[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4386279B2 - Burner operation - Google Patents

Burner operation Download PDF

Info

Publication number
JP4386279B2
JP4386279B2 JP2004357735A JP2004357735A JP4386279B2 JP 4386279 B2 JP4386279 B2 JP 4386279B2 JP 2004357735 A JP2004357735 A JP 2004357735A JP 2004357735 A JP2004357735 A JP 2004357735A JP 4386279 B2 JP4386279 B2 JP 4386279B2
Authority
JP
Japan
Prior art keywords
core air
burner
air flow
flow rate
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004357735A
Other languages
Japanese (ja)
Other versions
JP2006162208A (en
Inventor
彰 馬場
公治 倉増
隆則 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2004357735A priority Critical patent/JP4386279B2/en
Publication of JP2006162208A publication Critical patent/JP2006162208A/en
Application granted granted Critical
Publication of JP4386279B2 publication Critical patent/JP4386279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

この発明は微粉状固体燃料と石油などの液体燃料を混焼させるため又は微粉状固体燃料と液体燃料を切り替えで燃焼させる石炭焚きボイラ等で利用されるバーナの運転方法に関するものである。 This invention relates to a method of operating burners utilized in coal-fired boiler for burning in switching the pulverized solid fuel or with finely divided solid fuel and liquid fuel in order to co-firing a liquid fuel such as oil.

微粉状固体燃料は微粉炭が代表例であるので微粉炭バーナについて以下説明する。
図7に従来の微粉炭バーナの概略断面構成図を示す。燃料と搬送用空気(一次空気)の混合流体Fを火炉1に導く微粉炭ノズル5の先端に、保炎を司る保炎器2が取り付けている。保炎器2の後流側には、強い渦流(循環流領域)19が形成され、安定した燃焼が維持される。微粉炭ノズル5の外周部には、二次空気流路3及び三次空気流路4が設置され、燃焼用空気を分離供給し、火炎中心に燃料過剰な還元雰囲気を形成することで、火炎内でのNOxの発生量を低く抑えることができる。図7に示す低NOx化燃焼が可能なバーナは、例えば、本出願人の発明になる特開2001−82706号公報などに同類のバーナが記載されている。なお、図7のバーナの中心軸部には燃料着火用の油バーナ6が設けられ、また油バーナ6の外周部には濃縮器13が設けられている。
Since pulverized coal is a representative example of the pulverized solid fuel, the pulverized coal burner will be described below.
FIG. 7 shows a schematic cross-sectional configuration diagram of a conventional pulverized coal burner. A flame holder 2 that controls flame holding is attached to the tip of a pulverized coal nozzle 5 that guides a mixed fluid F of fuel and carrier air (primary air) to the furnace 1. A strong vortex flow (circulation flow region) 19 is formed on the downstream side of the flame stabilizer 2, and stable combustion is maintained. A secondary air flow path 3 and a tertiary air flow path 4 are installed on the outer peripheral portion of the pulverized coal nozzle 5 to separate and supply combustion air, thereby forming an excessive fuel reducing atmosphere in the center of the flame. The amount of NOx generated in can be kept low. The burner capable of reducing NOx combustion shown in FIG. 7 is described in, for example, Japanese Patent Application Laid-Open No. 2001-82706, which is the invention of the present applicant. 7 is provided with an oil burner 6 for fuel ignition, and a concentrator 13 is provided on the outer periphery of the oil burner 6.

ところで、環境保全のための公害防止規制は年々厳しくなっているが、特に前記石炭を燃焼させる微粉炭ボイラでは燃焼ガス中のNOx発生量を極力低減すること(以下、低NOx化という)が要請されている。   By the way, although pollution prevention regulations for environmental conservation are becoming stricter year by year, it is required to reduce the amount of NOx generated in the combustion gas as much as possible (hereinafter referred to as low NOx), particularly in the case of the pulverized coal boiler that burns the coal. Has been.

また、海外向けの事業用石炭焚きボイラは、国内向けの石炭焚きボイラと比較して、排ガス中のNOx濃度を所定濃度以下に制限するための規制が緩やかであることから、燃料の低NOx化燃焼が図れる二段燃焼方式の機器が具備されていない場合が多い。   In addition, compared with domestic coal-fired boilers, overseas-use coal-fired boilers have less restrictions on restricting the NOx concentration in the exhaust gas to a predetermined level or less, so fuel consumption is reduced to lower NOx. In many cases, a two-stage combustion apparatus capable of combustion is not provided.

二段燃焼方式とは、火炉1のバーナゾーンでの空気比(バーナ部から火炉内へ投入する燃焼用空気流量の投入微粉炭を完全燃焼させるのに必要な空気流量(以下、理論空気流量)に対する割合)を1以下にした燃料リッチな条件に保つことで固体燃料の燃焼により生成するNOxを還元し、燃焼ガス中の低NOx化を図り、このときの未燃焼燃料については、バーナゾーン後流側の空気投入口から燃焼用空気を投入して燃焼させる方式である。   The two-stage combustion method is the air ratio in the burner zone of the furnace 1 (the flow rate of air to be injected into the furnace from the burner section) The air flow rate required to completely burn the pulverized coal (hereinafter, the theoretical air flow rate) The NOx generated by the combustion of the solid fuel is reduced by maintaining the fuel rich condition with a ratio of 1 or less) to 1 or less, and the NOx in the combustion gas is reduced. For the unburned fuel at this time, This is a system in which combustion air is introduced from the air inlet on the flow side and burned.

しかしながら近年の環境規制により低NOx化対応が必須であることから、低コストで低NOx化効果のある方法が望まれるのであるが、従来は国内の事業用ボイラへ適用している、高価な低NOx化技術を海外向けの事業用石炭焚きボイラでも適用する方法がとられていた。
特開2001−82706号公報
However, since it is indispensable to reduce NOx due to environmental regulations in recent years, a low-cost and low-NOx reduction method is desired, but it has been applied to domestic business boilers in the past. A method has been adopted in which NOx conversion technology is also applied to a coal-fired boiler for overseas use.
JP 2001-82706 A

前述したように海外においても排ガスのNOx濃度規制が強化される傾向にあるが、従来海外向けの事業用石炭焚きボイラは、国内向けの石炭焚きボイラと比較して、二段燃焼用の機器が具備されていない場合が多い。そのために海外向けの石炭焚きボイラにも低NOx化対応を施した機器を設置することが必要であるが、既設のボイラは二段燃焼用ポートを備えていない。そこで既設の石炭焚きボイラの燃焼システムにおいて、バーナを取り替えるだけで、比較的費用をかけないで対応できる低NOx化効果のあるバーナの開発が望まれている。   As described above, regulations on NOx concentration in exhaust gas tend to be strengthened overseas as well. However, conventional coal-fired boilers for overseas use have two-stage combustion equipment compared to domestic coal-fired boilers. It is often not provided. For this reason, it is necessary to install equipment that is compatible with low NOx in coal-fired boilers for overseas use, but existing boilers do not have a two-stage combustion port. Therefore, it is desired to develop a burner having a NOx reduction effect that can be handled with relatively low cost by simply replacing the burner in an existing coal-fired boiler combustion system.

また石炭焚きボイラでは石炭燃焼だけでなく、バーナ起動時などには重油などの石油を燃焼させるために油バーナを備えている。従って石炭燃焼時の低NOx化燃焼の性能を維持したまま、重油燃焼時には、低ばいじん性能が要求される。   The coal-fired boiler is equipped with an oil burner not only for burning coal but also for burning oil such as heavy oil when starting the burner. Accordingly, a low soot and dust performance is required during heavy oil combustion while maintaining the NOx reduction combustion performance during coal combustion.

本発明の課題は、低コストで低NOx化燃焼効果があり、また、微粉炭などの微粉状固体燃料の燃焼時の低NOx化燃焼性能を維持したまま、重油などの液体燃料の燃焼時には、低ばいじん性能のバーナの運転方法を提供することである。 The problem of the present invention is that it has a low NOx reduction combustion effect at a low cost, and at the time of combustion of liquid fuel such as heavy oil while maintaining low NOx reduction combustion performance at the time of combustion of pulverized solid fuel such as pulverized coal, to provide a method for operating burners for low dust performance.

本発明の上記課題は、次の解決手段で解決される。
請求項1記載の発明は、火炉を取り囲む水壁の開口部に挿入して設けられ、微粉状固体燃料と液体燃料を火炉で混焼させるかまたは微粉状固体燃料と液体燃料とを切り替えて火炉で燃焼させるバーナの運転方法であって該バーナとして、バーナ中心軸周辺に前記微粉状固体燃料と搬送用気体との混合流体が流れる混合流体ノズルと、該混合流体ノズル内に前記液体燃料が流れる油バーナと、前記混合流体ノズルの外周部に燃焼用空気が流れる一以上の燃焼用空気流路と、前記混合流体ノズルの先端部に備えられた保炎機構と、前記油バーナの外周部にコアエアが流れるコアエア流路と、該コアエア流路の先端部であって前記保炎機構よりも前流側に、前記コアエアの火炉内への噴出方向をバーナ中心軸に対して半径方向外側に偏向させて前記保炎機構の後流部に向けてコアエアを流すコアエア偏向手段とを設けたバーナを使用し、油バーナ起動時には、コアエア流路内のコアエア流量を該コアエア流路内の最大設定流量で流し、微粉状固体燃料のみを燃焼させる時には、コアエア流量を該コアエア流路内の最小設定流量で流すバーナの運転方法である。
The above-mentioned problem of the present invention is solved by the following means.
The invention described in claim 1 is provided by being inserted into an opening portion of a water wall surrounding the furnace, in which the pulverized solid fuel and the liquid fuel are co-fired in the furnace, or the pulverized solid fuel and the liquid fuel are switched and the furnace is used. A burner operating method for burning, wherein as the burner, a mixed fluid nozzle in which a mixed fluid of the finely divided solid fuel and a carrier gas flows around the central axis of the burner, and the liquid fuel flows in the mixed fluid nozzle An oil burner, one or more combustion air passages through which combustion air flows on the outer periphery of the mixed fluid nozzle, a flame holding mechanism provided at the tip of the mixed fluid nozzle, and an outer periphery of the oil burner A core air flow path through which the core air flows, and a forward end side of the flame holding mechanism at the front end of the core air flow path, the direction of jetting the core air into the furnace is deflected radially outward with respect to the burner central axis Let me before Toward flow portion after the flame holding mechanism using a burner provided with a core air deflecting means for flowing the core air, when the oil burner starts, flowing core air flow rate of core air flow path at a maximum flow rate for the core air flow path, This is a burner operating method in which the core air flow rate is made to flow at the minimum set flow rate in the core air flow path when only the pulverized solid fuel is burned .

請求項2記載の発明は、前記バーナとして、更にコアエア流路内のコアエア流量を調整するコアエア流量調整手段を備えたバーナを使用し、油バーナ起動時には、前記コアエア流量調整手段によりコアエア流路内のコアエア流量を該コアエア流路内の最大設定流量で流し、微粉状固体燃料のみを燃焼させる時には、前記コアエア流量調整手段によりコアエア流量を該コアエア流路内の最小設定流量で流す請求項1記載のバーナの運転方法である。 The invention according to claim 2 uses, as the burner, a burner provided with a core air flow rate adjusting means for adjusting the core air flow rate in the core air flow path. The core air flow rate is made to flow at the maximum set flow rate in the core air flow path, and when only the pulverized solid fuel is burned, the core air flow rate is made to flow at the minimum set flow rate in the core air flow path by the core air flow rate adjusting means. This is the operation method of the burner.

(作用)
請求項1記載の発明によれば、コアエアの火炉内への噴出方向をバーナ中心軸に対して半径方向外側にコアエア偏向手段(偏向ハブ11)により必要に応じて燃焼用空気を供給できるので、微粉状固体燃料と液体燃料の同軸混焼バーナの欠点であった油バーナ起動時の黒煙対策として、バーナ中心部分に油燃焼用のコアエアを供給することができ、またコアエアの供給により排ガス中のNOx濃度の低減を図る。
(Function)
According to the first aspect of the present invention, the combustion air can be supplied as needed by the core air deflecting means (deflection hub 11) to the outside of the burner in the radial direction with respect to the central axis of the burner. As a measure against black smoke when starting an oil burner, which was a drawback of the co-firing burner of finely divided solid fuel and liquid fuel, core air for oil combustion can be supplied to the center of the burner. Reduce NOx concentration.

そして、コアエア偏向手段(偏向ハブ11)により保炎機構(保炎器2)の後方に向けてコアエアを効果的に流すことができ、保炎機構(保炎器2)の後方にある還元燃焼領域を破壊することなく、これを縮小することが可能で、酸化燃焼領域の拡大が図れ、液体燃料(油)専焼時において煤塵濃度の低減が図れ、またコアエアの流量を調節することで排ガス中のNOx濃度の低減を図ることが可能となる。 Then , the core air can be effectively flowed toward the rear of the flame holding mechanism (flame holder 2) by the core air deflecting means (deflection hub 11), and the reduction combustion at the rear of the flame holding mechanism (flame holder 2). This can be reduced without destroying the area, expanding the oxidative combustion area, reducing the dust concentration during liquid fuel (oil) firing, and adjusting the flow rate of the core air in the exhaust gas. It is possible to reduce the NOx concentration.

そして、油バーナ起動時には、コアエア流路内のコアエア流量を該コアエア流路内の最大設定流量で流すことで油バーナ起動時において黒煙を発生することなく安定した燃焼を維持できる。また、微粉状固体燃料のみを燃焼させる時には、コアエア流量は最小設定流量で流すことで排ガス中のNOx濃度の低減を図る。When the oil burner is started, stable combustion can be maintained without generating black smoke when starting the oil burner by causing the core air flow rate in the core air flow path to flow at the maximum set flow rate in the core air flow path. Further, when only the fine powdered solid fuel is burned, the core air flow rate is made to flow at the minimum set flow rate so as to reduce the NOx concentration in the exhaust gas.

請求項記載の発明によれば、請求項1記載の発明の作用に加えて、コアエア流量調整手段により、燃料の燃焼状態に応じてコアエア流路内の燃焼用空気流量が容易に調整でき、ボイラ起動時など火炉の起動時と停止時の油燃焼時にコアエアを流し、また通常の微粉状固体燃料燃焼時におけるコアエア流量を最小流量とすることができる。 According to the invention of claim 2 , in addition to the action of the invention of claim 1, the core air flow rate adjusting means can easily adjust the combustion air flow rate in the core air flow path according to the combustion state of the fuel, Core air can be flowed at the time of oil combustion at the time of starting and stopping of the furnace such as when the boiler is started, and the core air flow rate at the time of normal fine powder solid fuel combustion can be made the minimum flow rate.

請求項1記載の発明によれば、コアエアの供給量の調節で油バーナ起動時におけるバーナ先端部にすすが付着することを防ぎ、また燃焼ガス中のNOx濃度の低減を図ることができる。   According to the first aspect of the present invention, it is possible to prevent soot from adhering to the tip of the burner when starting the oil burner by adjusting the supply amount of the core air, and to reduce the NOx concentration in the combustion gas.

そして、コアエアの供給により保炎機構(保炎器2)の後方にある還元燃焼領域を破壊することなく、これを縮小することが可能で、酸化燃焼領域の拡大による排ガス中のNOx濃度の低減が図れ、また保炎機構の焼損防止が可能となる。 Further , it is possible to reduce the reduction combustion area behind the flame holding mechanism (flame holder 2) by supplying the core air without destroying it, and the NOx concentration in the exhaust gas is reduced by expanding the oxidation combustion area. And the flame holding mechanism can be prevented from being burned out.

そして、油バーナ起動時において黒煙を発生することなく安定した燃焼を維持でき、また、微粉状固体燃料のみを燃焼させる時には、コアエア流量は最小設定流量で流すことで排ガス中のNOx濃度の低減を図ることができる。And, when burning the oil burner, stable combustion can be maintained without generating black smoke, and when burning only fine powdered solid fuel, the core air flow rate is flowed at the minimum set flow rate to reduce the NOx concentration in the exhaust gas Can be achieved.

請求項記載の発明によれば、請求項1記載の発明の効果に加えて、火炉の起動時と停止時及び通常の微粉状固体燃料燃焼時におけるコアエア流量を適切な量に調整できる。 According to the invention described in claim 2 , in addition to the effect of the invention described in claim 1, the core air flow rate at the time of starting and stopping of the furnace and at the time of normal pulverized solid fuel combustion can be adjusted to an appropriate amount .

本発明で使用するバーナの実施例について図面と共に説明する。
以下の各実施例のバーナは図2に示す低NOx微粉炭バーナに用いられるバーナである。
図2には本実施例の低NOx微粉炭バーナの概略断面構成図を示す。燃料と搬送用空気(一次空気)の混合流体を火炉1に導く微粉炭ノズル5の先端に、保炎を司る保炎器2を取り付けている。微粉炭ノズル5の外周部には、二次空気流路3及び三次空気流路4が設置され、二次空気及び三次空気を分離してバーナに供給し、火炎中心に燃料過剰な還元雰囲気を形成することで、火炎内でのNOx濃度の低減に可能としている。
なお、図示していないが火炉1のバーナ設置部の後流側にはアフタエアポートを設けており、還元燃焼している火炎に酸素を供給して燃料の完全燃焼を図っている。
Embodiments of the burner used in the present invention will be described with reference to the drawings.
The burners of the following examples are those used in the low NOx pulverized coal burner shown in FIG.
FIG. 2 shows a schematic cross-sectional configuration diagram of the low NOx pulverized coal burner of the present embodiment. A flame holder 2 that controls flame holding is attached to the tip of a pulverized coal nozzle 5 that guides a mixed fluid of fuel and carrier air (primary air) to the furnace 1. The secondary air flow path 3 and the tertiary air flow path 4 are installed in the outer peripheral part of the pulverized coal nozzle 5, and the secondary air and the tertiary air are separated and supplied to the burner, and an excessive fuel reducing atmosphere is formed in the center of the flame. By forming it, it is possible to reduce the NOx concentration in the flame.
Although not shown, an after-air port is provided on the downstream side of the burner installation portion of the furnace 1, and oxygen is supplied to the flame that is reducing and burning to achieve complete combustion of the fuel.

また、微粉炭と搬送用気体からなる混合流体が流れる微粉炭ノズル5がバーナの中心部に設けられ、微粉炭ノズル5の内部中心軸部にはバーナ起動時に用いられることが多い油バーナ6と該油バーナ外周部にコアエア流路8が設けられている。コアエア流路8にはウインドボックス7から燃焼用空気が供給される。ウインドボックス7からコアエア流路8への流入部にはダンパ10を設けてコアエアの流量調節をしている。   Further, a pulverized coal nozzle 5 through which a mixed fluid composed of pulverized coal and a conveying gas flows is provided at the center of the burner, and an oil burner 6 that is often used at the time of starting the burner is provided in the inner central shaft portion of the pulverized coal nozzle 5. A core air flow path 8 is provided on the outer periphery of the oil burner. Combustion air is supplied from the wind box 7 to the core air flow path 8. A damper 10 is provided at the inflow portion from the wind box 7 to the core air flow path 8 to adjust the flow rate of the core air.

図1には図2に示すバーナの一部拡大図を示す。
微粉炭ノズル5の内部中心軸部にはバーナ起動時に用いられることが多い油バーナ6と該油バーナ6の外周部にコアエア流路8が設けられる。コアエア流路8の先端部には偏向ハブ11が設けられている。また、コアエア流路8の外壁には微粉炭ノズル5の前記混合流体流路を縮小する濃縮器13が設けられている。
FIG. 1 shows a partially enlarged view of the burner shown in FIG.
An oil burner 6 that is often used at the time of starting the burner and a core air flow path 8 are provided on the outer periphery of the oil burner 6 at the inner central shaft portion of the pulverized coal nozzle 5. The distal end portion of the core air passages 8 Ru Tei deflection hub 11 is provided. A concentrator 13 for reducing the mixed fluid flow path of the pulverized coal nozzle 5 is provided on the outer wall of the core air flow path 8.

さらに、微粉炭ノズル5の外周にはウインドボックス7から燃焼用空気が供給される二次空気流路3と三次空気流路4が設けられ、三次空気流路4には空気旋回器14が設けられる。また図示していないが二次空気流路3内には空気旋回器を設けてもよい。さらに二次空気流路3の入口には二次空気流量調節用のスライド式ダンパ15を設けている。   Further, a secondary air flow path 3 and a tertiary air flow path 4 to which combustion air is supplied from a wind box 7 are provided on the outer periphery of the pulverized coal nozzle 5, and an air swirler 14 is provided in the tertiary air flow path 4. It is done. Although not shown, an air swirler may be provided in the secondary air flow path 3. Further, a sliding damper 15 for adjusting the secondary air flow rate is provided at the inlet of the secondary air flow path 3.

なお、微粉炭の搬送用気体としては空気を用いても良いが、着火しやすい微粉炭が微粉炭ノズル5の出口に搬送される間に着火するのを防ぐために火炉1から排出する燃焼排ガスを用いてもよい。   In addition, although air may be used as the gas for conveying pulverized coal, the combustion exhaust gas discharged from the furnace 1 is used in order to prevent the ignited pulverized coal from being ignited while being conveyed to the outlet of the pulverized coal nozzle 5. It may be used.

上記構成からなる図1、図2に示すバーナでは、微粉炭ノズル5に流入した微粉炭と搬送用気体の混合流体は、燃料搬送用気体より慣性力が大きい燃料粒子(微粉炭)の流れが濃縮器13により微粉炭ノズル5の内周壁側に流れ方向を変えられ、その後内周壁側に沿って流れ、微粉炭ノズル5の出口では保炎器2により巻き込まれた二次空気と混合して微粉炭濃度の比較的高い循環流を形成する。循環流内での濃度の比較的高い微粉炭は着火し易くなり、また着火した微粉炭の保炎にとって循環流が好都合となり、燃焼安定性も向上する。   In the burner shown in FIGS. 1 and 2 having the above-described configuration, the mixed fluid of the pulverized coal and the transfer gas flowing into the pulverized coal nozzle 5 has a flow of fuel particles (pulverized coal) having a larger inertia force than the fuel transfer gas. The flow direction is changed to the inner peripheral wall side of the pulverized coal nozzle 5 by the concentrator 13 and then flows along the inner peripheral wall side, and mixed with the secondary air entrained by the flame holder 2 at the outlet of the pulverized coal nozzle 5. A circulation flow with a relatively high pulverized coal concentration is formed. The pulverized coal having a relatively high concentration in the circulation flow is easily ignited, and the circulation flow is convenient for the flame holding of the ignited pulverized coal, and the combustion stability is also improved.

図3にはコアエアを流さない場合のバーナ後部の火炉内での燃料の燃焼状況を示し、図4にはコアエアを流した場合の火炉内での燃料の燃焼状況を示す。
図3に示すようにコアエアを流さずに油燃焼を実施すると、バーナ後流部には、図示するような酸化領域17と還元領域18、19が形成される。特に保炎器2の後方に大きな還元領域19が形成されるが、これが原因で未燃分やすすが発生する。また、還元領域19は前述のように循環流形成領域でもあり、広大な領域であることから、油バーナ6から噴出する油の液滴が飛散して、この還元領域19に油滴が取り込まれて、保炎器2に付着し、局所で発熱するので、保炎器2の焼損につながる場合がある。
FIG. 3 shows the combustion state of the fuel in the furnace at the rear of the burner when the core air is not supplied, and FIG. 4 shows the combustion state of the fuel in the furnace when the core air is supplied.
As shown in FIG. 3, when oil combustion is performed without flowing the core air, an oxidation region 17 and reduction regions 18 and 19 as shown are formed in the burner wake. In particular, a large reduction region 19 is formed behind the flame holder 2, and this causes unburned soot and soot. Further, as described above, the reduction region 19 is also a circulation flow formation region and is a vast region. Therefore, the oil droplets ejected from the oil burner 6 are scattered, and the oil droplets are taken into the reduction region 19. Then, it adheres to the flame holder 2 and locally generates heat, which may lead to burning of the flame holder 2.

一方、図4にはコアエアを流した場合のバーナ後流部分における燃焼状況について示した。コアエアの火炉内への噴出方向をバーナ中心軸に対して半径方向外側に偏向ハブ11により保炎器2の後方に向けて効果的に流すことで、還元領域19を破壊することなく、これを縮小することが可能で、酸化領域17の拡大が図れる。結果的に、油専焼時において煤塵濃度を低減することが可能となる。   On the other hand, FIG. 4 shows the combustion state in the burner wake portion when the core air is flowed. The flow direction of the core air into the furnace is effectively made to flow radially outward with respect to the burner central axis toward the rear side of the flame holder 2 by the deflection hub 11, so that the reduction region 19 is not destroyed. The oxide region 17 can be enlarged by reducing the size. As a result, the dust concentration can be reduced during the oil-only firing.

図5と図6に示すようにコアエアを効果的に噴射するバーナ先端部のノズル構造は、コアエア流路8の先端部に微粉炭ノズル5の中心軸部の周りに同心円状に複数個の偏向ハブ11の間にコアエア噴射ノズル21を設置している。   As shown in FIGS. 5 and 6, the nozzle structure at the tip of the burner that effectively injects the core air has a plurality of concentric deflections around the central axis of the pulverized coal nozzle 5 at the tip of the core air flow path 8. A core air injection nozzle 21 is installed between the hubs 11.

コアエア流路8の流路断面積は、バーナ中心部分に配置されているので二次空気流路断面積や三次空気断面積と比較して小さくなることは避けられない。しかもコアエアはバーナの先端部分で流れ方向を変えるため、さらに小さい流路断面積に制限がかかる。したがって、できるだけ開口比率(ノズル面積/主軸方向流路断面)を大きくする工夫が必要である。   Since the cross-sectional area of the core air flow path 8 is disposed at the center of the burner, it is inevitable that the core air flow path 8 is smaller than the secondary air flow path cross-sectional area and the tertiary air cross-sectional area. In addition, since the core air changes the flow direction at the tip of the burner, there is a limit to the smaller channel cross-sectional area. Therefore, it is necessary to devise an opening ratio (nozzle area / main-axis direction channel cross section) as large as possible.

図5はコアエアの流れを変える偏向ハブ11をスリット構造としたノズルを火炉内から見た図である。コアエア噴射ノズル21は、バーナ中心部分が円周方向で切断されていて櫛状になっている。この構造で、コアエア流路8の内側の壁が不要となることから、コアエアの供給断面積の拡大が図れる利点がある。   FIG. 5 is a view of a nozzle having a slit structure as a deflection hub 11 that changes the flow of core air, as viewed from inside the furnace. The core air injection nozzle 21 has a comb-like shape in which the center portion of the burner is cut in the circumferential direction. With this structure, since the inner wall of the core air flow path 8 is not required, there is an advantage that the supply cross-sectional area of the core air can be increased.

図6は、円形のコアエア噴射ノズル22を円周方向にアレンジした偏向ハブ11を設けたノズルを火炉内から見た図である。これは、リング状の偏向ハブ11に楕円形のノズル22を複数個設けた構造であり、図5に示すスリット構造のコアエア噴射ノズル21と比較して、コアエアの噴射方向を正確に設定できる特徴を有する。しかしコアエア噴射ノズル22の開口比率が大きく取れない。   FIG. 6 is a view of the nozzle provided with the deflection hub 11 in which the circular core air injection nozzle 22 is arranged in the circumferential direction as viewed from inside the furnace. This is a structure in which a plurality of elliptical nozzles 22 are provided on the ring-shaped deflection hub 11, and the core air injection direction can be set more accurately than the core air injection nozzle 21 having the slit structure shown in FIG. Have However, the opening ratio of the core air injection nozzle 22 cannot be increased.

なお、上記実施例のバーナはボイラなどの火炉に既に設置されている従来の微粉炭バーナなどのバーナに代えてコアエア流路を備えたプラグイン可能なバーナとして利用できる。   In addition, the burner of the said Example can be utilized as a pluggable burner provided with the core air flow path instead of the burners, such as the conventional pulverized coal burner already installed in furnaces, such as a boiler.

この発明は微粉状固体燃料と石油燃料を混焼させるため又は微粉状固体燃料と石油燃料を切り替え燃焼させる石炭焚きボイラ等で利用されるバーナの運転方法に利用できる。 The present invention can be used for a burner operation method used in a coal-fired boiler or the like for burning a pulverized solid fuel and a petroleum fuel together or by switching between a pulverized solid fuel and a petroleum fuel for combustion.

本発明の実施例のバーナの風箱から火炉に至るまでの構造に関する側断面図である。It is a sectional side view regarding the structure from the wind box of the burner of the Example of this invention to a furnace. 図1のバーナのコアエア導入部分を含めた断面図である。It is sectional drawing including the core air introduction part of the burner of FIG. 図1のバーナで、コアエアを流さない場合のバーナ後部の燃焼状況を説明する図である。It is a figure explaining the combustion condition of the burner rear part in case the core air is not sent with the burner of FIG. 図1のバーナで、コアエアを流した場合のバーナ後部の燃焼状況を説明する図である。It is a figure explaining the combustion condition of the burner rear part at the time of flowing core air with the burner of FIG. 図1のコアエア噴出部分の偏向ハブ部を火炉内から見た図である。It is the figure which looked at the deflection | deviation hub part of the core air ejection part of FIG. 1 from the inside of a furnace. 図1のコアエア噴出部分の他の実施例の偏向ハブ部を火炉内から見た図である。It is the figure which looked at the deflection | deviation hub part of the other Example of the core air ejection part of FIG. 1 from the inside of a furnace. 従来の微粉炭バーナの概略断面構成図である。It is a schematic sectional block diagram of the conventional pulverized coal burner.

符号の説明Explanation of symbols

1 火炉 2 保炎器
3 二次空気流路 4 三次空気流路
5 微粉炭ノズル 6 油バーナ
7 ウインドボックス 8 コアエア流路
10 ダンパ 11 偏向ハブ
13 濃縮器 14 空気旋回器
15 スライド式ダンパ 17 酸化領域
18、19 還元領域 21、22 コアエア噴射ノズル
DESCRIPTION OF SYMBOLS 1 Furnace 2 Flame stabilizer 3 Secondary air flow path 4 Tertiary air flow path 5 Pulverized coal nozzle 6 Oil burner 7 Wind box 8 Core air flow path 10 Damper 11 Deflection hub 13 Concentrator 14 Air swirler 15 Sliding damper 17 Oxidation region 18, 19 Reduction area 21, 22 Core air injection nozzle

Claims (2)

火炉を取り囲む水壁の開口部に挿入して設けられ、微粉状固体燃料と液体燃料を火炉で混焼させるかまたは微粉状固体燃料と液体燃料とを切り替えて火炉で燃焼させるバーナの運転方法であって
該バーナとして、バーナ中心軸周辺に前記微粉状固体燃料と搬送用気体との混合流体が流れる混合流体ノズルと、該混合流体ノズル内に前記液体燃料が流れる油バーナと、前記混合流体ノズルの外周部に燃焼用空気が流れる一以上の燃焼用空気流路と、前記混合流体ノズルの先端部に備えられた保炎機構と、前記油バーナの外周部にコアエアが流れるコアエア流路と、該コアエア流路の先端部であって前記保炎機構よりも前流側に、前記コアエアの火炉内への噴出方向をバーナ中心軸に対して半径方向外側に偏向させて前記保炎機構の後流部に向けてコアエアを流すコアエア偏向手段とを設けたバーナを使用し、
油バーナ起動時には、コアエア流路内のコアエア流量を該コアエア流路内の最大設定流量で流し、微粉状固体燃料のみを燃焼させる時には、コアエア流量を該コアエア流路内の最小設定流量で流すことを特徴とするバーナの運転方法
This is a burner operation method that is provided by being inserted into the opening of the water wall surrounding the furnace, and pulverized solid fuel and liquid fuel are co-fired in the furnace or switched between pulverized solid fuel and liquid fuel and burned in the furnace. And
As the burner, a mixed fluid nozzle in which a mixed fluid of the pulverized solid fuel and a carrier gas flows around the central axis of the burner, an oil burner in which the liquid fuel flows in the mixed fluid nozzle, and an outer periphery of the mixed fluid nozzle One or more combustion air flow paths through which combustion air flows, a flame holding mechanism provided at the tip of the mixed fluid nozzle, a core air flow path through which core air flows in the outer periphery of the oil burner, and the core air A posterior part of the flame holding mechanism by deflecting the ejection direction of the core air into the furnace radially outward with respect to the burner central axis at the front end of the flow path and on the upstream side of the flame holding mechanism Using a burner provided with a core air deflecting means for flowing the core air toward
When starting the oil burner, flow the core air flow rate in the core air flow path at the maximum set flow rate in the core air flow path, and when burning only fine powdered solid fuel, flow the core air flow rate at the minimum set flow rate in the core air flow path A burner operation method characterized by the above.
前記バーナとして、更にコアエア流路内のコアエア流量を調整するコアエア流量調整手段を備えたバーナを使用し、
油バーナ起動時には、前記コアエア流量調整手段によりコアエア流路内のコアエア流量を該コアエア流路内の最大設定流量で流し、微粉状固体燃料のみを燃焼させる時には、前記コアエア流量調整手段によりコアエア流量を該コアエア流路内の最小設定流量で流す ことを特徴とする請求項1記載のバーナの運転方法
As the burner, further using a burner provided with a core air flow rate adjusting means for adjusting the core air flow rate in the core air flow path ,
When starting the oil burner, the core air flow rate adjusting means causes the core air flow rate in the core air flow path to flow at the maximum set flow rate in the core air flow path, and when only the pulverized solid fuel is burned, the core air flow rate adjusting means causes the core air flow rate to be adjusted. 2. The burner operating method according to claim 1, wherein the flow is performed at a minimum set flow rate in the core air flow path .
JP2004357735A 2004-12-10 2004-12-10 Burner operation Expired - Fee Related JP4386279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004357735A JP4386279B2 (en) 2004-12-10 2004-12-10 Burner operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004357735A JP4386279B2 (en) 2004-12-10 2004-12-10 Burner operation

Publications (2)

Publication Number Publication Date
JP2006162208A JP2006162208A (en) 2006-06-22
JP4386279B2 true JP4386279B2 (en) 2009-12-16

Family

ID=36664416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004357735A Expired - Fee Related JP4386279B2 (en) 2004-12-10 2004-12-10 Burner operation

Country Status (1)

Country Link
JP (1) JP4386279B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264654A (en) * 2008-04-24 2009-11-12 Babcock Hitachi Kk Pulverized coal burner
JP5707897B2 (en) * 2010-11-25 2015-04-30 株式会社Ihi Fine fuel fired boiler equipment
JP2018028418A (en) * 2016-08-19 2018-02-22 三菱日立パワーシステムズ株式会社 Solid fuel burner
US11441774B2 (en) 2017-05-11 2022-09-13 Mitsubishi Power, Ltd. Method for operating flue gas purification system
WO2020234965A1 (en) * 2019-05-20 2020-11-26 三菱日立パワーシステムズ株式会社 Solid fuel burner
JP7498654B2 (en) 2020-12-09 2024-06-12 川崎重工業株式会社 Burner, its control method, and combustion furnace
TWI850917B (en) * 2021-12-24 2024-08-01 日商三菱重工業股份有限公司 Burner, boiler equipped with the same, and burner operation method

Also Published As

Publication number Publication date
JP2006162208A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
KR910006234B1 (en) Apparatus for coal combustion
JP2544662B2 (en) Burner
KR100330675B1 (en) Pulverized coal burner
JPH0820047B2 (en) Low NOx short flame burner
JP2004205161A (en) Solid fuel boiler and boiler combustion method
JP5386230B2 (en) Fuel burner and swirl combustion boiler
KR20000062699A (en) A combustion burner of fine coal powder, and a combustion apparatus of fine coal powder
JP3924089B2 (en) Pulverized coal burner and combustion apparatus using pulverized coal burner
JP4386279B2 (en) Burner operation
JP3643461B2 (en) Pulverized coal combustion burner and combustion method thereof
JPH08135919A (en) Combustion device
JP2994382B1 (en) Exhaust gas self-circulating low NOx burner
JP2009250532A (en) Pulverized coal boiler
WO2011030501A1 (en) Pulverized coal boiler
JP2005114285A (en) Burner
JPH11148610A (en) Solid fuel combustion burner and solid fuel combustion apparatus
JP7132096B2 (en) gas turbine combustor
JPH0474603B2 (en)
JP2000039108A (en) LOW NOx BURNER
JPH0555763B2 (en)
JP3253343B2 (en) Pulverized coal burning burner
WO2023127919A1 (en) Burner and combustion furnace
JP2003343817A (en) SWIRL TYPE LOW NOx COMBUSTOR
WO2020230245A1 (en) Solid fuel burner, boiler device, and nozzle unit for solid fuel burner
JP2006242399A (en) Combustion equipment and combustion method by combustion equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees