[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009264654A - Pulverized coal burner - Google Patents

Pulverized coal burner Download PDF

Info

Publication number
JP2009264654A
JP2009264654A JP2008113963A JP2008113963A JP2009264654A JP 2009264654 A JP2009264654 A JP 2009264654A JP 2008113963 A JP2008113963 A JP 2008113963A JP 2008113963 A JP2008113963 A JP 2008113963A JP 2009264654 A JP2009264654 A JP 2009264654A
Authority
JP
Japan
Prior art keywords
pulverized coal
nozzle
primary air
fixed plate
movable member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008113963A
Other languages
Japanese (ja)
Inventor
Yusuke Ochi
佑介 越智
Kimiharu Kuramasu
公治 倉増
Hirofumi Okazaki
洋文 岡▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2008113963A priority Critical patent/JP2009264654A/en
Priority to PL392835A priority patent/PL392835A1/en
Priority to PCT/JP2009/001648 priority patent/WO2009130857A1/en
Publication of JP2009264654A publication Critical patent/JP2009264654A/en
Priority to FI20106233A priority patent/FI20106233A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/008Flow control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/007Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel liquid or pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2201/00Burners adapted for particulate solid or pulverulent fuels
    • F23D2201/10Nozzle tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/11402Airflow diaphragms at burner nozzle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pulverized coal burner that reduces the NOx concentration in combustion gas, while maintaining ignitability using a simple structure. <P>SOLUTION: In this pulverized coal burner (20) having an oil nozzle (6), a primary air nozzle (1), a pulverized coal nozzle (4), and air nozzles (2, 3), a fixed plate (15) and a movable member (16) are arranged on the inner peripheral wall of the front end of the primary air nozzle (1); the fixed plate (15) is provided with slit holes (15a), each having a pair of opposed wall surfaces having an opening area gradually reduced from the upstream side to the downstream side; the movable member is mounted upstream of the fixed plate in the primary air nozzle (1) so as to be able to advance and retract; the movable member has grids (16a), adapted to close the slit holes (15a) and arranged in a radial pattern, at positions that correspond to the slit holes (15a); the degree of insertion for each grid (16a) into a corresponding slit hole (15a) is adjusted, to close either of a pair of gaps formed between the grid (16a) or a pair of opposed surfaces of the slit hole, and to cause primary air ejected from the other gap to swirl; and the swirl flow of the primary air is ejected into a furnace, to facilitate mixing of the primary air with atomized oil ejected from the oil nozzle (6). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、微粉炭焚ボイラ等に用いられる微粉炭バーナに関する。   The present invention relates to a pulverized coal burner used for a pulverized coal fired boiler or the like.

近年、図10に示すような微粉炭焚ボイラ等の火炉21に用いられる微粉炭バーナ20としては、燃焼ガス中の窒素酸化物(NOx)の生成量の低減を図ることを目的としたものが開発され、実用化されている。微粉炭バーナ20にはバンカー22からミル23に供給された石炭は微粉化されブロア24から供給される。微粉炭バーナ20の周りの風箱8には粉端と同時にブロア26から燃焼用空気が供給され、バーナ20の微粉炭の燃焼に利用される。   In recent years, a pulverized coal burner 20 used in a furnace 21 such as a pulverized coal fired boiler as shown in FIG. 10 is intended to reduce the amount of nitrogen oxide (NOx) generated in combustion gas. Developed and put into practical use. The coal supplied from the bunker 22 to the mill 23 is pulverized and supplied from the blower 24 to the pulverized coal burner 20. Combustion air is supplied from the blower 26 to the wind box 8 around the pulverized coal burner 20 at the same time as the powder ends, and is used for burning the pulverized coal in the burner 20.

また、従来から知られているこの種の微粉炭バーナ20の一例である米国特許第5697306号明細書に開示された微粉炭バーナ20は、該バーナの中心軸に燃焼用空気を噴出するコアエアノズルを設け、その外周に微粉炭と搬送用空気との固気二相流が流れる微粉炭ノズルを設け、さらに前記微粉炭ノズルの外周に燃焼用空気を噴出する2次空気ノズル及び3次空気ノズルを設けた構成である。この微粉炭バーナ20はコアエアノズルからの燃焼用空気の噴出量を調整することでバーナ出口での空気と燃料の比を制御して燃焼ガス中のNOx濃度を低減するというものである。   Further, a pulverized coal burner 20 disclosed in US Pat. No. 5,697,306, which is an example of this type of pulverized coal burner 20 conventionally known, is a core air nozzle that ejects combustion air to the central axis of the burner. A pulverized coal nozzle through which a solid-gas two-phase flow of pulverized coal and conveying air flows is provided on the outer periphery thereof, and a secondary air nozzle and a tertiary air nozzle for ejecting combustion air on the outer periphery of the pulverized coal nozzle Is provided. The pulverized coal burner 20 controls the ratio of air and fuel at the burner outlet by adjusting the amount of combustion air ejected from the core air nozzle to reduce the NOx concentration in the combustion gas.

また、微粉炭バーナ20の中には起動トーチを持たずにバーナ起動用の油バーナに点火装置で直接点火する方式のものがある。図11には従来知られているこの種の微粉炭バーナ20の一例を示す。例えば、特開2002−48306号公報記載のバーナのように中心軸部に設けた油噴霧ノズルの周囲に燃焼用空気を噴出する1次空気ノズル、該1次空気ノズルの外周に微粉炭と搬送用空気との固気二相流が流れる微粉炭ノズル、該微粉炭ノズルの外周に燃焼用空気を噴出する2次空気ノズルを設けた微粉炭バーナ20が開示されている。   Some pulverized coal burners 20 directly ignite a burner starting oil burner with an ignition device without having a starting torch. FIG. 11 shows an example of this type of pulverized coal burner 20 that is conventionally known. For example, a primary air nozzle that ejects combustion air around an oil spray nozzle provided in a central shaft portion like a burner described in JP-A-2002-48306, and pulverized coal is conveyed around the outer periphery of the primary air nozzle. There is disclosed a pulverized coal burner 20 provided with a pulverized coal nozzle through which a solid-gas two-phase flow with the working air flows, and a secondary air nozzle for ejecting combustion air on the outer periphery of the pulverized coal nozzle.

この微粉炭バーナ20では1次空気ノズルから噴出する燃焼用空気には旋回器により旋回を与えている。1次空気ノズルからの1次空気が旋回流としてバーナから火炉内に噴出することで、1次空気は遠心力で外周に広がり、微粉炭と混合しやすくなる。また、該バーナ出口の中心部分の火炉内では圧力の低い部分が形成され、この部分に下流から上流に向かう循環流が形成される。循環流には高温の既燃焼ガスが滞留しているので微粉炭の着火を早める。前記循環流により、特に油バーナに点火装置で点火する場合には安定な火炎を保持することができるという効果がある。
米国特許第5697306号明細書 特開2002−48306号公報
In the pulverized coal burner 20, the combustion air ejected from the primary air nozzle is swirled by a swirler. The primary air from the primary air nozzle is spouted from the burner into the furnace as a swirling flow, so that the primary air spreads to the outer periphery by centrifugal force and is easily mixed with pulverized coal. In addition, a low pressure portion is formed in the furnace at the central portion of the burner outlet, and a circulating flow is formed in this portion from downstream to upstream. High-temperature burned gas stays in the circulating flow, so the pulverized coal is ignited earlier. The circulation flow has an effect that a stable flame can be maintained, particularly when the oil burner is ignited by an ignition device.
US Pat. No. 5,697,306 JP 2002-48306 A

上述の従来技術は、燃焼用空気ノズルを微粉炭ノズルの外周部や内部に設けることで微粉炭と空気との混合比を調整し、燃焼ガス中のNOx濃度を低減しようとするものである。さらに、従来技術の中で起動トーチを持たずに油バーナに点火装置で点火する構成の場合には、バーナ出口の中心軸上に循環流を形成して安定した火炎を保持することができるという特徴を有している。しかし、これらの微粉炭バーナ20では、微粉炭専焼時に1次空気ノズルから旋回器により1次空気が旋回流として火炉内に噴出することで微粉炭ノズルから噴出する固気二相流は遠心力で外周側に広がり、2次空気ノズルおよび3次空気ノズルからの燃焼用空気と混合しやすくなってしまう。そのためにNOx還元域が縮小され、燃焼ガス中のNOx濃度が増加してしまうという技術課題がある。   The above-described prior art is intended to reduce the NOx concentration in the combustion gas by adjusting the mixing ratio of pulverized coal and air by providing combustion air nozzles on the outer periphery and inside of the pulverized coal nozzle. Furthermore, in the case of a configuration in which the oil burner is ignited by an ignition device without having a starting torch in the prior art, a stable flame can be maintained by forming a circulation flow on the central axis of the burner outlet. It has characteristics. However, in these pulverized coal burners 20, the solid-gas two-phase flow ejected from the pulverized coal nozzle is centrifugal force when the primary air is ejected into the furnace as a swirling flow from the primary air nozzle by a swirler during pulverized coal combustion. It spreads to the outer peripheral side and becomes easy to mix with the combustion air from the secondary air nozzle and the tertiary air nozzle. Therefore, there is a technical problem that the NOx reduction region is reduced and the NOx concentration in the combustion gas increases.

この課題の解決策として旋回器の旋回用羽根の傾斜角度又は旋回器の設置位置を調整可能な構造にすることが考えられるが、構造が複雑になる上に熱輻射によって旋回器の可動部が熱膨張して動かなくなる可能性がある。そのため、旋回器の可動部が膨張してもすき間を確保できる構造にする必要があるが、旋回部にすき間を持たす構造にすると油専焼時に必要な強旋回が低減してしまうという新たな問題が生じる。   As a solution to this problem, it is conceivable to make the structure capable of adjusting the tilt angle of the swirling blade of the swirler or the installation position of the swirler, but the structure becomes complicated and the movable part of the swirler is moved by heat radiation. There is a possibility that it will not move due to thermal expansion. Therefore, it is necessary to have a structure that can secure a gap even if the movable part of the swirler expands, but if the structure has a gap in the swivel part, there is a new problem that the strong swirling required during oil-only firing is reduced. Arise.

本発明の課題は、上記従来技術の問題点を簡易な構造で改善し、微粉炭及び油の着火性を維持しつつ、燃焼ガス中のNOx濃度の低減化を図った微粉炭バーナを提供することである。   An object of the present invention is to provide a pulverized coal burner that improves the above-described problems of the prior art with a simple structure and reduces the NOx concentration in combustion gas while maintaining the ignitability of pulverized coal and oil. That is.

本発明の上記課題は次の解決手段によって解決される。
本発明は、中心軸に油噴霧ノズルとその周囲に1次空気ノズルを有し、その外周に微粉炭と搬送用空気との固気二相流が流れる微粉炭ノズルを有する微粉炭用バーナにおいて、前記1次空気ノズルの先端に切欠きを有するプレートと障害物を有する1方向の流路を塞ぐ構造物を有し、燃焼状態により直進流と旋回流を切替えられることを特徴とする。 微粉炭バーナの起動の油専焼時、前記1次空気ノズルの1方向の流路を塞ぎ、噴出する燃焼用空気に旋回流を与えることが望ましい。旋回流として火炉内に噴出することで、燃焼用空気は遠心力で外周に広がり微粒化した油と混合しやすくなる。また、中心部分には圧力の低い部分が形成され、この部分に下流から上流に向かう循環流が形成される。循環流には高温の既燃焼ガスが滞留し、微粒化した油の着火を早める。
The above-mentioned problem of the present invention is solved by the following solution means.
The present invention relates to a pulverized coal burner having a pulverized coal nozzle having an oil spray nozzle on the central axis and a primary air nozzle around the nozzle, and a solid-gas two-phase flow of pulverized coal and conveying air on the outer periphery thereof. The primary air nozzle includes a plate having a notch at the tip thereof and a structure that blocks a one-way flow path having an obstacle, and is capable of switching between a straight flow and a swirl flow depending on a combustion state. It is desirable to block the one-way flow path of the primary air nozzle and give a swirling flow to the jetting combustion air during the oil-only firing of the pulverized coal burner. By jetting into the furnace as a swirling flow, the combustion air spreads to the outer periphery by centrifugal force and becomes easy to mix with the atomized oil. Further, a low pressure portion is formed in the central portion, and a circulating flow from downstream to upstream is formed in this portion. High-temperature burned gas stays in the circulating flow, accelerating the ignition of atomized oil.

一方、微粉炭バーナによる微粉炭専焼時、前記1次空気ノズルから噴出する燃焼用空気に直進流を与えることが望ましい。微粉炭専焼時、1次空気ノズルから旋回器により旋回流として噴出することで、前記固気二相流は遠心力で外周に広がり、2次空気ノズル以降の燃焼用空気と混合しやすくなってしまうために、NOx還元域が縮小されて燃焼ガス中のNOx濃度が増加してしまう。前記1次空気ノズルから噴出する燃焼用空気に直進流を与えることで2次空気ノズル以降の燃焼用空気と混合を遅らせ、NOxの還元域を拡大することで燃焼ガス中のNOx濃度を低減することができる。また、1次空気ノズルの先端に2方向から空気が噴出する構造を有することで、可動部の1方向の流路を塞ぐ構造物の熱輻射による熱膨張を軽減することができる。   On the other hand, when pulverized coal is burned exclusively by the pulverized coal burner, it is desirable to give a straight flow to the combustion air ejected from the primary air nozzle. When pulverized coal is exclusively burned, the solid-gas two-phase flow spreads to the outer periphery by centrifugal force by ejecting it from the primary air nozzle as a swirling flow, making it easier to mix with the combustion air after the secondary air nozzle. Therefore, the NOx reduction region is reduced and the NOx concentration in the combustion gas increases. By giving a straight flow to the combustion air ejected from the primary air nozzle, the mixing with the combustion air after the secondary air nozzle is delayed, and the NOx concentration in the combustion gas is reduced by expanding the NOx reduction region. be able to. In addition, by having a structure in which air is ejected from two directions at the tip of the primary air nozzle, thermal expansion due to heat radiation of a structure that closes the flow path in one direction of the movable portion can be reduced.

また、前記微粉炭ノズルの外周に燃焼用空気を噴出する2次空気ノズルと3次空気ノズルを設けたことを特徴とする。このとき、前記2次空気ノズルと3次空気ノズルを隔てる隔壁先端に、2次空気ノズルもしくは3次空気ノズルから噴出する空気の流れに対し障害となる障害物を有することが望ましい。障害物を設けることで、障害物の下流は圧力が低下し、循環流が形成される。循環流には高温の既燃焼ガスが滞留し微粉炭の着火を早める。   Further, a secondary air nozzle and a tertiary air nozzle for ejecting combustion air are provided on the outer periphery of the pulverized coal nozzle. At this time, it is desirable to have an obstacle that obstructs the flow of air ejected from the secondary air nozzle or the tertiary air nozzle at the tip of the partition wall that separates the secondary air nozzle and the tertiary air nozzle. By providing the obstacle, the pressure is reduced downstream of the obstacle, and a circulating flow is formed. High-temperature burned gas stays in the circulating flow and accelerates the ignition of pulverized coal.

さらに、前記微粉炭ノズルの外周壁の内側にベンチュリ及び前記1次燃焼用空気ノズル外周に微粉炭濃縮器を設けることが望ましい。燃料ノズル出口の外周部に保炎器を設けると、その後流部分に再循環領域が形成され、質量の軽い粒子やガスが巻き込まれる。燃料として200メッシュ通過率が60〜70%前後の粗粉炭を用いた場合、30μm以下の微粉炭が少ないために保炎器後流の再循環領域に巻き込まれる微粉炭量は減少するが、微粉炭に代わって1次空気ノズルからの燃焼用空気で微粉炭を加熱することによって放出された可燃性の揮発ガス成分が再循環領域に巻き込まれるので、やはり再循環領域に高温のガス体が形成され、保炎器の近傍を通過する未着火の粗粉炭への着火保炎が促進される。高燃料比炭を燃料として用いた場合にも、微粉炭の加熱を適切に行なえば前記と同様に保炎器の後流に高温の再循環領域を形成することができ、その着火性を高めることができる。   Further, it is desirable to provide a venturi inside the outer peripheral wall of the pulverized coal nozzle and a pulverized coal concentrator on the outer periphery of the primary combustion air nozzle. When a flame holder is provided on the outer peripheral portion of the fuel nozzle outlet, a recirculation region is formed in the downstream portion, and particles and gas having a light mass are entrained. When using coarse pulverized coal with a 200-mesh pass rate of around 60-70% as the fuel, the amount of pulverized coal caught in the recirculation region downstream of the flame holder decreases because there is little pulverized coal of 30 μm or less. Combustible volatile gas components released by heating the pulverized coal with the combustion air from the primary air nozzle instead of charcoal are entrained in the recirculation region, so a high-temperature gas body is also formed in the recirculation region Thus, ignition flame holding of unignited coarse pulverized coal passing in the vicinity of the flame holder is promoted. Even when high fuel specific coal is used as the fuel, if the pulverized coal is heated appropriately, a high-temperature recirculation region can be formed in the wake of the flame holder as described above, and its ignitability is improved. be able to.

本発明によれば、微粉炭バーナの起動時の油専焼時、前記1次空気ノズルの1方向の流路を塞ぎ、噴出する燃焼用空気に旋回流を与えることで、燃焼用空気は遠心力でバーナ出口の外周に広がり微粒化した油と混合しやすくなる。また、バーナ出口の中心部分には圧力の低い部分が形成され、この部分に下流から上流に向かう循環流が形成される。循環流には高温の既燃焼ガスが滞留し、微粒化した油の着火を早める。   According to the present invention, during the oil-only firing at the start of the pulverized coal burner, the one-way flow path of the primary air nozzle is closed, and the swirling flow is given to the jetting combustion air, so that the combustion air is centrifugal force It spreads around the burner outlet and becomes easy to mix with the atomized oil. In addition, a low pressure portion is formed in the central portion of the burner outlet, and a circulating flow from downstream to upstream is formed in this portion. High-temperature burned gas stays in the circulating flow, accelerating the ignition of atomized oil.

一方、微粉炭バーナの微粉炭専焼時、図9に示すように前記1次空気ノズルから火炉内に噴出する燃焼用空気に直進流を与え、さらに燃焼空気量を増加させることで2次空気ノズル以降の燃焼用空気と混合を遅らせ、NOxの還元域を拡大することで燃焼ガス中のNOx濃度を低減することができる。また、1次空気ノズルの先端に2方向から空気が噴出する構造を有することで、可動部の1方向の流路を塞ぐ構造物の熱輻射による熱膨張を軽減することができる。   On the other hand, when pulverized coal is burned exclusively by the pulverized coal burner, as shown in FIG. 9, a secondary air nozzle is provided by giving a straight flow to the combustion air jetted from the primary air nozzle into the furnace and further increasing the amount of combustion air. The NOx concentration in the combustion gas can be reduced by delaying the subsequent mixing with the combustion air and expanding the NOx reduction region. In addition, by having a structure in which air is ejected from two directions at the tip of the primary air nozzle, thermal expansion due to heat radiation of a structure that closes the flow path in one direction of the movable portion can be reduced.

本発明に係わる微粉炭バーナについて図面と共に説明する。   The pulverized coal burner according to the present invention will be described with reference to the drawings.

図1は本実施例の微粉炭バーナ20の断面図である。微粉炭バーナ20は、中心軸に油噴霧ノズル6とその周囲に1次空気ノズル1を有し、該1次空気ノズル1の外周に微粉炭と搬送用空気との固気二相流13が流れる微粉炭ノズル4を有する。前記微粉炭ノズル4の外周に燃焼用空気12を噴出する2次空気ノズル2と、該2次空気ノズル2の外周に3次空気ノズル3を有する。また、1次空気ノズル1を貫通して液体燃料によって着火する油噴霧ノズル6が設けられており、油噴霧ノズル6はバーナ起動時または低負荷燃焼時に、微粉炭の助燃のために使用される。1次空気ノズル1から噴出する空気に旋回又は直進を与える固定プレート15が1次空気ノズル1の先端の油噴霧ノズル6の周囲に設けられ、該固定プレート15より上流側の1次空気ノズル1の内部の油噴霧ノズル6の周囲に放射状に格子を設けた可動部材16が設けられている。   FIG. 1 is a cross-sectional view of a pulverized coal burner 20 of the present embodiment. The pulverized coal burner 20 has an oil spray nozzle 6 on the central axis and a primary air nozzle 1 around the oil spray nozzle 6, and a solid-gas two-phase flow 13 of pulverized coal and conveying air is formed on the outer periphery of the primary air nozzle 1. It has a flowing pulverized coal nozzle 4. A secondary air nozzle 2 that ejects combustion air 12 to the outer periphery of the pulverized coal nozzle 4 and a tertiary air nozzle 3 to the outer periphery of the secondary air nozzle 2 are provided. An oil spray nozzle 6 that penetrates the primary air nozzle 1 and is ignited by liquid fuel is provided, and the oil spray nozzle 6 is used for assisting pulverized coal when the burner is started or during low-load combustion. . A fixed plate 15 that swirls or goes straight to the air ejected from the primary air nozzle 1 is provided around the oil spray nozzle 6 at the tip of the primary air nozzle 1, and the primary air nozzle 1 upstream of the fixed plate 15. A movable member 16 provided with a grid radially is provided around the oil spray nozzle 6 inside.

また微粉炭ノズル4の内壁面には微粉炭ノズル4のノズル内径を狭めるベンチュリ5が設けられ、ベンチュリ5の取り付け部より下流側の微粉炭ノズル4内の1次空気ノズル1の外壁面には微粉炭ノズル4の流路横断面を一旦狭めた後、拡大する微粉炭濃縮器11が設けられ、微粉炭ノズル4と2次空気ノズル2を隔てる隔壁の先端(微粉炭ノズル4の出口)に保炎器9を設け、さらに2次空気ノズル2と3次空気ノズル3を隔てる隔壁の先端には障害物(ガイドスリーブ)10を設け、3次空気ノズル3の先端部が取り付けられる火炉壁7の開口部(バーナスロート)は傾斜壁面となっている。前記ガイドスリーブ10と火炉壁7の開口部の傾斜壁面がほぼ同じ傾斜角度で2次空気流路と3次空気流路を拡大する構成に成っている。
なお、微粉炭ノズル4の外周には2次空気ノズル2だけ又は2次空気ノズル2と3次空気ノズル3、さらには図示しない4次空気ノズルなどの多次空気ノズルを設けても良い。
A venturi 5 for narrowing the nozzle inner diameter of the pulverized coal nozzle 4 is provided on the inner wall surface of the pulverized coal nozzle 4, and the outer wall surface of the primary air nozzle 1 in the pulverized coal nozzle 4 on the downstream side of the mounting portion of the venturi 5 is provided on the inner wall surface of the pulverized coal nozzle 4. After narrowing the flow passage cross section of the pulverized coal nozzle 4 once, an expanding pulverized coal concentrator 11 is provided, and at the tip of the partition wall separating the pulverized coal nozzle 4 and the secondary air nozzle 2 (exit of the pulverized coal nozzle 4). A flame holder 9 is provided, and an obstacle (guide sleeve) 10 is provided at the tip of the partition wall that separates the secondary air nozzle 2 and the tertiary air nozzle 3, and a furnace wall 7 to which the tip of the tertiary air nozzle 3 is attached. The opening (burner throat) is an inclined wall surface. The guide sleeve 10 and the inclined wall surface of the opening of the furnace wall 7 are configured to expand the secondary air flow path and the tertiary air flow path at substantially the same inclination angle.
Note that only the secondary air nozzle 2 or the secondary air nozzle 2 and the tertiary air nozzle 3, or a multi-stage air nozzle such as a quaternary air nozzle (not shown) may be provided on the outer periphery of the pulverized coal nozzle 4.

図1の前記1次空気ノズル1の先端に2方向から空気が噴出する構造を有し、油燃焼時は一方向の流路を塞ぐ固定プレート15及び固定プレートの一方向の流路を塞ぐ可動部材16の概略図を図2に示す。図2(a)は固定プレート15を火炉側から見た正面図、図2(b)は図2(a)のA−A線切断面矢視図、図2(c)は可動部材16を火炉側から見た正面図、図2(d)は図2(c)のB−B線切断面矢視図、図2(e)は図2(c)のC−C線切断面矢視図である。   1 has a structure in which air is jetted from two directions at the tip of the primary air nozzle 1, and a fixed plate 15 that blocks a unidirectional flow path during oil combustion, and a movable that blocks a unidirectional flow path of the fixed plate. A schematic diagram of the member 16 is shown in FIG. 2A is a front view of the fixed plate 15 as viewed from the furnace side, FIG. 2B is a sectional view taken along the line AA in FIG. 2A, and FIG. FIG. 2D is a sectional view taken along the line BB in FIG. 2C, and FIG. 2E is a sectional view taken along the line CC in FIG. 2C. FIG.

図2に示す固定プレート15は油噴霧ノズル6に中心部を支持されて1次空気ノズル1の先端に1次空気ノズル1の流路横断面を塞ぐように挿入されている。固定プレート15は前記1次空気ノズル1の先端に配置され、中心部から径方向に放射状に複数のスリット孔15aを形成しており、該スリット孔15aを通って火炉に噴出する1次空気に右旋回又は左旋回を与える円盤状の構造である。また1次空気ノズル1内の固定プレート15設置部の上流側に可動部材16を火炉外部に設けた操作部材17で火炉方向又火炉から遠ざかる方向(前後方向)に摺動自在に配置されている。   The fixed plate 15 shown in FIG. 2 is inserted into the tip of the primary air nozzle 1 so as to block the flow passage cross section of the primary air nozzle 1 while being supported at the center by the oil spray nozzle 6. The fixed plate 15 is disposed at the tip of the primary air nozzle 1 and has a plurality of slit holes 15a radially from the central portion, and the primary air jets into the furnace through the slit holes 15a. It is a disk-like structure that gives a right turn or a left turn. In addition, a movable member 16 is slidably disposed in the furnace direction or in the direction away from the furnace (front-rear direction) on the upstream side of the fixed plate 15 installation portion in the primary air nozzle 1 by an operation member 17 provided outside the furnace. .

図2(b)に示すように、固定プレート15のスリット孔15aは1次空気ノズル1の上流部から火炉側に向かって長方形の相対的に幅広の開口から順次縮小して火炉側には長方形の相対的に幅狭の開口を備えた形状からなる傾斜壁面を備えた構造である。すなわち、各スリット孔15aは、その1次空気ノズル1の上流側の少なくとも一方の半径方向の開口端部(開口部稜線)15a1と前記上流側の開口端部(開口部稜線)15a1に対応した同一スリット孔15aの1次空気ノズル1の下流側の半径方向の開口端部(開口部稜線)15a2とを結ぶ壁面を延長した仮想平面が固定プレート15の表面と鋭角で交わる傾斜角αを有する傾斜壁面をなしている。 As shown in FIG. 2 (b), the slit hole 15a of the fixed plate 15 is sequentially reduced from a rectangular relatively wide opening from the upstream portion of the primary air nozzle 1 toward the furnace side, and is rectangular on the furnace side. It is the structure provided with the inclined wall surface which consists of a shape provided with relatively narrow opening. That is, each slit hole 15a is formed in at least one radial opening end (opening ridge line) 15a 1 on the upstream side of the primary air nozzle 1 and the upstream opening end (opening ridge line) 15a 1 . An inclination angle at which a virtual plane extending a wall surface connecting the corresponding opening end (opening ridge line) 15a 2 on the downstream side of the primary air nozzle 1 of the same slit hole 15a intersects the surface of the fixed plate 15 at an acute angle. An inclined wall surface having α is formed.

前記傾斜壁面の固定プレート15の表面に対する傾斜角度αを90°以下(<90°)とする。図2(b)では前記傾斜壁面に対向する壁面も逆向きの同一傾斜角度αを形成している。また、上記スリット孔15aの数は必要な旋回強度や旋回角度によって変更する。   The inclination angle α of the inclined wall surface with respect to the surface of the fixed plate 15 is 90 ° or less (<90 °). In FIG. 2B, the wall surface facing the inclined wall surface also forms the same inclination angle α in the opposite direction. Further, the number of the slit holes 15a is changed depending on the required turning strength and turning angle.

一方、可動部材16の各格子16aは固定プレート15のスリット孔15aにそれぞれ挿入可能な形状を有する図2(e)に示す断面形状が二等辺三角形状をしており、油噴霧ノズル6に中心部を固定した放射状に設けられている。可動部材16の格子16aの図2(d)に示す断面の底辺側の角部の傾斜角度βは固定プレート15のスリット孔15aの傾斜壁面の傾斜角度αと同一角度であり、また前記固定プレート16の格子16aの数はスリット孔15aの設置数と一致する。   On the other hand, each lattice 16a of the movable member 16 has a shape that can be inserted into the slit hole 15a of the fixed plate 15, and the cross-sectional shape shown in FIG. It is provided radially with fixed parts. The inclination angle β of the corner portion on the bottom side of the cross section shown in FIG. 2D of the lattice 16a of the movable member 16 is the same as the inclination angle α of the inclined wall surface of the slit hole 15a of the fixed plate 15, and the fixed plate The number of 16 lattices 16a matches the number of slit holes 15a.

可動部材16の各格子16aは固定プレート15のスリット孔15aと同じ数のほぼ同一断面積を有しているので、可動部材16を微粉炭ノズルの上流側から火炉側に移動させて、可動部材16の各格子16aを固定プレート15のスリット孔15aに挿入すると図2(b)に示すように固定プレートスリット孔15aの開口面積が狭くなる。   Since each lattice 16a of the movable member 16 has the same number of substantially the same cross-sectional area as the slit holes 15a of the fixed plate 15, the movable member 16 is moved from the upstream side of the pulverized coal nozzle to the furnace side, and the movable member 16 is moved. When the 16 lattices 16a are inserted into the slit holes 15a of the fixed plate 15, the opening area of the fixed plate slit holes 15a becomes narrow as shown in FIG.

ここで、可動部材16の各格子16aで固定プレート15のスリット孔15aの傾斜壁面の一方の壁面を塞いだ場合、図2(b)に示す格子16aの傾斜面とスリット孔15aの両側の対向する傾斜壁面の内の一方の傾斜壁面のギャップhが小さい程、このギャップを通過する1次空気流の旋回強度はより増加する。図2(a)にはスリット孔15aを通って火炉内に噴出する1次空気に火炉に向かって矢印で示す右旋回を与えるように前記ギャップを設けているが、該ギャップがスリット孔15aの反対側の傾斜壁面側に設けられると火炉内に噴出する1次空気に火炉に向かって左旋回を与えることになる。   Here, when one wall surface of the inclined wall surface of the slit hole 15a of the fixed plate 15 is closed by each lattice 16a of the movable member 16, the inclined surface of the lattice 16a shown in FIG. 2B is opposed to both sides of the slit hole 15a. The smaller the gap h of one of the inclined wall surfaces is, the more the swirl strength of the primary air flow passing through this gap increases. In FIG. 2 (a), the gap is provided so that the primary air jetted into the furnace through the slit hole 15a is turned rightward as indicated by an arrow toward the furnace. The gap is formed in the slit hole 15a. If it is provided on the side of the inclined wall surface opposite to the primary air, the primary air spouted into the furnace is turned leftward toward the furnace.

また、可動部材16は重油を噴霧する油噴霧ノズル6の外周に進退自在に装着される管状の操作部材17に装着されている。操作部材17は、図1に示すように火炉壁の外側から可動部材16を駆動できるものであれば、形状、構造を問わない。
可動部材16は操作部材17でバーナ20の長手方向(中心軸Cに沿った方向)に進退自在に操作できる構成であり、バーナ20の起動時の油専焼時には可動部材16の先端の各格子16aを固定プレート15のスリット孔15aに押し込んで、スリット孔15aの一方の傾斜壁面と格子16aとのギャップを塞ぎ、スリット孔15aの他方の傾斜壁面と格子16aとのギャップから燃焼用空気12を旋回流として噴出する。前記噴出した燃焼用空気12は遠心力で1次空気ノズル1の外周側に広がり、微粒化した油と混合しやすくなる。また、火炉内のバーナ出口には中心部分には圧力の低い部分が形成され、この部分に下流から上流に向かう循環流が形成される。循環流には高温の既燃焼ガスが滞留し、微粒化した油の着火を早める。前記燃焼用空気12の旋回流の旋回はスワール数で0.5〜1.0程度が望ましい。
The movable member 16 is attached to a tubular operation member 17 that is attached to the outer periphery of the oil spray nozzle 6 for spraying heavy oil so as to be movable forward and backward. As long as the operation member 17 can drive the movable member 16 from the outer side of a furnace wall as shown in FIG. 1, a shape and a structure will not be ask | required.
The movable member 16 can be operated by the operation member 17 so as to be able to advance and retreat in the longitudinal direction of the burner 20 (the direction along the central axis C). Is pushed into the slit hole 15a of the fixed plate 15 to close the gap between one inclined wall surface of the slit hole 15a and the lattice 16a, and the combustion air 12 is swirled from the gap between the other inclined wall surface of the slit hole 15a and the lattice 16a. Erupts as a stream. The jetted combustion air 12 spreads to the outer peripheral side of the primary air nozzle 1 by centrifugal force and is easily mixed with the atomized oil. Further, a low pressure portion is formed at the central portion at the burner outlet in the furnace, and a circulating flow is formed in this portion from downstream to upstream. High-temperature burned gas stays in the circulating flow, accelerating the ignition of atomized oil. The swirl of the swirl flow of the combustion air 12 is preferably about 0.5 to 1.0 in terms of swirl.

一方、バーナの微粉炭専焼時には、可動部材16を火炉より離れる方向に引っ張って、可動部材16の各格子16aを固定プレート15のスリット孔15aから離し、前記1次空気ノズル1から噴出する燃焼用1次空気12に直進流を与えることで2次空気ノズル以降の燃焼用空気との混合を遅らせ、燃焼ガス中のNOxの還元域を拡大することで、NOx濃度を低減することができる。リークを考慮しても直進流時の燃焼用空気12のスワール数は0.1以下が望ましい。   On the other hand, at the time of burning pulverized coal in the burner, the movable member 16 is pulled away from the furnace, the grids 16a of the movable member 16 are separated from the slit holes 15a of the fixed plate 15, and are ejected from the primary air nozzle 1. By giving a straight flow to the primary air 12, the mixing with the combustion air after the secondary air nozzle is delayed, and the NOx concentration in the combustion gas is expanded, so that the NOx concentration can be reduced. Even if the leakage is taken into consideration, the swirl number of the combustion air 12 in the straight flow is preferably 0.1 or less.

また、前記可動部材16の駆動部より固定プレート15が火炉側近くに配置されているので、火炉内からの熱輻射が固定プレート15で遮られて可動部材16の駆動部に当たる熱輻射は軽減でき、熱膨張を軽減することができる。   In addition, since the fixed plate 15 is disposed closer to the furnace side than the driving part of the movable member 16, the heat radiation from the inside of the furnace is blocked by the fixed plate 15 and hits the driving part of the movable member 16 can be reduced. , Thermal expansion can be reduced.

なお、図2には、固定プレート15のスリット孔15aの軸長手方向の流路形状が狭まる形状のものを示したが、本発明はこれに限定されるものではない。
例えば、固定プレート15のスリット孔15aの軸長手方向流路の対向する両壁面が中心軸Cに沿う方向に形成され、可動部材16の格子16aの断面形状が軸長手方向の流路形状を狭めるように形成されているものを抜き差しすることでも同様の効果が得られる。
In addition, although the thing of the shape where the flow-path shape of the axial longitudinal direction of the slit hole 15a of the fixed plate 15 narrows was shown in FIG. 2, this invention is not limited to this.
For example, both opposing wall surfaces of the axial longitudinal flow path of the slit hole 15a of the fixed plate 15 are formed in a direction along the central axis C, and the cross-sectional shape of the lattice 16a of the movable member 16 narrows the flow path shape in the axial longitudinal direction. The same effect can be obtained by inserting and removing the thus formed one.

図1の1次空気ノズル1の先端に2方向から空気が噴出する構造を有し、油燃焼時は一方向の流路を塞ぐ固定プレート15及び可動部材16を図3に示す。図3(a)は固定プレート15を火炉側から見た正面図、図3(b)は図3(a)のA−A線切断面矢視図、図3(c)は可動部材16を火炉側から見た正面図、図3(d)は図3(c)のB−B線切断面矢視図、図3(e)は図3(c)のC−C線切断面矢視図である。   FIG. 3 shows a fixed plate 15 and a movable member 16 that have a structure in which air is ejected from two directions at the tip of the primary air nozzle 1 of FIG. 1 and closes the flow path in one direction during oil combustion. 3A is a front view of the fixed plate 15 as viewed from the furnace side, FIG. 3B is a sectional view taken along the line AA in FIG. 3A, and FIG. Front view seen from the furnace side, FIG. 3 (d) is a cross-sectional view taken along the line B-B in FIG. 3 (c), and FIG. 3 (e) is a cross-sectional view taken along the line C-C in FIG. FIG.

図3に示す固定プレート15は、その中心部から末広がり状に円周方向に複数の三角形状のスリット孔15aを設けた形状であり、可動部材16は前記スリット孔15aにそれぞれ挿入してスリット孔15aの開口部を塞ぐことができるように、そのバーナ中心部から末広がり状に円周方向に複数の断面三角形状の格子16aを備えている、該格子16aのバーナ中心部側の端部は油噴霧ノズル6の外周に進退自在に装着される管状の操作部材17に装着されている。
図3に示す固定プレート15と可動部材16の機能は実施例1に記載した固定プレート15と可動部材16と同一であるので、その詳細な説明は省略する。
The fixed plate 15 shown in FIG. 3 has a shape in which a plurality of triangular slit holes 15a are provided in the circumferential direction so as to widen from the center, and the movable member 16 is inserted into each of the slit holes 15a. 15a is provided with a plurality of triangular grids 16a having a triangular cross section in the circumferential direction so as to extend from the center of the burner so that the opening of the burner 15a can be closed. It is mounted on a tubular operating member 17 that is mounted on the outer periphery of the spray nozzle 6 so as to be able to advance and retract.
Since the functions of the fixed plate 15 and the movable member 16 shown in FIG. 3 are the same as those of the fixed plate 15 and the movable member 16 described in the first embodiment, detailed description thereof will be omitted.

なお、図3に示す実施例では、固定プレート15のスリット孔15aの開口の軸長手方向の流路形状が狭まる形状のものを示したが、本発明はこれに限定されるものではない。例えば、前記スリット孔15aの開口の軸長手方向の流路形状が平行であって、可動部材16の断面形状が軸長手方向の流路形状を狭めるように形成されているものを抜き差しすることでも同様の効果が得られる。   In the embodiment shown in FIG. 3, the shape of the flow path in the axial longitudinal direction of the opening of the slit hole 15a of the fixed plate 15 is shown to be narrow, but the present invention is not limited to this. For example, it is possible to insert / remove the slit hole 15a whose opening in the axial longitudinal direction is parallel and whose cross-sectional shape of the movable member 16 narrows the axial longitudinal flow path. Similar effects can be obtained.

図4に前記1次空気ノズル1の先端に2方向から空気が噴出する構造を有し、油燃焼時は一方向の流路を塞ぐ固定プレートを有する実施例の微粉炭バーナ20の断面図を示す。図4に示す微粉炭バーナ20は操作部材17の構成を除いて、図1に示す微粉炭バーナ20と同一構造であるので、その詳細な説明は省略する。   FIG. 4 is a cross-sectional view of the pulverized coal burner 20 of the embodiment having a structure in which air is ejected from two directions at the tip of the primary air nozzle 1 and having a fixed plate that closes the flow path in one direction during oil combustion. Show. Since the pulverized coal burner 20 shown in FIG. 4 has the same structure as that of the pulverized coal burner 20 shown in FIG. 1 except for the configuration of the operation member 17, detailed description thereof will be omitted.

本実施例のバーナ20の固定プレート15及び可動部材16を図5に示す。図5(a)は固定プレート15を火炉側から見た正面図、図5(b)は図5(a)のA−A線切断面矢視図、図5(c)は可動部材16を火炉側から見た正面図、図5(d)は図5(c)のB−B線切断面矢視図、図5(e)は図5(c)のC−C線切断面矢視図である。   FIG. 5 shows the fixed plate 15 and the movable member 16 of the burner 20 of this embodiment. 5A is a front view of the fixed plate 15 viewed from the furnace side, FIG. 5B is a cross-sectional view taken along the line AA in FIG. 5A, and FIG. Front view seen from the furnace side, FIG. 5 (d) is a cross-sectional view taken along the line B-B in FIG. 5 (c), and FIG. 5 (e) is a cross-sectional view taken along the line C-C in FIG. FIG.

図5に示す固定プレート15は、その中心部から末広がり状に円周方向に複数の三角形状のスリットを設けた形状であり、可動部材16は前記スリット15aにそれぞれ挿入してスリット孔15aの開口部を塞ぐことができるように、その中心部から末広がり状に円周方向に複数の断面三角形状の格子16aがそれぞれ独立して設けられ、各格子16aは各格子16aに個別に接続した操作部材17によりバーナ中心軸Cに沿って進退自在に操作される。   The fixed plate 15 shown in FIG. 5 has a shape in which a plurality of triangular slits are provided in the circumferential direction so as to widen from the center, and the movable member 16 is inserted into the slit 15a to open the slit hole 15a. A plurality of triangular lattices 16a are provided independently in the circumferential direction so as to be divergent from the center so that each portion can be closed, and each lattice 16a is individually connected to each lattice 16a. 17 is operated so as to freely advance and retract along the burner central axis C.

図5に示す固定プレート15は火炉に向かって右旋回を与える構造である。図4に示すように1次空気ノズル1の先端に固定され、その上流側に可動部材16を設置する。固定プレート15はスリット構造を持ち、火炉内に向かって縮小する流路を備えた傾斜壁面を有する。ここで、該傾斜壁面の固定プレート15の火炉側の平面に対する傾斜角度α(<90°)及びスリット数は必要な旋回強度や旋回角度によって変更する。   The fixed plate 15 shown in FIG. 5 has a structure that provides a right turn toward the furnace. As shown in FIG. 4, it is fixed to the tip of the primary air nozzle 1 and a movable member 16 is installed upstream thereof. The fixed plate 15 has a slit structure and has an inclined wall surface provided with a flow path that decreases toward the furnace. Here, the inclination angle α (<90 °) and the number of slits with respect to the plane on the furnace side of the fixed plate 15 of the inclined wall surface are changed depending on the required turning strength and turning angle.

可動部材16を移動させることで、固定プレート15のスリット孔15aの前記一方向の傾斜壁面と可動部材16の格子16aの間のギャップを塞ぐことができる。可動部材16の格子16aは、固定プレート15のスリット孔15aの傾斜壁面の前記傾斜角度αと同一の傾斜角度βを持つ断面二等辺三角形状であり、スリット孔15aと同一数備えられている。従って固定プレート15のスリット孔15aに格子16aを挿入してスリット孔15aの一方の傾斜壁面側の流路を塞いだ場合、図5(b)に示すギャップhが小さい程、旋回強度は増加する。また、前記スリット孔15aの一方の傾斜壁面側の流路を塞ぐ構造は図5では断面が三角形となっているが、スリット孔15aの一方の傾斜壁面側の流路からの燃焼空気の流入を無くし、スリット孔15aの他方の傾斜壁面側の流路から空気を火炉内に噴出する構造であれば、その形を問わない。   By moving the movable member 16, the gap between the inclined wall surface in one direction of the slit hole 15 a of the fixed plate 15 and the lattice 16 a of the movable member 16 can be closed. The lattice 16a of the movable member 16 has an isosceles triangular section having the same inclination angle β as the inclination angle α of the inclined wall surface of the slit hole 15a of the fixed plate 15, and is provided in the same number as the slit holes 15a. Therefore, when the lattice 16a is inserted into the slit hole 15a of the fixed plate 15 to block the flow path on the one inclined wall surface side of the slit hole 15a, the turning strength increases as the gap h shown in FIG. . Further, in FIG. 5, the cross-section of the structure that blocks the flow path on one inclined wall surface side of the slit hole 15a is triangular, but the inflow of combustion air from the flow path on one inclined wall surface side of the slit hole 15a is prevented. The shape of the slit hole 15a is not limited as long as it is a structure in which air is ejected into the furnace from the flow path on the other inclined wall surface side of the slit hole 15a.

上記構成のバーナ20の起動時の油専焼時には可動部材16の各格子16aを複数の三角形状のスリット15aにそれぞれ挿入して固定プレート15から火炉側に噴出する燃焼用空気を旋回流とすることで、燃焼用空気は遠心力で外周に広がり微粒化した油と混合しやすくなる。また、前記旋回流によりバーナ出口の中心部分には圧力の低い部分が形成され、この部分に下流から上流に向かう循環流が形成される。循環流には高温の既燃焼ガスが滞留し、微粒化した油の着火を早める。また、可動部材16の格子16aを固定プレート15のスリット15aに押し込む度合いを変更することによって、旋回強度を変更することができる。前記燃焼用空気12の旋回流の旋回はスワール数で0.5〜1.0程度が望ましい。   At the time of oil-only firing at the time of starting the burner 20 having the above-described configuration, each of the lattices 16a of the movable member 16 is inserted into each of the plurality of triangular slits 15a, and the combustion air jetted from the fixed plate 15 to the furnace side is swirled. Thus, the combustion air spreads to the outer periphery by centrifugal force and becomes easy to mix with the atomized oil. Further, the swirl flow forms a low pressure portion at the center portion of the burner outlet, and a circulating flow is formed in this portion from downstream to upstream. High-temperature burned gas stays in the circulating flow, accelerating the ignition of atomized oil. Further, the turning strength can be changed by changing the degree of pushing the lattice 16a of the movable member 16 into the slit 15a of the fixed plate 15. The swirl of the swirl flow of the combustion air 12 is preferably about 0.5 to 1.0 in terms of swirl.

一方、上記構成のバーナ20の微粉炭専焼時には全ての格子16aをバーナ20の上流側に後退させて固定プレート15から火炉内に噴出する燃焼用空気に直進流を与えることで微粉炭と2次空気ノズル以降の燃焼用空気との混合を遅らせ、燃焼ガス中のNOxの還元域を拡大することで、燃焼ガス中のNOx濃度を低減することができる。直進流時の燃焼用空気12のスワール数は0.1以下が望ましい。また、格子16aの駆動部は固定プレート15により火炉内からの熱輻射を軽減でき、熱膨張を軽減することができる。   On the other hand, when burning the pulverized coal of the burner 20 having the above-described configuration, all the lattices 16a are moved backward to the upstream side of the burner 20, and a straight flow is applied to the combustion air ejected from the fixed plate 15 into the furnace, so The NOx concentration in the combustion gas can be reduced by delaying the mixing with the combustion air after the air nozzle and expanding the NOx reduction region in the combustion gas. The swirl number of the combustion air 12 during the straight flow is preferably 0.1 or less. Moreover, the drive part of the grating | lattice 16a can reduce the thermal radiation from the inside of a furnace with the fixed plate 15, and can reduce thermal expansion.

本実施例の固定プレート15は、図1に示す1次空気ノズル1の先端に固定され、その上流側に可動部材16を設置する構成からなる微粉炭バーナ20である。固定プレート15は、例えば、図6(a)の固定プレートの火炉側から見た正面図、図6(b)の図6(a)のA−A線切断面矢視図に示す構成である。また、図6(c)は可動部材16を火炉側から見た正面図、図6(d)は図6(c)のB−B線切断面矢視図、図6(e)は図6(c)のC−C線切断面矢視図である。   The fixed plate 15 of the present embodiment is a pulverized coal burner 20 that is fixed to the tip of the primary air nozzle 1 shown in FIG. 1 and has a configuration in which a movable member 16 is installed on the upstream side. The fixed plate 15 has, for example, a configuration shown in a front view of the fixed plate in FIG. 6A viewed from the furnace side and a cross-sectional view taken along the line AA in FIG. 6A in FIG. . 6 (c) is a front view of the movable member 16 viewed from the furnace side, FIG. 6 (d) is a sectional view taken along the line BB of FIG. 6 (c), and FIG. 6 (e) is FIG. It is a CC line cut surface arrow directional view of (c).

図6に示す固定プレート15の一方のスリット孔15aからは円周方向に旋回する空気噴出流の流速を与え、もう一方のスリット孔15bからは直進方向に空気の噴出流の流速を与える流路をペアで固定プレート15の中心部の周りの円周方向に複数個の均等に配置する。   The flow path which gives the flow velocity of the air jet flow swirling in the circumferential direction from one slit hole 15a of the fixed plate 15 shown in FIG. 6, and gives the flow velocity of the air jet flow in the straight direction from the other slit hole 15b. Are arranged in pairs in the circumferential direction around the center of the fixed plate 15.

図6に示す固定プレートの一対のスリット15a,15bのいずれかの流路を図6(c)〜図6(e)に示す閉止用の一対の格子16a,16bを備えた可動部材16でそれぞれ閉止する。複数の可動部材16の各格子16a,16bは固定プレート15の上流側に設けられる油噴出ノズル6の外周をスライドする操作部材17(図5に示す各格子16aに取り付けられた操作部材17と同様に図6の各格子16a,,16bにそれぞれに取り付けられた操作部材17でもよい)に取り付けて、それぞれ進退自在に配置される。前記可動部材16によりスリット孔15a又はスリット孔15bを閉止して、火炉内への1次燃焼用空気の直進流と旋回流を切替えることができる。   Each of the flow paths of the pair of slits 15a and 15b of the fixed plate shown in FIG. 6 is moved by the movable member 16 provided with the pair of lattices 16a and 16b for closing shown in FIGS. Close. The grids 16a and 16b of the plurality of movable members 16 are operated members 17 that slide on the outer periphery of the oil ejection nozzle 6 provided on the upstream side of the fixed plate 15 (similar to the operation members 17 attached to the grids 16a shown in FIG. 5). 6 may be the operation members 17 attached to the respective lattices 16a, 16b of FIG. The movable member 16 can close the slit hole 15a or the slit hole 15b to switch between the straight combustion flow and the swirl flow of the primary combustion air into the furnace.

上記図6に示す構成のバーナの起動時の油専焼時にはスリット閉止用部材である可動部材16の操作で固定プレート15のスリット15bを閉止し、スリット15aからの旋回燃焼用空気流(図6(a)の矢印方向に旋回流として流れる)により、燃焼用空気は遠心力で外周に広がり微粒化した油と混合しやすくなる。また、前記旋回流によりバーナ出口の中心部分には圧力の低い部分が形成され、この部分に下流から上流に向かう循環流が形成される。循環流には高温の既燃焼ガスが滞留し、微粒化した油の着火を早める。前記燃焼用空気12の旋回流の旋回はスワール数で0.5〜1.0程度が望ましい。   At the time of oil-only firing when the burner having the structure shown in FIG. 6 is started, the slit 15b of the fixed plate 15 is closed by operating the movable member 16 which is a slit closing member, and the swirling combustion air flow from the slit 15a (FIG. 6 ( Combustion air spreads to the outer periphery by centrifugal force and becomes easy to mix with the atomized oil. Further, the swirl flow forms a low pressure portion at the center portion of the burner outlet, and a circulating flow is formed in this portion from downstream to upstream. High-temperature burned gas stays in the circulating flow, accelerating the ignition of atomized oil. The swirl of the swirl flow of the combustion air 12 is preferably about 0.5 to 1.0 in terms of swirl.

一方、微粉炭専焼時には、図6の可動部材16の操作で固定プレート15のスリット15aを閉止し、スリット15bから噴出する燃焼用空気に直進流を与えることで2次空気ノズル2以降の燃焼用空気と微粉炭との混合を遅らせ、NOxの還元域を拡大することで燃焼ガス中のNOx濃度を低減することができる。直進流時の燃焼用空気12のスワール数は0.1以下が望ましい。   On the other hand, during pulverized coal combustion, the slit 15a of the fixed plate 15 is closed by the operation of the movable member 16 in FIG. 6, and a straight flow is applied to the combustion air ejected from the slit 15b so that the combustion is performed after the secondary air nozzle 2. The NOx concentration in the combustion gas can be reduced by delaying the mixing of air and pulverized coal and expanding the NOx reduction region. The swirl number of the combustion air 12 during the straight flow is preferably 0.1 or less.

また、図7に図6の固定プレート15及び可動部材16の変形例を示す。図7(a)は固定プレートの火炉側から見た正面図、図7(b)は図7(a)のA−A線切断面矢視図、図7(c)は可動部材16を火炉側から見た正面図、図7(d)は図7(c)のB−B線切断面矢視図、図7(e)は図7(c)のC−C線切断面矢視図である。   FIG. 7 shows a modification of the fixed plate 15 and the movable member 16 shown in FIG. 7A is a front view of the fixed plate as viewed from the furnace side, FIG. 7B is a sectional view taken along the line AA in FIG. 7A, and FIG. The front view seen from the side, FIG.7 (d) is a BB line cut surface arrow directional view of FIG.7 (c), FIG.7 (e) is the CC line cut surface arrow directional view of FIG.7 (c). It is.

図7に示すように固定プレート15に設けられた、対向する位置にいずれも傾斜壁面を有する一対のスリット15a,15bが複数組設けられており、一方のスリット15aからは円周方向に旋回する空気噴出流の流速を与え、もう一方のスリット孔15bからも円周方向に旋回する方向に空気の噴出流の流速を与える流路をペアで固定プレート15の中心部の周りの円周方向に複数個を均等に配置した構成にしても良い。   As shown in FIG. 7, a plurality of pairs of slits 15a and 15b each having an inclined wall surface are provided on the fixed plate 15 at opposing positions, and the pair of slits 15a pivots in the circumferential direction. In the circumferential direction around the center portion of the fixed plate 15, a pair of flow paths that give the flow velocity of the air jet flow and give the flow velocity of the air jet flow in the direction of turning in the circumferential direction also from the other slit hole 15 b A configuration may be adopted in which a plurality are arranged uniformly.

この場合も固定プレート15の上流側に進退自在に配置されるスリット閉止用の可動部材16の一対の格子16a,16bにより、固定プレート15の一対のスリット15a,15bのいずれかの流路を閉止して、火炉内への1次燃焼用空気の左右旋回流(図7(a)の互いに反対側に向いた矢印方向に旋回流が発生する)を切替えることができる。各格子16a,16bは固定プレート15の上流側に設けられる油噴出ノズル6の外周をスライドする操作部材17(図5に示す各格子16aに取り付けた操作部材17と同様に格子16a,16bにそれぞれ操作部材17を取り付けてもよい)に取り付けて、それぞれ進退自在に配置される。   Also in this case, the flow path of one of the pair of slits 15a and 15b of the fixed plate 15 is closed by the pair of lattices 16a and 16b of the movable member 16 for closing the slit disposed upstream and backward of the fixed plate 15. Thus, the left and right swirl flow of the primary combustion air into the furnace (a swirl flow is generated in the directions of arrows directed to opposite sides of FIG. 7A) can be switched. The grids 16a and 16b are respectively connected to the grids 16a and 16b like the operation members 17 that slide on the outer periphery of the oil jet nozzle 6 provided on the upstream side of the fixed plate 15 (the operation members 17 attached to the grids 16a shown in FIG. 5). The operation member 17 may be attached to the operation member 17, and the operation members 17 are arranged so as to freely advance and retract.

また図7に示す構成のバーナ20の起動時の油専焼時にはスリット閉止用部材に操作で固定プレート15のスリット15aまたはスリット15bを閉止し、開放してスリット15aまたはスリット15bからの旋回燃焼用空気流により、燃焼用空気は遠心力で外周に広がり微粒化した油と混合しやすくなる。また、前記旋回流によりバーナ出口の中心部分には圧力の低い部分が形成され、この部分に下流から上流に向かう循環流が形成される。循環流には高温の既燃焼ガスが滞留し、微粒化した油の着火を早める。前記燃焼用空気12の旋回流の旋回はスワール数で0.5〜1.0程度が望ましい。   In addition, when the burner 20 having the configuration shown in FIG. 7 is exclusively fired at the time of start-up, the slit closing member 15 is operated to close the slit 15a or the slit 15b of the fixing plate 15 and open to open the swirling combustion air from the slit 15a or the slit 15b. By the flow, the combustion air spreads to the outer periphery by centrifugal force and becomes easy to mix with the atomized oil. Further, the swirl flow forms a low pressure portion at the center portion of the burner outlet, and a circulating flow is formed in this portion from downstream to upstream. High-temperature burned gas stays in the circulating flow, accelerating the ignition of atomized oil. The swirl of the swirl flow of the combustion air 12 is preferably about 0.5 to 1.0 in terms of swirl.

一方、微粉炭専焼時には、図7のスリット閉止用部材を後退させて固定プレート15のスリット15aとスリット15bの両方を開放してスリット15a,15bから噴出する燃焼用空気に直進流を与えることで、2次空気ノズル以降の燃焼用空気と微粉炭との混合を遅らせ、NOxの還元域を拡大することで燃焼ガス中のNOx濃度を低減することができる。直進流時の燃焼用空気12のスワール数は0.1以下が望ましい。
図6と図7に示す格子16a,16bを一体化して単一の三角形状の格子としても良い。
On the other hand, during pulverized coal firing, the slit closing member in FIG. 7 is retracted to open both the slit 15a and the slit 15b of the fixed plate 15 to give a straight flow to the combustion air ejected from the slits 15a and 15b. The NOx concentration in the combustion gas can be reduced by delaying the mixing of the combustion air and the pulverized coal after the secondary air nozzle and expanding the NOx reduction region. The swirl number of the combustion air 12 during the straight flow is preferably 0.1 or less.
The lattices 16a and 16b shown in FIGS. 6 and 7 may be integrated to form a single triangular lattice.

本実施例の微粉炭バーナ20は、図1に示す微粉炭バーナ20の断面構造と同一であり、1次空気ノズル1の先端部に配置する固定プレート15を図8(a)の火炉側から見た正面図、図8(b)の図8(a)のA−A線切断面矢視図に示す。また、、図8(c)は可動部材16を火炉側から見た正面図、図8(d)は図8(c)のB−B線切断面矢視図、図8(e)は図8(c)のC−C線切断面矢視図である。   The pulverized coal burner 20 of the present embodiment is the same as the cross-sectional structure of the pulverized coal burner 20 shown in FIG. 1, and the fixed plate 15 disposed at the tip of the primary air nozzle 1 is viewed from the furnace side of FIG. The front view is shown in FIG. 8 (b) in FIG. 8 (c) is a front view of the movable member 16 as viewed from the furnace side, FIG. 8 (d) is a sectional view taken along the line BB in FIG. 8 (c), and FIG. 8 (e) is a diagram. It is a CC line cut surface arrow directional view of 8 (c).

図8に示す固定プレート15は図3に示す固定プレート15と同一の構成である。
しかし本実施例の可動部材16は図3に示す可動部材16と同じ構造であるが、該可動部材16の火炉と反対側(裏面)に多数の通気孔18aを有する通気性プレート18を密着して配置している。
The fixed plate 15 shown in FIG. 8 has the same configuration as the fixed plate 15 shown in FIG.
However, the movable member 16 of the present embodiment has the same structure as that of the movable member 16 shown in FIG. 3, but the air-permeable plate 18 having a large number of air holes 18 a is adhered to the opposite side (back surface) of the movable member 16 to the furnace. Arranged.

前記可動部材16のバーナ中心部側の端部は油噴霧ノズル6の外径よりも大きい径の円筒状の操作部材17に固定されている。前記通気性プレート18には可動部材16の各格子16a間に位置するように複数の噴出孔18aを設けており、該噴出孔18aはバーナ中心部から放射状に径方向にも複数個設けられている。複数の噴出孔18aから噴出する空気流によりインピンジ冷却によって固定プレート15を冷却し、焼損を防止する。前記可動部材16は火炉内に向かって前後方向に駆動可能で、起動時の油専焼時、火炉側に向けて移動して固定プレート15のスリット孔15aに格子16aを押し込んで、スリット孔15aの一方向の傾斜壁面側にできる流路を塞ぐことで、噴出する燃焼用空気12に旋回流を与え、燃焼用空気12は遠心力で1次空気ノズル1の外周側に広がり、微粒化した油と混合しやすくなる。また、1次空気ノズル1の中心部分には圧力の低い部分が形成され、この部分に下流から上流に向かう循環流が形成される。循環流には高温の既燃焼ガスが滞留し、微粒化した油の着火を早める。前記燃焼用空気12の旋回流の旋回はスワール数で0.5〜1.0程度が望ましい。   The end of the movable member 16 on the burner center side is fixed to a cylindrical operation member 17 having a diameter larger than the outer diameter of the oil spray nozzle 6. The air-permeable plate 18 is provided with a plurality of ejection holes 18a so as to be positioned between the lattices 16a of the movable member 16, and a plurality of the ejection holes 18a are radially provided from the center of the burner. Yes. The fixed plate 15 is cooled by impingement cooling by the air flow ejected from the plurality of ejection holes 18a to prevent burning. The movable member 16 can be driven in the front-rear direction toward the furnace, and moves toward the furnace during oil-only firing at the time of start-up, pushing the lattice 16a into the slit holes 15a of the fixed plate 15, so that the slit holes 15a By blocking the flow path formed on the inclined wall surface in one direction, a swirling flow is given to the jetting combustion air 12, and the combustion air 12 spreads to the outer peripheral side of the primary air nozzle 1 by centrifugal force and is atomized oil Easy to mix with. In addition, a low pressure portion is formed in the central portion of the primary air nozzle 1, and a circulating flow from downstream to upstream is formed in this portion. High-temperature burned gas stays in the circulating flow, accelerating the ignition of atomized oil. The swirl of the swirl flow of the combustion air 12 is preferably about 0.5 to 1.0 in terms of swirl.

一方、微粉炭専焼時、火炉から離れる方向に前記可動部材16を引っ張って、前記1次空気ノズル1から噴出する燃焼用空気12に直進流を与えることで2次空気ノズル以降の燃焼用空気と混合を遅らせ、NOxの還元域を拡大することで燃料ガス中のNOx濃度を低減することができる。直進流時の燃焼用空気12のスワール数は0.1以下が望ましい。また、前記可動部材16の駆動部は固定プレート15よりバーナ20の上流側にあるので火炉内からの熱輻射を軽減でき熱膨張を軽減することができる。
図9には上記各実施例による1次空気流量に対する燃焼ガス中のNOx濃度の低減効果を示す。
On the other hand, during the pulverized coal firing, the movable member 16 is pulled in a direction away from the furnace, and a straight flow is applied to the combustion air 12 ejected from the primary air nozzle 1 so that the combustion air after the secondary air nozzle The NOx concentration in the fuel gas can be reduced by delaying the mixing and expanding the NOx reduction region. The swirl number of the combustion air 12 during the straight flow is preferably 0.1 or less. Moreover, since the drive part of the said movable member 16 exists in the upstream of the burner 20 rather than the fixed plate 15, the thermal radiation from the inside of a furnace can be reduced and thermal expansion can be reduced.
FIG. 9 shows the effect of reducing the NOx concentration in the combustion gas with respect to the primary air flow rate according to each of the above embodiments.

本発明は,簡単な構成で微粉炭バーナ20の起動時の油、微粉炭の着火性を改善し、燃焼ガスのNOx濃度の低減を図ることができる。   The present invention can improve the ignitability of oil and pulverized coal when starting the pulverized coal burner 20 with a simple configuration, and can reduce the NOx concentration of the combustion gas.

実施例1に係わる微粉炭バーナの断面図である。1 is a cross-sectional view of a pulverized coal burner according to Example 1. FIG. 実施例1に係わる微粉炭バーナの固定プレート及び固定プレートの一方向の流路を塞ぐ可動部材の概略図であり、図2(a)は固定プレートを火炉側から見た正面図、図2(b)は図2(a)のA−A線切断面矢視図、図2(c)は可動部材を火炉側から見た正面図、図2(d)は図2(c)のB−B線切断面矢視図、図2(e)は図2(c)のC−C線切断面矢視図である。It is the schematic of the movable member which block | closes the fixed plate of the pulverized coal burner concerning Example 1, and the flow path of one direction of a fixed plate, Fig.2 (a) is the front view which looked at the fixed plate from the furnace side, FIG. 2B is a cross-sectional view taken along the line AA in FIG. 2A, FIG. 2C is a front view of the movable member as viewed from the furnace side, and FIG. 2D is a cross-sectional view taken along line B- in FIG. FIG. 2E is a cross-sectional view taken along the line B-C in FIG. 2C. 実施例2に係わる微粉炭バーナの固定プレートと可動部材の概略図であり、図3(a)は固定プレートを火炉側から見た正面図、図3(b)は図3(a)のA−A線切断面矢視図、図3(c)は可動部材を火炉側から見た正面図、図3(d)は図3(c)のB−B線切断面矢視図、図3(e)は図3(c)のC−C線切断面矢視図である。It is the schematic of the fixed plate and movable member of the pulverized coal burner concerning Example 2, FIG.3 (a) is the front view which looked at the fixed plate from the furnace side, FIG.3 (b) is A of FIG.3 (a). FIG. 3C is a front view of the movable member as viewed from the furnace side, and FIG. 3D is a sectional view taken along the line B-B in FIG. (E) is the CC line cut surface arrow directional view of FIG.3 (c). 実施例3に係わる微粉炭バーナの断面図である。4 is a cross-sectional view of a pulverized coal burner according to Example 3. FIG. 実施例3に係わる微粉炭バーナの固定プレートと可動部材の概略図であり、図5(a)は固定プレートを火炉側から見た正面図、図5(b)は図5(a)のA−A線切断面矢視図、図5(c)は可動部材を火炉側から見た正面図、図5(d)は図5(c)のB−B線切断面矢視図、図5(e)は図5(c)のC−C線切断面矢視図である。It is the schematic of the fixed plate and movable member of the pulverized coal burner concerning Example 3, FIG.5 (a) is the front view which looked at the fixed plate from the furnace side, FIG.5 (b) is A of FIG.5 (a). FIG. 5C is a front view of the movable member as viewed from the furnace side, and FIG. 5D is a sectional view taken along the line BB in FIG. 5C. (E) is the CC line cut surface arrow directional view of FIG.5 (c). 実施例4に係わる微粉炭バーナの固定プレートと可動部材の概略図であり、図6(a)は固定プレートの火炉側から見た正面図、図6(b)は図6(a)のA−A線切断面矢視図、図6(c)は可動部材を火炉側から見た正面図、図6(d)は図6(c)のB−B線切断面矢視図、図6(e)は図6(c)のC−C線切断面矢視図である。It is the schematic of the fixed plate and movable member of the pulverized coal burner concerning Example 4, FIG. 6 (a) is the front view seen from the furnace side of the fixed plate, FIG.6 (b) is A of FIG.6 (a). FIG. 6C is a front view of the movable member viewed from the furnace side, and FIG. 6D is a cross-sectional view taken along the line BB in FIG. 6C. (E) is the CC line cut surface arrow directional view of FIG.6 (c). 図6の固定プレートの変形例であり、図7(a)の固定プレートの火炉側から見た正面図、図7(b)は図7(a)のA−A線切断面矢視図、図7(c)は可動部材16を火炉側から見た正面図、図7(d)は図7(c)のB−B線切断面矢視図、図7(e)は図7(c)のC−C線切断面矢視図である。6 is a modified example of the fixed plate of FIG. 6, a front view of the fixed plate of FIG. 7A viewed from the furnace side, FIG. 7B is a cross-sectional view taken along line AA of FIG. 7 (c) is a front view of the movable member 16 as viewed from the furnace side, FIG. 7 (d) is a sectional view taken along the line BB in FIG. 7 (c), and FIG. 7 (e) is FIG. It is a CC line cut surface arrow directional view of). 実施例5に係わる微粉炭バーナの固定プレートと可動部材であり、図8(a)は火炉側から見た固定プレートの正面図、図8(b)は図8(a)のA−A線切断面矢視図、図8(c)は火炉側から見た可動部材の正面図、図8(d)は図8(c)のB−B線切断面矢視図、図8(e)は図8(c)のC−C線切断面矢視図である。FIG. 8A is a front view of the fixed plate viewed from the furnace side, and FIG. 8B is an AA line in FIG. 8A. FIG. 8C is a front view of the movable member viewed from the furnace side, FIG. 8D is a sectional view taken along the line BB in FIG. 8C, and FIG. These are CC line cut surface arrow directional views of FIG.8 (c). 本発明の実施例による1次空気流量に対する燃焼ガス中のNOx濃度の低減効果を示す図である。It is a figure which shows the reduction effect of the NOx density | concentration in combustion gas with respect to the primary air flow rate by the Example of this invention. 本発明による微粉炭ボイラシステムを示す概略図である。It is the schematic which shows the pulverized coal boiler system by this invention. 従来例の微粉炭バーナの断面図である。It is sectional drawing of the pulverized coal burner of a prior art example.

符号の説明Explanation of symbols

1 1次流路(1次空気ノズル)
2 2次流路(2次空気ノズル)
3 3次流路(3次空気ノズル)
4 微粉炭ノズル 5 ベンチュリ
6 油噴霧ノズル 7 ボイラ炉壁
8 風箱 9 保炎器
10 ガイドスリーブ 11 微粉炭濃縮器
12 燃焼用空気 13 固気二相流
14 旋回器 15 固定プレート
15a,15b スリット孔
16 可動部材 16a,16b 格子
17 操作部材 18 通気性プレート
18a 噴出孔 20 微粉炭バーナ
21 火炉 22 バンカー
23 ミル 24,26 ブロア
1 Primary flow path (primary air nozzle)
2 Secondary flow path (secondary air nozzle)
3 Tertiary channel (tertiary air nozzle)
4 pulverized coal nozzle 5 venturi 6 oil spray nozzle 7 boiler furnace wall 8 wind box 9 flame holder 10 guide sleeve 11 pulverized coal concentrator 12 combustion air 13 solid-gas two-phase flow
DESCRIPTION OF SYMBOLS 14 Swivel 15 Fixed plate 15a, 15b Slit hole 16 Movable member 16a, 16b Lattice 17 Operation member 18 Breathable plate 18a Ejection hole 20 Pulverized coal burner 21 Furnace 22 Bunker 23 Mill 24, 26 Blower

Claims (4)

火炉壁面に設けられ、中心軸に設けた油噴霧ノズルと油噴霧ノズルの外周に設けた燃焼用1次空気が流れる1次空気ノズルと該1次空気ノズルの外周に設けた微粉炭と搬送用空気との固気二相流が流れる微粉炭ノズルと微粉炭ノズルの外周に設けた少なくとも1以上の燃焼用空気が流れる空気ノズルとを有する微粉炭バーナにおいて、
1次空気ノズル内の先端の内周壁側に固定され、1次空気を噴出するための少なくとも1以上の開口部を有する固定プレートと、
前記固定プレートと組み合わせて、前記開口部の開口状態を変化させることにより、噴出する1次空気の中心軸周りの旋回力を調整可能な可動式構造物と
を備えたことを特徴とする微粉炭バーナ。
An oil spray nozzle provided on the furnace wall and provided on the central axis, a primary air nozzle through which the primary air for combustion provided on the outer periphery of the oil spray nozzle flows, and pulverized coal provided on the outer periphery of the primary air nozzle and for transportation In a pulverized coal burner having a pulverized coal nozzle through which a solid-gas two-phase flow with air flows and an air nozzle through which at least one combustion air is provided on the outer periphery of the pulverized coal nozzle,
A fixed plate that is fixed to the inner peripheral wall side of the tip in the primary air nozzle and has at least one opening for ejecting primary air;
A pulverized coal comprising a movable structure capable of adjusting a turning force around a central axis of primary air to be ejected by changing an opening state of the opening in combination with the fixed plate. Burner.
前記可動式構造物を中心軸沿いに前後、および/または中心軸まわりに回転させて、
中心軸沿いの1次空気流路形状を変化させることにより、中心軸周りの流れ方向が変更可能に設けられていること
を特徴とする請求項1に記載の微粉炭バーナ。
Rotating the movable structure back and forth along the central axis and / or around the central axis;
The pulverized coal burner according to claim 1, wherein the flow direction around the central axis is changeable by changing the shape of the primary air flow path along the central axis.
前記開口部は、複数の噴出方向が異なるものの組合せであって、
前記可動式構造物を中心軸沿いに前後および/または中心軸まわりに回転させて、一方または両方の開口状態を変化させること
を特徴とする請求項1または2記載の微粉炭バーナ。
The opening is a combination of a plurality of different ejection directions,
The pulverized coal burner according to claim 1 or 2, wherein the movable structure is rotated back and forth along the central axis and / or around the central axis to change one or both of the open states.
前記可動式構造物の1次空気流れ上流側に空気孔を有する板状の部材を可動式構造物と一体に設けたこと
を特徴とする請求項1ないし3のいずれかに記載の微粉炭バーナ。
The pulverized coal burner according to any one of claims 1 to 3, wherein a plate-like member having an air hole on the upstream side of the primary air flow of the movable structure is provided integrally with the movable structure. .
JP2008113963A 2008-04-24 2008-04-24 Pulverized coal burner Withdrawn JP2009264654A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008113963A JP2009264654A (en) 2008-04-24 2008-04-24 Pulverized coal burner
PL392835A PL392835A1 (en) 2008-04-24 2009-04-09 Coal dust burner
PCT/JP2009/001648 WO2009130857A1 (en) 2008-04-24 2009-04-09 Pulverized coal burner
FI20106233A FI20106233A (en) 2008-04-24 2010-11-23 pulverized coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008113963A JP2009264654A (en) 2008-04-24 2008-04-24 Pulverized coal burner

Publications (1)

Publication Number Publication Date
JP2009264654A true JP2009264654A (en) 2009-11-12

Family

ID=41216599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008113963A Withdrawn JP2009264654A (en) 2008-04-24 2008-04-24 Pulverized coal burner

Country Status (4)

Country Link
JP (1) JP2009264654A (en)
FI (1) FI20106233A (en)
PL (1) PL392835A1 (en)
WO (1) WO2009130857A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010132911A2 (en) * 2009-05-19 2010-11-25 Unitherm Cemcon Feuerungsanlagen Gesellschaft M.B.H. Swirl setting apparatus for a burner
JP2012122653A (en) * 2010-12-07 2012-06-28 Mitsubishi Heavy Ind Ltd Combustion burner
JP2012247176A (en) * 2011-05-31 2012-12-13 Babcock Hitachi Kk Solid fuel burner
CN103017162A (en) * 2012-12-28 2013-04-03 北京哈宜节能环保科技开发有限公司 Spray pipe of burner and burner
KR101368360B1 (en) 2013-01-30 2014-03-03 현대제철 주식회사 Burner
US9822968B2 (en) 2012-07-02 2017-11-21 Ihi Corporation Burner
KR20170134705A (en) * 2015-06-12 2017-12-06 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Control method of burner, combustion device, boiler and burner
CN110953580A (en) * 2019-11-18 2020-04-03 上海发电设备成套设计研究院有限责任公司 Afterburning burner for diesel engine
WO2020188772A1 (en) * 2019-03-19 2020-09-24 太平洋セメント株式会社 Cement kiln burner device and method of operating same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103134050B (en) * 2013-03-07 2015-04-08 上海锅炉厂有限公司 Multi-coal low-nitrogen pulverized coal combustion device with gap wind
GB2513389A (en) 2013-04-25 2014-10-29 Rjm Corp Ec Ltd Nozzle for power station burner and method for the use thereof
CN103307595B (en) * 2013-06-25 2017-05-31 山西蓝天环保设备有限公司 It is a kind of to extend the application method that small and medium-sized industrial coal powder boilers are applicable the device of coal
CN105910107A (en) * 2016-04-19 2016-08-31 上海发电设备成套设计研究院 Concentric axial flow low nitrogen oxide sleeve combustor
CN107442767A (en) * 2017-08-16 2017-12-08 中国重汽集团杭州发动机有限公司 Molten iron casting bag fuel baking apptss
JP7105707B2 (en) * 2019-02-13 2022-07-25 三菱重工業株式会社 After-airport and combustion device equipped with the same
CN110566941A (en) * 2019-09-19 2019-12-13 哈尔滨锅炉厂有限责任公司 novel gas cyclone burner for lean coal and sub-bituminous coal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120008A (en) * 1982-01-12 1983-07-16 クレツクネル−フムボルト−ドイツ・アクチエン・ゲゼルシヤフト Burner for solid fuel
JPH0311537Y2 (en) * 1985-01-18 1991-03-20
JP2556776Y2 (en) * 1991-07-11 1997-12-08 株式会社コロナ Pressure spray burner
JP2002286205A (en) * 2001-03-23 2002-10-03 Hitachi Ltd Pulverized coal combustion burner, and combustion method using the pulverized coal combustion burner
JP4386279B2 (en) * 2004-12-10 2009-12-16 バブコック日立株式会社 Burner operation

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010132911A2 (en) * 2009-05-19 2010-11-25 Unitherm Cemcon Feuerungsanlagen Gesellschaft M.B.H. Swirl setting apparatus for a burner
WO2010132911A3 (en) * 2009-05-19 2011-12-01 Unitherm Cemcon Feuerungsanlagen Gesellschaft M.B.H. Swirl setting apparatus for a burner
JP2012122653A (en) * 2010-12-07 2012-06-28 Mitsubishi Heavy Ind Ltd Combustion burner
JP2012247176A (en) * 2011-05-31 2012-12-13 Babcock Hitachi Kk Solid fuel burner
US9822968B2 (en) 2012-07-02 2017-11-21 Ihi Corporation Burner
CN103017162A (en) * 2012-12-28 2013-04-03 北京哈宜节能环保科技开发有限公司 Spray pipe of burner and burner
KR101368360B1 (en) 2013-01-30 2014-03-03 현대제철 주식회사 Burner
KR20170134705A (en) * 2015-06-12 2017-12-06 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Control method of burner, combustion device, boiler and burner
KR102080380B1 (en) * 2015-06-12 2020-02-21 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Control method of burners, combustion devices, boilers and burners
US10591156B2 (en) 2015-06-12 2020-03-17 Mitsubishi Hitachi Power Systems, Ltd. Burner, combustion device, boiler, and burner control method
WO2020188772A1 (en) * 2019-03-19 2020-09-24 太平洋セメント株式会社 Cement kiln burner device and method of operating same
CN111971507A (en) * 2019-03-19 2020-11-20 太平洋水泥株式会社 Burner device for cement kiln and operation method thereof
JP6799687B1 (en) * 2019-03-19 2020-12-16 太平洋セメント株式会社 Burner device for cement kiln and its operation method
US11428402B2 (en) 2019-03-19 2022-08-30 Taiheiyo Cement Corporation Cement kiln burner device and method for operating the same
CN110953580A (en) * 2019-11-18 2020-04-03 上海发电设备成套设计研究院有限责任公司 Afterburning burner for diesel engine

Also Published As

Publication number Publication date
FI20106233A (en) 2010-11-23
PL392835A1 (en) 2011-02-28
WO2009130857A1 (en) 2009-10-29

Similar Documents

Publication Publication Date Title
WO2009130857A1 (en) Pulverized coal burner
JP3099109B2 (en) Pulverized coal burner
JP3344694B2 (en) Pulverized coal combustion burner
JP2544662B2 (en) Burner
JP4235218B2 (en) Combustion burner and combustion apparatus provided with the burner
JPH05231617A (en) Low nox short flame burner
RU2672216C2 (en) Combustor burner arrangement
JP2008292138A (en) Combustion equipment and combustion method of burner
JP6025983B2 (en) Combustion device
KR19990068227A (en) Pulverized coal combustion burner and combustion method thereby
KR101560076B1 (en) Solid fuel burner
JP2000130710A (en) Pulverized coal combustion burner
JP2008202836A (en) Pulverized coal burner
JP3643461B2 (en) Pulverized coal combustion burner and combustion method thereof
JP2006189188A (en) Solid fuel burner and combustion method
JP4353619B2 (en) Furnace heating burner
JP2008134037A (en) Boiler
JP5797238B2 (en) Fuel burner and swirl combustion boiler
JP5566317B2 (en) Solid fuel burner
JP2010270990A (en) Fuel burner and turning combustion boiler
JP2001355832A (en) Air port structure
EP2420730B1 (en) Reheat burner
JP2007146697A (en) Combustor and combustion air supply method of combustor
JP3896592B2 (en) Two-stage combustion device
JP2003269704A (en) Premixed combustion burner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110404

A761 Written withdrawal of application

Effective date: 20121004

Free format text: JAPANESE INTERMEDIATE CODE: A761