[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4216571B2 - INORGANIC MOLDED BODY AND PROCESS FOR PRODUCING THE SAME - Google Patents

INORGANIC MOLDED BODY AND PROCESS FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP4216571B2
JP4216571B2 JP2002336368A JP2002336368A JP4216571B2 JP 4216571 B2 JP4216571 B2 JP 4216571B2 JP 2002336368 A JP2002336368 A JP 2002336368A JP 2002336368 A JP2002336368 A JP 2002336368A JP 4216571 B2 JP4216571 B2 JP 4216571B2
Authority
JP
Japan
Prior art keywords
inorganic
middle layer
hydrophilic resin
molded body
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002336368A
Other languages
Japanese (ja)
Other versions
JP2004167837A (en
Inventor
滋 森下
敏幸 山脇
聡 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2002336368A priority Critical patent/JP4216571B2/en
Publication of JP2004167837A publication Critical patent/JP2004167837A/en
Application granted granted Critical
Publication of JP4216571B2 publication Critical patent/JP4216571B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Laminated Bodies (AREA)
  • Producing Shaped Articles From Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、無機質構成要素と、親水性樹脂と、シリカ粉状体、特に、非晶質シリカ粉状体とを混合,成形し、加熱硬化させて得られる無機質成形体およびその製造方法に関する。
【0002】
【従来の技術と発明が解決しようとする課題】
従来、ガラス繊維等の無機繊維にセメント等の無機結合材を用いて成形,硬化させた無機質成形体があるが、硬くて加工し難く、かつ、重いという欠点があった。一方、無機繊維や無機粉状体に有機結合材を用いた無機質成形体は軽量で加工性に優れるが、所望の強度を確保しようとすると、有機結合材の添加量を高める必要があった。このため、防火上の規格から有機結合材の添加量を減らすとともに、強度を向上させる手法が望まれている。そして、有機結合材の添加量を増やさずに強度を向上させる方法として、有機シリコーンモノマーを添加し、無機成分と有機成分とを強固に連結することにより、強度を向上させる方法がある(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開平8−281851号公報
【0004】
しかし、この手法によっても2割程度の強度向上が得られるだけであり、結合材の添加量を大巾に減らすと、所望の強度が得られないという問題点があった。
【0005】
本発明は、前記問題点に鑑み、有機結合材の添加量を増やさず、少量の有機結合材で所望の強度を確保できる無機質成形体およびその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、前記課題を解決すべく、鋭意研究の結果、親水性樹脂に微細な非晶質シリカ粉状体を添加すると、強度が向上することを知見し、この知見に基づいて完成した。
すなわち、本発明にかかる無機質成形体は、無機質構成要素と、親水性樹脂と、酸性で平均粒径1μmの非晶質シリカ粉状体とを必須成分とするとともに、水を噴霧しながら均 一に混合して得た混合物を成形し、加熱,硬化させたものである。
【0007】
また、本発明にかかる無機質成形体は、無機繊維、無機粉状体および親水性樹脂を必須成分とするスラリーから湿式抄造して得た湿潤マットを表裏層とし、無機発泡体および親水性樹脂を必須成分とし、かつ、水を噴霧しながら均一に混合して得た中層用混合物を前記表裏層用湿潤マット間に配置して中層とし、加熱,圧締して一体化した無機質成形体において、前記中層用混合物に、酸性で平均粒径1μmの非晶質シリカ粉状体を添加したことを特徴とする構成であってもよい。
【0008】
また、本発明にかかる無機質成形体の成形方法は、無機繊維、無機粉状体および親水性樹脂を必須成分とするスラリーから湿式抄造して少なくとも2枚の表裏層用湿潤マットを得、無機発泡体および親水性樹脂を必須成分とし、かつ、水を噴霧しながら均一に混合して得た中層用混合物を前記表裏層用湿潤マット間に均一な厚さに堆積させて中層とした後、熱圧工程および乾燥工程を経て一体化する無機質成形体の製造方法において、前記中層用混合物に、酸性で平均粒径1μmの非晶質シリカ粉状体を添加したことを特徴とする方法であってもよい。
【0009】
【発明の実施の形態】
本発明にかかる第1実施形態は3層構造の無機質成形体に適用した場合である。
すなわち、無機繊維、無機粉状体および親水性樹脂を必須成分とするスラリーから湿式抄造して得た湿潤マットを表裏層とし、無機発泡体および親水性樹脂を必須成分とする中層用混合物を前記表裏層用湿潤マット間に配置して中層とし、加熱,圧締して一体化した無機質成形体において、前記表裏層および中層のうち、少なくともいずれか一層に平均粒径6μm以下の非晶質シリカ粉状体を添加したものである。
【0010】
無機繊維としては、例えば、ロックウール,スラグウール,グラスウール,ミネラルウール,ニッケルウール、および、ガラス繊維等を挙げることができ、これらは単独もしくは2種以上組み合せて使用できる。無機繊維の含有量は、表裏層全体の20〜60重量%とするのが好ましい。20重量%未満であると、所望の曲げ強度が得られないからであり、60重量%を越えると、相対的に無機粉状体の割合が減少するために所望の表面硬度が確保できないからである。
【0011】
なお、必要に応じ、無機繊維だけでなくポリプロピレン、ポリエステル、ビニロン等の合成繊維、麻、亜麻等の植物繊維、および、パルプ等の木質繊維を補助繊維として添加してもよい。
【0012】
無機粉状体は、防火性を維持しつつ、硬度を高めてネジ止め性能を高めるためであり、例えば、炭酸カルシウム,水酸化アルミニウム,スラグ等を挙げることができ、これらは単独あるいは2種以上組み合せて使用できる。無機粉状体の含有量は、表裏層全体の40〜70重量%とするのが好ましい。40重量%未満であると、所望の表面硬度が得られず、70重量%を越えると、強度を付与する無機繊維の割合が少なくなり、所望の曲げ強度が得られないからである。
【0013】
親水性樹脂としては、前記無機繊維および無機粉状体を相互に結合一体化して最終的な実用強度を発現するために添加されるものであり、いも類、米麦類、コーンやタピオカ類等の澱粉含有物から得た澱粉、変性澱粉等の天然高分子物質、さらに、ポリビニールアルコール、ポリアクリル酸など水酸基またはカルボシキル基をもったポリマーなどが挙げられる。そして、表裏層における親水性樹脂の添加量は、表裏層全体の2重量%から20重量%とするのが好ましい。2重量%未満であると、十分な強度が得られないからであり、20重量%を越えると、防火性が損なわれるからである。
【0014】
中層を構成する無機発泡体は、軽量化を図るために添加されるものであり、例えば、パーライト,黒曜石発泡体,シラス発泡体,ガラス発泡体等が挙げられる。そして、中層における無機発泡体の添加量は、中層全体の25重量%から90重量%とするのが好ましい。25重量%未満であると、所望の重量軽減効果が得られないからであり、90重量%を越えると、結合剤および繊維等の添加量が相対的に少なくなり、所望の圧縮強度が得られないからである。なお、中層には、必要に応じ、表裏層で使用する前記無機粉状体を添加してもよい。中層を密にし、釘保持力を高めることができるからである。
【0015】
中層を形成する親水性樹脂は、無機発泡体を相互に、あるいは、無機発泡体と他の無機質構成要素、例えば、無機繊維とを結合一体化させて強度を高めるために添加されるものである。そして、中層を形成する親水性樹脂は、中層全体の2重量%から20重量%とするのが好ましい。2重量%未満であると、十分な強度が得られないからであり、20重量%を越えると、防火性が損なわれるからである。
【0016】
非晶質シリカ粉状体としては、シリカヒューム、ガラス粉、シラス等の火山性ガラス粉、ホワイトカーボン等が挙げられる。そして、前記非晶質シリカ粉状体は平均粒径6μm以下、特に、3μm以下が好適である。前記シリカ粉状体が平均粒径6μmを越えると、十分な強度が得られないからである。また、非晶質シリカ粉状体は中性に限らず、アルカリ性および酸性であってもよく、特に、親水性樹脂に応じて強アルカリ性あるいは強酸性のものを使用してもよい。
そして、表裏層および中層における非晶質シリカ粉状体の添加量は、表裏層および中層全体の1重量%から80重量%とするのが好ましい。1重量%未満であると、十分な強度が得られないからであり、80重量%を越えると、結合剤や無機質構成要素等の添加量が相対的に少なくなり、所望の成形体が得られないからである。
【0017】
次に、本実施形態にかかる無機質成形体の製造方法の一例を説明する。
無機繊維、無機粉状体、親水性樹脂等を水中に投入,攪拌し、さらに、凝集剤およびその他の添加剤を加えることにより、固形分が数%のスラリーを得、これを長網式または丸網式等の抄造機に導いて表裏層となる湿潤マットを得る。
【0018】
一方、無機発泡体、無機繊維、無機粉状体および親水性樹脂に水を噴霧しながら均一に混合して中層用混合物を得る。そして、これを下層となる前記湿潤マットの片面に散布して一様に堆積させ、その上に上層となる前記湿潤マットを重ねて3層構造の積層体を得る。ついで、前記積層体を80℃〜180℃に加熱された熱圧プレスでプレスした後、100℃〜250℃の熱風ドライヤーで乾燥し、板状無機質成形体を得る。
【0019】
なお、前記熱圧プレスは80℃〜180℃に加熱されたスチール製ベルトからなる連続プレスで行ってもよい。また、本発明の表裏層は乾式製法で製造してもよく、中層は湿式製法で実施してもよい。
【0020】
本発明にかかる第2実施形態は単層の無機質成形体であり、無機質構成要素と、親水性樹脂と、平均粒径6μm以下の非晶質シリカ粉状体とを必須成分とする混合物を成形し、加熱,硬化させたものである。
【0021】
無機質構成要素としては、前述の第1実施形態で使用される無機繊維、無機粉状体、無機発泡体等が挙げられ、これら単体あるいは2種以上組み合せて使用できる。
【0022】
親水性樹脂は、前述の無機構質成要素を相互に結合一体化して最終的な実用強度を発現するために添加されるものである。そして、親水性樹脂は、無機質成形体全体の2重量%から20重量%とするのが好ましい。2重量%未満であると、十分な強度が得られないからであり、20重量%を越えると、防火性が損なわれるからである。
【0023】
そして、非晶質のシリカ粉状体の添加量は無機質成形体全体の5ないし80重量%であることが好ましい。5重量%未満であると、十分な強度が得られないからであり、80重量%を越えると、親水性樹脂や無機質構成要素の添加量が相対的に少なくなり、所望の強度が得られないからである。
【0024】
【実施例】
(実施例1〜4)
図1の図表Aに示す割合でシラス発泡体(平均粒径250μm)、親水性樹脂としてポリビニルアルコール樹脂、無機骨材として非晶質シリカ粉状体であるシリカヒューム(pH=3.5、平均粒径1μm)をそれぞれ混合して混合物を得た。そして、前記混合物100重量部に対して水50重量部を加えて均一に混練した後、所定の型枠に入れ、厚さ5mm、密度0.55g/cmに圧縮成形した。ついで、温度180℃で1時間乾燥し、試験用サンプルを得た。得られた試験用サンプルを平面引張り試験用治具に貼り合わせ、剥離強度を測定した。測定結果を図1の図表Aに示すとともに、図2にグラフ化した。
【0025】
(実施例5〜8)
図1の図表Bに示す割合でシラス発泡体(平均粒径250μm)、親水性樹脂としてポリビニルアルコール樹脂、無機骨材として非晶質シリカ粉状体であるシリカヒューム(pH=8、平均粒径0.5μm)をそれぞれ混合して混合物を得た。そして、他は前述の実施例1と同様に処理して試験用サンプルを得、実施例1と同一の条件で剥離強度を測定した。測定結果を図1の図表Bに示すとともに、図2にグラフ化した。
【0026】
(比較例1〜4)
図1の図表Cに示す割合でシラス発泡体(平均粒径250μm)、親水性樹脂としてポリビニルアルコール樹脂、無機骨材として結晶シリカ(平均粒径1μm)をそれぞれ混合して混合物を得た。そして、他は前述の実施例1と同様に処理して試験用サンプルを得、実施例1と同一の条件で剥離強度を測定した。測定結果を図1の図表Cに示すとともに、図2にグラフ化した。
【0027】
図1および図2から明かなように、実施例1〜8の全ての剥離強度が比較例1〜4のいずれの剥離強度よりも同等以上であることから、結晶シリカを添加するよりも非晶質シリカ粉状体を添加すれば、剥離強度が向上することを確認できた。特に、非晶質シリカ粉状体の酸性度が高いと、その添加量が増大するにつれて剥離強度が著しく大きくなる傾向にあることも判明した。
【0028】
(実施例9〜12)
図3の図表Aに示す割合でシラス発泡体(平均粒径250μm)、親水性樹脂としてスターチ、無機骨材として非晶質シリカ粉状体であるシリカヒューム(pH=3.5、平均粒径1μm)をそれぞれ混合して混合物を得た。そして、他は前述の実施例1と同様に処理して試験用サンプルを得、実施例1と同一の条件で剥離強度を測定した。測定結果を図3の図表Aに示すとともに、図4にグラフ化した。
【0029】
(実施例13〜16)
図3の図表Bに示す割合でシラス発泡体(平均粒径250μm)、親水性樹脂としてスターチ、無機骨材として非晶質シリカ粉状体であるシリカヒューム(pH=8、平均粒径0.5μm)をそれぞれ混合して混合物を得た。そして、他は前述の実施例1と同様に処理して試験用サンプルを得、実施例1と同一の条件で剥離強度を測定した。測定結果を図3の図表Bに示すとともに、図4にグラフ化した。
【0030】
(比較例5〜8)
図3の図表Cに示す割合でシラス発泡体(平均粒径250μm)、親水性樹脂としてスターチ、無機骨材として結晶シリカ(平均粒径1μm)をそれぞれ混合して混合物を得た。そして、他は前述の実施例1と同様に処理して試験用サンプルを得、実施例1と同一の条件で剥離強度を測定した。測定結果を図3の図表Cに示すとともに、図4にグラフ化した。
【0031】
図3および図4から明かなように、実施例9〜16の全ての剥離強度が比較例5〜8のいずれの剥離強度よりも同等以上であることから、結晶シリカ粉状体を添加するよりも非晶質シリカ粉状体を添加すれば、剥離強度が向上することを確認できた。特に、非晶質シリカ粉状体の酸性度が高いと、その添加量が増大するにつれて剥離強度が著しく大きくなる傾向にあることも判明した。
【0032】
【発明の効果】
本発明によれば、親水性樹脂に微細な非晶質シリカ粉状体を添加することにより、有機結合材の添加量を増やすことなく、強度の大きい無機質成形体が得られるという効果がある。
【図面の簡単な説明】
【図1】 本発明にかかる実施例および比較例を示す図表である。
【図2】 図1の図表をグラフ化したグラフ図である。
【図3】 本発明にかかる他の実施例および比較例を示す図表である。
【図4】 図2の図表をグラフ化したグラフ図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inorganic molded body obtained by mixing, molding, heat-curing an inorganic component, a hydrophilic resin, and a silica powder, particularly an amorphous silica powder, and a method for producing the same.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, there are inorganic molded bodies formed and cured using inorganic binders such as cement on inorganic fibers such as glass fibers, but they have the disadvantage of being hard and difficult to process and heavy. On the other hand, an inorganic molded body using an organic binder as an inorganic fiber or an inorganic powder is lightweight and excellent in workability. However, in order to secure a desired strength, it is necessary to increase the addition amount of the organic binder. For this reason, there is a demand for a technique for reducing the addition amount of the organic binder and improving the strength from the standards for fire prevention. As a method for improving the strength without increasing the amount of the organic binder added, there is a method for improving the strength by adding an organic silicone monomer and firmly connecting the inorganic component and the organic component (for example, (See Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 8-281851
However, this method can only improve the strength by about 20%, and there is a problem that a desired strength cannot be obtained if the amount of the binder added is greatly reduced.
[0005]
An object of this invention is to provide the inorganic molded object which can ensure desired intensity | strength with a small amount of organic binder, and its manufacturing method, without increasing the addition amount of an organic binder in view of the said problem.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the inventors have found that the addition of a fine amorphous silica powder to a hydrophilic resin improves the strength, and the completion is based on this finding. did.
That is, the inorganic molded product according to the present invention, and an inorganic component, and a hydrophilic resin, with the amorphous silica powder-like material and the essential components of an average particle diameter of 1μm with acidic equalizing one while spraying water The mixture obtained by mixing the above is molded, heated and cured.
[0007]
In addition, the inorganic molded body according to the present invention has a wet mat obtained by wet papermaking from a slurry containing inorganic fibers, an inorganic powder and a hydrophilic resin as essential components, and has an inorganic foam and a hydrophilic resin. as essential components, and a middle layer for mixture obtained by uniformly mixing while spraying water, a middle layer disposed between the wet mat the front and back layers, heating, inorganic molded body integrated with clamping In addition, the structure characterized by having added the amorphous silica powder with an average particle diameter of 1 micrometer to the said middle layer mixture may be sufficient.
[0008]
In addition, the method for forming an inorganic molded body according to the present invention includes wet-making from a slurry containing inorganic fibers, an inorganic powder and a hydrophilic resin as essential components to obtain at least two wet mats for front and back layers, and inorganic foaming. the body and the hydrophilic resin as essential components, and, after the middle for mixture obtained by uniformly mixing while spraying water, wherein the depositing a uniform thickness between the wet mat sides layer and middle layer In the method for producing an inorganic molded body that is integrated through a hot pressing step and a drying step, an acidic amorphous silica powder having an average particle diameter of 1 μm is added to the intermediate layer mixture. There may be.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The first embodiment according to the present invention is applied to an inorganic molded body having a three-layer structure.
That is, a wet mat obtained by wet papermaking from a slurry containing inorganic fibers, an inorganic powder and a hydrophilic resin as essential components is used as the front and back layers, and the middle layer mixture containing the inorganic foam and the hydrophilic resin as essential components In the inorganic molded body that is arranged between the wet mats for the front and back layers as an intermediate layer and is integrated by heating and pressing, amorphous silica having an average particle size of 6 μm or less in at least one of the front and back layers and the intermediate layer A powdery body is added.
[0010]
Examples of inorganic fibers include rock wool, slag wool, glass wool, mineral wool, nickel wool, and glass fiber. These can be used alone or in combination of two or more. The content of inorganic fibers is preferably 20 to 60% by weight of the entire front and back layers. If the amount is less than 20% by weight, the desired bending strength cannot be obtained. If the amount exceeds 60% by weight, the proportion of the inorganic powder is relatively reduced, and the desired surface hardness cannot be ensured. is there.
[0011]
If necessary, not only inorganic fibers but also synthetic fibers such as polypropylene, polyester and vinylon, plant fibers such as hemp and flax, and wood fibers such as pulp may be added as auxiliary fibers.
[0012]
The inorganic powder is for increasing the hardness and the screwing performance while maintaining fire resistance, and examples thereof include calcium carbonate, aluminum hydroxide, slag, and the like. These may be used alone or in combination of two or more. Can be used in combination. The content of the inorganic powder is preferably 40 to 70% by weight of the entire front and back layers. This is because if it is less than 40% by weight, the desired surface hardness cannot be obtained, and if it exceeds 70% by weight, the proportion of inorganic fibers imparting strength decreases and the desired bending strength cannot be obtained.
[0013]
The hydrophilic resin is added to combine and integrate the inorganic fiber and the inorganic powder to express the final practical strength, such as potatoes, rice wheat, corn, tapioca, etc. Examples thereof include natural polymer substances such as starch and modified starch obtained from these starch-containing materials, and polymers having hydroxyl groups or carboxyl groups such as polyvinyl alcohol and polyacrylic acid. And the addition amount of the hydrophilic resin in the front and back layers is preferably 2 to 20% by weight of the entire front and back layers. This is because if it is less than 2% by weight, sufficient strength cannot be obtained, and if it exceeds 20% by weight, fire resistance is impaired.
[0014]
The inorganic foam constituting the middle layer is added to reduce the weight, and examples thereof include perlite, obsidian foam, shirasu foam, and glass foam. And it is preferable that the addition amount of the inorganic foam in a middle layer shall be 25 to 90 weight% of the whole middle layer. If the amount is less than 25% by weight, the desired weight reduction effect cannot be obtained. If the amount exceeds 90% by weight, the amount of binder and fibers added is relatively small, and the desired compressive strength is obtained. Because there is no. In addition, you may add the said inorganic powder body used for a front and back layer to a middle layer as needed. This is because the middle layer can be made dense and the nail holding power can be increased.
[0015]
The hydrophilic resin forming the middle layer is added to increase the strength by combining and integrating the inorganic foam with each other or with the inorganic foam and other inorganic constituent elements such as inorganic fibers. . The hydrophilic resin forming the middle layer is preferably 2% to 20% by weight of the whole middle layer. This is because if it is less than 2% by weight, sufficient strength cannot be obtained, and if it exceeds 20% by weight, fire resistance is impaired.
[0016]
Examples of the amorphous silica powder include silica fume, glass powder, volcanic glass powder such as shirasu, white carbon, and the like. The amorphous silica powder preferably has an average particle size of 6 μm or less, particularly 3 μm or less. This is because if the silica powder exceeds the average particle size of 6 μm, sufficient strength cannot be obtained. Further, the amorphous silica powder is not limited to neutral, and may be alkaline and acidic. In particular, a strongly alkaline or strongly acidic material may be used depending on the hydrophilic resin.
The addition amount of the amorphous silica powder in the front and back layers and the middle layer is preferably 1 to 80% by weight of the whole front and back layers and the middle layer. If the amount is less than 1% by weight, sufficient strength cannot be obtained. If the amount exceeds 80% by weight, the amount of binder, inorganic constituents and the like is relatively reduced, and a desired molded article is obtained. Because there is no.
[0017]
Next, an example of the manufacturing method of the inorganic molded body concerning this embodiment is demonstrated.
Inorganic fibers, inorganic powders, hydrophilic resins, etc. are poured into water and stirred, and further, a flocculant and other additives are added to obtain a slurry with a solid content of several percent, A wet mat that becomes a front and back layer is obtained by guiding it to a paper machine such as a round net type.
[0018]
On the other hand, an inorganic foam, inorganic fiber, inorganic powder and hydrophilic resin are uniformly mixed while spraying water to obtain a middle layer mixture. And this is spread | dispersed on the single side | surface of the said wet mat used as a lower layer, it accumulates uniformly, and the said wet mat used as an upper layer is piled up on it, and the laminated body of a 3 layer structure is obtained. Subsequently, after pressing the said laminated body with the hot-press press heated at 80 to 180 degreeC, it dries with a hot air dryer of 100 to 250 degreeC, and obtains a plate-shaped inorganic molded object.
[0019]
In addition, you may perform the said hot press by the continuous press which consists of a steel belt heated at 80 to 180 degreeC. Moreover, the front and back layers of the present invention may be produced by a dry production method, and the middle layer may be carried out by a wet production method.
[0020]
The second embodiment according to the present invention is a single-layer inorganic molded body, and a mixture comprising an inorganic component, a hydrophilic resin, and an amorphous silica powder having an average particle size of 6 μm or less as essential components is molded. And heated and cured.
[0021]
Examples of the inorganic constituent element include inorganic fibers, inorganic powders, and inorganic foams used in the first embodiment described above, and these can be used alone or in combination of two or more.
[0022]
The hydrophilic resin is added in order to bond and integrate the above-described non-mechanism components to develop final practical strength. And it is preferable that hydrophilic resin is 2 to 20 weight% of the whole inorganic molded object. This is because if it is less than 2% by weight, sufficient strength cannot be obtained, and if it exceeds 20% by weight, fire resistance is impaired.
[0023]
The addition amount of the amorphous silica powder is preferably 5 to 80% by weight of the whole inorganic molded body. If the amount is less than 5% by weight, sufficient strength cannot be obtained. If the amount exceeds 80% by weight, the amount of hydrophilic resin or inorganic constituent added is relatively small, and the desired strength cannot be obtained. Because.
[0024]
【Example】
(Examples 1-4)
Shirasu foam (average particle size 250 μm), silica fume (pH = 3.5, average) as a hydrophilic resin, polyvinyl alcohol resin as an inorganic aggregate, and amorphous silica powder as an inorganic aggregate in the ratio shown in FIG. Each particle size was mixed to obtain a mixture. Then, 50 parts by weight of water was added to 100 parts by weight of the mixture and uniformly kneaded, and then placed in a predetermined mold, and compression molded to a thickness of 5 mm and a density of 0.55 g / cm 3 . Subsequently, it dried at the temperature of 180 degreeC for 1 hour, and the sample for a test was obtained. The obtained test sample was bonded to a flat tensile test jig, and the peel strength was measured. The measurement results are shown in Chart A of FIG. 1 and graphed in FIG.
[0025]
(Examples 5 to 8)
Shirasu foam (average particle size 250 μm), silica fume (pH = 8, average particle size) as an amorphous silica powder as an inorganic aggregate, at a ratio shown in Chart B of FIG. 0.5 μm) were mixed to obtain a mixture. The others were processed in the same manner as in Example 1 to obtain a test sample, and the peel strength was measured under the same conditions as in Example 1. The measurement results are shown in Chart B of FIG. 1 and graphed in FIG.
[0026]
(Comparative Examples 1-4)
Shirasu foam (average particle size 250 μm), polyvinyl alcohol resin as a hydrophilic resin, and crystalline silica (average particle size 1 μm) as an inorganic aggregate were mixed at a ratio shown in FIG. 1 to obtain a mixture. The others were processed in the same manner as in Example 1 to obtain a test sample, and the peel strength was measured under the same conditions as in Example 1. The measurement results are shown in Chart C of FIG. 1 and graphed in FIG.
[0027]
As is clear from FIGS. 1 and 2, since all the peel strengths of Examples 1 to 8 are equal to or higher than any of the peel strengths of Comparative Examples 1 to 4, it is amorphous rather than adding crystalline silica. It was confirmed that the peel strength was improved by adding a porous silica powder. In particular, it has also been found that when the acidity of the amorphous silica powder is high, the peel strength tends to increase remarkably as the addition amount increases.
[0028]
(Examples 9 to 12)
Shirasu foam (average particle size 250 μm), starch as hydrophilic resin, silica fume as amorphous silica powder (pH = 3.5, average particle size) at the ratio shown in Chart A of FIG. 1 μm) were mixed to obtain a mixture. The others were processed in the same manner as in Example 1 to obtain a test sample, and the peel strength was measured under the same conditions as in Example 1. The measurement results are shown in Chart A of FIG. 3 and graphed in FIG.
[0029]
(Examples 13 to 16)
Shirasu foam (average particle size 250 μm), starch as hydrophilic resin, silica fume as amorphous silica powder (pH = 8, average particle size 0. 5) in the ratio shown in Chart B of FIG. 5 μm) were mixed to obtain a mixture. The others were processed in the same manner as in Example 1 to obtain a test sample, and the peel strength was measured under the same conditions as in Example 1. The measurement results are shown in Chart B of FIG. 3 and graphed in FIG.
[0030]
(Comparative Examples 5 to 8)
Shirasu foam (average particle size 250 μm), starch as the hydrophilic resin, and crystalline silica (average particle size 1 μm) as the inorganic aggregate were mixed at the ratio shown in Chart C of FIG. 3 to obtain a mixture. The others were processed in the same manner as in Example 1 to obtain a test sample, and the peel strength was measured under the same conditions as in Example 1. The measurement results are shown in Chart C of FIG. 3 and graphed in FIG.
[0031]
As is clear from FIGS. 3 and 4, since all the peel strengths of Examples 9 to 16 are equal to or higher than any of the peel strengths of Comparative Examples 5 to 8, the crystalline silica powder is added. It was also confirmed that the peel strength was improved by adding an amorphous silica powder. In particular, it has also been found that when the acidity of the amorphous silica powder is high, the peel strength tends to increase remarkably as the addition amount increases.
[0032]
【The invention's effect】
According to the present invention, by adding a fine amorphous silica powder to a hydrophilic resin, there is an effect that an inorganic molded body having high strength can be obtained without increasing the amount of organic binder added.
[Brief description of the drawings]
FIG. 1 is a chart showing examples and comparative examples according to the present invention.
FIG. 2 is a graph showing the chart of FIG. 1 as a graph.
FIG. 3 is a chart showing other examples and comparative examples according to the present invention.
4 is a graph obtained by graphing the chart of FIG. 2. FIG.

Claims (3)

無機質構成要素と、親水性樹脂と、酸性で平均粒径1μmの非晶質シリカ粉状体とを必須成分とするとともに、水を噴霧しながら均一に混合して得た混合物を成形し、加熱,硬化させたことを特徴とする無機質成形体。An inorganic component, a hydrophilic resin, and an amorphous amorphous silica powder having an average particle diameter of 1 μm are essential components, and a mixture obtained by uniformly mixing while spraying water is molded and heated. An inorganic molded body characterized by being cured. 無機繊維、無機粉状体および親水性樹脂を必須成分とするスラリーから湿式抄造して得た湿潤マットを表裏層とし、無機発泡体および親水性樹脂を必須成分とし、かつ、水を噴霧しながら均一に混合して得た中層用混合物を前記表裏層用湿潤マット間に配置して中層とし、加熱,圧締して一体化した無機質成形体において、
前記中層用混合物に、酸性で平均粒径1μmの非晶質シリカ粉状体を添加したことを特徴とする無機質成形体。
Wet mat obtained by wet papermaking from slurry containing inorganic fiber, inorganic powder and hydrophilic resin as essential components is used as front and back layers, inorganic foam and hydrophilic resin as essential components , and water is sprayed. the middle layer for mixture obtained by uniformly mixing with, the middle layer disposed between the wet mat the front and back layers, heating, in the inorganic molded body integrated with clamping,
An inorganic molded body, wherein an amorphous silica powder having an average particle diameter of 1 μm is added to the middle layer mixture .
無機繊維、無機粉状体および親水性樹脂を必須成分とするスラリーから湿式抄造して少なくとも2枚の表裏層用湿潤マットを得、無機発泡体および親水性樹脂を必須成分とし、かつ、水を噴霧しながら均一に混合して得た中層用混合物を前記表裏層用湿潤マット間に均一な厚さに堆積させて中層とした後、熱圧工程および乾燥工程を経て一体化する無機質成形体の製造方法において、
前記中層用混合物に、酸性で平均粒径1μmの非晶質シリカ粉状体を添加したことを特徴とする無機質成形体の製造方法。
Wet papermaking from a slurry containing inorganic fibers, inorganic powder and hydrophilic resin as essential components to obtain at least two wet mats for front and back layers, inorganic foam and hydrophilic resin as essential components , and water Inorganic molding in which the mixture for the middle layer obtained by uniformly mixing while spraying is deposited in a uniform thickness between the wet mats for the front and back layers to form a middle layer, and then integrated through a hot pressing step and a drying step In the manufacturing method of the body,
A method for producing an inorganic molded body, wherein an amorphous silica powder having an average particle diameter of 1 μm is added to the middle layer mixture .
JP2002336368A 2002-11-20 2002-11-20 INORGANIC MOLDED BODY AND PROCESS FOR PRODUCING THE SAME Expired - Fee Related JP4216571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002336368A JP4216571B2 (en) 2002-11-20 2002-11-20 INORGANIC MOLDED BODY AND PROCESS FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002336368A JP4216571B2 (en) 2002-11-20 2002-11-20 INORGANIC MOLDED BODY AND PROCESS FOR PRODUCING THE SAME

Publications (2)

Publication Number Publication Date
JP2004167837A JP2004167837A (en) 2004-06-17
JP4216571B2 true JP4216571B2 (en) 2009-01-28

Family

ID=32700228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002336368A Expired - Fee Related JP4216571B2 (en) 2002-11-20 2002-11-20 INORGANIC MOLDED BODY AND PROCESS FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP4216571B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087334A (en) * 2004-09-22 2006-04-06 Nippon Sheet Glass Co Ltd Greening unit
JP2007063075A (en) * 2005-08-31 2007-03-15 Daiken Trade & Ind Co Ltd Inorganic formed body and method of producing the same

Also Published As

Publication number Publication date
JP2004167837A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
US6143400A (en) Aerogel and adhesive-containing composite, process for its production and its use
US20030077438A1 (en) Composite aerogel material that contains fibres
TW201636194A (en) Porous fiber reinforced composite material and method for preparing the same
EP3484834A1 (en) Light-weight&high strength non-asbestos corrugated fiber cement roofing sheets manufactured by autoclave method
JP2002166406A (en) Method for manufacturing woody cement board
JP4216571B2 (en) INORGANIC MOLDED BODY AND PROCESS FOR PRODUCING THE SAME
US11331879B2 (en) Inorganic board and method for producing the same
JP3530699B2 (en) Method for producing inorganic plate-like body
CA2637828A1 (en) Industrial hemp low-density fiberboard
KR102009811B1 (en) Composite material preform board and method for preparing the same
JP4939144B2 (en) Mineral fiberboard and manufacturing method thereof
JPH10502980A (en) Method of manufacturing interior plate board for building
JPS58126140A (en) Board for molding
JP2004059373A (en) Inorganic formed article and method for producing the same
KR20180030313A (en) Porous fiber reinforced composite material
JP4150528B2 (en) Manufacturing method of inorganic board
KR102679327B1 (en) Porous fiber reinforced composite material and method of preparing the same
KR102200957B1 (en) Porous fiber reinforced composite material
JP2001180997A (en) Manufacture of mineral board
JP2007063075A (en) Inorganic formed body and method of producing the same
JP4043687B2 (en) Wood cement board and method for producing the wood cement board
JP4155906B2 (en) Manufacturing method of inorganic board and inorganic decorative board
JP2670003B2 (en) Inorganic plate
JP5137364B2 (en) Inorganic board and method for producing the same
JP2003012360A (en) Ligneous cement plate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141114

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees