a carrier the preparation of which is free of cost or causes no problems of disposal and on which a microbial film is fast formed. SOLUTION: Granule sludge 2 discharged from the reactor by the UASB(upflow anaerobic sludge blanket) method is introduced as a carrier into an aeration tank 1 to form an aerobic microbial film on the surface of the granule sludge 2. Then raw water is introduced from a raw water passage 4 into the aeration tank 1 and mixed with the granule sludge 2, returned sludge from a sludge returning passage 7, and floating active sludge in the aeration tank 1. The mixture is aerated by supplying air from an air supply passage 5 and diffusing air from a diffusing device 6 to carry out the aerobic treatment. The mixture liquid in the aeration tank 1 is partly discharged and introduced into a settling tank 3 to separate the solid from the liquid. The separated liquid is discharged as treated water from a treated water passage 9 while the separated sludge is returned as the returned sludge through the sludge returning passage 7 to the aeration tank 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排水の好気性処理
方法に関するものである。
The present invention relates to an aerobic treatment method for wastewater.

【0002】[0002]

【従来の技術】活性汚泥処理法などのように、好気性微
生物の作用を利用して、有機性排液を好気条件で処理す
る好気性生物処理方法は、処理コストが安く、処理性能
も優れているため、一般に広く利用されている。このよ
うな好気性処理方法では、曝気槽内の好気性微生物の保
持量を多くしたり、滞留時間を長くする目的で担体を投
入することが行われており、担体としてスポンジ、プラ
スチック、高分子ゲルなどが用いられている。曝気槽に
担体を添加することにより、担体表面に好気性微生物の
生物膜が形成されるので、曝気槽内に高濃度の汚泥を保
持することができる。
2. Description of the Related Art An aerobic biological treatment method, such as an activated sludge treatment method, in which an organic effluent is treated under aerobic conditions by utilizing the action of an aerobic microorganism, has a low treatment cost and a high treatment performance. It is widely used because of its superiority. In such an aerobic treatment method, a carrier is introduced for the purpose of increasing the holding amount of the aerobic microorganisms in the aeration tank or extending the residence time, and a sponge, plastic, polymer, or the like is used as the carrier. Gels and the like are used. By adding a carrier to the aeration tank, a biofilm of aerobic microorganisms is formed on the surface of the carrier, so that a high concentration of sludge can be retained in the aeration tank.

【0003】しかし、従来使用されている担体は担体自
体の製造コストがかかるため、処理コストが高くなると
いう問題点がある。また担体表面の性状によっては好気
性微生物の膜が形成されるまでに長時間を要し、このた
め運転立ち上げに長期間を要する場合もある。さらに担
体原料がプラスチックなどの人工物の場合、廃棄の問題
がある。
[0003] However, the conventionally used carrier has a problem in that the production cost of the carrier itself is high and the processing cost is high. Further, depending on the properties of the carrier surface, it takes a long time until a film of aerobic microorganisms is formed, and therefore, it may take a long time to start up the operation. Further, when the carrier material is an artificial product such as plastic, there is a problem of disposal.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、上記
従来の担体添加法における問題点を解決するため、担体
自体の製造コストはかからず、微生物膜の形成が速く、
廃棄の問題もない担体を用いて、低コストで効率よく処
理することができる排水の好気性処理方法を提案するこ
とである。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems in the conventional carrier addition method, so that the production cost of the carrier itself is not required, the formation of the microorganism membrane is fast,
It is an object of the present invention to propose an aerobic treatment method for wastewater that can be efficiently treated at low cost by using a carrier having no problem of disposal.

【0005】[0005]

【課題を解決するための手段】本発明は次の排水の好気
性処理方法である。 (1) 好気性微生物を担持する担体を反応槽に投入
し、好気性微生物を含む活性汚泥の存在下に、排水を好
気性処理する方法において、好気性微生物を担持する担
体として、嫌気性微生物を含むグラニュール汚泥または
その破砕物を用いることを特徴とする排水の好気性処理
方法。 (2) 好気性微生物を担持する担体として、メタン発
酵において形成されるグラニュール汚泥またはその破砕
物を用いる上記(1)記載の排水の好気性処理方法。
The present invention is the following aerobic treatment method for wastewater. (1) In a method in which a carrier carrying an aerobic microorganism is charged into a reaction tank and the wastewater is subjected to aerobic treatment in the presence of activated sludge containing the aerobic microorganism, an anaerobic microorganism is used as a carrier carrying the aerobic microorganism. An aerobic treatment method for wastewater, characterized by using granulated sludge or a crushed product thereof. (2) The aerobic treatment method for wastewater as described in (1) above, wherein granule sludge formed in methane fermentation or a crushed product thereof is used as a carrier for supporting aerobic microorganisms.

【0006】本発明において処理の対象となる排水は、
好気性生物処理により処理可能な排水であれば制限され
ず、例えば有機性排液またはアンモニア含有排水などが
あげられる。有機性排液には難生物分解性の有機物また
は無機物が含有されていてもよく、またアンモニア性窒
素等が含有されていてもよい。排水の具体的なものとし
ては、下水、し尿、食品工場排水その他の産業排液など
があげられる。
The waste water to be treated in the present invention is:
There is no limitation as long as the wastewater can be treated by aerobic biological treatment, and examples thereof include organic wastewater and ammonia-containing wastewater. The organic effluent may contain a hardly biodegradable organic or inorganic substance, or may contain ammonia nitrogen or the like. Specific examples of wastewater include sewage, human waste, food factory wastewater, and other industrial wastewater.

【0007】本発明で用いる担体は、嫌気性微生物を含
む汚泥が微生物の自己造粒作用により粒状化したグラニ
ュール汚泥またはその破砕物である。このようなグラニ
ュール汚泥としては、UASB(Upflow Ana
erobic SludgeBlanket;上向流嫌
気性スラッジブランケット)法もしくはEGSB(Ex
panded Granular Sludge Be
d;膨張粒状汚泥床)法でメタン発酵が行われている反
応器中で形成されるグラニュール汚泥、これらの反応器
から排出されたグラニュール汚泥などがあげられる。通
常これらのグラニュール汚泥は沈降性が良好である。
[0007] The carrier used in the present invention is granular sludge obtained by sludge containing anaerobic microorganisms granulated by the self-granulating action of microorganisms or a crushed product thereof. Such granulated sludge includes UASB (Upflow Ana).
erobic Sludge Blanket; Upflow anaerobic sludge blanket method or EGSB (Ex
Pounded Granular Sludge Be
d: Expanded granular sludge bed) Granulated sludge formed in a reactor in which methane fermentation is carried out by the method, and granular sludge discharged from these reactors. Usually, these granulated sludges have good sedimentation properties.

【0008】UASBもしくはEGSB法においては、
有機酸発酵とメタン発酵は通常別々の反応器で行われ、
有機酸発酵による酸生成液を、グラニュール汚泥からな
るスラッジブランケットを形成したUASB方式のメタ
ン発酵槽に上向流で通液してメタン発酵が行われるが、
本発明ではこのように有機酸発酵とメタン発酵とを二段
階に分離して行う二相式のメタン発酵で形成されるグラ
ニュール汚泥が好ましいが、有機酸発酵とメタン発酵を
一個の反応器で行う一相式のメタン発酵で形成されるグ
ラニュール汚泥を使用することもできる。
In the UASB or EGSB method,
Organic acid fermentation and methane fermentation are usually performed in separate reactors,
The methane fermentation is carried out by passing the acid product liquid from the organic acid fermentation in an upward flow through a UASB methane fermentation tank in which a sludge blanket made of granular sludge is formed,
In the present invention, the granular sludge formed by the two-phase methane fermentation in which the organic acid fermentation and the methane fermentation are separated into two stages as described above is preferable, but the organic acid fermentation and the methane fermentation are performed in a single reactor. Granular sludge formed in the one-phase methane fermentation performed can also be used.

【0009】本発明で使用するグラニュール汚泥は特別
な装置、操作、条件などを選択して粒状化したグラニュ
ール汚泥である必要はなく、公知の方法で一般的にメタ
ン発酵が行われている処理系において発生するグラニュ
ール汚泥がそのまま使用できる。例えば、高温メタン発
酵、中温メタン発酵のいずれのものでもよい。
The granular sludge used in the present invention does not need to be granulated sludge granulated by selecting a special apparatus, operation, conditions and the like, and methane fermentation is generally performed by a known method. Granule sludge generated in the treatment system can be used as it is. For example, any of high temperature methane fermentation and medium temperature methane fermentation may be used.

【0010】通常のUASB、EGSB法において形成
されるグラニュール汚泥は酢酸資化性のMethanosaeta
の微生物が骨格を形成し、水素資化性メタン細菌、酢酸
生成細菌、酸生成細菌などが共存し、一種の生態系を構
成している。また、糖質、脂質、タンパク等を分解する
酸生成菌は、粘質物を産出してバクテリア同士の結合力
を強める働きをしており、糖基質の場合に最も強度の強
いグラニュール汚泥が形成される。通常の下水その他の
有機性排水は糖質その他の高分子の有機物を含有してお
り、これを嫌気性処理すると上記の嫌気性微生物により
有機酸が生成し、この有機酸は順次低分子化して酢酸と
なり、さらにメタンと炭酸ガスに分解される。このため
上記各種の嫌気性微生物が増殖し、強度の大きいグラニ
ュール汚泥が形成される。
[0010] Granular sludge formed by the usual UASB and EGSB methods has a skeleton formed by a microorganism of the genus Methanosaeta capable of assimilating acetic acid. , Constitute a kind of ecosystem. In addition, acid-producing bacteria that degrade carbohydrates, lipids, proteins, etc., produce mucilage and work to strengthen the binding force between bacteria, and when sugar substrates are used, the strongest granular sludge is formed. Is done. Normal sewage and other organic wastewater contains saccharides and other high-molecular organic substances, and when this is anaerobically treated, the above-described anaerobic microorganisms produce organic acids, which are successively reduced in molecular weight. It becomes acetic acid and is further decomposed into methane and carbon dioxide gas. For this reason, the above-mentioned various anaerobic microorganisms proliferate and form granular sludge having high strength.

【0011】UASB、EGSB法におけるグラニュー
ル汚泥の成長過程は明確ではないが、粒径0.1mm付
近の微小な無機性のSSの表面やカルシウムやマグネシ
ウムを含んだスケール成分の表面に嫌気性微生物が付着
し、その微少なSSやスケールを核としながら年輪状に
新たな嫌気性微生物が増殖、付着し、数か月間以上を要
して平均粒径0.3〜5mmのグラニュール汚泥に成長
するとされている。成長したグラニュール汚泥は反応槽
内の水流やガスの発生に伴う流動により破砕され、破砕
された微小な粒子や破片が核となって、次のグラニュー
ル汚泥が成長するとされている。
Although the growth process of granulated sludge in the UASB and EGSB methods is not clear, anaerobic microorganisms are present on the surface of minute inorganic SS with a particle size of about 0.1 mm and the surface of scale components containing calcium and magnesium. New anaerobic microorganisms grow and adhere in the form of annual rings with small SSs and scales as nuclei, and grow into granular sludge with an average particle size of 0.3 to 5 mm over several months. It has been done. It is said that the grown granule sludge is crushed by a flow caused by the flow of water and gas in the reaction tank, and the crushed fine particles and fragments become nuclei, and the next granule sludge grows.

【0012】本発明において担体として使用するグラニ
ュール汚泥の大きさは平均粒径が0.3〜5mm程度、
好ましくは0.5〜2mmのものが望ましいが、カッタ
ーポンプ、ミル、ホモジナイザなどの破砕装置により破
砕したグラニュールを使用することもできる。
In the present invention, the granular sludge used as a carrier has an average particle size of about 0.3 to 5 mm,
It is preferably 0.5 to 2 mm, but granules crushed by a crushing device such as a cutter pump, a mill, and a homogenizer can also be used.

【0013】担体を用いた好気性処理においては、酸素
の拡散が主な律速段階となっている場合がある。酸素の
生物膜へ浸透する深さは通常の空気を用いた曝気の場合
には最大でも100μm程度であり、高い負荷を処理す
るためには表面積を増やすか、曝気ガス中の酸素分圧を
増加させる必要がある。担体の表面積を増やすために
は、担体の大きさを小さくすることが有効であり、この
点からも前記平均粒径を超えるグラニュール汚泥をその
まま利用するよりも破砕を行って、粒径を小さくして表
面積を大きくするのが好ましい。また粒径の大きなグラ
ニュール汚泥は内部に空隙が形成され、沈降性が低下し
ている場合があるので、このようなグラニュール汚泥も
破砕して使用するのが好ましい。
In aerobic treatment using a carrier, diffusion of oxygen may be the main rate-determining step. The depth of oxygen permeation into the biofilm is about 100 μm at the maximum in the case of aeration using ordinary air. To handle high loads, increase the surface area or increase the oxygen partial pressure in the aeration gas. Need to be done. In order to increase the surface area of the carrier, it is effective to reduce the size of the carrier, and from this point, crushing is performed rather than using granule sludge that exceeds the average particle size as it is, and the particle size is reduced. To increase the surface area. In addition, granule sludge having a large particle diameter has voids formed therein and may have reduced sedimentation properties. Therefore, it is preferable to use such granule sludge by crushing.

【0014】担体は曝気槽などの反応槽に投入して使用
する。担体を反応槽に投入して槽内の活性汚泥と混合し
て好気性処理を行うことにより、好気性微生物が担体表
面で生物膜を形成する。生物膜の形成は、担体を添加し
た反応槽に被処理液を導入して曝気する通常の好気性生
物処理と同様の操作を行うことにより自然発生的に形成
される。生物膜の形成を促進させるために、生物処理汚
泥を植種源として投入することもできる。なお担体上で
膜を形成した好気性微生物は増殖により一部が剥離し、
浮遊活性汚泥となる。担体の添加量は、反応槽1m3
たり5〜80体積%、好ましくは10〜50体積%とす
るのが望ましい。
The carrier is used by being charged into a reaction tank such as an aeration tank. The aerobic microorganisms form a biofilm on the surface of the carrier by introducing the carrier into the reaction tank, mixing with the activated sludge in the tank, and performing aerobic treatment. The formation of the biofilm is spontaneously formed by performing the same operation as the usual aerobic biological treatment in which the liquid to be treated is introduced into the reaction tank to which the carrier is added and aerated. Biotreated sludge can also be introduced as a seed source to promote biofilm formation. In addition, aerobic microorganisms that formed a film on the carrier partially exfoliated by growth,
It becomes floating activated sludge. The addition amount of the carrier, the reaction vessel 1 m 3 per 5 to 80 vol%, preferably desirably 10 to 50 vol%.

【0015】本発明の処理方法は、反応槽に前記担体を
投入した状態で、公知の好気性処理方法を採用して行う
ことができる。好気性処理における反応槽としてはあら
ゆる反応器が使用できる。また固液分離装置としては沈
殿槽、膜分離装置、遠心分離装置等が使用できる。また
反応槽内にGSS(ガス固形分セパレータ)を設け、好
気性処理と固液分離とを1個の反応槽で行う好気性処理
装置を採用することもできる。担体を投入した状態で好
気性処理することにより、反応槽内に保持できる好気性
微生物量を増加させることができ、処理の効率および処
理水質を向上させることができる。具体的な好気性処理
としては、曝気槽において排水を返送汚泥とともに曝気
処理し、曝気液を固液分離槽で固液分離して、分離汚泥
の一部を曝気槽に返送する標準活性汚泥法、およびその
種々の変法などが採用できる。
[0015] The treatment method of the present invention can be carried out by employing a known aerobic treatment method in a state where the carrier is charged in a reaction tank. Any reactor can be used as a reaction tank in the aerobic treatment. As the solid-liquid separator, a sedimentation tank, a membrane separator, a centrifuge, and the like can be used. Further, an aerobic treatment apparatus in which a GSS (gas solids separator) is provided in the reaction tank and aerobic treatment and solid-liquid separation are performed in one reaction tank may be adopted. By performing the aerobic treatment with the carrier charged, the amount of aerobic microorganisms that can be held in the reaction tank can be increased, and the treatment efficiency and treated water quality can be improved. As a specific aerobic treatment, a standard activated sludge method in which wastewater is aerated together with return sludge in an aeration tank, aerated liquid is separated into solid and liquid in a solid-liquid separation tank, and a part of the separated sludge is returned to the aeration tank. , And various modifications thereof can be employed.

【0016】グラニュール汚泥は通常のフロックよりも
沈降速度が速いため、曝気槽と沈殿槽を有する分散型の
曝気槽にグラニュール汚泥を添加し、フロックと担体と
を共存させることも可能である。この場合、曝気槽内に
保持できる汚泥量が担体を単独で使用する場合に比べて
さらに増加するため、汚泥滞留時間を長く取ることがで
き、余剰汚泥量の削減と処理水質の向上が見込める。
Since granulated sludge has a higher sedimentation speed than ordinary floc, granule sludge can be added to a dispersion type aeration tank having an aeration tank and a sedimentation tank so that floc and a carrier can coexist. . In this case, the amount of sludge that can be held in the aeration tank is further increased as compared with the case where the carrier is used alone, so that the sludge residence time can be extended, and the amount of excess sludge can be reduced and the quality of treated water can be improved.

【0017】本発明では担体として元々微生物の固まり
であるグラニュール汚泥を使用しているので、担体と微
生物との親和性が非常によく、このため生物膜の生成速
度が人工の担体に比べて速くなる。本発明ではこのよう
な担体を使用しているので、運転立ち上げ期間を短くす
ることができる。また本発明では、嫌気性処理において
発生する余剰のグラニュール汚泥をそのまま使用するこ
とができるので、担体の製造コストはかからず、低コス
トでの処理が可能となる。
In the present invention, since granular sludge, which is originally a mass of microorganisms, is used as a carrier, the affinity between the carrier and the microorganisms is very good. Therefore, the biofilm formation rate is lower than that of an artificial carrier. Be faster. In the present invention, since such a carrier is used, the operation start-up period can be shortened. Further, in the present invention, since excess granule sludge generated in the anaerobic treatment can be used as it is, the production cost of the carrier is not required, and the treatment can be performed at low cost.

【0018】また本発明では、グラニュール汚泥は嫌気
性微生物の固まりであるため、通常の嫌気性処理の運転
と同じように反応槽内の担体量を制御することができ
る。引き抜いた担体は人工物を含んでいないので、通常
の余剰汚泥の処理、例えば脱水、嫌気性消化、コンポス
ト等で処理することができ、廃棄物として処理する場合
にも生物由来の余剰汚泥として処分できる。
Further, in the present invention, since the granular sludge is a mass of anaerobic microorganisms, the amount of the carrier in the reaction tank can be controlled in the same manner as in ordinary anaerobic treatment operation. Since the extracted carrier does not contain any artificial matter, it can be treated by ordinary excess sludge treatment, for example, dehydration, anaerobic digestion, compost, etc., and when it is treated as waste, it is disposed of as excess sludge of biological origin. it can.

【0019】長期間の運転においてはグラニュール汚泥
が破壊し、SSとして処理水中に流出することが考えら
れるが、担体自体が微生物に由来しているので環境に与
える負荷は通常の好気性汚泥の流出と何ら変わらない。
また流出などにより反応槽中の担体量が減少した場合
は、グラニュール汚泥を追加投入することができる。
In the long-term operation, it is conceivable that the granular sludge is destroyed and flows out into the treated water as SS. However, since the carrier itself is derived from microorganisms, the load on the environment is limited to that of ordinary aerobic sludge. It is no different from a spill.
Further, when the amount of the carrier in the reaction tank decreases due to outflow or the like, granule sludge can be additionally charged.

【0020】また本発明では、担体を添加することによ
り活性汚泥のSRTが長くなり、例えば10日以上にす
ることができるので、硝化細菌を保持することも可能に
なり、好気性処理系において、有機物の分解に加えて、
硝化も同時に行うことが可能となり、生物学的硝化脱窒
処理を行う場合に有利となる。
In the present invention, the SRT of the activated sludge can be extended by adding a carrier, for example, to 10 days or more, so that nitrifying bacteria can be retained. In addition to decomposing organic matter,
Nitrification can be performed simultaneously, which is advantageous when performing biological nitrification denitrification treatment.

【0021】以上の通り、本発明では、好気性微生物を
担持する担体としてグラニュール汚泥を使用しているの
で、次のような効果を得ることができる。 1)担体への付着性がよく、立ち上げ期間を短縮でき
る。 2)担体の製造コストがかからないので、処理コストを
削減できる。 3)沈降性がよく、固液分離が容易である。 4)廃棄を行う際にもすべて有機汚泥として処分でき
る。 5)運転条件に応じて担体の大きさや量を制御すること
ができる。 6)脱窒効果を持たせることが可能である。 7)浮遊汚泥と組み合せることにより、処理装置の性能
を向上させることができる。
As described above, in the present invention, granule sludge is used as a carrier for supporting aerobic microorganisms, so that the following effects can be obtained. 1) Good adhesion to the carrier, and the startup period can be shortened. 2) Since the production cost of the carrier is not required, the processing cost can be reduced. 3) Good sedimentation and easy solid-liquid separation. 4) All waste can be disposed of as organic sludge. 5) The size and amount of the carrier can be controlled according to the operating conditions. 6) It is possible to have a denitrification effect. 7) The performance of the treatment apparatus can be improved by combining with the suspended sludge.

【0022】[0022]

【発明の効果】本発明の排水の好気性処理方法は、好気
性微生物を担持する担体として、嫌気性微生物を含むグ
ラニュール汚泥またはその破砕物を用いているので、担
体自体の製造コストはかからず、微生物膜の形成が速
く、廃棄の問題もない担体を用いて、低コストで効率よ
く排水を好気性処理することができる。
According to the aerobic treatment method for wastewater of the present invention, as a carrier for supporting aerobic microorganisms, granular sludge containing anaerobic microorganisms or a crushed product thereof is used. In addition, wastewater can be efficiently aerobic-treated at low cost by using a carrier that quickly forms a microbial membrane and has no disposal problem.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施例について説
明する。図1は実施例の有機性排水の好気性処理方法を
示すフローシートである。図1において、1は曝気槽、
2は担体としてのグラニュール汚泥、3は沈殿槽であ
る。
Embodiments of the present invention will be described below. FIG. 1 is a flow sheet showing an aerobic treatment method for organic wastewater of an example. In FIG. 1, 1 is an aeration tank,
2 is a granular sludge as a carrier, and 3 is a settling tank.

【0024】図1の処理方法では、運転開始時において
は、原水路4から原水を曝気槽1に導入するとともにグ
ラニュール汚泥2を投入し、空気供給路5から空気を送
り、散気装置6から散気して曝気を行い、グラニュール
汚泥2の表面に好気性微生物の生物膜を形成させる。こ
の場合、自然発生的に生物膜を形成させることもできる
し、他の処理系の生物処理汚泥を植種源として投入して
生物膜の形成を促進させることもできる。グラニュール
汚泥2は微生物との親和性が非常によく、生物膜の生成
速度が速いので、スポンジなどの人工物からなる担体を
用いた場合に比べて運転立ち上げ期間を短くすることが
でき、早期に定常状態に移行することができる。
In the processing method shown in FIG. 1, at the start of operation, raw water is introduced into the aeration tank 1 from the raw water channel 4, granulated sludge 2 is charged, air is sent from the air supply channel 5, and the air diffuser 6 is started. And aeration is performed to form a biofilm of aerobic microorganisms on the surface of the granular sludge 2. In this case, the biofilm can be formed spontaneously, or the biofilm formation can be promoted by introducing biologically treated sludge from another treatment system as a seed source. Granule sludge 2 has a very good affinity for microorganisms and has a high biofilm generation rate, so that the operation start-up period can be shortened compared to the case where a carrier made of an artificial material such as a sponge is used, A transition can be made to the steady state early.

【0025】グラニュール汚泥2の表面に好気性微生物
の生物膜が形成された後の定常状態においては、原水路
4から原水を曝気槽1に導入し、グラニュール汚泥2、
汚泥返送路7から返送される返送汚泥、および曝気槽1
内の浮遊活性汚泥と混合し、空気供給路5から空気を送
り、散気装置6から散気して曝気を行い、好気性処理を
行う。この際、グラニュール汚泥2は曝気槽1内を流動
する。
In a steady state after a biofilm of aerobic microorganisms is formed on the surface of the granular sludge 2, raw water is introduced from the raw water channel 4 into the aeration tank 1, and the granular sludge 2,
Returned sludge returned from the sludge return path 7 and the aeration tank 1
It mixes with the floating activated sludge in the inside, sends air from the air supply path 5, diffuses air from the diffuser 6 to perform aeration, and performs aerobic treatment. At this time, the granular sludge 2 flows in the aeration tank 1.

【0026】曝気槽1の混合液は一部ずつ取り出し、連
絡路8から沈殿槽3に導入して固液分離を行う。分離液
は処理水路9から処理水として排出し、グラニュール汚
泥2および浮遊活性汚泥を含む分離汚泥は汚泥返送路7
から返送汚泥として曝気槽1に返送する。グラニュール
汚泥2は沈降性がよく、固液分離は良好に行われる。残
部は余剰汚泥として汚泥排出路10から系外に排出す
る。流出などにより曝気槽1中のグラニュール汚泥2が
減少した場合は、グラニュール汚泥2を曝気槽1に追加
投入する。
The mixed solution in the aeration tank 1 is partly taken out and introduced into the settling tank 3 through the communication line 8 to perform solid-liquid separation. The separated liquid is discharged as treated water from the treated water passage 9, and the separated sludge including the granular sludge 2 and the suspended activated sludge is discharged to the sludge return passage 7.
Is returned to the aeration tank 1 as return sludge. Granule sludge 2 has good sedimentation property, and solid-liquid separation is performed well. The remaining part is discharged out of the system from the sludge discharge passage 10 as surplus sludge. When the granular sludge 2 in the aeration tank 1 decreases due to outflow or the like, the granular sludge 2 is additionally charged into the aeration tank 1.

【0027】このようにして好気性処理することによ
り、曝気槽1には、好気性微生物がグラニュール汚泥2
に担持されて多量に保持されているので、好気性処理性
能は効率よく行われ、高水質の処理水が得られる。また
何らかの理由により、グラニュール汚泥2などのSSが
処理水中に流出した場合にも、グラニュール汚泥2は微
生物に由来しているので、環境に与える負荷は従来の好
気性処理における活性汚泥の流出と何ら変わらない。
By performing the aerobic treatment in this manner, the aerobic microorganisms are filled with the granular sludge 2 in the aeration tank 1.
The aerobic treatment performance is carried out efficiently, and high-quality treated water is obtained. Also, for any reason, when SS such as granulated sludge 2 flows out into the treated water, the granulated sludge 2 is derived from microorganisms. It does not change at all.

【0028】図1ではすでに生物膜が形成されたグラニ
ュール汚泥を投入することができるし、また担体を使用
しないで好気性処理が定常状態で行われている曝気槽に
グラニュール汚泥を投入することもできる。また図1で
は、沈殿槽3の代わりに膜分離装置、その他の汚泥分離
装置を使用することもできる。
In FIG. 1, granular sludge on which a biofilm has already been formed can be charged, and granular sludge is charged into an aeration tank in which aerobic treatment is performed in a steady state without using a carrier. You can also. In FIG. 1, a membrane separation device or another sludge separation device can be used instead of the sedimentation tank 3.

【0029】図2は他の実施例の有機性排水の好気性処
理方法を示す好気性処理装置の断面図である。図2の装
置は、グラニュール汚泥の良好な沈降性を利用し、固液
分離装置を省略して、1個の反応槽で有機性排水の好気
性処理を行う装置である。図2において、11は反応
槽、12は担体としてのグラニュール汚泥であり、槽内
の上部にロート状の傾斜分離板13、その下部に開口部
をほぼ塞ぐように笠状のガス分離板14が設けられ、こ
れらにより槽内が反応部15と固液分離部16とに区画
され、反応部15で好気性処理を行い、固液分離部16
でグラニュール汚泥12を沈降分離するように構成され
ている。傾斜分離板13およびガス分離板14がガス固
形分セパレータを構成している。
FIG. 2 is a sectional view of an aerobic treatment apparatus showing an aerobic treatment method for organic waste water according to another embodiment. The apparatus shown in FIG. 2 is an apparatus that performs aerobic treatment of organic wastewater in one reaction tank by omitting a solid-liquid separation device by utilizing good sedimentation of granular sludge. In FIG. 2, reference numeral 11 denotes a reaction tank, 12 denotes granule sludge as a carrier, and a funnel-shaped inclined separating plate 13 is provided at the upper part of the tank, and a cap-shaped gas separating plate 14 is provided at the lower part thereof so as to substantially close the opening. The inside of the tank is partitioned into a reaction section 15 and a solid-liquid separation section 16, and aerobic treatment is performed in the reaction section 15, and the solid-liquid separation section 16 is provided.
Is used to settle and separate the granular sludge 12. The inclined separation plate 13 and the gas separation plate 14 constitute a gas solid content separator.

【0030】図2の装置で好気性処理するには、原水路
21から原水を反応槽11下部に導入するとともに、空
気供給路22から空気を送り、散気装置23から散気し
て曝気を行う。原水は多孔板24を通過し、上昇流Aと
なり反応部15を上昇したのち、反転流Bとなり反応部
15を下降する。この間に、反応部15内のグラニュー
ル汚泥12および浮遊活性汚泥と混合されて接触し、有
機物が酸化分解される。
In the aerobic treatment using the apparatus shown in FIG. 2, raw water is introduced into the lower part of the reaction tank 11 from the raw water channel 21, air is sent from the air supply channel 22, and air is diffused from the air diffuser 23 to perform aeration. Do. The raw water passes through the perforated plate 24 and becomes the upward flow A and rises in the reaction section 15, and then becomes the reverse flow B and descends in the reaction section 15. During this time, the granular sludge 12 and the floating activated sludge in the reaction section 15 are mixed and contacted, and the organic matter is oxidatively decomposed.

【0031】反応部15内の混合液の一部はグラニュー
ル汚泥12を同伴し、上昇流Cとして傾斜分離板13の
下端とガス分離板14との隙間を通り、さらに円筒形の
整流板25の内側を通って固液分離部16に入るが、ガ
ス分離板14により曝気空気の進入は遮断されているの
で、グラニュール汚泥12は固液分離部16で沈降分離
され、傾斜分離板13の下部と整流板25の外周との間
で形成される整流通路26を通って反応部15に戻る。
グラニュール汚泥12が分離された分離液はオーバーフ
ローして処理水取出部27に入り、処理水として処理水
路28から系外に排出する。
A part of the mixed liquid in the reaction section 15 is accompanied by the granular sludge 12, passes through the gap between the lower end of the inclined separation plate 13 and the gas separation plate 14 as an upflow C, and further flows into a cylindrical rectifying plate 25. The granulated sludge 12 is settled and separated in the solid-liquid separation unit 16 because the inflow of aerated air is blocked by the gas separation plate 14, It returns to the reaction part 15 through the rectifying passage 26 formed between the lower part and the outer periphery of the rectifying plate 25.
The separated liquid from which the granular sludge 12 has been separated overflows into the treated water extracting section 27, and is discharged as treated water from the treated water passage 28 to the outside of the system.

【0032】図2の方法によれば、反応槽11内に設け
た固液分離部16でグラニュール汚泥12を効率よく沈
降分離しながら、反応部15内にグラニュール汚泥12
の表面に生物膜を形成した好気性微生物を多量に保持
し、1個の反応槽で効率よく好気性処理することができ
る。
According to the method shown in FIG. 2, while the granular sludge 12 is settled and separated efficiently by the solid-liquid separation unit 16 provided in the reaction tank 11, the granular sludge 12
A large amount of aerobic microorganisms having a biofilm formed on the surface thereof can be retained, and aerobic treatment can be performed efficiently in a single reaction tank.

【0033】図2の装置では円筒形の反応槽11を用い
ているが、長方形の反応槽を用いることもできる。また
ロート状の傾斜分離板13の代わりに下端開口部が上端
開口部よりも大きい逆ロート状の傾斜分離板を用い、ガ
ス分離板を反応槽の内壁側に設けて、傾斜分離板の外側
を固液分離部、内側を反応部とする装置を用いることも
できる。
Although the cylindrical reaction tank 11 is used in the apparatus shown in FIG. 2, a rectangular reaction tank can be used. Further, instead of the funnel-shaped inclined separating plate 13, an inverted funnel-shaped inclined separating plate having a lower end opening larger than the upper end opening is used, a gas separating plate is provided on the inner wall side of the reaction vessel, and the outside of the inclined separating plate is provided. It is also possible to use an apparatus having a solid-liquid separation section and a reaction section inside.

【0034】図3はさらに他の実施例の排水の好気性処
理方法を示す好気性処理装置の断面図である。図3の装
置は、固液分離装置を省略して、1個の反応器でアンモ
ニア含有水の硝化を行う装置である。図3において、3
1は円柱状のエアリフトリアクタであり、下部に原水路
32および空気供給路33が連絡し、上部に処理水路3
4が連絡している。エアリフトリアクタ31内には両端
が開口したドラフトチューブ35が設けられ、下端開口
部には散気板36が設けられて空気供給路33が連絡
し、ドラフトチューブ35内に散気するように構成され
ている。ドラフトチューブ35の上端開口部付近からエ
アリフトリアクタ31の内径が大きくなり固液分離部3
7が形成され、その下部が反応部38を構成する。固液
分離部37にはドラフトチューブ35の上端開口部を覆
うように、ガス分離板39を有するガス捕集器40が設
けられている。
FIG. 3 is a sectional view of an aerobic treatment apparatus showing an aerobic treatment method for wastewater according to still another embodiment. The apparatus in FIG. 3 is an apparatus in which the solid-liquid separation device is omitted and nitrification of the ammonia-containing water is performed in one reactor. In FIG. 3, 3
Reference numeral 1 denotes a column-shaped air lift reactor, in which a raw water passage 32 and an air supply passage 33 communicate with each other at a lower portion, and a treated water passage 3 at an upper portion.
4 are in contact. A draft tube 35 having both ends opened is provided in the air lift reactor 31, and a diffuser plate 36 is provided at the lower end opening to communicate with the air supply path 33 and to diffuse into the draft tube 35. ing. From the vicinity of the upper end opening of the draft tube 35, the inner diameter of the air lift reactor 31 increases, and the solid-liquid separation section 3
7 is formed, and the lower part thereof constitutes the reaction part 38. The solid-liquid separator 37 is provided with a gas collector 40 having a gas separation plate 39 so as to cover the upper opening of the draft tube 35.

【0035】図3の装置で硝化を行うには、原水路32
からアンモニア含有水をエアリフトリアクタ31下部に
導入するとともに、空気供給路33から空気を送り、散
気板36からドラフトチューブ35内に散気する。空気
の上昇に伴ってドラフトチューブ35内には上昇流が発
生し、ドラフトチューブ35内液はグラニュール汚泥4
0、空気41および浮遊活性汚泥と混合され、上端開口
部を通ってドラフトチューブ35外に流出するととも
に、下端開口部からドラフトチューブ35外液がドラフ
トチューブ35内に流入する。このようにしてドラフト
チューブ35内に上昇流、ドラフトチューブ35外に下
降流が形成され、反応器内液はドラフトチューブ35の
内外を循環する。この間に、グラニュール汚泥40、空
気41および浮遊活性汚泥と接触し、グラニュール汚泥
40の表面に生物膜を形成した硝化細菌により硝化が行
われる。
To perform nitrification using the apparatus shown in FIG.
The ammonia-containing water is introduced into the lower portion of the air lift reactor 31 from above, and air is sent from the air supply path 33 to diffuse air from the diffuser plate 36 into the draft tube 35. As the air rises, an ascending flow is generated in the draft tube 35, and the liquid in the draft tube 35 becomes granular sludge 4.
0, mixed with air 41 and floating activated sludge, flows out of the draft tube 35 through the upper end opening, and the liquid outside the draft tube 35 flows into the draft tube 35 from the lower end opening. In this way, an ascending flow is formed inside the draft tube 35 and a descending flow is formed outside the draft tube 35, and the liquid in the reactor circulates inside and outside the draft tube 35. During this time, nitrification is performed by the nitrifying bacteria that have come into contact with the granular sludge 40, the air 41 and the floating activated sludge and have formed a biofilm on the surface of the granular sludge 40.

【0036】ドラフトチューブ35の内液は上昇流とな
って上端開口部から流出するが、固液分離部37の内径
は広くなっているので上昇流の流速は小さくなり、この
ためグラニュール汚泥40は自重により沈降し、ドラフ
トチューブ35外液側に移行して反応部38を循環す
る。空気41はガス分離板39によりガス捕集器40に
捕集し、空気排出路42から排出する。グラニュール汚
泥40が沈降分離されるとともに空気41が分離された
処理水は処理水路34から排出する。
The internal liquid of the draft tube 35 flows out from the upper end opening as an upward flow. However, since the inner diameter of the solid-liquid separating section 37 is wide, the flow velocity of the upward flow is small, and as a result, the granular sludge 40 Is settled by its own weight, moves to the outside liquid side of the draft tube 35, and circulates through the reaction section 38. The air 41 is collected by the gas collector 40 by the gas separation plate 39 and discharged from the air discharge passage 42. The treated water from which the granular sludge 40 is settled and separated and the air 41 is separated is discharged from the treated water channel 34.

【0037】図3の装置では、グラニュール汚泥40の
表面に硝化細菌を多量に保持するとともにSRTを長く
して、効率よく硝化を行うことができ、しかも固液分離
装置を省略することができる。
In the apparatus shown in FIG. 3, a large amount of nitrifying bacteria can be retained on the surface of the granular sludge 40, and the SRT can be lengthened to efficiently perform nitrification, and the solid-liquid separation device can be omitted. .

【0038】[0038]

【実施例】実施例1 図3の装置によりアンモニア含有水を好気性条件下に硝
化処理を行った。担体としては、平均粒径2.0mmの
UASBグラニュール汚泥をそのまま用いた。エアリフ
トリアクタ31に流入する流入水のアンモニア濃度、お
よび処理水水質の経日変化を図4に示す。
EXAMPLE 1 Nitrification treatment was performed on ammonia-containing water under aerobic conditions using the apparatus shown in FIG. UASB granular sludge having an average particle size of 2.0 mm was used as a carrier as it was. FIG. 4 shows the ammonia concentration of the inflow water flowing into the air lift reactor 31 and the daily change of the treated water quality.

【0039】比較例1 実施例1においてグラニュール汚泥の代わりに、3mm
角の立方体の形状のポリプロピレン製のスポンジを用い
た以外は実施例1と同じ方法で硝化処理を行った。なお
スポンジの添加量はエアリフトリアクタ31体積当たり
の担体表面積が実施例1と同じになるように投入した。
結果を図5に示す。
Comparative Example 1 In Example 1, 3 mm was used instead of the granular sludge.
The nitrification treatment was performed in the same manner as in Example 1, except that a sponge made of polypropylene having a corner cube shape was used. The sponge was added so that the surface area of the carrier per 31 volumes of the air lift reactor was the same as in Example 1.
FIG. 5 shows the results.

【0040】図4および図5の結果からわかるように、
担体としてUASBグラニュール汚泥を投入した実施例
1(図4)では、スポンジを投入した比較例1(図5)
に比べて生物膜の形成が速く、アンモニアを硝酸にまで
酸化するために必要な立ち上げ期間を短縮することが可
能であった。
As can be seen from the results of FIGS. 4 and 5,
In Example 1 (FIG. 4) in which UASB granular sludge was charged as a carrier, Comparative Example 1 in which sponge was charged (FIG. 5)
The formation of a biofilm was faster than that of, and the start-up period required to oxidize ammonia to nitric acid could be shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の排水の好気性処理方法を示すフローシ
ートである。
FIG. 1 is a flow sheet showing an aerobic treatment method for wastewater of an example.

【図2】他の実施例の排水の好気性処理方法を示す好気
性処理装置の断面図である。
FIG. 2 is a cross-sectional view of an aerobic treatment device showing an aerobic treatment method for wastewater according to another embodiment.

【図3】さらに他の実施例の排水の好気性処理方法を示
す好気性処理装置の断面図である。
FIG. 3 is a cross-sectional view of an aerobic treatment apparatus showing an aerobic treatment method for wastewater according to still another embodiment.

【図4】実施例1の結果を示すグラフである。FIG. 4 is a graph showing the results of Example 1.

【図5】比較例1の結果を示すグラフである。FIG. 5 is a graph showing the results of Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 曝気槽 2、12、40 グラニュール汚泥 3 沈殿槽 4、21、32 原水路 5、22、33 空気供給路 6、23 散気装置 7 汚泥返送路 8 連絡路 9、28、34 処理水路 10 汚泥排出路 11 反応槽 13 傾斜分離板 14、39 ガス分離板 15 反応部 16 固液分離部 24 多孔板 25 整流板 26 整流通路 27 処理水取出部 31 エアリフトリアクタ 35 ドラフトチューブ 36 散気板 37 固液分離部 38 反応部 40 ガス捕集器 41 空気 42 空気排出路 DESCRIPTION OF SYMBOLS 1 Aeration tank 2,12,40 Granule sludge 3 Sedimentation tank 4,21,32 Raw water channel 5,22,33 Air supply channel 6,23 Air diffuser 7 Sludge return channel 8 Communication channel 9,28,34 Treatment water channel 10 Sludge discharge path 11 Reaction tank 13 Inclined separation plate 14, 39 Gas separation plate 15 Reaction unit 16 Solid-liquid separation unit 24 Perforated plate 25 Rectifying plate 26 Rectifying passage 27 Treated water extraction unit 31 Air lift reactor 35 Draft tube 36 Diffusion plate 37 Solid Liquid separation unit 38 Reaction unit 40 Gas collector 41 Air 42 Air exhaust passage

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 好気性微生物を担持する担体を反応槽に
投入し、好気性微生物を含む活性汚泥の存在下に、排水
を好気性処理する方法において、 好気性微生物を担持する担体として、嫌気性微生物を含
むグラニュール汚泥またはその破砕物を用いることを特
徴とする排水の好気性処理方法。
Claims: 1. A method of introducing a carrier carrying an aerobic microorganism into a reaction tank and subjecting the wastewater to aerobic treatment in the presence of activated sludge containing the aerobic microorganism, wherein the carrier carrying the aerobic microorganism is anaerobic. An aerobic treatment method for wastewater, comprising using granular sludge containing bacterium or a crushed product thereof.
【請求項2】 好気性微生物を担持する担体として、メ
タン発酵において形成されるグラニュール汚泥またはそ
の破砕物を用いる請求項1記載の排水の好気性処理方
法。
2. The aerobic treatment method for wastewater according to claim 1, wherein the carrier carrying the aerobic microorganisms is granular sludge formed in methane fermentation or a crushed product thereof.
JP2001150764A 2001-05-21 2001-05-21 Wastewater aerobic treatment method Expired - Fee Related JP4899253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001150764A JP4899253B2 (en) 2001-05-21 2001-05-21 Wastewater aerobic treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001150764A JP4899253B2 (en) 2001-05-21 2001-05-21 Wastewater aerobic treatment method

Publications (2)

Publication Number Publication Date
JP2002336885A true JP2002336885A (en) 2002-11-26
JP4899253B2 JP4899253B2 (en) 2012-03-21

Family

ID=18995725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001150764A Expired - Fee Related JP4899253B2 (en) 2001-05-21 2001-05-21 Wastewater aerobic treatment method

Country Status (1)

Country Link
JP (1) JP4899253B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289311A (en) * 2005-04-14 2006-10-26 Japan Organo Co Ltd Method for treating drainage
JP2006289310A (en) * 2005-04-14 2006-10-26 Japan Organo Co Ltd Method for treating waste water
WO2007007609A1 (en) * 2005-07-07 2007-01-18 Sumitomo Heavy Industries, Ltd. Microbial support, method of producing microbial support, method of treating waste water and waste water-treating system
JP2007136364A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Method and apparatus for producing granular microbe sludge
JP2007136367A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Biological wastewater treatment apparatus and biological wastewater treatment method
JP2007136363A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Granular microbial sludge generation method
JP2007275845A (en) * 2006-04-11 2007-10-25 Sumitomo Heavy Industries Environment Co Ltd Granular microorganism sludge preparation arrangement and granular microorganism sludge producing method
JP2008284427A (en) * 2007-05-15 2008-11-27 Sumitomo Heavy Industries Environment Co Ltd Apparatus and method for treating waste water
JP2009050852A (en) * 2003-11-21 2009-03-12 Ind Technol Res Inst Method and system for treating wastewater containing organic compound
JP2009066505A (en) * 2007-09-12 2009-04-02 Univ Waseda Method of forming aerobic granule, water treatment method and water treatment apparatus
JP2009072739A (en) * 2007-09-25 2009-04-09 Ibiden Co Ltd Method for biodegradation treatment of material to be treated
JP2010179213A (en) * 2009-02-04 2010-08-19 Eco Earth Engineering Kk Method and facility for purifying pollutant
JP2011224569A (en) * 2011-07-20 2011-11-10 Sumitomo Heavy Ind Ltd Granular microbial sludge generation method
JP2014100679A (en) * 2012-11-21 2014-06-05 Kuraray Co Ltd Anaerobic wastewater treatment method using carrier
WO2014129759A1 (en) * 2013-02-20 2014-08-28 주식회사 부강테크 Wastewater treatment device using separation membrane with which recovery of granules of active microorganisms is possible and method for treating wastewater using same
JP2016193396A (en) * 2015-03-31 2016-11-17 オルガノ株式会社 Wastewater treatment method and wastewater treatment apparatus
JP2016193388A (en) * 2015-03-31 2016-11-17 オルガノ株式会社 Dehydration method, wastewater treatment method and wastewater treatment apparatus
CN106673372A (en) * 2017-01-19 2017-05-17 河南恒安环保科技有限公司 Treatment method of traditional Chinese medicine wastewater
CN111867990A (en) * 2018-01-29 2020-10-30 威立雅水处理技术支持公司 Biofilm carrier medium in moving bed biofilm reactor process
JP2021169062A (en) * 2020-04-15 2021-10-28 栗田工業株式会社 Aerobic biological membrane treatment method and apparatus
CN114212886A (en) * 2021-12-10 2022-03-22 北京城市排水集团有限责任公司 Anaerobic ammonia oxidation granular sludge screening device and method
CN115304160A (en) * 2022-07-18 2022-11-08 北京城市排水集团有限责任公司 Method and device for quickly culturing anaerobic ammonium oxidation granular sludge of high ammonia nitrogen wastewater

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279887A (en) * 1986-05-28 1987-12-04 Sanki Eng Co Ltd Surface immobilized anaerobic bacteria granule and treatment of waste water using same
JPS63214390A (en) * 1987-02-27 1988-09-07 Isao Somiya Treatment of waste water with self-immobilized microorganism
JPS63242394A (en) * 1987-03-31 1988-10-07 Kensetsusho Doboku Kenkyu Shocho Treatment of drainage and equipment therefor
JPH01262996A (en) * 1988-04-13 1989-10-19 Japan Organo Co Ltd Method and apparatus for aerobic treatment of organic waste water
JPH03254895A (en) * 1990-03-01 1991-11-13 Nishihara Environ Sanit Res Corp Gel-reinforced self-granulated sludge
JPH04190898A (en) * 1990-11-26 1992-07-09 Komatsu Ltd Treating method for effluent water
JPH07290088A (en) * 1994-04-26 1995-11-07 Mitsubishi Kakoki Kaisha Ltd Method for biologically denitrifying organic waste water
JPH08112600A (en) * 1994-10-18 1996-05-07 Kurita Water Ind Ltd Combination septic tank
JPH08155485A (en) * 1994-12-05 1996-06-18 Kurita Water Ind Ltd Anaerobic treatment method
JPH0910792A (en) * 1995-06-26 1997-01-14 Kurita Water Ind Ltd Anaerobic treatment apparatus
JPH1066994A (en) * 1996-08-28 1998-03-10 Shinko Pantec Co Ltd Biological denitrification method
JP2001187394A (en) * 1999-12-28 2001-07-10 Sumitomo Heavy Ind Ltd Waste water treatment equipment
JP2001252679A (en) * 2000-03-14 2001-09-18 Sumitomo Heavy Ind Ltd Waste water treating device and method
JP2001252686A (en) * 2000-03-10 2001-09-18 Kurita Water Ind Ltd Anaerobic treatment method for organic waste water
JP2002001389A (en) * 2000-06-19 2002-01-08 Univ Waseda Production process of biological membrane and continuous treatment equipment for inorganic ammonate containing wastewater, using the same membrane
JP2002113490A (en) * 2000-10-05 2002-04-16 Kurita Water Ind Ltd Biological denitrifying apparatus
JP2002113491A (en) * 2000-10-05 2002-04-16 Kurita Water Ind Ltd Biological denitrifying apparatus
JP2002192188A (en) * 2000-12-25 2002-07-10 Kurita Water Ind Ltd Biological denitrification apparatus

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279887A (en) * 1986-05-28 1987-12-04 Sanki Eng Co Ltd Surface immobilized anaerobic bacteria granule and treatment of waste water using same
JPS63214390A (en) * 1987-02-27 1988-09-07 Isao Somiya Treatment of waste water with self-immobilized microorganism
JPS63242394A (en) * 1987-03-31 1988-10-07 Kensetsusho Doboku Kenkyu Shocho Treatment of drainage and equipment therefor
JPH01262996A (en) * 1988-04-13 1989-10-19 Japan Organo Co Ltd Method and apparatus for aerobic treatment of organic waste water
JPH03254895A (en) * 1990-03-01 1991-11-13 Nishihara Environ Sanit Res Corp Gel-reinforced self-granulated sludge
JPH04190898A (en) * 1990-11-26 1992-07-09 Komatsu Ltd Treating method for effluent water
JPH07290088A (en) * 1994-04-26 1995-11-07 Mitsubishi Kakoki Kaisha Ltd Method for biologically denitrifying organic waste water
JPH08112600A (en) * 1994-10-18 1996-05-07 Kurita Water Ind Ltd Combination septic tank
JPH08155485A (en) * 1994-12-05 1996-06-18 Kurita Water Ind Ltd Anaerobic treatment method
JPH0910792A (en) * 1995-06-26 1997-01-14 Kurita Water Ind Ltd Anaerobic treatment apparatus
JPH1066994A (en) * 1996-08-28 1998-03-10 Shinko Pantec Co Ltd Biological denitrification method
JP2001187394A (en) * 1999-12-28 2001-07-10 Sumitomo Heavy Ind Ltd Waste water treatment equipment
JP2001252686A (en) * 2000-03-10 2001-09-18 Kurita Water Ind Ltd Anaerobic treatment method for organic waste water
JP2001252679A (en) * 2000-03-14 2001-09-18 Sumitomo Heavy Ind Ltd Waste water treating device and method
JP2002001389A (en) * 2000-06-19 2002-01-08 Univ Waseda Production process of biological membrane and continuous treatment equipment for inorganic ammonate containing wastewater, using the same membrane
JP2002113490A (en) * 2000-10-05 2002-04-16 Kurita Water Ind Ltd Biological denitrifying apparatus
JP2002113491A (en) * 2000-10-05 2002-04-16 Kurita Water Ind Ltd Biological denitrifying apparatus
JP2002192188A (en) * 2000-12-25 2002-07-10 Kurita Water Ind Ltd Biological denitrification apparatus

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050852A (en) * 2003-11-21 2009-03-12 Ind Technol Res Inst Method and system for treating wastewater containing organic compound
JP2006289310A (en) * 2005-04-14 2006-10-26 Japan Organo Co Ltd Method for treating waste water
JP2006289311A (en) * 2005-04-14 2006-10-26 Japan Organo Co Ltd Method for treating drainage
JP4596533B2 (en) * 2005-04-14 2010-12-08 オルガノ株式会社 Wastewater treatment method
JPWO2007007609A1 (en) * 2005-07-07 2009-01-29 住友重機械工業株式会社 Microbial carrier, method for producing microbial carrier, wastewater treatment method, and wastewater treatment system
WO2007007609A1 (en) * 2005-07-07 2007-01-18 Sumitomo Heavy Industries, Ltd. Microbial support, method of producing microbial support, method of treating waste water and waste water-treating system
JP2007136364A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Method and apparatus for producing granular microbe sludge
JP2007136363A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Granular microbial sludge generation method
JP2007136367A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Biological wastewater treatment apparatus and biological wastewater treatment method
JP2007275845A (en) * 2006-04-11 2007-10-25 Sumitomo Heavy Industries Environment Co Ltd Granular microorganism sludge preparation arrangement and granular microorganism sludge producing method
JP2008284427A (en) * 2007-05-15 2008-11-27 Sumitomo Heavy Industries Environment Co Ltd Apparatus and method for treating waste water
JP2009066505A (en) * 2007-09-12 2009-04-02 Univ Waseda Method of forming aerobic granule, water treatment method and water treatment apparatus
JP2009072739A (en) * 2007-09-25 2009-04-09 Ibiden Co Ltd Method for biodegradation treatment of material to be treated
JP2010179213A (en) * 2009-02-04 2010-08-19 Eco Earth Engineering Kk Method and facility for purifying pollutant
JP2011224569A (en) * 2011-07-20 2011-11-10 Sumitomo Heavy Ind Ltd Granular microbial sludge generation method
JP2014100679A (en) * 2012-11-21 2014-06-05 Kuraray Co Ltd Anaerobic wastewater treatment method using carrier
WO2014129759A1 (en) * 2013-02-20 2014-08-28 주식회사 부강테크 Wastewater treatment device using separation membrane with which recovery of granules of active microorganisms is possible and method for treating wastewater using same
JP2016193396A (en) * 2015-03-31 2016-11-17 オルガノ株式会社 Wastewater treatment method and wastewater treatment apparatus
JP2016193388A (en) * 2015-03-31 2016-11-17 オルガノ株式会社 Dehydration method, wastewater treatment method and wastewater treatment apparatus
CN106673372A (en) * 2017-01-19 2017-05-17 河南恒安环保科技有限公司 Treatment method of traditional Chinese medicine wastewater
CN111867990B (en) * 2018-01-29 2023-11-17 威立雅水处理技术支持公司 Biofilm carrier medium in moving bed biofilm reactor process
CN111867990A (en) * 2018-01-29 2020-10-30 威立雅水处理技术支持公司 Biofilm carrier medium in moving bed biofilm reactor process
US12110243B2 (en) 2018-01-29 2024-10-08 Veolia Water Solutions & Technologies Support Biofilm carrier media in moving bed biofilm reactor processes
JP2021169062A (en) * 2020-04-15 2021-10-28 栗田工業株式会社 Aerobic biological membrane treatment method and apparatus
JP7435196B2 (en) 2020-04-15 2024-02-21 栗田工業株式会社 Aerobic biofilm treatment method and device
CN114212886B (en) * 2021-12-10 2023-11-03 北京城市排水集团有限责任公司 Anaerobic ammonia oxidation granular sludge screening device and method
CN114212886A (en) * 2021-12-10 2022-03-22 北京城市排水集团有限责任公司 Anaerobic ammonia oxidation granular sludge screening device and method
CN115304160A (en) * 2022-07-18 2022-11-08 北京城市排水集团有限责任公司 Method and device for quickly culturing anaerobic ammonium oxidation granular sludge of high ammonia nitrogen wastewater

Also Published As

Publication number Publication date
JP4899253B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP4899253B2 (en) Wastewater aerobic treatment method
Zhang et al. Anaerobic treatment of swine waste by the anaerobic sequencing batch reactor
US4284508A (en) Methane production by attached film
JP4224951B2 (en) Denitrification method
JP5150993B2 (en) Denitrification method and apparatus
JPH02245297A (en) Two-stage treating method of waste water
JP5176542B2 (en) Biological treatment method and biological treatment apparatus for organic wastewater
JP3729332B2 (en) Wastewater treatment apparatus including upflow anaerobic reactor and wastewater treatment method using the same
Ince et al. Attachment, strength and performance of a porous media in an upflow anaerobic filter treating dairy wastewater
JP2003033780A (en) Method for wastewater treatment
JP2007252968A (en) Method and apparatus for treating waste water
JP2018187577A (en) Method for setting up nitrogen-containing wastewater treatment system
JP2001137889A (en) Method and device for anaerobic treatment
JPH08155496A (en) Method and apparatus for digestion treatment of sludge
JPH06142682A (en) Anaerobic water treatment device
JPH0739895A (en) Treating method and device for waste liquid containing organic solid content
JP7200248B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
WO2004028983A1 (en) A method of processing organic wastewater
KR20020075046A (en) The treating method of high concentration organic waste water
JP3843540B2 (en) Biological treatment method of effluent containing organic solids
JPH07185589A (en) Waste water treatment method for removal of nitrogen and device therefor
JP2002143889A (en) Waste water treatment equipment
Takahashi et al. Development of multi-stage reversing-flow bioreactor (MRB) for wastewater treatment
JP2590474B2 (en) Wastewater treatment method
JP2001070999A (en) Method and apparatus for treating wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees