[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020234965A1 - Solid fuel burner - Google Patents

Solid fuel burner Download PDF

Info

Publication number
WO2020234965A1
WO2020234965A1 PCT/JP2019/019911 JP2019019911W WO2020234965A1 WO 2020234965 A1 WO2020234965 A1 WO 2020234965A1 JP 2019019911 W JP2019019911 W JP 2019019911W WO 2020234965 A1 WO2020234965 A1 WO 2020234965A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid fuel
air
fuel burner
secondary air
nozzle
Prior art date
Application number
PCT/JP2019/019911
Other languages
French (fr)
Japanese (ja)
Inventor
木山 研滋
健一 越智
昌平 水戸
恒輔 北風
嶺 聡彦
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to PCT/JP2019/019911 priority Critical patent/WO2020234965A1/en
Priority to JP2020543129A priority patent/JP6792102B1/en
Priority to AU2020276989A priority patent/AU2020276989B2/en
Priority to PCT/JP2020/017527 priority patent/WO2020230578A1/en
Priority to US16/973,891 priority patent/US11692705B2/en
Priority to CN202080004303.4A priority patent/CN112513526A/en
Publication of WO2020234965A1 publication Critical patent/WO2020234965A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel

Definitions

  • the present invention relates to a solid fuel burner that burns solid fuels such as pulverized coal and biomass.
  • Patent Document 1 states that "a secondary air nozzle for ejecting secondary air is concentrically provided on the outside of a pulverized coal nozzle for ejecting a mixture of pulverized coal and primary air.
  • a tertiary air nozzle that ejects tertiary air is provided concentrically on the outside of the secondary air nozzle, and a pipe expansion portion is provided at the tip of a partition wall that separates the secondary air flow path and the tertiary air flow path.
  • an obstacle having a plane substantially perpendicular to the flow of primary air and a guide plate having a plane substantially perpendicular to the flow of secondary air are provided at the tip of the partition partition separating the pulverized coal nozzle and the secondary air nozzle.
  • the plane of the obstacle is located upstream of the plane of the guide plate in the axial direction of the pulverized coal nozzle, and the plane of the guide plate is in the axial direction of the pulverized coal nozzle from the tip of the tube expansion portion. It is provided so as to protrude to the downstream side of the.
  • Patent Document 1 by deflecting the flow of the secondary air outward in the radial direction by the guide plate, the reducing flame region having a low oxygen concentration formed by the primary air can be enlarged. As a result, the generation of NOx is suppressed.
  • An object of the present invention is to provide a solid fuel burner capable of reducing unburned components and CO while suppressing the generation of NOx.
  • a typical invention is a solid fuel burner inserted into a burner throat drilled in a wall of a furnace, and a solid that ejects a mixed fluid of solid fuel and primary air.
  • a tertiary air nozzle that ejects tertiary air, a secondary air guiding member that is located on the outer periphery of the tip of the solid fuel nozzle and guides the flow of secondary air outward in the radial direction, and the tertiary air.
  • the fuel burner includes a contraction forming member which is arranged on the upstream side of the secondary air guide member with respect to the flow direction of the secondary air and narrows the cross-sectional area of the flow path through which the secondary air flows.
  • the outer diameter of the air guide member is formed smaller than the inner diameter of the outer peripheral wall of the secondary air nozzle, and the tip position of the tertiary air guide member in the axial direction of the solid fuel burner is the tip position of the secondary air guide member. It is characterized in that the solid fuel nozzle, the secondary air guide member, and the contraction forming member are integrally capable of being pulled out from the burner throat on the furnace side.
  • unburned components and CO can be reduced while suppressing the generation of NOx. Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
  • FIG. 5 is a schematic view of a solid fuel burner having a plurality of guide sleeves according to a modification of the first embodiment of the present invention. It is the schematic of the solid fuel burner which concerns on 2nd Embodiment of this invention.
  • FIG. 5 is a schematic view of a solid fuel burner having a plurality of guide sleeves according to a modification of the second to fifth embodiments of the present invention. It is the schematic of the solid fuel burner which concerns on 6th Embodiment of this invention.
  • the solid fuel burner according to each embodiment is a single-stage combustion type boiler device having no opening (after-airport) for supplying only air to the upper part of the burner in the fireplace, or a two-stage combustion type boiler having an after-airport. Applies to the device.
  • FIG. 1 is a schematic view of the solid fuel burner 5-1 according to the first embodiment
  • FIG. 2 is an enlarged view of a portion D shown in FIG.
  • the solid fuel burner 5-1 is inserted in the horizontal direction with respect to the burner throat 28 whose nozzle tip (burner outlet side) is bored in the water wall 19 which is the wall portion of the furnace 2. In this way, it is attached to the water wall 19 of the fireplace 2.
  • the burner throat 28 is arranged from the burner 5-1 side (outside of the water wall 19) to the furnace 2 side (outside of the water wall 19) of the water wall 19 so that the inner peripheral surface thereof is inclined at a second angle ⁇ 2 with respect to the burner central axis C. It is an opening formed by expanding the diameter toward the inside of the water wall 19).
  • the solid fuel burner 5-1 has a fuel nozzle (solid fuel nozzle) 10.
  • the fuel nozzle 10 is a tubular member whose base side is connected to a fuel-containing fluid pipe (not shown), and a solid-air two-phase flow (mixed fluid 13) of solid fuel and primary air (conveyed gas) is inside the fuel nozzle 10. It becomes a flowing primary air flow path 10a.
  • the solid fuel may be a solid or powder such as coal (pulverized coal) or biomass, or a mixture thereof, and in the present embodiment, an example in which pulverized coal is used as the solid fuel is shown.
  • the mixed fluid 13 may be referred to as the primary air 13.
  • a secondary air nozzle 11 having a secondary air flow path 11a through which the secondary air 14 flows is provided on the outside (outer circumference side) of the fuel nozzle 10, and a tertiary air nozzle 11 is provided on the outside (outer circumference side) of the secondary air nozzle 11.
  • a tertiary air nozzle 12 having a tertiary air flow path 12a through which the air 15 flows is provided.
  • the secondary air 14 and the tertiary air 15 are combustion gases, and air is usually used in the same manner as the primary air which is a transport gas, but with combustion exhaust gas, oxygen-rich gas, or these gases and air. A mixed gas of two or more can also be applied.
  • the annular secondary air nozzle 11 is concentric with the fuel nozzle 10 as the center.
  • the annular tertiary air nozzles 12 are arranged concentrically on the outside of the secondary air nozzles 11.
  • the swirler 22 for imparting swirl to the tertiary air 15 is arranged at the inlet portion of the tertiary air flow path 12a, but it is also possible to configure the swirler 22 not to be provided. ..
  • a start burner (oil gun) 16 penetrating the fuel nozzle 10 is provided, and is used for preheating and assisting combustion when the boiler is started or when the boiler load is low. Depending on the configuration of the solid fuel burner 5-1, the start burner 16 may not be installed.
  • a flame insulator for forming a circulating flow 51 (see FIG. 4A) between the spouts of the primary air 13 and the secondary air 14 at the open end of the fuel nozzle 10 (that is, the outlet on the furnace 2 side). 23 is provided.
  • the flame retainer 23 is provided on the outer periphery of the tip of the fuel nozzle 10 so as to form a circulating flow 51 on the downstream side of the flame retainer 23 to enhance ignitability and flame retention effect.
  • the start-up burner 16, the fuel nozzle 10, the secondary air nozzle 11, and the tertiary air nozzle 12 each eject ejecta toward the inside of the furnace 2. Further, the starting burner 16, the fuel nozzle 10, the secondary air nozzle 11, and the tertiary air nozzle 12 are arranged in a wind box 25 surrounding the burner throat 28. Combustion air is supplied through the windbox 25.
  • the partition wall 18 is a wall-shaped member that separates the internal space of the windbox 25 from the outside of the furnace 26. Of the partition walls 18, the front plate 27 on which the fuel nozzle 10 is installed is detachably supported on the partition wall 18 with bolts, screws, hooks, etc. so that it can be integrally pulled out from the fuel nozzle 10 during burner maintenance. Has been done.
  • a guide sleeve 20 (in a divergent shape) that expands in the radial direction with respect to the central axis C of the burner is provided at the tip of the partition wall that separates the secondary air flow path 11a and the tertiary air flow path 12a.
  • the guide sleeve (tertiary air guide member) 20 is inclined outward in the radial direction at a first angle ⁇ 1 with respect to the burner central axis C.
  • the first angle ⁇ 1 is substantially the same as the second angle ⁇ 2, which is the inclination angle of the inner peripheral surface of the burner throat 28 described above, and is set within the range of 10 degrees to 40 degrees. More preferably, the first angle ⁇ 1 and the second angle ⁇ 2 are in the range of 20 to 30 degrees.
  • the secondary air 14 and the tertiary air 15 flow too much outward in the radial direction, so that the reducing flame region due to the primary air 13 becomes too large. , The effect of reducing unburned matter and CO, which are the residues of solid fuel, cannot be expected so much. Further, when the first angle ⁇ 1 and the second angle ⁇ 2 are less than 10 degrees, the reducing flame region becomes small, so that the effect of reducing NOx cannot be expected so much.
  • the first angle ⁇ 1 and the second angle ⁇ 2 are preferably in the range of 10 to 40 degrees, and when set in the range of 20 to 30 degrees, the effect of reducing unburned content and CO of solid fuel and NOx It is more preferable because the reduction effect of the above can be balanced.
  • the guide sleeve 20 may be located on the outer peripheral side of the secondary air nozzle 11 and at the tip of the tertiary air nozzle 12, regardless of where the guide sleeve 20 is attached.
  • the guide sleeve 20 may be fixed to the tip of the outer peripheral outlet of the secondary air nozzle 11, or directly to the burner throat 28 with the guide sleeve 20 positioned at the tip of the outer peripheral outlet of the secondary air nozzle 11. It may be fixed indirectly.
  • a ring-shaped guide ring (secondary air guide member) 34 extending outward in the radial direction is arranged on the outer peripheral portion of the tip of the flame holder 23.
  • the guide ring 34 has a substantially vertical plane substantially orthogonal to the burner central axis C.
  • a plate-shaped fin member 36 extending along the flow direction of the secondary air 14 is installed in the secondary air flow path 11a.
  • a plurality of fin members are arranged at intervals along the circumferential direction of the flame holder 23, and are made of a radial plate material.
  • a contraction forming member 60 is arranged on the upstream side of the fin member 36. As shown in FIG. 2, the contraction forming member 60 has an upstream wall portion 60a extending in the radial direction with respect to the burner central axis C and a downstream inner end in the radial direction of the upstream wall portion 60a in the flow direction of the secondary air 14. It has a tubular wall portion 60b extending to the side. Therefore, in the first embodiment, the contraction forming member 60 forms an annular gas flow path having an L-shaped cross section along the axial direction.
  • the contraction forming member 60 has a tubular wall portion 60b fixedly supported by the fin member 36 and is integrally movable with the fin member 36. A small gap and play that can be moved are formed between the contraction forming member 60 and the secondary air nozzle 11.
  • the contraction forming member 60 is installed on the outer peripheral side of the secondary air flow path 11a of the secondary air nozzle 11, so that the cross section of the flow path is once narrowed in the radial central axis direction. That is, the cross-sectional area of the secondary air flow path 11a is narrowed. After passing through the contraction forming member 60, the flow reaches the guide ring 34 in a compressed state, and forms a flow that spreads the direction of the flow outward from the burner central axis C.
  • the contraction forming member 60 is a member separated from the secondary air nozzle 11 and is supported from the flame holder 23 side.
  • the contraction forming member 60 is preferably composed of a ring-shaped member that is uniform in the entire circumferential direction, but may be divided into a plurality of members in the circumferential direction. Further, the contraction forming member 60 is preferably formed integrally with the flame holder 23, but may be formed separately.
  • the above-mentioned minute gaps and play formed between the outer peripheral portion of the contraction forming member 60 and the inner wall surface of the secondary air nozzle 11 appear to be large, but they are actually extremely small.
  • the flow rate of the secondary air 14 that short-passes here is almost negligible.
  • the outer peripheral surface of the contraction forming member 60 (the surface facing the inner wall surface of the secondary air nozzle 11) has a sufficient length in the axial direction.
  • the cross-sectional shape of the contraction forming member 60 is not limited to the L-shape shown in the drawing, and the above-mentioned outer peripheral surface (the surface facing the inner wall surface of the secondary air nozzle 11) is extended to form a rectangular shape, a pentagonal shape, or the like. Various are applicable (see FIG. 10).
  • the guide sleeve 20 overlaps the guide ring 34 in the direction (axial direction) along the central axis C of the burner to guide the guide.
  • the tip position X2 of the guide sleeve 20 is closer to the furnace 2 side (right side in FIG. 2) than the tip position X1 of the ring 34. In other words, the tip position X2 is on the downstream side of the air flow than the tip position X1.
  • the distance between the front side surface of the guide ring 34 (the side surface of the guide ring 34 facing the fireplace 2 and the side surface opposite to the side surface facing the furnace 2) and the tip of the inner peripheral surface of the guide sleeve 20, that is, the guide sleeve 20 guides.
  • A be the length that overlaps the ring 34, and set the distance between the tip of the inner peripheral surface of the guide sleeve 20 and the outer peripheral end of the guide ring 34, that is, the gap in the height direction between the guide sleeve 20 and the guide ring 34.
  • B the relationship between the length A and the gap B is set so as to satisfy A> 0.5 ⁇ B.
  • the tip position X2 of the guide sleeve 20 and the tip position X1 of the guide ring 34 are housed in the burner throat 28 and do not project from the inner peripheral surface of the water wall 19 toward the inside of the fireplace 2.
  • the outer diameter L2 of the guide ring 34 is set to be smaller (L2 ⁇ L1).
  • the outer diameter L2 of the guide ring 34 and the outer diameter of the contraction forming member 60 are set to the same outer diameter L2, but the outer diameter of the contraction forming member 60 is the secondary air nozzle 11. It suffices if it is smaller than the inner diameter of the guide ring 34, and the magnitude relationship with the outer diameter L2 of the guide ring 34 does not matter.
  • the outer diameter L2 is set smaller than the outer diameter (inner diameter of the partition wall 18) L4 (see FIG. 1) of the front plate 27 (L2 ⁇ L4).
  • the inner diameter (distance between the burner center axis C and the cylinder wall portion 60b) L3 of the contraction forming member 60 is set smaller than the outer diameter L2 of the guide ring 34 (L2>. L3). That is, in the first embodiment, L1> L2> L3 is set.
  • FIG. 3 is a diagram showing a state in which the nozzle tip portion of the solid fuel burner 5-1 according to the first embodiment of the present invention is pulled out.
  • the solid fuel burner 5-1 according to the first embodiment has a configuration that satisfies the dimensional relationship of L1> L2> L3, the front plate 27 is removed from the partition wall 18 and the fuel nozzle 10 is pulled out.
  • the fuel nozzle 10, the flame holder 23, the guide ring 34, the fin member 36, and the contraction forming member 60 are integrally configured to be able to be pulled out toward the outside of the furnace 26.
  • the outer diameter L4 of the front plate 27 is removed.
  • the diameter can be set smaller than L2, and the fuel nozzle 10 can be moved with respect to the partition wall 18 without providing the front plate 27.
  • FIG. 4B is a diagram showing an air flow in the nozzle tip region of a conventional solid fuel burner.
  • the tip position X1 of the guide ring 34 is closer to the fireplace 2 than the tip position X2 of the guide sleeve 20. That is, the positional relationship is opposite to that of the first embodiment, and the guide sleeve 20 does not overlap the guide ring 34.
  • the first angle ⁇ 1 of the guide sleeve 20 is set to be the same as the first angle ⁇ 1 of the first embodiment.
  • the secondary air 14 collides with the guide ring 34 and largely turns outward in the radial direction.
  • the guide sleeve 20 does not overlap the guide ring 34, the secondary air 14 flows largely outward in the radial direction together with the tertiary air 15.
  • the reducing flame region 50b becomes large, and although the effect of reducing NOx can be expected, the effect of reducing the unburned content and CO of the solid fuel is low.
  • FIG. 4A is a diagram showing an air flow in the nozzle tip region of the solid fuel burner 5-1.
  • the primary air 13 is ejected from the fuel nozzle 10 into the furnace 2.
  • the secondary air 14 flows in the secondary air nozzle 11 and collides with the guide ring 34 of the flame holder 23, and the flow direction is deflected outward in the radial direction.
  • the secondary air 14 that collides with the guide ring 34 exceeds the guide ring 34 of the guide sleeve 20. It flows along the inner peripheral surface of the wrapping portion (portion A in FIG. 2) and is ejected into the fireplace 2 toward the outside in the radial direction at a first angle ⁇ 1 with respect to the central axis C of the burner.
  • the tertiary air 15 flows through the tertiary air nozzle 12, and while turning toward the outer peripheral side along the guide sleeve 20, inside the furnace 2 toward the outside in the radial direction at a first angle ⁇ 1 with respect to the burner central axis C. Squirt into.
  • the tip position X2 of the guide sleeve 20 is closer to the fireplace 2 than the tip position X1 of the guide ring 34, the radial outward deflection of the secondary air 14 is suppressed by the guide sleeve 20.
  • the first angle ⁇ 1 of the guide sleeve 20 is set to 10 to 40 degrees. Therefore, the secondary air 14 and the tertiary air 15 are deflected radially outward by the first angle ⁇ 1 of the guide sleeve 20 and are ejected into the fireplace 2.
  • the reducing flame region 50a can be narrowed as compared with the above-mentioned conventional technique, and the generation of unburned components and CO of the solid fuel can be reduced.
  • the guide sleeve 20 is configured to overlap the guide ring 34, the secondary air 14 and the tertiary air 15 are in the radial direction. The flow to the outside can be suppressed. As a result, the reduction flame region 50a due to the primary air 13 becomes smaller than before, and the generation of unburned components and CO of the solid fuel can be reduced.
  • the first angle ⁇ 1 of the guide sleeve 20 in the range of 10 to 40 degrees, more preferably in the range of 20 to 30 degrees, the effect of reducing the unburned content and CO of the solid fuel and NOx It is possible to balance the reduction effect of.
  • the relationship between the length A in which the guide sleeve 20 overlaps the guide ring 34 and the gap B in the height direction between the guide sleeve 20 and the guide ring 34 satisfies A> 0.5 ⁇ B. Since it is set, the secondary air 14 can flow along the guide sleeve 20 while the guide sleeve 20 surely suppresses the secondary air 14 from going outward in the radial direction. Therefore, a suitable reducing flame region 50a can be formed, and the generation of unburned components and CO of the solid fuel can be effectively suppressed.
  • the solid fuel ejected from the fuel nozzle 10 and the secondary air 14 and the tertiary air 15 are mixed faster.
  • the gas temperature at the outlet of the fireplace 2 can be lowered, and it is also effective in suppressing slugging.
  • slugging means that the ash melted by combustion adheres to the furnace wall and the heat transfer tube to reduce the heat collection and increase the pressure loss in the furnace.
  • the solid fuel burner 5- In the step of disassembling 1, the guide ring 34 can be pulled out together with the fuel nozzle 10 and the like without being caught by the secondary air nozzle 11 (see FIG. 3). This improves maintainability.
  • the contraction forming member 60 is arranged on the upstream side of the guide ring 34, when the secondary air 14 passes through the contraction forming member 60, the flow velocity becomes high and collides with the guide ring 34 at high speed. Then, it deflects outward in the radial direction. Therefore, in the configuration of the first embodiment, even if the outer diameter L2 of the guide ring 34 is small, the radial deflection of the ejected secondary air 14 becomes strong, and the circulation formed on the downstream side of the guide ring 34. The flow is secured. As a result, the flame is stabilized and low NOx performance is maintained.
  • FIG. 5 is a schematic view of the solid fuel burner 5-2 of this example.
  • the same components as those in the case of one guide sleeve 20 are designated by the same reference numerals and the description thereof will be omitted.
  • the solid fuel burner 5-2 of this example is characterized in that a plurality (for example, two) of guide sleeves 20 are provided at intervals in the radial direction of the tertiary air nozzle 12.
  • the two guide sleeves 20 are held at predetermined intervals by spacers (not shown), and are also fixed by bolts or welds (not shown).
  • the first angle ⁇ 1 of the two guide sleeves 20 is substantially the same, for example, in the range of 10 degrees to 40 degrees, and more preferably in the range of 20 degrees to 30 degrees.
  • the tip positions X2 of the two guide sleeves 20 in the axial direction are both substantially the same position, and are closer to the fireplace 2 than the tip position X1 of the guide ring 34.
  • the tertiary air 15 is guided outward in the radial direction by a first angle ⁇ 1 by the plurality of guide sleeves 20, so that, for example, the radial width of the outlet portion of the tertiary air nozzle 12 (That is, when the distance between the tip of the partition partition separating the secondary air flow path 11a and the tertiary air flow path 12a and the burner throat 28 is large), the flow direction of the tertiary air 15 is surely restricted. Is possible.
  • the guide sleeve 20 can reliably supply the tertiary air 15 into the furnace 2 at a predetermined angle ⁇ 1, and the effect of reducing the unburned content and CO of the solid fuel is secured. To.
  • FIG. 6 is a schematic view of the solid fuel burner 5-3 according to the second embodiment.
  • the same components as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the second angle ⁇ 2 of the burner throat 28 is larger than the first angle ⁇ 1 of the guide sleeve 20.
  • the second angle ⁇ 2 of the burner throat 28 of the existing boiler device is about 45 degrees, and the solid fuel burner 5-3 is installed in the burner throat 28.
  • the solid fuel burner 5-3 according to the second embodiment is provided with a seal air introduction plate (seal air introduction plate) at a position between the guide sleeve 20 and the burner throat 28 in addition to the configuration of the first embodiment.
  • a seal air introduction plate seal air introduction plate
  • the seal air introduction plate 40 is arranged so as to be inclined outward by a third angle ⁇ 3 from the burner central axis C in the radial direction, and the third angle ⁇ 3 is substantially the same as the first angle ⁇ 1. That is, the guide sleeve 20 and the seal air introduction plate 40 are inclined at substantially the same angle.
  • the first angle ⁇ 1 and the third angle ⁇ 3 are set in the range of, for example, 10 degrees to 40 degrees, and more preferably in the range of 20 degrees to 30 degrees.
  • the guide sleeve 20 and the seal air introduction plate 40 are provided at intervals in the radial direction by spacers (not shown), and are also fixed by bolts or welding (not shown). The spacing of the seal air introduction plate 40 by the spacer and the fixing by bolts or welding may be performed from the member side continuous with the burner throat 28 or the burner throat 28. Further, the tip position X3 of the seal air introduction plate 40 in the axial direction is set to be substantially the same as the tip position X2 of the guide sleeve 20.
  • FIG. 7B is a diagram showing the air flow in the nozzle tip region of the solid fuel burner not provided with the seal air introduction plate 40, and the flow of the secondary air 14 and the tertiary air 15 is indicated by a solid arrow, and the gas in the furnace 2 is shown. The flow of each is indicated by a broken line arrow.
  • the secondary air 14 flows in between the flame holder 23 and the guide sleeve 20 through the secondary air flow path 11a, collides with the guide ring 34, and is spread outward in the radial direction. Then, the secondary air 14 collides with the inner peripheral surface of the guide sleeve 20 and is supplied to the fireplace 2 at a substantially spreading angle (first angle ⁇ 1) of the guide sleeve 20.
  • the tertiary air 15 is supplied to the furnace 2 along the outer peripheral side of the guide sleeve 20 at an inclination of the guide sleeve 20 (first angle ⁇ 1).
  • the secondary air 14 and the tertiary air 15 are supplied to the fireplace 2 at an inclination of the guide sleeve 20 (first angle ⁇ 1) with the guide sleeve 20 interposed therebetween, and after the outlet of the guide sleeve 20, the secondary air 14 and the tertiary air 15 are supplied to the furnace 2.
  • the tertiary air 15 has an integrated flow.
  • the secondary air 14 A circulating flow 52 is formed between the flow in which the secondary air 15 and the tertiary air 15 are integrated and the spreading portion of the burner throat 28 by an accompanying phenomenon in which the secondary air 14 and the tertiary air 15 are drawn into the integrated flow.
  • a large circulating flow 53 attracted by the integrated flow of the secondary air 14 and the tertiary air 15 is formed, and a part of the circulating flow 52 is formed in the burner throat 28.
  • Most of the circulating flow 53 is accompanied by a flow in which the secondary air 14 and the tertiary air 15 are integrated.
  • the circulating flow 53 in the furnace 2 contains molten combustion ash, and a part of it also flows into the circulating flow 52 formed in the vicinity of the burner throat 28, so that the seal air introduction plate 40 is not provided.
  • the molten ash may gradually adhere to the burner throat 28 to form a large clinker.
  • the secondary air 14 and the tertiary air 15 may change the flow state of the integrated flow or block the air flow path.
  • FIG. 7A is a diagram showing an air flow at the tip of the nozzle of the solid fuel burner 5-3 according to the second embodiment. Since the solid fuel burner 5-3 according to the second embodiment includes the seal air introduction plate 40, the air flow in the nozzle tip region is different from that in FIG. 7B. More specifically, in the solid fuel burner 5-3 according to the second embodiment, the secondary air 14 and the tertiary air 15 are integrated and ejected at an angle equivalent to the spreading angle of the guide sleeve 20. Since the seal air introduction plate 40 has the same spreading angle as the guide sleeve 20, the circulation flow 52 is not formed inside the seal air introduction plate 40.
  • a seal air 55 (thick line in the figure), which is a part of the tertiary air 15, is introduced between the seal air introduction plate 40 and the burner throat 28, and is spread outward in the radial direction by the seal air introduction plate 40, and the burner throat It flows between 28 and is supplied into the furnace 2.
  • the flow of the seal air 55 also suppresses the formation of the circulation zone of the burner throat 28.
  • the seal air 55 is supplied into the furnace 2, it is accompanied by a flow in which the secondary air 14 and the tertiary air 15 are integrated.
  • the circulation flow (return flow) 53 of the high-temperature gas in the fireplace 2 is also accompanied by the integrated flow of the secondary air 14 and the tertiary air 15.
  • the inflow of the molten ash in the high temperature gas in 2 to the burner side can be suppressed, and the ash can be suppressed from adhering to the vicinity of the burner throat 28.
  • the reducing flame region 50a can be narrowed as in the first embodiment, so that the unburned content and CO of the solid fuel can be reduced. Moreover, even if the solid fuel burner attached to the existing boiler device is replaced with the solid fuel burner 5-3 according to the second embodiment, since the seal air introduction plate 40 is provided, the vicinity of the burner throat 28 can be reached. Ash adhesion is suppressed. That is, the solid fuel burner 5-3 according to the second embodiment has a structure suitable for modifying an existing boiler device.
  • FIG. 8 is a schematic view of the solid fuel burner 5-4 according to the third embodiment.
  • the same configurations as those of the first and second embodiments are designated by the same reference numerals, and the description thereof will be omitted.
  • the solid fuel burner 5-4 according to the fourth embodiment is the rear end portion (tertiary air 15) of the seal air introduction plate 40 in addition to the solid fuel burner 5-3 according to the second embodiment.
  • a feature is that a seal air guide cylindrical portion (seal air guide member) 44 is provided at the upstream end of the flow.
  • the seal air induction cylindrical portion 44 is provided in order to more reliably guide the seal air outward in the radial direction of the seal air introduction plate 40.
  • a part of the tertiary air 15 is surely guided as the sealing air to the flow path between the sealing air introduction plate 40 and the burner throat 28, and the generation of the circulating flow 52 (see FIG. 7B) is prevented. ..
  • This has the advantage that ash is less likely to adhere to the vicinity of the burner throat 28.
  • the length of the seal air induction cylindrical portion 44 can be arbitrarily designed so that the optimum seal air can be supplied, and may project into the space on the side where the swirler 22 is installed.
  • FIG. 9 is a schematic view of the solid fuel burner 5-5 according to the fourth embodiment.
  • the solid fuel burner 5-5 according to the fourth embodiment is the tip portion of the seal air introduction plate 40 (of the tertiary air 15) in addition to the solid fuel burner 5-4 according to the third embodiment.
  • a feature is that a seal air deflection plate (seal air deflection member) 42 is provided at the downstream end of the flow).
  • the seal air deflecting plate 42 extends radially outward from the tip end portion of the seal air introduction plate 40, and has a plane substantially perpendicular to the burner central axis C.
  • FIG. 10 is a diagram showing an air flow at the tip of the nozzle of the solid fuel burner 5-5 according to the fourth embodiment.
  • the seal air induced by the seal air induction cylindrical portion 44 is brought to the burner central axis C by the seal air introduction plate 40 by a third angle ⁇ 3 ( ⁇ 1).
  • the air flows outward in the radial direction, collides with the seal air deflection plate 42, and is further deflected outward in the radial direction.
  • the generation of the circulating flow 52 (see FIG. 7B) can be prevented more reliably as compared with the second or third embodiment, and the adhesion of ash to the vicinity of the burner throat 28 can be further prevented.
  • FIG. 11 is a schematic view of the solid fuel burner 5-6 according to the fifth embodiment.
  • the same configurations as those of the first to fourth embodiments are designated by the same reference numerals and the description thereof will be omitted.
  • the tip position X3 of the seal air introduction plate 40 is located on the furnace 2 side in the axial direction from the tip position X2 of the guide sleeve 20. The point is different from the solid fuel burner 5-5 according to the fourth embodiment. However, the tip position X3 of the seal air introduction plate 40 does not protrude inward from the inner peripheral surface of the water wall 19 of the fireplace 2.
  • the tip position X3 of the seal air introduction plate 40 is slightly closer to the fireplace 2 than the tip position X2 of the guide sleeve 20, the secondary air 14 and the tertiary air 15 are radially outward. Since the spread of the fuel is further suppressed, the reducing flame region 50a can be surely narrowed as compared with the fourth embodiment, and the effect of reducing the unburned content and CO of the solid fuel is further enhanced.
  • FIG. 12 is a schematic view of the solid fuel burner 5-7 of this example.
  • the same configuration as in the case of one guide sleeve 20 is designated by the same reference numerals and the description thereof will be omitted.
  • the solid fuel burner 5-7 of this example has a plurality of guide sleeves 20 in the radial direction (for example, two) in addition to the configuration of the solid fuel burner 5-3 according to the second to fifth embodiments. )
  • the feature is that it is provided.
  • the tip position X2 of the guide sleeve 20 and the tip position X3 of the seal air introduction plate 40 are substantially the same in the axial direction.
  • the sealed air introduction structure of FIG. 12 is based on the second embodiment (see FIG. 6).
  • a plurality of guide sleeves 20 are provided in the radial direction, for example, when the width of the outlet portion of the tertiary air nozzle 12 in the radial direction is large (that is, the secondary air flow path 11a and the tertiary air flow path 11a).
  • the flow direction of the tertiary air 15 can be reliably defined at (when the distance between the tip of the partition wall separating the 12a and the burner throat 28 is large).
  • the guide sleeve 20 can surely supply the tertiary air 15 into the furnace 2 at a predetermined angle ⁇ 1, the reducing flame region 50a can be surely narrowed, and the unburned portion of the solid fuel as compared with the case where the guide sleeve 20 is one. And CO reduction effect becomes more certain.
  • FIG. 13 is a schematic view of the solid fuel burner 5-8 according to the sixth embodiment.
  • the same configurations as those of the first to fifth embodiments are designated by the same reference numerals and the description thereof will be omitted.
  • the solid fuel burner 5-8 according to the sixth embodiment includes the seal air introduction plate 40 and the burner throat 28 in addition to the configuration of the solid fuel burner 5-3 according to the second embodiment.
  • a feature is that a seal air drift suppression plate (seal air drift suppression member) 48 for suppressing the drift of the seal air is further provided between them.
  • the seal air drift suppression plate 48 is composed of, for example, a punching plate provided with a large number of holes and a plate provided with a large number of slits.
  • the seal air drift suppression plate 48 By providing the seal air drift suppression plate 48, the seal air introduced to the outside in the radial direction of the seal air introduction plate 40 becomes a uniform flow and is supplied into the furnace 2, so that the formation of the circulation flow 52 is prevented. As a result, the adhesion of ash in the vicinity of the burner throat 28 can be prevented. Further, by providing the seal air drift suppression plate 48, it is not necessary to provide the seal air deflection plate 42. That is, the seal air drift suppression plate 48 is a member that can replace the seal air deflection plate 42 used in the fourth and fifth embodiments.
  • the seal air introduction plate 40 and the seal air deflection plate 42 may be provided, and the seal air induction cylindrical portion 44 may not be provided.
  • the seal air induction cylindrical portion 44 may not be provided.
  • Boiler device Fireplace 5-1 to 10 Solid fuel burner 6 Spacer 7 Support 10 Fuel nozzle (solid fuel nozzle) 11 Secondary air nozzle 12 Secondary air nozzle 13 Primary air (mixed fluid) 14 Secondary air 15 Tertiary air 19 Water wall (wall) 20 Guide sleeve (tertiary air guide member) 23 Flame holder 28 Burna throat 34 Guide ring (secondary air guide member) 40 Seal air introduction plate (seal air introduction member) 42 Seal air deflector (seal air deflector) 44 Seal air induction cylinder (seal air induction member) 48 Seal air drift suppression plate (seal air drift suppression member) 50a, 50b Reduction flame region 60 Condensation forming member C Burner central axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

Provided is a solid fuel burner such that it is possible to reduce unburned content and CO while suppressing generation of NOx. This solid fuel burner comprises: a solid fuel nozzle (10) that ejects a fluid mixture of solid fuel and primary air; a secondary air nozzle (11) that ejects secondary air; a tertiary air nozzle (12) that ejects tertiary air; a secondary air guide member (34) that guides the flow of secondary air outward in the radial direction; and one or more tertiary air guide members (20) that guide the flow of tertiary air outward in the radial direction. This solid fuel burner is equipped with a contraction flow formation member (60) that narrows the cross-sectional area of a secondary air flow path. The outer diameter (L2) of the secondary air guide member is formed smaller than the inner diameter (L1) of the outer peripheral wall of the secondary air nozzle. The leading end position (X2) of the tertiary air guide member is closer to the furnace side than the leading end position (X1) of the secondary air guide member. The solid fuel nozzle, the secondary air guide member, and the contraction flow formation member are configured so as to be integrally withdrawable from a burner throat.

Description

固体燃料バーナSolid fuel burner
 本発明は、微粉炭やバイオマスなどの固体燃料を燃焼させる固体燃料バーナに関する。 The present invention relates to a solid fuel burner that burns solid fuels such as pulverized coal and biomass.
 本技術分野の背景技術として、特許文献1には、「微粉炭と一次空気との混合物を噴出する微粉炭ノズルの外側に二次空気を噴出する二次空気ノズルが同心円状に設けられるとともに、該二次空気ノズルの外側に三次空気を噴出する三次空気ノズルが同心円状に設けられ、二次空気流路と三次空気流路を隔てる隔壁の先端部に拡管部が設けられている微粉炭燃焼バーナにおいて、前記微粉炭ノズルと前記二次空気ノズルを隔てる隔壁先端部に一次空気の流れに対し略垂直な平面を有する障害物と二次空気の流れに対し略垂直な平面を有する案内板を設け、前記障害物の平面は、前記案内板の平面より前記微粉炭ノズルの軸方向の上流側に位置し、前記案内板の平面は、前記拡管部の先端よりも前記微粉炭ノズルの軸方向の下流側に突出させて設ける」ことが記載されている。 As a background technique in the present technical field, Patent Document 1 states that "a secondary air nozzle for ejecting secondary air is concentrically provided on the outside of a pulverized coal nozzle for ejecting a mixture of pulverized coal and primary air. A tertiary air nozzle that ejects tertiary air is provided concentrically on the outside of the secondary air nozzle, and a pipe expansion portion is provided at the tip of a partition wall that separates the secondary air flow path and the tertiary air flow path. In the burner, an obstacle having a plane substantially perpendicular to the flow of primary air and a guide plate having a plane substantially perpendicular to the flow of secondary air are provided at the tip of the partition partition separating the pulverized coal nozzle and the secondary air nozzle. The plane of the obstacle is located upstream of the plane of the guide plate in the axial direction of the pulverized coal nozzle, and the plane of the guide plate is in the axial direction of the pulverized coal nozzle from the tip of the tube expansion portion. It is provided so as to protrude to the downstream side of the. "
 特許文献1によれば、二次空気の流れを案内板により径方向の外側に偏向させることで、一次空気によって形成される酸素濃度の低い還元炎領域を大きくできる。これにより、NOxの発生が抑制される。 According to Patent Document 1, by deflecting the flow of the secondary air outward in the radial direction by the guide plate, the reducing flame region having a low oxygen concentration formed by the primary air can be enlarged. As a result, the generation of NOx is suppressed.
特許第3986182号公報Japanese Patent No. 3986182
 しかしながら、酸素濃度の低い還元炎領域を大きくすると、固体燃料と二次空気および三次空気との混合が遅くなるため、未燃分やCOが増加する傾向にある。そのため、特許文献1に記載の固体燃料バーナにおいて、未燃分やCOをより一層低減させるためには、さらなる工夫が必要である。 However, if the reducing flame region with a low oxygen concentration is enlarged, the mixing of the solid fuel with the secondary air and the tertiary air becomes slow, so that the unburned content and CO tend to increase. Therefore, in the solid fuel burner described in Patent Document 1, further ingenuity is required in order to further reduce the unburned content and CO.
 本発明は、NOxの発生を抑えつつ未燃分やCOを低減できる固体燃料バーナを提供することを目的とする。 An object of the present invention is to provide a solid fuel burner capable of reducing unburned components and CO while suppressing the generation of NOx.
 上記目的を達成するために、代表的な本発明は、火炉の壁部に穿設されたバーナスロートに挿入される固体燃料バーナであって、固体燃料と一次空気との混合流体を噴出する固体燃料ノズルと、前記固体燃料ノズルの外側に前記固体燃料ノズルと同心円状に設けられ、二次空気を噴出する二次空気ノズルと、前記二次空気ノズルの外側に前記二次空気ノズルと同心円状に設けられ、三次空気を噴出する三次空気ノズルと、前記固体燃料ノズルの先端外周部に位置して、二次空気の流れを径方向の外側に案内する二次空気案内部材と、前記三次空気ノズルの先端部に位置して、三次空気の流れを前記固体燃料バーナの中心軸に対して第1の角度で径方向の外側に案内する1つ以上の三次空気案内部材と、を備えた固体燃料バーナにおいて、二次空気の流れ方向に対して、前記二次空気案内部材の上流側に配置され、二次空気の流れる流路の断面積を狭くする縮流形成部材を備え、前記二次空気案内部材の外径は、前記二次空気ノズルの外周壁の内径より小さく形成され、前記固体燃料バーナの軸方向における前記三次空気案内部材の先端位置は、前記二次空気案内部材の先端位置より前記火炉側であり、前記固体燃料ノズル、前記二次空気案内部材および前記縮流形成部材が、一体的に前記バーナスロートから引き抜き可能に構成されることを特徴とする。 In order to achieve the above object, a typical invention is a solid fuel burner inserted into a burner throat drilled in a wall of a furnace, and a solid that ejects a mixed fluid of solid fuel and primary air. A fuel nozzle, a secondary air nozzle provided concentrically with the solid fuel nozzle on the outside of the solid fuel nozzle and ejecting secondary air, and a secondary air nozzle concentric with the secondary air nozzle on the outside of the secondary air nozzle. A tertiary air nozzle that ejects tertiary air, a secondary air guiding member that is located on the outer periphery of the tip of the solid fuel nozzle and guides the flow of secondary air outward in the radial direction, and the tertiary air. A solid with one or more tertiary air guiding members located at the tip of the nozzle that guide the flow of tertiary air radially outward at a first angle with respect to the central axis of the solid fuel burner. The fuel burner includes a contraction forming member which is arranged on the upstream side of the secondary air guide member with respect to the flow direction of the secondary air and narrows the cross-sectional area of the flow path through which the secondary air flows. The outer diameter of the air guide member is formed smaller than the inner diameter of the outer peripheral wall of the secondary air nozzle, and the tip position of the tertiary air guide member in the axial direction of the solid fuel burner is the tip position of the secondary air guide member. It is characterized in that the solid fuel nozzle, the secondary air guide member, and the contraction forming member are integrally capable of being pulled out from the burner throat on the furnace side.
 本発明によれば、NOxの発生を抑えつつ未燃分やCOを低減できる。なお、上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, unburned components and CO can be reduced while suppressing the generation of NOx. Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の第1実施形態に係る固体燃料バーナの概略図である。It is the schematic of the solid fuel burner which concerns on 1st Embodiment of this invention. 図1に示すD部の拡大図である。It is an enlarged view of the part D shown in FIG. 本発明の第1実施形態に係る固体燃料バーナのノズル先端部が引き抜かれた状態を示す図である。It is a figure which shows the state which the nozzle tip portion of the solid fuel burner which concerns on 1st Embodiment of this invention is pulled out. 本発明の第1実施形態に係る固体燃料バーナのノズル先端域の空気の流れを示す図である。It is a figure which shows the air flow of the nozzle tip region of the solid fuel burner which concerns on 1st Embodiment of this invention. 従来の固体燃料バーナのノズル先端域の空気の流れを示す図である。It is a figure which shows the air flow in the nozzle tip region of the conventional solid fuel burner. 本発明の第1実施形態の変形例に係りガイドスリーブを複数有する固体燃料バーナの概略図である。FIG. 5 is a schematic view of a solid fuel burner having a plurality of guide sleeves according to a modification of the first embodiment of the present invention. 本発明の第2実施形態に係る固体燃料バーナの概略図である。It is the schematic of the solid fuel burner which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る固体燃料バーナのノズル先端の空気の流れを示す図である。It is a figure which shows the air flow of the nozzle tip of the solid fuel burner which concerns on 2nd Embodiment of this invention. シール空気導入板を設けていない固体燃料バーナのノズル先端域の空気の流れを示す図である。It is a figure which shows the air flow in the nozzle tip region of the solid fuel burner which does not provide a seal air introduction plate. 本発明の第3実施形態に係る固体燃料バーナの概略図である。It is the schematic of the solid fuel burner which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る固体燃料バーナの概略図である。It is the schematic of the solid fuel burner which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る固体燃料バーナのノズル先端の空気の流れを示す図である。It is a figure which shows the air flow of the nozzle tip of the solid fuel burner which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る固体燃料バーナの概略図である。It is the schematic of the solid fuel burner which concerns on 5th Embodiment of this invention. 本発明の第2~5実施形態の変形例に係りガイドスリーブを複数有する固体燃料バーナの概略図である。FIG. 5 is a schematic view of a solid fuel burner having a plurality of guide sleeves according to a modification of the second to fifth embodiments of the present invention. 本発明の第6実施形態に係る固体燃料バーナの概略図である。It is the schematic of the solid fuel burner which concerns on 6th Embodiment of this invention.
 以下、本発明に係る固体燃料バーナの各実施形態について図面を参照して説明する。各実施形態に係る固体燃料バーナは、火炉におけるバーナの上部に空気のみを供給する開口部(アフターエアポート)を備えていない単段燃焼式のボイラ装置や、アフターエアポートを備える二段燃焼式のボイラ装置に適用される。 Hereinafter, each embodiment of the solid fuel burner according to the present invention will be described with reference to the drawings. The solid fuel burner according to each embodiment is a single-stage combustion type boiler device having no opening (after-airport) for supplying only air to the upper part of the burner in the fireplace, or a two-stage combustion type boiler having an after-airport. Applies to the device.
[第1実施形態]
 まず、本発明の第1実施形態に係る固体燃料バーナ5-1について説明する。図1は第1実施形態に係る固体燃料バーナ5-1の概略図、図2は図1に示すD部の拡大図である。図1に示すように、固体燃料バーナ5-1は、そのノズル先端(バーナ出口側)が火炉2の壁部である水壁19に穿設されたバーナスロート28に対して水平方向に挿入されるようにして、火炉2の水壁19に取り付けられる。なお、バーナスロート28は、その内周面がバーナ中心軸Cに対して第2の角度θ2で傾斜するように水壁19のバーナ5-1側(水壁19の外側)から火炉2側(水壁19の内側)に向かって拡径して形成された開口部である。
[First Embodiment]
First, the solid fuel burner 5-1 according to the first embodiment of the present invention will be described. FIG. 1 is a schematic view of the solid fuel burner 5-1 according to the first embodiment, and FIG. 2 is an enlarged view of a portion D shown in FIG. As shown in FIG. 1, the solid fuel burner 5-1 is inserted in the horizontal direction with respect to the burner throat 28 whose nozzle tip (burner outlet side) is bored in the water wall 19 which is the wall portion of the furnace 2. In this way, it is attached to the water wall 19 of the fireplace 2. The burner throat 28 is arranged from the burner 5-1 side (outside of the water wall 19) to the furnace 2 side (outside of the water wall 19) of the water wall 19 so that the inner peripheral surface thereof is inclined at a second angle θ2 with respect to the burner central axis C. It is an opening formed by expanding the diameter toward the inside of the water wall 19).
 固体燃料バーナ5-1は、燃料ノズル(固体燃料ノズル)10を有する。燃料ノズル10は、基部側が燃料含有流体配管(図示せず)に接続された筒状部材であり、その内部は固体燃料と一次空気(搬送ガス)の固気二相流(混合流体13)が流れる一次空気流路10aとなる。固体燃料としては、石炭(微粉炭)やバイオマスなどの固体や紛体、またはこれらの混合物であっても良く、本実施形態では、固体燃料として微粉炭を用いた例を示している。なお、以下の説明において、混合流体13のことを一次空気13と言う場合がある。 The solid fuel burner 5-1 has a fuel nozzle (solid fuel nozzle) 10. The fuel nozzle 10 is a tubular member whose base side is connected to a fuel-containing fluid pipe (not shown), and a solid-air two-phase flow (mixed fluid 13) of solid fuel and primary air (conveyed gas) is inside the fuel nozzle 10. It becomes a flowing primary air flow path 10a. The solid fuel may be a solid or powder such as coal (pulverized coal) or biomass, or a mixture thereof, and in the present embodiment, an example in which pulverized coal is used as the solid fuel is shown. In the following description, the mixed fluid 13 may be referred to as the primary air 13.
 燃料ノズル10の外側(外周側)には、二次空気14が流れる二次空気流路11aを有する二次空気ノズル11が設けられ、二次空気ノズル11の外側(外周側)には、三次空気15が流れる三次空気流路12aを有する三次空気ノズル12が設けられている。なお、二次空気14および三次空気15は燃焼用ガスであり、通常は搬送ガスである一次空気と同様に空気が使用されるが、燃焼排ガスや富酸素ガス、またはこれらのガスや空気との2以上の混合気体等も適用できる。 A secondary air nozzle 11 having a secondary air flow path 11a through which the secondary air 14 flows is provided on the outside (outer circumference side) of the fuel nozzle 10, and a tertiary air nozzle 11 is provided on the outside (outer circumference side) of the secondary air nozzle 11. A tertiary air nozzle 12 having a tertiary air flow path 12a through which the air 15 flows is provided. The secondary air 14 and the tertiary air 15 are combustion gases, and air is usually used in the same manner as the primary air which is a transport gas, but with combustion exhaust gas, oxygen-rich gas, or these gases and air. A mixed gas of two or more can also be applied.
 燃料ノズル10と二次空気ノズル11と三次空気ノズル12をバーナ出口側(火炉2側)の正面から見ると、燃料ノズル10を中心にしてその外側に環状の二次空気ノズル11が同心円状に配置され、二次空気ノズル11の外側に環状の三次空気ノズル12が同心円状に配置されている。なお、第1実施形態では、三次空気流路12aの入口部分に、三次空気15に旋回を付与する旋回器22が配置されているが、旋回器22を設けない構成とすることも可能である。 When the fuel nozzle 10, the secondary air nozzle 11, and the tertiary air nozzle 12 are viewed from the front of the burner outlet side (fire furnace 2 side), the annular secondary air nozzle 11 is concentric with the fuel nozzle 10 as the center. The annular tertiary air nozzles 12 are arranged concentrically on the outside of the secondary air nozzles 11. In the first embodiment, the swirler 22 for imparting swirl to the tertiary air 15 is arranged at the inlet portion of the tertiary air flow path 12a, but it is also possible to configure the swirler 22 not to be provided. ..
 燃料ノズル10の内部には、燃料ノズル10を貫通する起動バーナ(オイルガン)16が設けられ、ボイラ起動時あるいはボイラ低負荷時に予熱や助燃のために使用される。なお、固体燃料バーナ5-1の構成によっては、起動バーナ16は設置しない場合もある。 Inside the fuel nozzle 10, a start burner (oil gun) 16 penetrating the fuel nozzle 10 is provided, and is used for preheating and assisting combustion when the boiler is started or when the boiler load is low. Depending on the configuration of the solid fuel burner 5-1, the start burner 16 may not be installed.
 燃料ノズル10の開口端部(即ち、火炉2側出口)には、一次空気13と二次空気14のそれぞれの噴出口の間に循環流51(図4A参照)を形成させるための保炎器23が設けられている。この保炎器23は、該保炎器23の下流側に循環流51を形成して着火性と保炎効果を高めるように燃料ノズル10の先端部外周に設けられる。 A flame insulator for forming a circulating flow 51 (see FIG. 4A) between the spouts of the primary air 13 and the secondary air 14 at the open end of the fuel nozzle 10 (that is, the outlet on the furnace 2 side). 23 is provided. The flame retainer 23 is provided on the outer periphery of the tip of the fuel nozzle 10 so as to form a circulating flow 51 on the downstream side of the flame retainer 23 to enhance ignitability and flame retention effect.
 起動バーナ16、燃料ノズル10、二次空気ノズル11および三次空気ノズル12は、それぞれ火炉2内に向けて噴出物を噴出する。また、これら起動バーナ16、燃料ノズル10、二次空気ノズル11および三次空気ノズル12は、バーナスロート28を囲むウインドボックス(風箱)25内に配置されている。燃焼用空気は、このウインドボックス25を介して供給される。隔壁18は、ウインドボックス25の内部空間と炉外26とを隔てる壁状部材である。隔壁18のうち、燃料ノズル10が設置されているフロントプレート27はバーナのメンテナンス時に燃料ノズル10と一体的に抜き出せるように、隔壁18に対して、ボルトやネジ、フック等で着脱可能に支持されている。 The start-up burner 16, the fuel nozzle 10, the secondary air nozzle 11, and the tertiary air nozzle 12 each eject ejecta toward the inside of the furnace 2. Further, the starting burner 16, the fuel nozzle 10, the secondary air nozzle 11, and the tertiary air nozzle 12 are arranged in a wind box 25 surrounding the burner throat 28. Combustion air is supplied through the windbox 25. The partition wall 18 is a wall-shaped member that separates the internal space of the windbox 25 from the outside of the furnace 26. Of the partition walls 18, the front plate 27 on which the fuel nozzle 10 is installed is detachably supported on the partition wall 18 with bolts, screws, hooks, etc. so that it can be integrally pulled out from the fuel nozzle 10 during burner maintenance. Has been done.
 二次空気流路11aと三次空気流路12aを隔てる隔壁の先端部にはバーナ中心軸Cに対して径方向に拡管する(末広がり形状の)ガイドスリーブ20が設けられている。ガイドスリーブ(三次空気案内部材)20は、バーナ中心軸Cに対して第1の角度θ1で径方向の外側に傾斜している。この第1の角度θ1は上述したバーナスロート28の内周面の傾斜角度である第2の角度θ2と略同一であって、10度~40度の範囲内に設定されている。より好ましくは、第1の角度θ1および第2の角度θ2は、20度~30度の範囲内である。 A guide sleeve 20 (in a divergent shape) that expands in the radial direction with respect to the central axis C of the burner is provided at the tip of the partition wall that separates the secondary air flow path 11a and the tertiary air flow path 12a. The guide sleeve (tertiary air guide member) 20 is inclined outward in the radial direction at a first angle θ1 with respect to the burner central axis C. The first angle θ1 is substantially the same as the second angle θ2, which is the inclination angle of the inner peripheral surface of the burner throat 28 described above, and is set within the range of 10 degrees to 40 degrees. More preferably, the first angle θ1 and the second angle θ2 are in the range of 20 to 30 degrees.
 第1の角度θ1および第2の角度θ2が40度を超えると、二次空気14および三次空気15が径方向の外側に向かって流れ過ぎるため、一次空気13による還元炎領域が大きくなり過ぎて、固体燃料の残留物である未燃分やCOの低減効果があまり見込めなくなる。また、第1の角度θ1および第2の角度θ2が10度未満であると、還元炎領域が小さくなるため、NOxの低減効果があまり見込めなくなる。そのため、第1の角度θ1および第2の角度θ2は10度~40度の範囲内が好ましく、20度~30度の範囲内に設定すると、固体燃料の未燃分およびCOの低減効果とNOxの低減効果のバランスを図れるため、より好ましい。なお、ガイドスリーブ20は、二次空気ノズル11の外周側であって、三次空気ノズル12の先端部に位置していれば良く、ガイドスリーブ20がどこに取り付けられているかは問わない。例えば、ガイドスリーブ20を二次空気ノズル11の外周出口部先端に固定しても良いし、ガイドスリーブ20を二次空気ノズル11の外周出口部先端に位置させた状態でバーナスロート28に直接または間接的に固定しても良い。 When the first angle θ1 and the second angle θ2 exceed 40 degrees, the secondary air 14 and the tertiary air 15 flow too much outward in the radial direction, so that the reducing flame region due to the primary air 13 becomes too large. , The effect of reducing unburned matter and CO, which are the residues of solid fuel, cannot be expected so much. Further, when the first angle θ1 and the second angle θ2 are less than 10 degrees, the reducing flame region becomes small, so that the effect of reducing NOx cannot be expected so much. Therefore, the first angle θ1 and the second angle θ2 are preferably in the range of 10 to 40 degrees, and when set in the range of 20 to 30 degrees, the effect of reducing unburned content and CO of solid fuel and NOx It is more preferable because the reduction effect of the above can be balanced. The guide sleeve 20 may be located on the outer peripheral side of the secondary air nozzle 11 and at the tip of the tertiary air nozzle 12, regardless of where the guide sleeve 20 is attached. For example, the guide sleeve 20 may be fixed to the tip of the outer peripheral outlet of the secondary air nozzle 11, or directly to the burner throat 28 with the guide sleeve 20 positioned at the tip of the outer peripheral outlet of the secondary air nozzle 11. It may be fixed indirectly.
 保炎器23の先端外周部には、径方向の外側に延びるリング状の案内リング(二次空気案内部材)34が配置されている。案内リング34はバーナ中心軸Cに対して略直交する略垂直面を有している。 A ring-shaped guide ring (secondary air guide member) 34 extending outward in the radial direction is arranged on the outer peripheral portion of the tip of the flame holder 23. The guide ring 34 has a substantially vertical plane substantially orthogonal to the burner central axis C.
 また、保炎器23は、二次空気流路11a内に、二次空気14の流れ方向に沿って延びる板状のフィン部材36が設置されている。フィン部材は、保炎器23の周方向に沿って間隔を空けて複数配置されており、放射状の板材により構成されている。 Further, in the flame holder 23, a plate-shaped fin member 36 extending along the flow direction of the secondary air 14 is installed in the secondary air flow path 11a. A plurality of fin members are arranged at intervals along the circumferential direction of the flame holder 23, and are made of a radial plate material.
 フィン部材36の上流側には、縮流形成部材60が配置されている。図2に示すように、縮流形成部材60は、バーナ中心軸Cに対して径方向に延びる上流壁部60aと、上流壁部60aの径方向の内端から二次空気14の流れ方向下流側に延びる筒壁部60bとを有する。よって、第1実施形態において、縮流形成部材60は、軸方向に沿った断面形状がL字状に形成された環状ガス流路を形成している。 A contraction forming member 60 is arranged on the upstream side of the fin member 36. As shown in FIG. 2, the contraction forming member 60 has an upstream wall portion 60a extending in the radial direction with respect to the burner central axis C and a downstream inner end in the radial direction of the upstream wall portion 60a in the flow direction of the secondary air 14. It has a tubular wall portion 60b extending to the side. Therefore, in the first embodiment, the contraction forming member 60 forms an annular gas flow path having an L-shaped cross section along the axial direction.
 なお、縮流形成部材60は、筒壁部60bがフィン部材36に固定支持されており、フィン部材36と一体的に移動可能な構成となっている。なお、縮流形成部材60と、二次空気ノズル11との間には、移動可能な程度の微小な隙間、遊びが形成されている。 The contraction forming member 60 has a tubular wall portion 60b fixedly supported by the fin member 36 and is integrally movable with the fin member 36. A small gap and play that can be moved are formed between the contraction forming member 60 and the secondary air nozzle 11.
 縮流形成部材60は、二次空気ノズル11の二次空気流路11aの外周側に設置されていることで、流路断面を一旦、径方向中心軸向きに絞る。即ち、二次空気流路11aの断面積を狭くする。縮流形成部材60通過後は、縮流された状態で案内リング34まで到達し、流れの向きをバーナ中心軸Cから外向きに広がる流れを形成する。なお、縮流形成部材60は、二次空気ノズル11とは分離した部材で保炎器23側から支持されている。縮流形成部材60は、周方向全体に一様なリング状の部材で構成されているのが好ましいが、周方向に複数に分割されていても良い。また、縮流形成部材60は保炎器23と一体で形成されているのが好ましいが、別体で形成されていても良い。 The contraction forming member 60 is installed on the outer peripheral side of the secondary air flow path 11a of the secondary air nozzle 11, so that the cross section of the flow path is once narrowed in the radial central axis direction. That is, the cross-sectional area of the secondary air flow path 11a is narrowed. After passing through the contraction forming member 60, the flow reaches the guide ring 34 in a compressed state, and forms a flow that spreads the direction of the flow outward from the burner central axis C. The contraction forming member 60 is a member separated from the secondary air nozzle 11 and is supported from the flame holder 23 side. The contraction forming member 60 is preferably composed of a ring-shaped member that is uniform in the entire circumferential direction, but may be divided into a plurality of members in the circumferential direction. Further, the contraction forming member 60 is preferably formed integrally with the flame holder 23, but may be formed separately.
 なお、図示の都合上、縮流形成部材60の外周部と二次空気ノズル11の内壁面との間に形成された上述の微小な隙間、遊びが大きく見えるが、実際は極微小なもので、ここをショートパスする二次空気14の流量は殆ど無視できる。また、当該隙間部における圧力損失を高くするため、縮流形成部材60の外周面(二次空気ノズル11の内壁面と対向する面)の軸方向における長さを十分にとることが望ましい。また、縮流形成部材60の断面形状は図示されたL字状に限定されず、上述の外周面(二次空気ノズル11の内壁面と対向する面)を延長した矩形状、五角形状等、種々のものが適用可能である(図10参照)。 For convenience of illustration, the above-mentioned minute gaps and play formed between the outer peripheral portion of the contraction forming member 60 and the inner wall surface of the secondary air nozzle 11 appear to be large, but they are actually extremely small. The flow rate of the secondary air 14 that short-passes here is almost negligible. Further, in order to increase the pressure loss in the gap, it is desirable that the outer peripheral surface of the contraction forming member 60 (the surface facing the inner wall surface of the secondary air nozzle 11) has a sufficient length in the axial direction. Further, the cross-sectional shape of the contraction forming member 60 is not limited to the L-shape shown in the drawing, and the above-mentioned outer peripheral surface (the surface facing the inner wall surface of the secondary air nozzle 11) is extended to form a rectangular shape, a pentagonal shape, or the like. Various are applicable (see FIG. 10).
 ガイドスリーブ20と案内リング34の位置関係について詳細に説明すると、図2に示すように、バーナ中心軸Cに沿う方向(軸方向)においてガイドスリーブ20が案内リング34をオーバーラップしており、案内リング34の先端位置X1より、ガイドスリーブ20の先端位置X2の方が火炉2側(図2の右側)にある。別言すれば、先端位置X1より先端位置X2の方が空気の流れの下流側にある。そして、案内リング34の手前側の側面(案内リング34の火炉2と対面する側面と反対側の側面)とガイドスリーブ20の内周面の先端との間の距離、即ち、ガイドスリーブ20が案内リング34をオーバーラップしている長さをAとし、ガイドスリーブ20の内周面の先端と案内リング34の外周端との距離、即ち、ガイドスリーブ20と案内リング34の高さ方向における隙間をBとしたときに、長さAと隙間Bとの関係は、A>0.5×Bを満たすように設定されている。なお、ガイドスリーブ20の先端位置X2および案内リング34の先端位置X1は、バーナスロート28内に収まっており、水壁19の内周面より火炉2の内部側に突出していない。 Explaining the positional relationship between the guide sleeve 20 and the guide ring 34 in detail, as shown in FIG. 2, the guide sleeve 20 overlaps the guide ring 34 in the direction (axial direction) along the central axis C of the burner to guide the guide. The tip position X2 of the guide sleeve 20 is closer to the furnace 2 side (right side in FIG. 2) than the tip position X1 of the ring 34. In other words, the tip position X2 is on the downstream side of the air flow than the tip position X1. Then, the distance between the front side surface of the guide ring 34 (the side surface of the guide ring 34 facing the fireplace 2 and the side surface opposite to the side surface facing the furnace 2) and the tip of the inner peripheral surface of the guide sleeve 20, that is, the guide sleeve 20 guides. Let A be the length that overlaps the ring 34, and set the distance between the tip of the inner peripheral surface of the guide sleeve 20 and the outer peripheral end of the guide ring 34, that is, the gap in the height direction between the guide sleeve 20 and the guide ring 34. When B is set, the relationship between the length A and the gap B is set so as to satisfy A> 0.5 × B. The tip position X2 of the guide sleeve 20 and the tip position X1 of the guide ring 34 are housed in the burner throat 28 and do not project from the inner peripheral surface of the water wall 19 toward the inside of the fireplace 2.
 二次空気ノズル11の内径L1と案内リング34の外径L2と縮流形成部材60の内径L3との寸法関係について説明すると、図2に示すように、二次空気ノズル11の内径L1に対して、案内リング34の外径L2の方が小さく設定されている(L2<L1)。なお、第1実施形態では、案内リング34の外径L2と縮流形成部材60の外径は同じ外径L2に設定されているが、縮流形成部材60の外径は二次空気ノズル11の内径より小さければ良く、案内リング34の外径L2との大小関係は問わない。 Explaining the dimensional relationship between the inner diameter L1 of the secondary air nozzle 11, the outer diameter L2 of the guide ring 34, and the inner diameter L3 of the contraction forming member 60, as shown in FIG. 2, with respect to the inner diameter L1 of the secondary air nozzle 11. Therefore, the outer diameter L2 of the guide ring 34 is set to be smaller (L2 <L1). In the first embodiment, the outer diameter L2 of the guide ring 34 and the outer diameter of the contraction forming member 60 are set to the same outer diameter L2, but the outer diameter of the contraction forming member 60 is the secondary air nozzle 11. It suffices if it is smaller than the inner diameter of the guide ring 34, and the magnitude relationship with the outer diameter L2 of the guide ring 34 does not matter.
 また、第1実施形態では、フロントプレート27の外径(隔壁18の内径)L4(図1参照)に対して、外径L2が小さく設定されている(L2<L4)。また、第1実施形態では、案内リング34の外径L2に対して、縮流形成部材60の内径(バーナ中心軸Cから筒壁部60b間の距離)L3が小さく設定されている(L2>L3)。即ち、第1実施形態では、L1>L2>L3に設定されている。 Further, in the first embodiment, the outer diameter L2 is set smaller than the outer diameter (inner diameter of the partition wall 18) L4 (see FIG. 1) of the front plate 27 (L2 <L4). Further, in the first embodiment, the inner diameter (distance between the burner center axis C and the cylinder wall portion 60b) L3 of the contraction forming member 60 is set smaller than the outer diameter L2 of the guide ring 34 (L2>. L3). That is, in the first embodiment, L1> L2> L3 is set.
 図3は、本発明の第1実施形態に係る固体燃料バーナ5-1のノズル先端部が引き抜かれた状態を示す図である。上述したように、第1実施形態に係る固体燃料バーナ5-1は、L1>L2>L3の寸法関係を満たす構成であることから、フロントプレート27を隔壁18から外して、燃料ノズル10が引き出される場合に、燃料ノズル10と保炎器23、案内リング34、フィン部材36、縮流形成部材60が一体的に、炉外26に向けて引き出し可能に構成されている。 FIG. 3 is a diagram showing a state in which the nozzle tip portion of the solid fuel burner 5-1 according to the first embodiment of the present invention is pulled out. As described above, since the solid fuel burner 5-1 according to the first embodiment has a configuration that satisfies the dimensional relationship of L1> L2> L3, the front plate 27 is removed from the partition wall 18 and the fuel nozzle 10 is pulled out. In this case, the fuel nozzle 10, the flame holder 23, the guide ring 34, the fin member 36, and the contraction forming member 60 are integrally configured to be able to be pulled out toward the outside of the furnace 26.
 なお、燃料ノズル10等を完全に引き出さず、縮流形成部材60が隔壁18よりも炉内側(ウインドボックス25内)にある程度まで引き出せれば良い場合は、フロントプレート27の外径L4を、外径L2よりも小さく設定することも可能であり、フロントプレート27を設けずに隔壁18に対して燃料ノズル10が移動可能な構成とすることも可能である。 If the fuel nozzle 10 and the like are not completely pulled out and the contraction forming member 60 can be pulled out to a certain extent inside the furnace (inside the windbox 25) from the partition wall 18, the outer diameter L4 of the front plate 27 is removed. The diameter can be set smaller than L2, and the fuel nozzle 10 can be moved with respect to the partition wall 18 without providing the front plate 27.
 次に、第1実施形態に係る固体燃料バーナ5-1のノズル先端域の空気の流れについて、従来技術と比較して説明する。まず、従来の固体燃料バーナのノズル先端域の空気の流れについて図4Bを用いて説明する。図4Bは、従来の固体燃料バーナのノズル先端域の空気の流れを示す図である。図4Bに示す従来技術の構成は、案内リング34の先端位置X1がガイドスリーブ20の先端位置X2より火炉2側にある。つまり、第1実施形態と反対の位置関係であり、ガイドスリーブ20が案内リング34をオーバーラップしていない。なお、ガイドスリーブ20の第1の角度θ1は、第1実施形態の第1の角度θ1と同じに設定されている。 Next, the air flow in the nozzle tip region of the solid fuel burner 5-1 according to the first embodiment will be described in comparison with the prior art. First, the air flow in the nozzle tip region of the conventional solid fuel burner will be described with reference to FIG. 4B. FIG. 4B is a diagram showing an air flow in the nozzle tip region of a conventional solid fuel burner. In the configuration of the prior art shown in FIG. 4B, the tip position X1 of the guide ring 34 is closer to the fireplace 2 than the tip position X2 of the guide sleeve 20. That is, the positional relationship is opposite to that of the first embodiment, and the guide sleeve 20 does not overlap the guide ring 34. The first angle θ1 of the guide sleeve 20 is set to be the same as the first angle θ1 of the first embodiment.
 図4Bに示すように、従来の固体燃料バーナの構成では、二次空気14は案内リング34に衝突して径方向の外側に大きく向きを変える。その際、ガイドスリーブ20が案内リング34をオーバーラップしていないため、二次空気14は三次空気15を伴って大きく径方向の外側に流れる。その結果、還元炎領域50bが大きくなり、NOxの低減効果は期待できるものの、固体燃料の未燃分やCOの低減効果は低い。 As shown in FIG. 4B, in the conventional solid fuel burner configuration, the secondary air 14 collides with the guide ring 34 and largely turns outward in the radial direction. At that time, since the guide sleeve 20 does not overlap the guide ring 34, the secondary air 14 flows largely outward in the radial direction together with the tertiary air 15. As a result, the reducing flame region 50b becomes large, and although the effect of reducing NOx can be expected, the effect of reducing the unburned content and CO of the solid fuel is low.
 次に、第1実施形態に係る固体燃料バーナ5-1のノズル先端域の空気の流れについて、図4Aを用いて説明する。図4Aは固体燃料バーナ5-1のノズル先端域の空気の流れを示す図である。図4Aに示すように、一次空気13は燃料ノズル10から火炉2内に噴出する。二次空気14は二次空気ノズル11内を流れて、保炎器23の案内リング34に衝突し、流れ方向が径方向の外側に偏向される。案内リング34の先端位置X1よりガイドスリーブ20の先端位置X2の方が火炉2側に位置しているため、案内リング34に衝突した二次空気14は、ガイドスリーブ20のうち案内リング34からオーバーラップしている部分(図2のAの部分)の内周面に沿って流れ、バーナ中心軸Cに対して第1の角度θ1で径方向の外側に向かって火炉2内に噴出する。三次空気15は、三次空気ノズル12内を流れ、ガイドスリーブ20に沿って外周側に向きを変えながら、バーナ中心軸Cに対して第1の角度θ1で径方向の外側に向かって火炉2内に噴出する。 Next, the air flow in the nozzle tip region of the solid fuel burner 5-1 according to the first embodiment will be described with reference to FIG. 4A. FIG. 4A is a diagram showing an air flow in the nozzle tip region of the solid fuel burner 5-1. As shown in FIG. 4A, the primary air 13 is ejected from the fuel nozzle 10 into the furnace 2. The secondary air 14 flows in the secondary air nozzle 11 and collides with the guide ring 34 of the flame holder 23, and the flow direction is deflected outward in the radial direction. Since the tip position X2 of the guide sleeve 20 is located closer to the fireplace 2 than the tip position X1 of the guide ring 34, the secondary air 14 that collides with the guide ring 34 exceeds the guide ring 34 of the guide sleeve 20. It flows along the inner peripheral surface of the wrapping portion (portion A in FIG. 2) and is ejected into the fireplace 2 toward the outside in the radial direction at a first angle θ1 with respect to the central axis C of the burner. The tertiary air 15 flows through the tertiary air nozzle 12, and while turning toward the outer peripheral side along the guide sleeve 20, inside the furnace 2 toward the outside in the radial direction at a first angle θ1 with respect to the burner central axis C. Squirt into.
 このように、ガイドスリーブ20の先端位置X2が案内リング34の先端位置X1より火炉2側にあることで、二次空気14の径方向外側への偏向がガイドスリーブ20によって抑えられる。また、ガイドスリーブ20の第1の角度θ1は10度~40度に設定されている。そのため、二次空気14と三次空気15は、ガイドスリーブ20の第1の角度θ1だけ径方向外側に偏向されて火炉2内に噴出することになる。これにより、還元炎領域50aを上記従来技術と比べて狭くでき、固体燃料の未燃分やCOの発生を低減できる。 As described above, since the tip position X2 of the guide sleeve 20 is closer to the fireplace 2 than the tip position X1 of the guide ring 34, the radial outward deflection of the secondary air 14 is suppressed by the guide sleeve 20. Further, the first angle θ1 of the guide sleeve 20 is set to 10 to 40 degrees. Therefore, the secondary air 14 and the tertiary air 15 are deflected radially outward by the first angle θ1 of the guide sleeve 20 and are ejected into the fireplace 2. As a result, the reducing flame region 50a can be narrowed as compared with the above-mentioned conventional technique, and the generation of unburned components and CO of the solid fuel can be reduced.
 以上説明したように、第1実施形態に係る固体燃料バーナ5-1によれば、ガイドスリーブ20が案内リング34をオーバーラップする構成としたので、二次空気14および三次空気15の径方向の外側への流れを抑えることができる。その結果、一次空気13による還元炎領域50aが従来に比べて小さくなり、固体燃料の未燃分やCOの発生を低減できる。しかも、ガイドスリーブ20の第1の角度θ1を10度~40度の範囲で、より好ましくは20度~30度の範囲に設定することで、固体燃料の未燃分およびCOの低減効果とNOxの低減効果のバランスを図ることができる。 As described above, according to the solid fuel burner 5-1 according to the first embodiment, since the guide sleeve 20 is configured to overlap the guide ring 34, the secondary air 14 and the tertiary air 15 are in the radial direction. The flow to the outside can be suppressed. As a result, the reduction flame region 50a due to the primary air 13 becomes smaller than before, and the generation of unburned components and CO of the solid fuel can be reduced. Moreover, by setting the first angle θ1 of the guide sleeve 20 in the range of 10 to 40 degrees, more preferably in the range of 20 to 30 degrees, the effect of reducing the unburned content and CO of the solid fuel and NOx It is possible to balance the reduction effect of.
 また、ガイドスリーブ20が案内リング34をオーバーラップしている長さAと、ガイドスリーブ20と案内リング34の高さ方向における隙間Bとの関係が、A>0.5×Bを満たすように設定されているので、二次空気14が径方向外側に向かうのをガイドスリーブ20が確実に抑えながら、二次空気14をガイドスリーブ20に沿って流すことができる。よって、好適な還元炎領域50aを形成でき、固体燃料の未燃分とCOの発生を効果的に抑止できる。 Further, the relationship between the length A in which the guide sleeve 20 overlaps the guide ring 34 and the gap B in the height direction between the guide sleeve 20 and the guide ring 34 satisfies A> 0.5 × B. Since it is set, the secondary air 14 can flow along the guide sleeve 20 while the guide sleeve 20 surely suppresses the secondary air 14 from going outward in the radial direction. Therefore, a suitable reducing flame region 50a can be formed, and the generation of unburned components and CO of the solid fuel can be effectively suppressed.
 さらに、二次空気14および三次空気15の径方向の外側への流れを抑制できるため、燃料ノズル10から噴出される固体燃料と二次空気14および三次空気15との混合が早くなる。その結果、火炎温度が高くなるため火炉2の水壁19への熱吸収が増加し、火炉2の出口におけるガス温度を下げることができ、スラッギングの抑制にも効果的である。なお、スラッギングとは、燃焼により溶融した灰が炉壁や伝熱管に付着して収熱の低下、及び炉内の圧力損失を大きくする現象が生じることを言う。 Further, since the flow of the secondary air 14 and the tertiary air 15 to the outside in the radial direction can be suppressed, the solid fuel ejected from the fuel nozzle 10 and the secondary air 14 and the tertiary air 15 are mixed faster. As a result, since the flame temperature rises, heat absorption into the water wall 19 of the fireplace 2 increases, the gas temperature at the outlet of the fireplace 2 can be lowered, and it is also effective in suppressing slugging. In addition, slugging means that the ash melted by combustion adheres to the furnace wall and the heat transfer tube to reduce the heat collection and increase the pressure loss in the furnace.
 また、二次空気ノズル11の内径L1に対して、案内リング34の外径L2および縮流形成部材60の外径の方が小さく設定されているため、ボイラの定期検査で固体燃料バーナ5-1を分解する工程において、案内リング34が二次空気ノズル11に引っ掛からずに、燃料ノズル10等と共に引き抜くことができる(図3参照)。これにより、メンテナンス性が向上する。 Further, since the outer diameter L2 of the guide ring 34 and the outer diameter of the contraction forming member 60 are set smaller than the inner diameter L1 of the secondary air nozzle 11, the solid fuel burner 5- In the step of disassembling 1, the guide ring 34 can be pulled out together with the fuel nozzle 10 and the like without being caught by the secondary air nozzle 11 (see FIG. 3). This improves maintainability.
 また、案内リング34の上流側に縮流形成部材60が配置されているため、二次空気14は縮流形成部材60を通過する際に、流速が高速になり、案内リング34に高速で衝突して、径方向外向きに偏向する。よって、第1実施形態の構成では、案内リング34の外径L2が小さくても、噴出される二次空気14の径方向への偏向は強くなり、案内リング34の下流側に形成される循環流が確保される。これにより、火炎が安定し低NOx性能は維持される。 Further, since the contraction forming member 60 is arranged on the upstream side of the guide ring 34, when the secondary air 14 passes through the contraction forming member 60, the flow velocity becomes high and collides with the guide ring 34 at high speed. Then, it deflects outward in the radial direction. Therefore, in the configuration of the first embodiment, even if the outer diameter L2 of the guide ring 34 is small, the radial deflection of the ejected secondary air 14 becomes strong, and the circulation formed on the downstream side of the guide ring 34. The flow is secured. As a result, the flame is stabilized and low NOx performance is maintained.
 次に、本発明の第1実施形態の変形例に係りガイドスリーブ20を複数有する固体燃料バーナ5-2の例について説明する。図5は本例の固体燃料バーナ5-2の概略図である。なお、ガイドスリーブ20が1つの場合と同一構成については同一符号を付して説明を省略する。 Next, an example of a solid fuel burner 5-2 having a plurality of guide sleeves 20 will be described according to a modified example of the first embodiment of the present invention. FIG. 5 is a schematic view of the solid fuel burner 5-2 of this example. The same components as those in the case of one guide sleeve 20 are designated by the same reference numerals and the description thereof will be omitted.
 図5に示すように、本例の固体燃料バーナ5-2は、ガイドスリーブ20が三次空気ノズル12の径方向に間隔を空けて複数(例えば2つ)設けられている点に特徴がある。2つのガイドスリーブ20は図示しないスペーサにより所定の間隔に保持されており、同じく図示しないボルトや溶接により固定されている。なお、2つのガイドスリーブ20の第1の角度θ1は共に略同じであり、例えば10度~40度の範囲内であり、より好ましくは20度~30度の範囲内に設定される。また、2つのガイドスリーブ20の軸方向における先端位置X2は共に略同じ位置であり、案内リング34の先端位置X1より火炉2側である。 As shown in FIG. 5, the solid fuel burner 5-2 of this example is characterized in that a plurality (for example, two) of guide sleeves 20 are provided at intervals in the radial direction of the tertiary air nozzle 12. The two guide sleeves 20 are held at predetermined intervals by spacers (not shown), and are also fixed by bolts or welds (not shown). The first angle θ1 of the two guide sleeves 20 is substantially the same, for example, in the range of 10 degrees to 40 degrees, and more preferably in the range of 20 degrees to 30 degrees. Further, the tip positions X2 of the two guide sleeves 20 in the axial direction are both substantially the same position, and are closer to the fireplace 2 than the tip position X1 of the guide ring 34.
 本例の固体燃料バーナ5-2では、三次空気15が複数のガイドスリーブ20によって第1の角度θ1だけ径方向の外側に案内されるため、例えば、三次空気ノズル12出口部の径方向の幅が大きい場合(即ち、二次空気流路11aと三次空気流路12aとを隔てる隔壁の先端部とバーナスロート28との間隔が大きい場合)に、三次空気15の流れ方向を確実に制約することが可能となる。その結果、ガイドスリーブ20が1つの場合に比べて、ガイドスリーブ20により所定の角度θ1で確実に三次空気15を火炉2内に供給でき、固体燃料の未燃分やCOの低減効果が確保される。 In the solid fuel burner 5-2 of this example, the tertiary air 15 is guided outward in the radial direction by a first angle θ1 by the plurality of guide sleeves 20, so that, for example, the radial width of the outlet portion of the tertiary air nozzle 12 (That is, when the distance between the tip of the partition partition separating the secondary air flow path 11a and the tertiary air flow path 12a and the burner throat 28 is large), the flow direction of the tertiary air 15 is surely restricted. Is possible. As a result, as compared with the case where there is only one guide sleeve 20, the guide sleeve 20 can reliably supply the tertiary air 15 into the furnace 2 at a predetermined angle θ1, and the effect of reducing the unburned content and CO of the solid fuel is secured. To.
[第2実施形態]
 次に、本発明の第2実施形態に係る固体燃料バーナ5-3について説明する。図6は第2実施形態に係る固体燃料バーナ5-3の概略図である。なお、第1実施形態と同一構成については同一符号を付して説明を省略する。第2実施形態では、バーナスロート28の第2の角度θ2が、ガイドスリーブ20の第1の角度θ1より大きい場合を想定している。例えば、既設のボイラ装置のバーナスロート28の第2の角度θ2が45度程度であって、そのバーナスロート28に固体燃料バーナ5-3を設置する場合等が想定される。
[Second Embodiment]
Next, the solid fuel burner 5-3 according to the second embodiment of the present invention will be described. FIG. 6 is a schematic view of the solid fuel burner 5-3 according to the second embodiment. The same components as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted. In the second embodiment, it is assumed that the second angle θ2 of the burner throat 28 is larger than the first angle θ1 of the guide sleeve 20. For example, it is assumed that the second angle θ2 of the burner throat 28 of the existing boiler device is about 45 degrees, and the solid fuel burner 5-3 is installed in the burner throat 28.
 図6に示すように、第2実施形態に係る固体燃料バーナ5-3は、第1実施形態の構成に加えて、ガイドスリーブ20とバーナスロート28との間の位置に、シール空気導入板(シール空気導入部材)40が設けられている点に特徴がある。このシール空気導入板40は、バーナ中心軸Cから径方向の外側に第3の角度θ3だけ傾斜して配置されており、この第3の角度θ3は第1の角度θ1と略同じである。即ち、ガイドスリーブ20とシール空気導入板40とはほぼ同じ角度で傾斜している。そして、これら第1の角度θ1および第3の角度θ3は、例えば10度~40度の範囲内であり、より好ましくは20度~30度の範囲内に設定される。なお、ガイドスリーブ20とシール空気導入板40とは図示しないスペーサにより径方向に間隔を空けて設けられており、同じく図示しないボルトや溶接によって固定されている。シール空気導入板40のスペーサによる間隔設定及びボルトや溶接による固定は、バーナスロート28或いはバーナスロート28に連続する部材側から実施しても良い。また、シール空気導入板40の軸方向における先端位置X3は、ガイドスリーブ20の先端位置X2と略同じに設定されている。 As shown in FIG. 6, the solid fuel burner 5-3 according to the second embodiment is provided with a seal air introduction plate (seal air introduction plate) at a position between the guide sleeve 20 and the burner throat 28 in addition to the configuration of the first embodiment. It is characterized in that the seal air introduction member) 40 is provided. The seal air introduction plate 40 is arranged so as to be inclined outward by a third angle θ3 from the burner central axis C in the radial direction, and the third angle θ3 is substantially the same as the first angle θ1. That is, the guide sleeve 20 and the seal air introduction plate 40 are inclined at substantially the same angle. The first angle θ1 and the third angle θ3 are set in the range of, for example, 10 degrees to 40 degrees, and more preferably in the range of 20 degrees to 30 degrees. The guide sleeve 20 and the seal air introduction plate 40 are provided at intervals in the radial direction by spacers (not shown), and are also fixed by bolts or welding (not shown). The spacing of the seal air introduction plate 40 by the spacer and the fixing by bolts or welding may be performed from the member side continuous with the burner throat 28 or the burner throat 28. Further, the tip position X3 of the seal air introduction plate 40 in the axial direction is set to be substantially the same as the tip position X2 of the guide sleeve 20.
 次に、第2実施形態に係る固体燃料バーナ5-3のノズル先端域の空気の流れについて、シール空気導入板40を設けていない構成と比較して説明する。まず、シール空気導入板40を設けていない固体燃料バーナにおける空気の流れについて、図7Bを用いて説明する。図7Bはシール空気導入板40を設けていない固体燃料バーナのノズル先端域の空気の流れを示す図であり、二次空気14および三次空気15の流れを実線の矢印で、火炉2内のガスの流れを破線の矢印でそれぞれ示している。 Next, the air flow in the nozzle tip region of the solid fuel burner 5-3 according to the second embodiment will be described in comparison with the configuration in which the seal air introduction plate 40 is not provided. First, the air flow in the solid fuel burner not provided with the seal air introduction plate 40 will be described with reference to FIG. 7B. FIG. 7B is a diagram showing the air flow in the nozzle tip region of the solid fuel burner not provided with the seal air introduction plate 40, and the flow of the secondary air 14 and the tertiary air 15 is indicated by a solid arrow, and the gas in the furnace 2 is shown. The flow of each is indicated by a broken line arrow.
 図7Bに示すように、二次空気14は二次空気流路11aを通って保炎器23とガイドスリーブ20の間に流入し、案内リング34に衝突して径方向の外側に広げられる。そして、二次空気14はガイドスリーブ20の内周面に衝突し、ほぼガイドスリーブ20の広がり角度(第1の角度θ1)で火炉2へと供給される。 As shown in FIG. 7B, the secondary air 14 flows in between the flame holder 23 and the guide sleeve 20 through the secondary air flow path 11a, collides with the guide ring 34, and is spread outward in the radial direction. Then, the secondary air 14 collides with the inner peripheral surface of the guide sleeve 20 and is supplied to the fireplace 2 at a substantially spreading angle (first angle θ1) of the guide sleeve 20.
 三次空気15は三次空気流路12aで流れが絞られた後、ガイドスリーブ20の外周側に沿ってほぼガイドスリーブ20の傾き(第1の角度θ1)で火炉2へと供給される。二次空気14および三次空気15は、ガイドスリーブ20を挟んでほぼガイドスリーブ20の傾き(第1の角度θ1)で火炉2へと供給され、ガイドスリーブ20の出口以降は、二次空気14と三次空気15は一体化した流れとなる。 After the flow of the tertiary air 15 is throttled in the tertiary air flow path 12a, the tertiary air 15 is supplied to the furnace 2 along the outer peripheral side of the guide sleeve 20 at an inclination of the guide sleeve 20 (first angle θ1). The secondary air 14 and the tertiary air 15 are supplied to the fireplace 2 at an inclination of the guide sleeve 20 (first angle θ1) with the guide sleeve 20 interposed therebetween, and after the outlet of the guide sleeve 20, the secondary air 14 and the tertiary air 15 are supplied to the furnace 2. The tertiary air 15 has an integrated flow.
 ここで、上述したように、バーナスロート28の第2の角度θ2が45度程度であり、ガイドスリーブ20の第1の角度θ1(例えば、10度~40度)より大きいため、二次空気14と三次空気15が一体化した流れと、バーナスロート28の広がり部との間には、二次空気14と三次空気15が一体化した流れに引き込まれる同伴現象によって循環流52が形成される。バーナ近傍の火炉2の内部空間には、二次空気14と三次空気15が一体化した流れに誘引される大きな循環流53が形成され、その一部がバーナスロート28に形成される循環流52に合流し、循環流53の殆どは二次空気14と三次空気15が一体化された流れに同伴される。 Here, as described above, since the second angle θ2 of the burner throat 28 is about 45 degrees and is larger than the first angle θ1 (for example, 10 degrees to 40 degrees) of the guide sleeve 20, the secondary air 14 A circulating flow 52 is formed between the flow in which the secondary air 15 and the tertiary air 15 are integrated and the spreading portion of the burner throat 28 by an accompanying phenomenon in which the secondary air 14 and the tertiary air 15 are drawn into the integrated flow. In the internal space of the furnace 2 near the burner, a large circulating flow 53 attracted by the integrated flow of the secondary air 14 and the tertiary air 15 is formed, and a part of the circulating flow 52 is formed in the burner throat 28. Most of the circulating flow 53 is accompanied by a flow in which the secondary air 14 and the tertiary air 15 are integrated.
 火炉2内の循環流53には溶融した燃焼灰が含まれ、その一部はバーナスロート28近傍に形成される循環流52にも流入するため、シール空気導入板40が設けられていない構成の場合、バーナスロート28には溶融灰が次第に固着して大きなクリンカが形成される可能性がある。大きなクリンカが形成されると、二次空気14と三次空気15が一体化した流れの流動状態に変化を与えたり、空気の流路を閉塞したりする虞がある。 The circulating flow 53 in the furnace 2 contains molten combustion ash, and a part of it also flows into the circulating flow 52 formed in the vicinity of the burner throat 28, so that the seal air introduction plate 40 is not provided. In this case, the molten ash may gradually adhere to the burner throat 28 to form a large clinker. When a large clinker is formed, there is a risk that the secondary air 14 and the tertiary air 15 may change the flow state of the integrated flow or block the air flow path.
 次に、第2実施形態に係る固体燃料バーナ5-3のノズル先端域の空気の流れについて、図7Aを用いて説明する。図7Aは第2実施形態に係る固体燃料バーナ5-3のノズル先端の空気の流れを示す図である。第2実施形態に係る固体燃料バーナ5-3は、シール空気導入板40を備えているため、ノズル先端域の空気の流れは図7Bとは異なるものとなる。具体的に説明すると、第2実施形態に係る固体燃料バーナ5-3では、二次空気14および三次空気15は一体化してガイドスリーブ20の広がり角度と同等角度で噴出される。シール空気導入板40はガイドスリーブ20と同等の広がり角度としているので、シール空気導入板40の内側には循環流52は形成されない。 Next, the air flow in the nozzle tip region of the solid fuel burner 5-3 according to the second embodiment will be described with reference to FIG. 7A. FIG. 7A is a diagram showing an air flow at the tip of the nozzle of the solid fuel burner 5-3 according to the second embodiment. Since the solid fuel burner 5-3 according to the second embodiment includes the seal air introduction plate 40, the air flow in the nozzle tip region is different from that in FIG. 7B. More specifically, in the solid fuel burner 5-3 according to the second embodiment, the secondary air 14 and the tertiary air 15 are integrated and ejected at an angle equivalent to the spreading angle of the guide sleeve 20. Since the seal air introduction plate 40 has the same spreading angle as the guide sleeve 20, the circulation flow 52 is not formed inside the seal air introduction plate 40.
 シール空気導入板40とバーナスロート28との間には、三次空気15の一部であるシール空気55(図中太線)が導入され、シール空気導入板40によって径方向外側に広げられ、バーナスロート28との間を流れて、火炉2内に供給される。このシール空気55の流れによって、バーナスロート28の循環域形成も抑制されている。シール空気55は火炉2内に供給された後、二次空気14と三次空気15が一体化した流れに同伴される。このシール空気55の火炉2内での流れに乗って、火炉2内の高温ガスの循環流れ(戻り流)53も二次空気14と三次空気15が一体化した流れに同伴されるため、火炉2内の高温ガス中の溶融灰のバーナ側への流入は抑えられ、バーナスロート28近辺に灰が付着するのを抑制できる。 A seal air 55 (thick line in the figure), which is a part of the tertiary air 15, is introduced between the seal air introduction plate 40 and the burner throat 28, and is spread outward in the radial direction by the seal air introduction plate 40, and the burner throat It flows between 28 and is supplied into the furnace 2. The flow of the seal air 55 also suppresses the formation of the circulation zone of the burner throat 28. After the seal air 55 is supplied into the furnace 2, it is accompanied by a flow in which the secondary air 14 and the tertiary air 15 are integrated. Along with the flow of the sealed air 55 in the fireplace 2, the circulation flow (return flow) 53 of the high-temperature gas in the fireplace 2 is also accompanied by the integrated flow of the secondary air 14 and the tertiary air 15. The inflow of the molten ash in the high temperature gas in 2 to the burner side can be suppressed, and the ash can be suppressed from adhering to the vicinity of the burner throat 28.
 このように、第2実施形態に係る固体燃料バーナ5-3によれば、第1実施形態と同様に還元炎領域50aを狭くできるため、固体燃料の未燃分やCOを低減できる。しかも、既設のボイラ装置に取り付けられている固体燃料バーナを第2実施形態に係る固体燃料バーナ5-3に交換したとしても、シール空気導入板40を備えているため、バーナスロート28近辺への灰付着が抑制される。つまり、第2実施形態に係る固体燃料バーナ5-3は、既設のボイラ装置の改造に適した構造である。 As described above, according to the solid fuel burner 5-3 according to the second embodiment, the reducing flame region 50a can be narrowed as in the first embodiment, so that the unburned content and CO of the solid fuel can be reduced. Moreover, even if the solid fuel burner attached to the existing boiler device is replaced with the solid fuel burner 5-3 according to the second embodiment, since the seal air introduction plate 40 is provided, the vicinity of the burner throat 28 can be reached. Ash adhesion is suppressed. That is, the solid fuel burner 5-3 according to the second embodiment has a structure suitable for modifying an existing boiler device.
[第3実施形態]
 次に、本発明の第3実施形態に係る固体燃料バーナ5-4について説明する。図8は第3実施形態に係る固体燃料バーナ5-4の概略図である。なお、第1及び第2実施形態と同一構成については同一符号を付して説明を省略する。図8に示すように、第4実施形態に係る固体燃料バーナ5-4は、第2実施形態に係る固体燃料バーナ5-3に加えて、シール空気導入板40の後端部(三次空気15の流れの上流側の端部)に、シール空気誘導円筒部(シール空気誘導部材)44が設けられている点に特徴がある。
[Third Embodiment]
Next, the solid fuel burner 5-4 according to the third embodiment of the present invention will be described. FIG. 8 is a schematic view of the solid fuel burner 5-4 according to the third embodiment. The same configurations as those of the first and second embodiments are designated by the same reference numerals, and the description thereof will be omitted. As shown in FIG. 8, the solid fuel burner 5-4 according to the fourth embodiment is the rear end portion (tertiary air 15) of the seal air introduction plate 40 in addition to the solid fuel burner 5-3 according to the second embodiment. A feature is that a seal air guide cylindrical portion (seal air guide member) 44 is provided at the upstream end of the flow.
 図8に示すように、三次空気15は、バーナ中心軸Cに対して直角の方向に導入されるため、三次空気15は、ガイドスリーブ20とシール空気導入板40との間に流れやすくなる。そこで、第4実施形態では、シール空気をより確実にシール空気導入板40の径方向外側に導くために、シール空気誘導円筒部44を設けている。これにより、三次空気15の一部をシール空気としてシール空気導入板40とバーナスロート28との間の流路へと確実に導いて、循環流52(図7B参照)の発生を防止している。これにより、さらにバーナスロート28近辺に灰が付着し難くなるといった利点がある。なお、シール空気誘導円筒部44の長さは最適なシール空気が供給できるように任意に設計可能であり、旋回器22が設置されている側のスペースに突出しても良い。 As shown in FIG. 8, since the tertiary air 15 is introduced in the direction perpendicular to the central axis C of the burner, the tertiary air 15 easily flows between the guide sleeve 20 and the seal air introduction plate 40. Therefore, in the fourth embodiment, the seal air induction cylindrical portion 44 is provided in order to more reliably guide the seal air outward in the radial direction of the seal air introduction plate 40. As a result, a part of the tertiary air 15 is surely guided as the sealing air to the flow path between the sealing air introduction plate 40 and the burner throat 28, and the generation of the circulating flow 52 (see FIG. 7B) is prevented. .. This has the advantage that ash is less likely to adhere to the vicinity of the burner throat 28. The length of the seal air induction cylindrical portion 44 can be arbitrarily designed so that the optimum seal air can be supplied, and may project into the space on the side where the swirler 22 is installed.
[第4実施形態]
 次に、本発明の第4実施形態に係る固体燃料バーナ5-5について説明する。図9は第4実施形態に係る固体燃料バーナ5-5の概略図である。なお、第1~第3実施形態と同一構成については同一符号を付して説明を省略する。図9に示すように、第4実施形態に係る固体燃料バーナ5-5は、第3実施形態に係る固体燃料バーナ5-4に加えて、シール空気導入板40の先端部(三次空気15の流れの下流側の端部)に、シール空気偏向板(シール空気偏向部材)42が設けられている点に特徴がある。シール空気偏向板42は、シール空気導入板40の先端部から径方向の外側に延在し、バーナ中心軸Cに対して略垂直な平面を有している。
[Fourth Embodiment]
Next, the solid fuel burner 5-5 according to the fourth embodiment of the present invention will be described. FIG. 9 is a schematic view of the solid fuel burner 5-5 according to the fourth embodiment. The same configurations as those of the first to third embodiments are designated by the same reference numerals and the description thereof will be omitted. As shown in FIG. 9, the solid fuel burner 5-5 according to the fourth embodiment is the tip portion of the seal air introduction plate 40 (of the tertiary air 15) in addition to the solid fuel burner 5-4 according to the third embodiment. A feature is that a seal air deflection plate (seal air deflection member) 42 is provided at the downstream end of the flow). The seal air deflecting plate 42 extends radially outward from the tip end portion of the seal air introduction plate 40, and has a plane substantially perpendicular to the burner central axis C.
 次に、第4実施形態に係る固体燃料バーナ5-5のノズル先端域の空気の流れについて、図10を用いて説明する。図10は第4実施形態に係る固体燃料バーナ5-5のノズル先端の空気の流れを示す図である。第4実施形態に係る固体燃料バーナ5-5では、シール空気誘導円筒部44にて誘導されたシール空気は、シール空気導入板40によって第3の角度θ3(≒θ1)だけバーナ中心軸Cに対して径方向の外側に向かって流れていき、シール空気偏向板42に衝突してさらに径方向の外側に偏向する。これによって、第2或いは第3実施形態と比べて、より確実に循環流52(図7B参照)の発生を防止でき、バーナスロート28近辺への灰の付着をより一層防止できる。 Next, the air flow in the nozzle tip region of the solid fuel burner 5-5 according to the fourth embodiment will be described with reference to FIG. FIG. 10 is a diagram showing an air flow at the tip of the nozzle of the solid fuel burner 5-5 according to the fourth embodiment. In the solid fuel burner 5-5 according to the fourth embodiment, the seal air induced by the seal air induction cylindrical portion 44 is brought to the burner central axis C by the seal air introduction plate 40 by a third angle θ3 (≈θ1). On the other hand, the air flows outward in the radial direction, collides with the seal air deflection plate 42, and is further deflected outward in the radial direction. As a result, the generation of the circulating flow 52 (see FIG. 7B) can be prevented more reliably as compared with the second or third embodiment, and the adhesion of ash to the vicinity of the burner throat 28 can be further prevented.
[第5実施形態]
 次に、本発明の第5実施形態に係る固体燃料バーナ5-6について説明する。図11は第5実施形態に係る固体燃料バーナ5-6の概略図である。なお、第1~第4実施形態と同一構成については同一符号を付して説明を省略する。図11に示すように、第5実施形態に係る固体燃料バーナ5-6は、シール空気導入板40の先端位置X3がガイドスリーブ20の先端位置X2より軸方向において火炉2側に位置している点が、第4実施形態に係る固体燃料バーナ5-5と相違する。ただし、シール空気導入板40の先端位置X3は、火炉2の水壁19の内周面より内側に突出していない。
[Fifth Embodiment]
Next, the solid fuel burner 5-6 according to the fifth embodiment of the present invention will be described. FIG. 11 is a schematic view of the solid fuel burner 5-6 according to the fifth embodiment. The same configurations as those of the first to fourth embodiments are designated by the same reference numerals and the description thereof will be omitted. As shown in FIG. 11, in the solid fuel burner 5-6 according to the fifth embodiment, the tip position X3 of the seal air introduction plate 40 is located on the furnace 2 side in the axial direction from the tip position X2 of the guide sleeve 20. The point is different from the solid fuel burner 5-5 according to the fourth embodiment. However, the tip position X3 of the seal air introduction plate 40 does not protrude inward from the inner peripheral surface of the water wall 19 of the fireplace 2.
 第5実施形態によれば、シール空気導入板40の先端位置X3がガイドスリーブ20の先端位置X2よりも若干、火炉2の側にあるため、二次空気14および三次空気15の径方向外側への広がりがより抑えられるため、第4実施形態より還元炎領域50aを確実に狭くでき、固体燃料の未燃分やCOの低減効果がより一層高まる。 According to the fifth embodiment, since the tip position X3 of the seal air introduction plate 40 is slightly closer to the fireplace 2 than the tip position X2 of the guide sleeve 20, the secondary air 14 and the tertiary air 15 are radially outward. Since the spread of the fuel is further suppressed, the reducing flame region 50a can be surely narrowed as compared with the fourth embodiment, and the effect of reducing the unburned content and CO of the solid fuel is further enhanced.
 次に、本発明の第2~5実施形態の変形例に係りガイドスリーブ20を複数有する固体燃料バーナ5-7の例について説明する。図12は本例の固体燃料バーナ5-7の概略図である。なお、ガイドスリーブ20が1つの場合と同一の構成については同一符号を付して説明を省略する。図12に示すように、本例の固体燃料バーナ5-7は、第2~5実施形態に係る固体燃料バーナ5-3の構成に加えて、ガイドスリーブ20を径方向に複数(例えば2つ)設けた点に特徴がある。なお、ガイドスリーブ20の先端位置X2およびシール空気導入板40の先端位置X3は軸方向において略同じである。また、図12のシール空気導入構造は第2実施形態(図6参照)をベースとしている。 Next, an example of a solid fuel burner 5-7 having a plurality of guide sleeves 20 will be described according to a modified example of the second to fifth embodiments of the present invention. FIG. 12 is a schematic view of the solid fuel burner 5-7 of this example. The same configuration as in the case of one guide sleeve 20 is designated by the same reference numerals and the description thereof will be omitted. As shown in FIG. 12, the solid fuel burner 5-7 of this example has a plurality of guide sleeves 20 in the radial direction (for example, two) in addition to the configuration of the solid fuel burner 5-3 according to the second to fifth embodiments. ) The feature is that it is provided. The tip position X2 of the guide sleeve 20 and the tip position X3 of the seal air introduction plate 40 are substantially the same in the axial direction. The sealed air introduction structure of FIG. 12 is based on the second embodiment (see FIG. 6).
 本例によれば、ガイドスリーブ20が径方向に複数設けられているため、例えば、三次空気ノズル12出口部の径方向の幅が大きい場合(即ち、二次空気流路11aと三次空気流路12aとを隔てる隔壁の先端部とバーナスロート28との間隔が大きい場合)に、三次空気15の流れ方向を確実に規定することが可能となる。その結果、ガイドスリーブ20により所定の角度θ1で確実に三次空気15を火炉2内に供給でき、還元炎領域50aを確実に狭くでき、ガイドスリーブ20が1つの場合に比べ固体燃料の未燃分やCOの低減効果がより確実となる。 According to this example, since a plurality of guide sleeves 20 are provided in the radial direction, for example, when the width of the outlet portion of the tertiary air nozzle 12 in the radial direction is large (that is, the secondary air flow path 11a and the tertiary air flow path 11a). The flow direction of the tertiary air 15 can be reliably defined at (when the distance between the tip of the partition wall separating the 12a and the burner throat 28 is large). As a result, the guide sleeve 20 can surely supply the tertiary air 15 into the furnace 2 at a predetermined angle θ1, the reducing flame region 50a can be surely narrowed, and the unburned portion of the solid fuel as compared with the case where the guide sleeve 20 is one. And CO reduction effect becomes more certain.
[第6実施形態]
 次に、本発明の第6実施形態に係る固体燃料バーナ5-8について説明する。図13は第6実施形態に係る固体燃料バーナ5-8の概略図である。なお、第1~第5実施形態と同一構成については同一符号を付して説明を省略する。図13に示すように、第6実施形態に係る固体燃料バーナ5-8は、第2実施形態に係る固体燃料バーナ5-3の構成に加えて、シール空気導入板40とバーナスロート28との間に、シール空気の偏流を抑制するためのシール空気偏流抑制板(シール空気偏流抑制部材)48がさらに設けられている点に特徴がある。このシール空気偏流抑制板48は、例えば、多数の孔が設けられたパンチングプレートや、多数のスリットが設けられたプレートで構成される。
[Sixth Embodiment]
Next, the solid fuel burner 5-8 according to the sixth embodiment of the present invention will be described. FIG. 13 is a schematic view of the solid fuel burner 5-8 according to the sixth embodiment. The same configurations as those of the first to fifth embodiments are designated by the same reference numerals and the description thereof will be omitted. As shown in FIG. 13, the solid fuel burner 5-8 according to the sixth embodiment includes the seal air introduction plate 40 and the burner throat 28 in addition to the configuration of the solid fuel burner 5-3 according to the second embodiment. A feature is that a seal air drift suppression plate (seal air drift suppression member) 48 for suppressing the drift of the seal air is further provided between them. The seal air drift suppression plate 48 is composed of, for example, a punching plate provided with a large number of holes and a plate provided with a large number of slits.
 シール空気偏流抑制板48を設けることにより、シール空気導入板40の径方向外側に導入されたシール空気は、均一な流れとなって火炉2内に供給されるため、循環流52の形成を防止して、バーナスロート28近辺の灰の付着を防止できる。また、シール空気偏流抑制板48を設けることで、シール空気偏向板42を設ける必要がなくなる。つまり、シール空気偏流抑制板48は、第4及び第5実施形態にて用いられるシール空気偏向板42と代替可能な部材である。 By providing the seal air drift suppression plate 48, the seal air introduced to the outside in the radial direction of the seal air introduction plate 40 becomes a uniform flow and is supplied into the furnace 2, so that the formation of the circulation flow 52 is prevented. As a result, the adhesion of ash in the vicinity of the burner throat 28 can be prevented. Further, by providing the seal air drift suppression plate 48, it is not necessary to provide the seal air deflection plate 42. That is, the seal air drift suppression plate 48 is a member that can replace the seal air deflection plate 42 used in the fourth and fifth embodiments.
 なお、本発明は上記した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の変形が可能であり、特許請求の範囲に記載された技術思想に含まれる技術的事項の全てが本発明の対象となる。前記実施形態は、好適な例を示したものであるが、当業者ならば、本明細書に開示の内容から、各種の代替例、修正例、変形例あるいは改良例を実現することができ、これらは添付の特許請求の範囲に記載された技術的範囲に含まれる。 The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention, and all the technical matters included in the technical idea described in the claims are all. It is the subject of the present invention. Although the above-described embodiment shows a suitable example, those skilled in the art can realize various alternative examples, modifications, modifications or improvements from the contents disclosed in the present specification. These are included in the technical scope described in the appended claims.
 例えば、シール空気導入板40とシール空気偏向板42とを備え、シール空気誘導円筒部44を設けない構成としても良い。また、第1の角度θ1と第3の角度θ3とが略同一の構成を説明したが、10度~40度の範囲内であれば、両者は必ずしも同一の角度でなくて良い。 For example, the seal air introduction plate 40 and the seal air deflection plate 42 may be provided, and the seal air induction cylindrical portion 44 may not be provided. Further, although the configuration in which the first angle θ1 and the third angle θ3 are substantially the same has been described, they do not necessarily have to be the same angle as long as they are within the range of 10 degrees to 40 degrees.
 1 ボイラ装置
 2 火炉
 5-1~10 固体燃料バーナ
 6 スペーサ
 7 サポート
 10 燃料ノズル(固体燃料ノズル)
 11 二次空気ノズル
 12 三次空気ノズル
 13 一次空気(混合流体)
 14 二次空気
 15 三次空気
 19 水壁(壁部)
 20 ガイドスリーブ(三次空気案内部材)
 23 保炎器
 28 バーナスロート
 34 案内リング(二次空気案内部材)
 40 シール空気導入板(シール空気導入部材)
 42 シール空気偏向板(シール空気偏向部材)
 44 シール空気誘導円筒部(シール空気誘導部材)
 48 シール空気偏流抑制板(シール空気偏流抑制部材)
 50a,50b 還元炎領域
 60 縮流形成部材
 C バーナ中心軸
1 Boiler device 2 Fireplace 5-1 to 10 Solid fuel burner 6 Spacer 7 Support 10 Fuel nozzle (solid fuel nozzle)
11 Secondary air nozzle 12 Secondary air nozzle 13 Primary air (mixed fluid)
14 Secondary air 15 Tertiary air 19 Water wall (wall)
20 Guide sleeve (tertiary air guide member)
23 Flame holder 28 Burna throat 34 Guide ring (secondary air guide member)
40 Seal air introduction plate (seal air introduction member)
42 Seal air deflector (seal air deflector)
44 Seal air induction cylinder (seal air induction member)
48 Seal air drift suppression plate (seal air drift suppression member)
50a, 50b Reduction flame region 60 Condensation forming member C Burner central axis

Claims (11)

  1.  火炉の壁部に穿設されたバーナスロートに挿入される固体燃料バーナであって、
     固体燃料と一次空気との混合流体を噴出する固体燃料ノズルと、
     前記固体燃料ノズルの外側に前記固体燃料ノズルと同心円状に設けられ、二次空気を噴出する二次空気ノズルと、
     前記二次空気ノズルの外側に前記二次空気ノズルと同心円状に設けられ、三次空気を噴出する三次空気ノズルと、
     前記固体燃料ノズルの先端外周部に位置して、二次空気の流れを径方向の外側に案内する二次空気案内部材と、
     前記三次空気ノズルの先端部に位置して、三次空気の流れを前記固体燃料バーナの中心軸に対して第1の角度で径方向の外側に案内する1つ以上の三次空気案内部材と、を備えた固体燃料バーナにおいて、
     二次空気の流れ方向に対して、前記二次空気案内部材の上流側に配置され、二次空気の流れる流路の断面積を狭くする縮流形成部材を備え、
     前記二次空気案内部材の外径は、前記二次空気ノズルの外周壁の内径より小さく形成され、
     前記固体燃料バーナの軸方向における前記三次空気案内部材の先端位置は、前記二次空気案内部材の先端位置より前記火炉側であり、
     前記固体燃料ノズル、前記二次空気案内部材および前記縮流形成部材が、一体的に前記バーナスロートから引き抜き可能に構成される
     ことを特徴とする固体燃料バーナ。
    A solid fuel burner that is inserted into a burner throat drilled in the wall of a fireplace.
    A solid fuel nozzle that ejects a mixed fluid of solid fuel and primary air,
    A secondary air nozzle provided on the outside of the solid fuel nozzle concentrically with the solid fuel nozzle and ejecting secondary air,
    A tertiary air nozzle, which is provided on the outside of the secondary air nozzle concentrically with the secondary air nozzle and ejects tertiary air,
    A secondary air guidance member located on the outer peripheral portion of the tip of the solid fuel nozzle and guiding the flow of secondary air outward in the radial direction.
    One or more tertiary air guide members located at the tip of the tertiary air nozzle and guiding the flow of tertiary air radially outward at a first angle with respect to the central axis of the solid fuel burner. In the equipped solid fuel burner
    A contraction forming member is provided on the upstream side of the secondary air guidance member with respect to the flow direction of the secondary air and narrows the cross-sectional area of the flow path through which the secondary air flows.
    The outer diameter of the secondary air guide member is formed to be smaller than the inner diameter of the outer peripheral wall of the secondary air nozzle.
    The tip position of the tertiary air guide member in the axial direction of the solid fuel burner is closer to the fireplace than the tip position of the secondary air guide member.
    A solid fuel burner characterized in that the solid fuel nozzle, the secondary air guide member, and the contraction forming member are integrally configured to be pullable from the burner throat.
  2.  請求項1に記載の固体燃料バーナにおいて、
     前記二次空気ノズルの外周壁の内径をL1とし、前記二次空気案内部材の外径をL2とし、前記縮流形成部材の内径をL3とした場合に、
     L1>L2>L3
     の関係にあることを特徴とする固体燃料バーナ。
    In the solid fuel burner according to claim 1,
    When the inner diameter of the outer peripheral wall of the secondary air nozzle is L1, the outer diameter of the secondary air guide member is L2, and the inner diameter of the contraction forming member is L3,
    L1>L2> L3
    A solid fuel burner characterized by having a relationship of.
  3.  請求項1または2に記載の固体燃料バーナにおいて、
     前記バーナスロートは、その内周面が前記中心軸に対して第2の角度で傾斜するように前記火炉の壁部のバーナ側から火炉側に向かって拡径して形成され、
     前記第1の角度は、前記第2の角度と略同一で、かつ、前記中心軸に対して10度~40度の範囲内に設定されていることを特徴とする固体燃料バーナ。
    In the solid fuel burner according to claim 1 or 2.
    The burner throat is formed by increasing the diameter from the burner side to the furnace side of the wall portion of the furnace so that the inner peripheral surface thereof is inclined at a second angle with respect to the central axis.
    The solid fuel burner, wherein the first angle is substantially the same as the second angle and is set within a range of 10 to 40 degrees with respect to the central axis.
  4.  請求項3に記載の固体燃料バーナにおいて、
     より好ましくは、前記第1の角度は、前記中心軸に対して20度~30度の範囲内に設定されていることを特徴とする固体燃料バーナ。
    In the solid fuel burner according to claim 3.
    More preferably, the solid fuel burner is characterized in that the first angle is set within a range of 20 to 30 degrees with respect to the central axis.
  5.  請求項1に記載の固体燃料バーナにおいて、
     前記バーナスロートは、その内周面が前記中心軸に対して第2の角度で傾斜するように前記火炉の壁部のバーナ側から火炉側に向かって拡径して形成され、
     前記第1の角度は、前記中心軸に対して10度~40度の範囲内に設定され、
     前記第2の角度は、前記第1の角度より大きくなっており、
     前記三次空気案内部材と前記バーナスロートとの間に、三次空気の一部をシール空気として導入するシール空気導入部材がさらに設けられ、
     前記シール空気導入部材は、前記中心軸に対して第3の角度で径方向の外側に傾斜していることを特徴とする固体燃料バーナ。
    In the solid fuel burner according to claim 1,
    The burner throat is formed by increasing the diameter from the burner side to the furnace side of the wall portion of the furnace so that the inner peripheral surface thereof is inclined at a second angle with respect to the central axis.
    The first angle is set within the range of 10 to 40 degrees with respect to the central axis.
    The second angle is larger than the first angle.
    A seal air introduction member for introducing a part of the tertiary air as seal air is further provided between the tertiary air guide member and the burner throat.
    The seal air introduction member is a solid fuel burner characterized in that it is inclined outward in the radial direction at a third angle with respect to the central axis.
  6.  請求項5に記載の固体燃料バーナにおいて、
     前記シール空気導入部材における三次空気の流れの上流側の端部に、前記シール空気を前記シール空気導入部材に誘導するためのシール空気誘導部材がさらに設けられていることを特徴とする固体燃料バーナ。
    In the solid fuel burner according to claim 5.
    A solid fuel burner characterized in that a seal air guiding member for guiding the sealing air to the sealing air introducing member is further provided at an upstream end portion of the tertiary air flow in the sealing air introducing member. ..
  7.  請求項5または6に記載の固体燃料バーナにおいて、
     前記シール空気導入部材の先端部に、前記シール空気を径方向の外側に偏向するためのシール空気偏向部材がさらに設けられていることを特徴とする固体燃料バーナ。
    In the solid fuel burner according to claim 5 or 6.
    A solid fuel burner characterized in that a seal air deflection member for deflecting the seal air to the outside in the radial direction is further provided at a tip end portion of the seal air introduction member.
  8.  請求項5~7の何れか1項に記載の固体燃料バーナにおいて、
     前記固体燃料バーナの軸方向における前記シール空気導入部材の先端位置は、前記三次空気案内部材の先端位置と同一または前記三次空気案内部材の先端位置より火炉側であることを特徴とする固体燃料バーナ。
    In the solid fuel burner according to any one of claims 5 to 7.
    The tip position of the seal air introduction member in the axial direction of the solid fuel burner is the same as the tip position of the tertiary air guide member or is closer to the furnace side than the tip position of the tertiary air guide member. ..
  9.  請求項5~8の何れか1項に記載の固体燃料バーナにおいて、
     前記第3の角度は、前記第1の角度と略同一に設定されていることを特徴とする固体燃料バーナ。
    In the solid fuel burner according to any one of claims 5 to 8.
    The solid fuel burner, characterized in that the third angle is set substantially the same as the first angle.
  10.  請求項5または6に記載の固体燃料バーナにおいて、
     前記シール空気導入部材と前記バーナスロートとの間に、前記シール空気の偏流を抑制するためのシール空気偏流抑制部材がさらに設けられていることを特徴とする固体燃料バーナ。
    In the solid fuel burner according to claim 5 or 6.
    A solid fuel burner, characterized in that a seal air drift suppression member for suppressing the drift of the seal air is further provided between the seal air introduction member and the burner throat.
  11.  請求項10に記載の固体燃料バーナにおいて、
     前記シール空気偏流抑制部材は、多数の孔やスリットが形成されたプレートであることを特徴とする固体燃料バーナ。
    In the solid fuel burner according to claim 10.
    The seal air drift suppression member is a solid fuel burner characterized by being a plate having a large number of holes and slits formed therein.
PCT/JP2019/019911 2019-05-13 2019-05-20 Solid fuel burner WO2020234965A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2019/019911 WO2020234965A1 (en) 2019-05-20 2019-05-20 Solid fuel burner
JP2020543129A JP6792102B1 (en) 2019-05-13 2020-04-23 Solid fuel burner, boiler device, solid fuel burner nozzle unit, and guide vane unit
AU2020276989A AU2020276989B2 (en) 2019-05-13 2020-04-23 Solid fuel burner, boiler device, nozzle unit of solid fuel burner, and guide vane unit
PCT/JP2020/017527 WO2020230578A1 (en) 2019-05-13 2020-04-23 Solid fuel burner, boiler device, nozzle unit of solid fuel burner, and guide vane unit
US16/973,891 US11692705B2 (en) 2019-05-13 2020-04-23 Solid fuel burner, boiler equipment, nozzle unit for solid fuel burner, and guide vane unit
CN202080004303.4A CN112513526A (en) 2019-05-13 2020-04-23 Solid fuel burner, boiler device, nozzle unit of solid fuel burner and guide vane unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/019911 WO2020234965A1 (en) 2019-05-20 2019-05-20 Solid fuel burner

Publications (1)

Publication Number Publication Date
WO2020234965A1 true WO2020234965A1 (en) 2020-11-26

Family

ID=73458760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019911 WO2020234965A1 (en) 2019-05-13 2019-05-20 Solid fuel burner

Country Status (1)

Country Link
WO (1) WO2020234965A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202204A (en) * 1984-03-27 1985-10-12 Hitachi Ltd Pulverized coal firing burner and operating method thereof
JPS60226609A (en) * 1984-04-23 1985-11-11 Babcock Hitachi Kk Combustion device for coal
JPH10274405A (en) * 1997-03-31 1998-10-13 Hitachi Ltd Pulverized coal combustion burner and combustion method thereof
JPH1144411A (en) * 1997-07-24 1999-02-16 Hitachi Ltd Pulverized coal combustion burner
JP2000130710A (en) * 1998-10-27 2000-05-12 Hitachi Ltd Pulverized coal combustion burner
JP2006162208A (en) * 2004-12-10 2006-06-22 Babcock Hitachi Kk Burner, and its operating method
WO2014027609A1 (en) * 2012-08-14 2014-02-20 バブコック日立株式会社 Solid-fuel burner
JP2018028418A (en) * 2016-08-19 2018-02-22 三菱日立パワーシステムズ株式会社 Solid fuel burner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202204A (en) * 1984-03-27 1985-10-12 Hitachi Ltd Pulverized coal firing burner and operating method thereof
JPS60226609A (en) * 1984-04-23 1985-11-11 Babcock Hitachi Kk Combustion device for coal
JPH10274405A (en) * 1997-03-31 1998-10-13 Hitachi Ltd Pulverized coal combustion burner and combustion method thereof
JPH1144411A (en) * 1997-07-24 1999-02-16 Hitachi Ltd Pulverized coal combustion burner
JP2000130710A (en) * 1998-10-27 2000-05-12 Hitachi Ltd Pulverized coal combustion burner
JP2006162208A (en) * 2004-12-10 2006-06-22 Babcock Hitachi Kk Burner, and its operating method
WO2014027609A1 (en) * 2012-08-14 2014-02-20 バブコック日立株式会社 Solid-fuel burner
JP2018028418A (en) * 2016-08-19 2018-02-22 三菱日立パワーシステムズ株式会社 Solid fuel burner

Similar Documents

Publication Publication Date Title
KR100309667B1 (en) Pulverized coal burning burner
US7553153B2 (en) Burner and combustion method for solid fuels
JP5188238B2 (en) Combustion apparatus and burner combustion method
JP2544662B2 (en) Burner
EP2273193A1 (en) Solid fuel burner, combustion apparatus using solid fuel burner, and method of operating the combustion apparatus
WO2018034286A1 (en) Solid fuel burner
JP5794419B2 (en) Solid fuel burner
JP5082505B2 (en) boiler
JP2000130710A (en) Pulverized coal combustion burner
JP6871422B2 (en) Flame holders for solid fuel burners and solid fuel burners
JP6792102B1 (en) Solid fuel burner, boiler device, solid fuel burner nozzle unit, and guide vane unit
WO2020234965A1 (en) Solid fuel burner
WO2020230245A1 (en) Solid fuel burner, boiler device, and nozzle unit for solid fuel burner
JP4386279B2 (en) Burner operation
JP6640591B2 (en) Combustion burner, combustion device and boiler
WO2023127121A1 (en) Cyclone burner, cyclone burner unit, and modification method for cyclone burner
JP2007071527A (en) Boiler
WO2022024386A1 (en) Cyclone burner, nozzle unit, and cyclone burner alteration method
JP6729045B2 (en) Combustion gas burner and by-product gas burner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP