[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4119148B2 - diode - Google Patents

diode Download PDF

Info

Publication number
JP4119148B2
JP4119148B2 JP2002100515A JP2002100515A JP4119148B2 JP 4119148 B2 JP4119148 B2 JP 4119148B2 JP 2002100515 A JP2002100515 A JP 2002100515A JP 2002100515 A JP2002100515 A JP 2002100515A JP 4119148 B2 JP4119148 B2 JP 4119148B2
Authority
JP
Japan
Prior art keywords
layer
diode
conductivity type
buried
schematically showing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002100515A
Other languages
Japanese (ja)
Other versions
JP2003298072A (en
Inventor
憲一 松下
智樹 井上
渉 齋藤
一郎 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002100515A priority Critical patent/JP4119148B2/en
Publication of JP2003298072A publication Critical patent/JP2003298072A/en
Application granted granted Critical
Publication of JP4119148B2 publication Critical patent/JP4119148B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • H01L29/8725Schottky diodes of the trench MOS barrier type [TMBS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1602Diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、整流作用を有するダイオードに係り、特に大電力の制御に用いられる高耐圧ダイオードの構造に関するもので、例えば大型モーター制御用インバータ回路、スイッチング電源などに使用されるPiNダイオード、ショットキーバリヤダイオード(SBD)などに適用される。
【0002】
【従来の技術】
大型モーター制御用のインバータ回路は、GTO等のスイッチング素子と高耐圧ダイオードからなるフライホイールダイオードを組み合わせて用いている。
【0003】
図31は、従来のモーター制御用インバータ回路を簡略化して示している。
【0004】
この回路において、Sはスイッチング素子、Lは負荷、Dはフライホイールダイオードであり、高耐圧ダイオードが用いられる。
【0005】
上記インバータ回路において、スイッチング素子Sをオンして負荷Lに電流を流した後にスイッチング素子Sをオフすると、負荷Lを流れていた電流は図示のループで還流し始め、ダイオードDに順方向電流が流れる。
【0006】
その後、スイッチング素子Sを再びオンすると、ダイオードDは逆方向電圧が印加されるのでオフしようとする。このダイオードDの逆回復動作に際して、ダイオードDの内部には、電子および正孔といったキャリアが多く蓄積しているので、直ぐにはオフできず、瞬間的に大きな逆方向電流がダイオードDを流れ、その後に蓄積キャリアを吐き出し切ったらダイオードDはオフ状態に至る。
【0007】
図32は、上記ダイオードDの逆回復動作時の電流波形の一例を示す。
【0008】
図33(a)は、図31中のダイオードDとして用いられる高耐圧高速のPiNダイオードの従来の構造を模式的に示す断面図である。
【0009】
図33(a)中、101 は低不純物濃度のn型の半導体基板(N- ベース層)であり、その表面にはPアノード拡散層(pエミッタ層)102 が形成され、裏面にはNカソード拡散層(Nエミッタ層)103 が形成されている。
【0010】
前記Pアノード層2の表面には第1の主電極としてアノード電極104 が形成され、前記Nカソード層3の表面には第2の主電極としてカソード電極105 が形成されている。なお、Aはアノード端子、Kはカソード端子である。
【0011】
次に、このPiNダイオードの動作を通電時と逆回復時に分けて説明する。
【0012】
まず、通電時の動作について説明する。アノード電極104 とカソード電極105との間に、N- ベース層101 とPエミッタ層102 の間の接合に生じるビルトイン電圧より大きな正の電圧を印加すると、Pエミッタ層102 からN- ベース層101中に正孔が注入される。その正孔の注入量に応じてNエミッタ層103 から電子がN- ベース層101 へ注入され、N- ベース層101 中に注入されたキャリア(電子および正孔)が蓄積され、N- ベース層101 の抵抗が低下する。
【0013】
次に、逆回復時の動作について説明する。ダイオードの逆回復動作とは、通電状態のダイオードのアノード・カソード両電極間に印加されている電圧を反転させる(アノード電極104 とカソード電極105 との間に逆方向電圧を印加する)時に生じる動作である。通電状態において印加電圧を反転させると、N- ベース層101 中に蓄積されていた電子および正孔は対応してNエミッタ層103 およびPエミッタ層102 に排出され、N- ベース層101 とPエミッタ層102 の間の接合(主接合)から空乏層が広がり始める。その結果、アノード・カソード間に逆電圧がかかり、ダイオードは逆阻止状態となる。
【0014】
図33(b)は、同図(a)のPiNダイオードの逆回復動作時におけるアノードからカソードへの深さ方向の電界強度分布を概略的に示す。なお、この分布を深さ方向の実寸に応じて表すと、図33(c)に示すようにほぼ三角形になる。
【0015】
ところで、近年、前述したようなインバータ回路などの効率を向上させるために、前記スイッチング素子Sのスイッチング周波数が上昇してきており、前記ダイオードDの逆回復損失の低減が求められている。
【0016】
これを満たすためには、N- ベース層101 中に蓄積されるキャリア量を低減させれば良く、そのための有効な手段として、Pエミッタ層102 の不純物濃度を下げればよい。
【0017】
しかし、Pエミッタ層102 の表面濃度を下げることは、Pエミッタ層102 とアノード電極104 との間のコンタクト抵抗を低く保つ上で好ましくなく、Pエミッタ層102 の厚さを薄くしていく必要があった。そこで、Pエミッタ層102 の厚さを薄くしていくと、逆回復時にかかるパワーによりPiNダイオードが破壊する可能性が高くなる。
【0018】
また、近年、前述したようなインバータ回路が使用される機器の低騒音化や低損失化のために、前記スイッチング素子Sは高速化しており、このスイッチング素子Sのスイッチング時間に依存して前記ダイオードDの逆回復動作も高速化している。
【0019】
しかし、従来例のPiNダイオードは、逆回復動作が速くなると、図30中に示したピーク逆回復電流Irrpが大きくなり、瞬間的にかかるエネルギーも大きくなり、ある限界値を超えると破壊してしまうという問題があった。
【0020】
一方、スイッチング電源、特にDC- DCコンバータの100V以下の電圧が加わる部分には、低オン電圧、高速性を有するSBDが使用される。このSBDの損失は、オン抵抗で決まる導通損と回復時のリカバリー損である。上記オン抵抗は、ショットキー接合を形成するn- 層の不純物濃度で決まるが、このn- 層の不純物濃度は耐圧にも影響を及ぼすので、SBDのオン抵抗と耐圧は材料で決まるトレードオフが存在する。
【0021】
このSBDのトレードオフを改善するために、n- 層中に埋め込みp層を形成してn- 層中の電界を緩和することによって、耐圧を保持したままn- 層不純物濃度を上げ、低オン抵抗を実現する構造が知られている。
【0022】
図34は、従来のSBDの構造を模式的に示す断面図である。
【0023】
このSBDは、n- ドリフト層(n- 層)201 の一方の表面にn+ カソード層202 が形成され、このn+ カソード層202 上にはカソード電極203 が形成されている。また、n- 層201 の他方の表面にはpガードリング層204 が選択的に形成され、n- 層201 中にp埋め込み層205 が形成されている。このp埋め込み層205 は、電気的に浮遊状態にされている。
【0024】
このようなSBDは、逆方向に電圧が印可されたオフ状態の際に、n- 層201内の電界がp埋め込み層205 により分割される。例えば、p埋め込み層205 が一層の場合には、n- 層201 の電界は二分割され、耐圧が100Vの素子を仮定すると、p埋め込み層205 との間に必要な耐圧は50Vとなる。
【0025】
このように耐圧が低くなったことにより、n- 層201 の不純物濃度を、p埋め込み層205 が無い場合に比べて2倍にでき、n- 層201 中の電気抵抗を低減することが可能となるので、素子のオン抵抗を1/2程度まで低減することが可能となる。
【0026】
上記したような従来の構造のSBDは、耐圧を保持しつつ低オン抵抗とするために高密度で微細なp埋め込み層205 を形成することが不可欠である。耐圧を保持するためには、p埋め込み層205 による電界分割が行われる必要あり、電界を分割するためにp埋め込み層205 とpガードリング層204 との間で電気力線が終端するように高密度のp埋め込み層205 が必要である。この場合、p埋め込み層205 同士間の抵抗が寄生抵抗となるので、低オン抵抗とするためには、微細なp埋め込み層205 が必要である。
【0027】
しかし、p埋め込み層205 を形成する際、埋め込み結晶成長を行うと、結晶成長中に再拡散が起こるので、微細なp埋め込み層を形成することが困難である。
【0028】
【発明が解決しようとする課題】
上記したように従来のPiNダイオードは、逆回復損失の低減化の要求に対応するためにPエミッタ層の厚さを薄くしていくと逆回復時にかかるパワーにより破壊する可能性が高くなるという問題があった。
【0029】
また、従来の高耐圧高速ダイオードは、逆回復動作が速くなると、ピーク逆回復電流Irrpが大きくなり、瞬間的にかかるエネルギーも大きくなり、ある限界値を超えると破壊してしまうという問題があった。
【0030】
また、従来のSBDは、耐圧を保持しつつ低オン抵抗とするために高密度で微細なp型埋め込み層を形成する必要があるが、微細なp型埋め込み層を形成することが困難であるという問題があった。
【0031】
本発明は上記の問題点を解決すべくなされたもので、逆回復特性を向上させつつ逆回復時の耐量を向上させたPiNダイオードを実現可能なダイオードを提供することを目的とする。
【0032】
また、本発明の他の目的は、逆回復動作時の破壊を抑制し得る高耐圧高速のダイオードを提供することにある。
【0034】
【課題を解決するための手段】
本発明の第1のダイオードは、第1導電型ベース層と、前記第1導電型ベース層の第1主表面に形成された第1導電型エミッタ層と、前記第1導電型ベース層の第2主表面に形成された第2導電型エミッタ層と、前記第2導電型エミッタ層に接して前記第1導電型ベース層中に選択的に形成され、不純物濃度が前記第1導電型ベース層よりも高濃度に設定された第1導電型ピラー層と、前記第1導電型ベース層と前記第1導電型ピラー層に接して前記第1導電型ベース層中に形成された第2導電型ピラー層とを具備し、前記第2導電型ピラー層の不純物濃度が前記第1導電型ピラー層の不純物濃度より大きくされており、高電圧印加時に前記第1導電型ピラー層および第2導電型ピラー層が空乏層化されることを特徴とする。
【0035】
本発明の第2のダイオードは、第1導電型ベース層と、前記第1導電型ベース層の第1主表面に形成された第1導電型エミッタ層と、前記第1導電型ベース層の第2主表面に形成された第2導電型エミッタ層と、前記第2導電型エミッタ層に接して前記第1導電型ベース層中に選択的に形成され、不純物濃度が前記第1導電型ベース層よりも高濃度に設定された第1導電型ピラー層と、前記第1導電型ベース層と前記第1導電型ピラー層に接して前記第1導電型ベース層中に形成された第2導電型ピラー層とを具備し、前記第2導電型ピラー層の幅が前記第1導電型ピラー層の幅よりも広くされており、高電圧印加時に前記第1導電型ピラー層および第2導電型ピラー層が空乏層化されることを特徴とする。
【0036】
本発明の第ダイオードは、第1導電型の第1の半導体層と、前記第1半導体層の一方の表面に形成された第2導電型の高不純物濃度を有する第2の半導体層と、前記第1半導体層の他方の表面に形成された第1導電型の高不純物濃度を有する第3の半導体層と、前記第1半導体層前記第2の半導体層との間に形成された電界緩和用の第2導電型の第4の半導体層と、前記第2の半導体層の表面に接続された第1の主電極と、前記第3の半導体層の表面に接続された第2の主電極を具備したことを特徴とする。
【0039】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
【0040】
なお、以下の実施形態では、第1導電型をn型、第2導電型をp型としている。また、図面中、略同一の機能および構成を有する構成要素については同一符号を付し、重複説明は必要な場合にのみ行う。
【0041】
<第1の実施形態>
発明者らの研究によれば、耐圧が4.5kV程度のシリコンPiNダイオードにおいて良い逆回復特性を得るためには、P型エミッタ層の厚さを5μm以下にする必要があることが判明した。
【0042】
しかし、P型エミッタ層の厚さを5μm以下にすると逆回復時にかかるパワーによりPiNダイオードが破壊する可能性が高くなることが判明した。これは、図31(b)に示した従来例の特性のように、最も高い電界が生じる部分が主接合であり、表面に近い主接合部分で逆回復電流と高い電界によりアバランシェ現象が生じるために破壊し易くなると考えられる。
【0043】
そこで、第1の実施形態では、逆回復特性を向上させつつ逆回復時の耐量を向上させたPiNダイオードの数例を説明する。
【0044】
(第1の実施例)
図1(a)および(b)は、本発明の第1の実施例に係る高耐圧PiNダイオードの構造を模式的に示す断面図および逆回復動作時のアノードからカソードへの深さ方向の電界強度分布を概略的に示す特性図である。
【0045】
このダイオードは、図33(a)を参照して前述した従来例のダイオードと同様に、N- ベース層1上にPエミッタ層2が形成され、反対側にはNエミッタ層3が形成されている。Pエミッタ層2上にはアノード電極4が形成され、Nエミッタ層3上にはカソード電極5が形成されている。さらに、N- ベース層1とPエミッタ層2の間に、Nピラー層6およびPピラー層7が挿入されている。
【0046】
ここで、Nピラー層6の不純物濃度はN- ベース層1よりも例えば高濃度に設定されている。また、Pピラー層7の不純物濃度はNピラー層6と略同程度に設定されている。また、各ピラー層6、7は、その深さと幅の比(アスペクト比)が5〜7に設定されている。
【0047】
上記構成のダイオードは、N- ベース層1とPエミッタ層2との間に、Nピラー層6およびPピラー層7を構成することにより、逆阻止状態で空乏層が広がると、不純物イオンによって生じる電荷がNピラー層6とPピラー層7との間で打ち消し合って実効的な不純物濃度は低下する。したがって、Pピラー層7の不純物濃度をNピラー層6より規定量高く設定することによって低濃度のP型不純物層を作り出すことができる。
【0048】
このようなダイオードによれば、図1(b)に示すように最高電界がN- ベース層1とピラー層6、7との間に生じるので、アバランシェ現象が最も激しい領域はN- ベース層1とピラー層6、7との境界部分となる。このようにアバランシェ現象はPエミッタ層2直下では弱くなるので、ダイオードの破壊を抑えることができ、逆回復損失を増大させずに通電損失を低減させることができる。
【0049】
なお、Nピラー層6およびPピラー層7の厚さは、アバランシェ現象の起こる領域を考慮すると、5μm以上であることが望ましい。
【0050】
また、Pエミッタ層2はN- ベース層1の表面全体に形成する必要はなく、図29に示すようにN- ベース層1表面の一部に形成してもよい。この場合、耐圧を出すために、アノード電極4とNピラー層6およびPピラー層7との間のコンタクトはショットキーコンタクトにする必要がある。図29のように形成すると、正孔を注入するPエミッタ層2の面積が小さくなり、N- ベース層1への正孔の注入が抑制され、逆回復特性をさらに向上させることができる。
【0051】
(第2の実施例)
図2は、本発明の第2の実施例に係る高耐圧PiNダイオードの構造を模式的に示す断面図である。
【0052】
このダイオードは、図1を参照して前述したダイオードにおいてPエミッタ層2とN- ベース層との接合が終端する接合終端部の領域の外側の構造を変更したものである。
【0053】
このダイオードは、Pエミッタ層2の周縁部の電界を緩和するために、N- ベース層1上に絶縁膜11を介してフィールドプレート8が形成されている。また、チップ周縁端部には、空乏層の広がりを抑制して電位を安定させるためのN型EQR(Equi-Potential Ring) 層9およびEQR電極10が形成される。
【0054】
上記構成のダイオードの逆阻止状態では、フィールドプレート8がアノード電極4と同電位になっており、フィールドプレート8下の等電位面の間隔が広がるので、電界が緩和され、素子の耐圧を向上させることができる。
【0055】
なお、接合終端部のNピラー層6とPピラー層7との間の不純物濃度比は、素子中央部とは異なり、空乏化を促進するために略同一の濃度に設定されていればよい。
【0056】
また、Pエミッタ層2はN- ベース層1の表面全体に形成する必要はなく、図30に示すようにN- ベース層1表面の一部に形成してもよい。この場合、耐圧を出すために、アノード電極4とN- ベース層1との間のコンタクトはショットキーコンタクトにする必要がある。図30のように形成すると、正孔を注入するPエミッタ層2の面積が小さくなり、N- ベース層1への正孔の注入が抑制され、逆回復特性をさらに向上させることができる。
【0057】
(第3の実施例)
図3は、本発明の第3の実施例に係る高耐圧PiNダイオードの構造を模式的に示す断面図である。
【0058】
このダイオードは、図2を参照して前述したダイオードにおける接合終端部の外側を2段フィールドプレート構造に変更したものである。
【0059】
このように2段フィールドプレート構造にすることによって、図2の1段フィールドプレート構造よりも電界の緩和効果が高まるので、素子の耐圧が向上する。
【0060】
なお、フィールドプレート8は2段の構造に限定されるものではなく、2段以上の多段フィールドプレートとしてもよい。
【0061】
(第4の実施例)
図4は、本発明の第4の実施例に係る高耐圧PiNダイオードの構造を模式的に示す断面図である。
【0062】
このダイオードは、図2あるいは図3に示したダイオードの接合終端部の外側をリサーフ構造に置き換えたものである。
【0063】
このダイオードは、Pエミッタ層2の周縁部の外側に、不純物濃度が低いP--リサーフ層12が形成されており、このP--リサーフ層12は、逆阻止状態において空乏化する濃度に設定されている。
【0064】
このようなリサーフ構造にすることによって、逆阻止状態でP--リサーフ層12が空乏化することによってP--リサーフ層12の表面部に負の電荷が存在することと同様の状態となるので、図2あるいは図3に示したフィールドプレート構造と同様に接合終端部の電界が緩和され、耐圧が向上する。
【0065】
(第5の実施例)
図5は、本発明の第5の実施例に係る高耐圧PiNダイオードの構造を模式的に示す断面図である。
【0066】
このダイオードは、図4を参照して前述したダイオードにおけるP--リサーフ層12をPエミッタ層2よりも深く形成するように変更したものである。
【0067】
このような構造にすることによって、接合終端部の電界を緩和する作用が強くなり、より耐圧が向上する。
【0068】
(第6の実施例)
図4あるいは図5に示したダイオードは、P--リサーフ層12が挿入されているので、ダイオードの接合終端部に逆回復電流が集中し、ダイオードが破壊するおそれがあり、この改善策を以下に説明する。
【0069】
図6は、本発明の第6の実施例に係る高耐圧PiNダイオードの構造を模式的に示す断面図である。
【0070】
このダイオードは、図4あるいは図5を参照して前述したダイオードおける接合終端部の外側を2段リサーフ構造に変更したものである。
【0071】
このダイオードは、Pエミッタ層2とP--リサーフ層12との間に、空乏化しない濃度に設定したP- リング層13を挿入するように変更したものである。
【0072】
このような構造にすることによって、接合終端部の電流集中を緩和して逆回復時の耐量を向上させることができる。
【0073】
なお、図6では、P--リサーフ層12をPエミッタ層2と同じ深さで形成しているが、Pエミッタ層2より深く形成してもよい。また、P- リング層13をPエミッタ層2より浅く形成することによって、接合終端部の電流をさらに抑制することができる。
【0074】
なお、図2〜図6では、フィールドプレート構造とリサーフ構造をそれぞれ単独に適用した場合を例示したが、その他のRFP(Registive Field Plate) 構造を単独に適用したり、これらの構造を組み合わせて使用してもよい。
【0075】
(第7の実施例)
図7は、本発明の第7の実施例に係る高耐圧PiNダイオードの構造を模式的に示す断面図である。
【0076】
このダイオードは、図1(a)を参照して前述したダイオードにおいてPピラー層7の幅をNピラー層6の幅よりも広く設定した点が異なる。
【0077】
このような構造にすることによって、Pピラー層7とNピラー層6の不純物濃度を異ならせた場合と同様に、図1(b)に示す場合と同様の電界分布の傾きを得ることができる。
【0078】
(第8の実施例)
図8(a)および(b)は、本発明の第8の実施例に係る高耐圧PiNダイオードの構造を模式的に示す断面図および逆回復動作時のアノードからカソードへの深さ方向の電界強度分布を概略的に示す特性図である。
【0079】
このダイオードは、図1(a)を参照して前述したダイオードと比べて、Nピラー層6およびPピラー層7が省略され、N- ベース層1中にP+ 型の電位固定層20が挿入されている点が異なる。ここで、P+ 電位固定層20の不純物濃度は逆阻止状態で空乏化しない濃度に設定されている。
【0080】
このダイオードの逆阻止状態では、Pエミッタ層2とP+ 電位固定層20との間に空乏層が広がると、N- ベース層1の不純物濃度で規定される電位に固定され、より大きな電圧が印加されると、P+ 電位固定層20から空乏層が広がり始め、図8(b)に示すような電位分布となる。
【0081】
この場合、P+ 電位固定層20をN- ベース層1の厚さの半分よりもPエミッタ層2に近い側に形成することによって、最大電界領域が生じる部分をP+ 電位固定層20の直下に設定することができる。
【0082】
このような構造にすることによって、最大電界領域が主接合から離れて生成されるので、図1(a)に示したダイオードと同様に逆回復耐量が向上する。
【0083】
(第9の実施例)
図9は、本発明の第9の実施例に係る高耐圧PiNダイオードの構造を模式的に示す断面図である。
【0084】
このダイオードは、図8(a)を参照して前述したダイオードに接合終端構造を形成したものである。
【0085】
このダイオードにおいて、接合終端領域には電界を緩和するためにP+ ガードリング層21が形成されている。そして、接合終端部上には絶縁膜11が形成されている。また、素子周縁端部にはN型EQR層9およびEQR電極10が形成されている。
【0086】
このような構造にすることによって、ダイオードの逆阻止状態では、P+ ガードリング層21の電位が空乏層に広がりに応じて電位が固定されるので、電界が緩和され、ダイオードの耐圧を向上させることができる。
【0087】
なお、接合終端部におけるP+ 電位固定層20の間隔は、電界の集中を緩和するために必要な間隔で形成される。通常は、Pエミッタ層2に近い部分(電界が大きい部分)には密に、Pエミッタ層2から遠い部分(電界が比較的小さい部分)には疎に形成することによって、電界の集中を緩和することができる。
【0088】
(第10の実施例)
図10は、本発明の第10の実施例に係る高耐圧PiNダイオードの構造を模式的に示す断面図である。
【0089】
このダイオードは、図9のダイオードのP+ ガードリング層21とP+ 電位固定層20を接するように変更したものである。このような構造にすることによって、P+ ガードリング層21とP+ 電位固定層20が同電位となるので、P+ 電位固定層20の電位が安定し、耐圧を安定させることができる。
【0090】
なお、図9および図10においては、接合終端構造としてガードリング構造を例示したが、接合終端構造はガードリング構造に限らず、図2および図3に例示したフィールドプレート構造、図4乃至図6に例示したリサーフ構造、その他のRFP構造やこれらの組み合わせ構造等を適用することができる。
【0091】
<第2の実施形態>
第2の実施形態では、n- 型基板1に主たるpn接合を持つダイオード、例えば"Comparison of High Voltage Power Rectifier Structures" 1993 IEEE pp.199-204に開示されているような各種の高耐圧パワーダイオードに本発明を適用した数例を説明する。
【0092】
(第11の実施例)
図11(a)は、本発明の第11の実施例に係る高耐圧PiNダイオードの構造を模式的に示す断面図である。
【0093】
このPiNダイオードは、第1導電型の半導体基板21の一方の表面に第2導電型の高濃度不純物層22が形成され、他方の表面に第1導電型の高濃度不純物層23が形成されており、さらに、半導体基板の一方の表面に第2導電型の不純物層26が形成されており、この2導電型の不純物層26の単位面積当りの不純物総量が2×1012cm-2以下であることを特徴とするものである。
【0094】
即ち、図11(a)において、21は高抵抗(低不純物濃度)のn型の半導体層(n- ベース層、n- 層)であり、その一方の表面には10μm程度以下の浅い高不純物濃度のp型のアノード層(p+ アノード層)22および60μm程度の深い低不純物濃度のp型のウエル層(p- well)26が形成されている。
【0095】
上記n- 層21の他方の表面には、n+ カソード層23が形成されている。p+ アノード層22の表面には第1の主電極としてアノード電極24が形成され、n+ カソード層23の表面には第2の主電極としてカソード電極25が形成されている。
【0096】
このダイオードに順方向電圧を印加すると、p+ アノード層22からp- well26を通して正孔がn- 層21に注入され、n+ カソード層23から電子がn- 層21に注入され、n- 層21には高濃度の電子・正孔対が蓄積する。
【0097】
次に、このダイオードに逆方向電圧を印加して逆回復動作させると、n- 層21に蓄積している電子はn+ カソード層23に、正孔はp+ アノード層22に移動するので、p- well26とn- 層21との接合から空乏層が広がっていく。
【0099】
図11(b)は、図11(a)のダイオードの逆回復動作時のアノードからカソードへの深さ方向の電界強度分布を概略的に示す。ここで、S1、S2の面積はそれぞれ対応してp- well26、n- 層21にかかる電圧を示す。
【0100】
本例のダイオードの逆回復動作時にかかる電圧と従来例のダイオードの逆回復動作時にかかる電圧が等しい場合、図11(b)の特性中のS1+S2の面積と図33に示した従来例の特性中のS3の面積とが等しく、次式が成り立つ。
【0101】
S1+S2=S3
ここで、
S2=W・Emax/2
S3=W´・Emax´/2
であるから、
S1+W・Emax/2=W´・Emax´/2 …(1)
となる。
【0102】
また、本例のダイオードと従来例のダイオードに流れる電流も等しい場合、n- 層21中の電界強度およびn- 基板101 中の電界強度の傾きが等しくなるので、次式(2)が成り立つ。
【0103】
Emax/W=Emax´/W´ …(2)
上式(1)、(2)を解くと、次式(3)が得られる。
【0104】
{1−(W/W´)}=2S1{1+(W/W´)}/Emax´…(3)
ここで、全ての変数は正の値であるので
{1−(W/W´)}0 …(4)
となり、前記式(4)、(2)を解くと、次式(5)が得られる。
【0105】
Emax´>Emax …(5)
上式(5)は、本例のダイオードの最大電界の方が従来例のダイオードの最大電界よりも常に小さい、即ち、ダイオード内の最大電界がp- well26によって緩和されることを示している。
【0106】
このようにダイオード内の最大電界が緩和されると、ダイオード内部で局所的に発生する電力損密度P=ExJが緩和されるので、ダイオードの破壊耐量が改善される。
【0107】
即ち、上記第11の実施例の高耐圧PiNダイオードは、逆回復動作時に完全に空乏化する深い拡散のp- well26を形成したことにより、逆回復動作時にダイオード内部に発生する最大電界を緩和することができ、逆回復動作時のダイオードの破壊を抑制することができる。
【0108】
なお、ここで、p- well26の不純物総量を2×1012cm-2以下とする根拠について説明する。この数値は、pn接合(ここではp- well26とn- 層21の接合)がアバランシェ降伏を起こす前にp- well26が完全に空乏化するための条件である。
【0109】
p- well26に空乏層が広がっている場合、半導体の基本方程式であるポアソンの式を解くことによって、その最大電界Emax(V/cm)と空乏化した領域の不純物総量Q(cm-2)の間に次のような関係があることが分かる。
【0110】
Emax=(q/εSi)Q …(6)
ここで、qは電子の素電荷量であり1.6×10-19 (C)、εSiはシリコンの誘電率1.05×10-12(F/cm)である。
【0111】
pn接合がアバランシェ降伏を起こす前にp- well26が完全に空乏化するためには、アバランシェ降伏が起こる臨界電界強度EcよりもEmaxが小さければよい。つまり、
Emax<Ec …(7)
である。
【0112】
一般にEcは2〜3×105 (V/cm)であるから、上記(6)、(7)式を解くと、
Q=εSi Ec/q≦2×1012(cm-2) …(8)
の条件が得られる。ただし、この数値は素子構造に依存するため、厳密な臨界条件でない。
【0113】
(第12の実施例)
図12は、本発明の第12の実施例に係る高耐圧P- iNダイオードの構造を模式的に示す断面図である。
【0114】
このP- iNダイオードは、図11(a)を参照して前述したPiNダイオードと比べて、p+ アノード層22に代えて、p- アノード層22a がn- 層21の表面に形成される点が異なり、その他は同じである。
【0115】
上記p- アノード層22a は、図11(a)中のp+ アノード層22と比べて、単位面積当りの不純物総量が少なく、その拡散深さが浅く、2〜4μmである。
【0116】
(第13の実施例)
図13は、本発明の第13の実施例に係る高耐圧MPS(Merged P-i-N/Schottky) ダイオードの構造を模式的に示す断面図である。
【0117】
このMPSダイオードは、図11(a)を参照して前述したPiNダイオードと比べて、n- 層21の表面にp+ アノード層22が選択的に形成されており、アノード電極24とシリコン領域の接触面にオーミック接触面とショットキー接触面を持つ点が異なり、その他は同じである。
【0118】
(第14の実施例)
図14は、本発明の第14の実施例に係る高耐圧SSD(Static Shielding Diode)ダイオードの構造を模式的に示す断面図である。
【0119】
このSSDダイオードは、図13を参照して前述したMPSダイオードと比べて、アノード電極24のショットキー接触面に単位面積当りの不純物総量が少なく、かつ、拡散深さが0.2〜1μm程度の非常に浅いp- アノード層22a を持つ点が異なり、その他は同じである。
【0120】
(第15の実施例)
図15は、本発明の第15の実施例に係る高耐圧SPEED(Self adapting P-Emitter Efficiency Diode)ダイオードの構造を模式的に示す断面図である。
【0121】
このSPEEDダイオードは、図14を参照して前述したSSDダイオードと比べて、p- アノード層22a の代わりに、p+ アノード層22を囲むように注入効率の異なるpアノード層22b を持つ点が異なり、その他は同じである。
【0122】
(第16の実施例)
図16は、本発明の第16の実施例に係る高耐圧SFD(Soft and Fast recovery Diode) ダイオードの構造を模式的に示す断面図である。
【0123】
このSFDダイオードは、図14を参照して前述したSSDダイオードと比べて、アノード電極24のショットキー接触面がAl-Si-Alloy 27で形成されている点が異なり、その他は同じである。
【0124】
(第17の実施例)
図17は、本発明の第17の実施例に係る高耐圧TMBSダイオードの構造を模式的に示す断面図である。
【0125】
このTMBSダイオードは、図13を参照して前述したMPSダイオードと比べて、p+ アノード層22の代わりに、トレンチ溝中に酸化膜28を介してアノード電極24が形成されている点が異なり、その他は同じである。
【0126】
<第3の実施形態>
第3の実施形態では、電力用SBDに本発明を適用した数例を説明する。
【0127】
(第18の実施例)
図18は、本発明の第18の実施例に係る電力用SBDの構造を模式的に示す断面図である。
【0128】
このSBDは、第1の半導体層であるn- 層31の一方の表面に高不純物濃度の半導体層(例えばn+ カソード層)32が形成され、このn+ カソード層32上には第1の主電極(カソード電極)33が形成されている。
【0129】
上記n- 層31の他方の表面には、第2の半導体層として複数のpガードリング層34が互いに間隔をおいて選択的、且つ、平面ストライプ状に拡散形成され、さらに、溝(トレンチ)が形成されて絶縁物37で埋め込まれている。上記溝の底部には、第3の半導体層としてp埋め込み層35が形成されている。そして、n- 層31とショットキー接合を形成する第2の主電極(アノード電極)36が形成されている。
【0130】
図19(a)乃至(f)は、図18のSBDの製造工程(プロセスフロー)にしたがってそれぞれ構造を模式的に示す断面図である。
【0131】
まず、図19(a)に示すように、n+ 層32上にエピタキシャル成長によりn- 層31が形成された半導体ウエハ(元基板)を用意する。次に、図19(b)に示すように、n- 層31の表面に酸化膜(SiO2 膜)51を形成し、レジスト52のパターンを形成し、n- 層31に溝53を形成する。
【0132】
次に、図19(c)に示すように、溝53の底部にボロンをイオン注入し、活性化することにより、図19(d)に示すように、p埋め込み層35を選択的に形成する。この後、溝53内を絶縁物(SiO2 )37で埋め込む。その後、図19(e)に示すように、n- 層31の表面に選択的にpガードリング層34を形成した後、図19(f)に示すように、アノード電極36とカソード電極33を形成する。
【0133】
このプロセスでは、主な熱工程は、p埋め込み層35とpガードリング層34の活性化アニールのみとなり、p埋め込み層35の拡散を抑えることができるので、高密度で微細なp埋め込み層35を形成することが可能となる。
【0134】
さらに、p埋め込み層35の拡散を抑えるプロセスとして、前記プロセスとは逆に、n- 層31の表面にpガードリング層34を形成した後に溝を形成してp埋め込み層35を形成すると、pガードリング層34とは別のアニール条件でp埋め込み層35を形成できるので、微細化が可能となる。
【0135】
ここで、耐圧が100Vのダイオードの一例として、n- 層31は、不純物濃度が4×1015cm -3 で約9μmの厚さに形成され、n+ カソード層32は、不純物濃度が約1×1019cm-3で約200μmの厚さに形成されている。
【0136】
なお、n+ カソード層32は必要に応じて形成すればよい。また、絶縁物37で埋め込まれた溝は、幅0.6μm、深さ4μmで形成され、その底部のp埋め込み層35は、深さ1μm、幅1.4μm、横方向ピッチ3μmで形成されている。
【0137】
なお、図34に示した従来例のように埋め込み結晶成長を用いてp埋め込み層205 を形成した場合には、埋め込み成長時の再拡散によりp埋め込み層205 が深さ2.5μm、幅3μm程度に形成されるので、p埋め込み層205 間の寄生抵抗が大きくなる。
【0138】
即ち、上記したように埋め込み結晶成長を用いずに溝53を形成し、その底部にp埋め込み層35を形成する際には、プロセス温度を下げ、高密度で微細なp埋め込み層35を形成することが可能となる。
【0139】
図20は、本実施例のように溝底部にp埋め込み層35を形成した場合と、従来例のように埋め込み結晶成長を用いてp埋め込み層205 を形成した場合のSBDのオン抵抗/耐圧のトレードオフ関係を説明するために示している。対比のため、p埋め込み層が無いSBDの特性も図示している。
【0140】
p型埋め込み層が無い場合に比べて、p埋め込み層が有る場合は、低オン抵抗となる。この場合、従来例のように埋め込み結晶成長を用いる場合はp埋め込み層は幅が広いが、本実施例のように溝底部にp埋め込み層35を形成する場合は微細に形成できるので、本実施例の方が従来例よりも低オン抵抗となる。特に、耐圧が100V以下のダイオードでは、従来例のように埋め込み成長を用いた場合は、p埋め込み層間の寄生抵抗が無視できなくなり、埋め込み層が無い場合と変わらないオン抵抗となってしまうが、本実施例では耐圧が100V以下でもp埋め込み層が無い場合よりも低オン抵抗が期待できる。
【0141】
また、本実施例において、溝底部にp埋め込み層35を形成した後、溝内を絶縁物37で埋め込む前に斜め方向からのイオン注入や気相拡散などを用いて溝側壁にp- 層を形成することによってpガードリング層34とp埋め込み層35を接続すると、逆方向電圧印加時に空乏化したp埋め込み層35を順回復時に速やかに充電することが可能になるので、高速動作に有利である。
【0142】
(第19の実施例)
図21は、本発明の第19の実施例に係る電力用SBDの構造を模式的に示す断面図である。
【0143】
このSBDは、図18を参照して前述したダイオードと比べて、溝を埋める多結晶半導体(ポリシリコン)38と溝周辺のpガードリング層34により二層構造のpガードリング層34a が形成される点が異なり、その他は同じである。
【0144】
このような構造によれば、pガードリング層34を溝部のみに形成するので、図18に示したダイオードのような熱拡散では得られない、幅が狭く、且つ、深いpガードリング層34を形成することができる。
【0145】
これにより、ショットキー接合のリーク電流とpガードリング層34間の寄生抵抗を小さくすることが可能となる。また、溝を用いてpガードリング層34を形成するプロセスは、pガードリング層34を形成するための熱拡散時間を短くすることが可能であり、pガードリング層34とp埋め込み層35の拡散を同時に行う場合、拡散時間が短くなり、微細なp埋め込み層35を形成する場合に適している。
【0146】
(第20の実施例)
図22は、本発明の第20の実施例に係る電力用SBDの構造を模式的に示す断面図である。
【0147】
このSBDは、図18を参照して前述したダイオードと比べて、pガードリング層34とp埋め込み層35を同じ溝部に形成している点が異なり、その他は同じである。
【0148】
図21に示した第19の実施例では、pガードリング層34とp埋め込み層35を別々の溝部に形成しているが、まず、溝底部にp埋め込み層35を形成して溝内に絶縁物37を埋めこんだ後、ウェットエッチングにより絶縁物37を掘り下げ、p型ポリシリコン38を埋め込むようにすれば、第19の実施例と比べてドライエッチングプロセスを1回省略することが可能となる。
【0149】
(第21の実施例)
図23は、本発明の第21の実施例に係る電力用SBDの構造を模式的に示す断面図である。
【0150】
このSBDは、図18を参照して前述したダイオードと比べて、pガードリング層34とp埋め込み層35がそれぞれ平面ストライプ状に形成され、互いに直交している点が異なる。
【0151】
このような構造にすることにより、それぞれの周期を独立に制御することが可能である。上記pガードリング層34の周期はショットキー接合リークに影響し、p埋め込み層35の周期はn- 層31内の電界分割に影響するので、それぞれを最適化する設計が可能になる。
【0152】
また、pガードリング層34として、前述したように溝内にポリシリコンを埋め込む構造にすることも可能である。
【0153】
(第22の実施例)
図24は、本発明の第22の実施例に係る電力用SBDの構造を模式的に示す断面図である。
【0154】
このSBDは、図18を参照して前述したダイオードと比べて、p埋め込み層形成用の溝を平面格子状のパターンとなるように配置することにより、p埋め込み層35を格子状に形成している点が異なる。
【0155】
また、素子終端部において、アノード側表面にpガードリング層34を形成することともにn- 層31中にp埋め込み層35を形成して電界を緩和することにより、耐圧低下を抑制している。この場合、素子終端部のpガードリング層34の周期はp埋め込み層35の周期と異なっていても実施可能である。
【0156】
このような構造にすることにより、前述したようにp埋め込み層35をストライプ状に形成するよりも、p埋め込み層35間の寄生抵抗を低減することができ、オン抵抗を下げることが可能になる。
【0157】
なお、p埋め込み層形成用の溝を、格子パターンをジグザグ状にずらした平面千鳥格子状のパターンとなるように配置しても実施可能である。
【0158】
(第23の実施例)
図25は、本発明の第23の実施例に係る電力用SBDの構造を模式的に示す断面図である。
【0159】
このSBDは、図24を参照して前述したダイオードと比べて、p埋め込み層形成用の溝を、素子中央部ではストライプ状に形成し、素子終端部では格子状に形成している点が異なる。
【0160】
p埋め込み層35は、素子終端部でも周期的に形成する必要がある。終端部においてもp埋め込み層形成用の溝をストライプ状に形成してしまうと、逆方向電圧印加時に横方向に空乏層が伸びる際に絶縁物37でキャリアが閉じ込められてしまうので、空乏化が妨げられて電界が集中し、耐圧が低下してしまう。そこで、終端部では、p埋め込み層形成用の溝を格子状もしくは千鳥格子状に形成し、逆方向電圧印加時の空乏化の際にキャリアを閉じ込めないようにすることにより、耐圧の低下を抑制することができる。
【0161】
(第24の実施例)
図26は、本発明の第24の実施例に係る電力用SBDの構造を模式的に示す断面図である。
【0162】
このSBDは、横型SBDにおいてp埋め込み層形成用の溝を用いてp埋め込み層35を形成している。ここで、31はn- 層、32はn+ カソード層、33はカソード電極、34はpガードリング層、35は溝内にポリシリコン39を埋め込んだ構造のp埋め込み層、36はアノード電極である。なお、SBD基板となるn- 基板30は、キャリアが走行するn- 層31よりも低い不純物濃度であることが望ましい。
【0163】
また、アノード電極36とカソード電極33との間でn- 層31中のp埋め込み層35の数を増やすことで電界分割数を増やすことにより、n- 層31の濃度を分割数に比例して増やすことが可能となるので、さらに低オン抵抗化が可能になる。
【0164】
なお、p埋め込み層35は、前記したような溝を用いずに、イオン注入と熱拡散を用いても形成可能であるが、深くて幅の狭いp埋め込み層35を得るためには溝を用いて形成することが望ましい。
【0165】
なお、図中点線で示すように、n- 層31の表面にp- 層40を形成し、このp-層40でp埋め込み層35とpガードリング層34を接続すると、ダイオードの順回復時にp- 層40を通して速やかにp埋め込み層35が充電されるようになり、高速動作に適している。
【0166】
また、カソード電極33とアノード電極36は、それぞれ溝を用いて形成すると深い電極を形成することが可能となり、キャリアが流れる実効的な電極面積を大きくすることができるので、チップ面積を広げずにオン抵抗を下げることが可能になる。
【0167】
(第25の実施例)
図27は、本発明の第25の実施例に係る電力用SBDの構造を模式的に示す断面図である。
【0168】
このSBDは、図26を参照して前述した横型ダイオードと比べて、p埋め込み層35の代わりに、ショットキーメタル41が埋め込まれている点が異なる。
【0169】
このような構造にすることにより、埋め込みショットキーメタル41がp埋め込み層35と同じ効果を発揮するので、電界分割が可能となり、低オン抵抗を実現できる。
【0170】
なお、アノード電極36と埋め込みショットキーメタル41は、それぞれ溝を同時に形成し、ショットキーメタルを同時に埋め込むことにより形成することが可能である。
【0171】
また、アノード電極36やショットキーメタル41が埋め込まれる溝の底部や角部にp層を形成したり、水素アニールやウェットエッチング、ケミカルドライエッチング等を用いて前記溝の角部を丸めるなどの処理を行うことにより、電界を緩和し、リーク電流を抑制することが可能である。
【0172】
また、溝を用いてn+ カソード層32を深く形成すると、キャリアが走行する面積を広くすることが可能になり、オン抵抗を低減することができる。
【0173】
(第26の実施例)
図28は、本発明の第26の実施例に係る電力用SBDの構造を模式的に示す断面図である。
【0174】
このSBDは、図26を参照して前述した横型ダイオードと比べて、p埋め込み層35の代わりに、溝内に絶縁物42が埋め込まれている点が異なるが、同様な原理で動作する。
【0175】
このような構造にすることにより、埋め込み絶縁物42がp埋め込み層35と同じ効果を発揮するので、電界分割が可能となり、低オン抵抗を実現できる。
【0176】
なお、絶縁物42の形状を平面U字型にすることにより、U字型溝内に電子が蓄積される。前述したp埋め込み層35のアクセプタイオンも、上記絶縁物42の界面に蓄積される電子も、どちらもマイナス電荷であって同様に電界分割の役割を有するので、低オン抵抗化に有効である。また、SBD表面を絶縁物42で覆うと、電子がトラップされ易くなり、電界分割が容易になる。
【0177】
なお、図28では、アノード電極36とカソード電極33との間のn- 層31中に絶縁物42を二層形成したが、この絶縁物42を一層形成した場合でも低オン抵抗化には有効であり、さらに絶縁物42の層数を増やせば、より低オン抵抗化が可能である。また、溝を用いてショットキー電極やn+ カソード層32を深く形成すれば、さらに低オン抵抗化が可能になる。
【0178】
なお、第3の実施形態に係るSBDは、第18乃至第26に示した実施例に限定されるものではない。例えば、第18乃至第23の実施例では、p埋め込み層35が一層である構造を説明したが、p埋め込み層35を二層以上有する構造でも、上記と同様な効果を得ることができる。また、各層の複数のp埋め込み層は、前述したストライプ状に限らず、メッシュ状に形成してもよい。
【0179】
また、半導体としてシリコン(Si)を用いたSBDを説明したが、半導体としては、例えばシリコンカーバイト(SiC)や窒化ガリウム(GaN)、窒化アルミニウム(AlN)等の化合物半導体やダイアモンドを用いることができる。
【0180】
さらに、第3の実施形態は、電位が浮遊した埋め込み層を有するSBDで説明したが、電位が浮遊した層を有するMOSFETやSIT、JFET等のスイッチング素子やSBDとスイッチング素子の複合もしくは集積素子においても、上記したSBDに準じて実施可能である。
【0181】
【発明の効果】
上述したように本発明によれば、逆回復特性を向上させつつ逆回復時の耐量を向上させたPiNダイオードを実現することができる。
【0182】
また、本発明によれば、逆回復動作時の破壊を抑制し得る高耐圧高速ダイオードを実現することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例に係る高耐圧PiNダイオードの構造を模式的に示す断面図および逆回復動作時のアノードからカソードへの深さ方向の電界強度分布を概略的に示す特性図。
【図2】本発明の第2の実施例に係る高耐圧PiNダイオードの構造を模式的に示す断面図。
【図3】本発明の第3の実施例に係る高耐圧PiNダイオードの構造を模式的に示す断面図。
【図4】本発明の第4の実施例に係る高耐圧PiNダイオードの構造を模式的に示す断面図。
【図5】本発明の第5の実施例に係る高耐圧PiNダイオードの構造を模式的に示す断面図。
【図6】本発明の第6の実施例に係る高耐圧PiNダイオードの構造を模式的に示す断面図。
【図7】本発明の第7の実施例に係る高耐圧PiNダイオードの構造を模式的に示す断面図。
【図8】本発明の第8の実施例に係る高耐圧PiNダイオードの構造を模式的に示す断面図および逆回復動作時のアノードからカソードへの深さ方向の電界強度分布を概略的に示す特性図。
【図9】本発明の第9の実施例に係る高耐圧PiNダイオードの構造を模式的に示す断面図。
【図10】本発明の第10の実施例に係る高耐圧PiNダイオードの構造を模式的に示す断面図。
【図11】本発明の第11の実施例に係る高耐圧PiNダイオードの構造を模式的に示す断面図および逆回復動作時のアノードからカソードへの深さ方向の電界強度分布を概略的に示す特性図。
【図12】本発明の第12の実施例に係る高耐圧P- iNダイオードの構造を模式的に示す断面図。
【図13】本発明の第13の実施例に係る高耐圧MPS(Merged P-i-N/Schottky) ダイオードの構造を模式的に示す断面図。
【図14】本発明の第14の実施例に係る高耐圧SSD(Static Shielding Diode)ダイオードの構造を模式的に示す断面図。
【図15】本発明の第15の実施例に係る高耐圧SPEED(Self adapting P-Emitter Efficiency Diode)ダイオードの構造を模式的に示す断面図。
【図16】 本発明の第16の実施例に係る高耐圧SFD(Soft and Fast recovery Diode) ダイオードの構造を模式的に示す断面図。
【図17】本発明の第17の実施例に係る高耐圧TMBSダイオードの構造を模式的に示す断面図。
【図18】本発明の第18の実施例に係る電力用SBDの構造を模式的に示す断面図。
【図19】図18のSBDの製造工程(プロセスフロー)にしたがってそれぞれ構造を模式的に示す断面図。
【図20】図19のSBDと埋め込み結晶成長を用いてp埋め込み層を形成したSBDとp埋め込み層が無いSBDのオン抵抗/耐圧のトレードオフ関係を説明するために示す図。
【図21】本発明の第19の実施例に係る電力用SBDの構造を模式的に示す断面図。
【図22】本発明の第20の実施例に係る電力用SBDの構造を模式的に示す断面図。
【図23】本発明の第21の実施例に係る電力用SBDの構造を模式的に示す断面図。
【図24】本発明の第22の実施例に係る電力用SBDの構造を模式的に示す断面図。
【図25】本発明の第23の実施例に係る電力用SBDの構造を模式的に示す断面図。
【図26】本発明の第24の実施例に係る電力用SBDの構造を模式的に示す断面図。
【図27】本発明の第25の実施例に係る電力用SBDの構造を模式的に示す断面図。
【図28】本発明の第26の実施例に係る電力用SBDの構造を模式的に示す断面図。
【図29】本発明の第1の実施例の変形例に係る高耐圧PiNダイオードの構造を模式的に示す断面図。
【図30】本発明の第2の実施例の変形例に係る高耐圧PiNダイオードの構造を模式的に示す断面図。
【図31】従来のモーター制御用インバータ回路を簡略化して示す回路図。
【図32】高耐圧PiNダイオードの従来例の構造を模式的に示す断面図および逆回復動作時のアノードからカソードへの深さ方向の電界強度分布を概略的に示す特性図。
【図33】従来の高耐圧ダイオードの逆回復動作時におけるアノードからカソードへの深さ方向の電界強度分布を概略的に示す特性図。
【図34】従来のSBDの構造を模式的に示す断面図。
【符号の説明】
1…N- ベース層、
2…Pエミッタ層、
3…Nエミッタ層、
4…アノード電極、
5…カソード電極、
6…Nピラー層、
7…Pピラー層。
[0001]
BACKGROUND OF THE INVENTION
  The present invention has a rectifying actiondiodeIn particular, the present invention relates to the structure of a high-breakdown-voltage diode used for high-power control, and is applied to, for example, an inverter circuit for controlling a large motor, a PiN diode used for a switching power supply, a Schottky barrier diode (SBD), and the like. .
[0002]
[Prior art]
An inverter circuit for controlling a large motor uses a switching element such as a GTO and a flywheel diode composed of a high voltage diode.
[0003]
FIG. 31 shows a simplified motor control inverter circuit.
[0004]
In this circuit, S is a switching element, L is a load, D is a flywheel diode, and a high voltage diode is used.
[0005]
  In the above inverter circuit, when the switching element S is turned on after the switching element S is turned on and the current flows through the load L, the current flowing through the load L isloopThe forward current begins to flow through the diode D.
[0006]
Thereafter, when the switching element S is turned on again, the diode D tries to turn off because a reverse voltage is applied. During the reverse recovery operation of the diode D, since many carriers such as electrons and holes are accumulated inside the diode D, it cannot be turned off immediately, and a large reverse current instantaneously flows through the diode D. When the accumulated carriers are completely discharged, the diode D is turned off.
[0007]
FIG. 32 shows an example of a current waveform during the reverse recovery operation of the diode D.
[0008]
FIG. 33A is a cross-sectional view schematically showing a conventional structure of a high breakdown voltage and high speed PiN diode used as the diode D in FIG.
[0009]
In FIG. 33A, reference numeral 101 denotes an n-type semiconductor substrate (N-base layer) having a low impurity concentration, a P anode diffusion layer (p emitter layer) 102 is formed on the surface, and an N cathode is formed on the back surface. A diffusion layer (N emitter layer) 103 is formed.
[0010]
An anode electrode 104 is formed on the surface of the P anode layer 2 as a first main electrode, and a cathode electrode 105 is formed on the surface of the N cathode layer 3 as a second main electrode. A is an anode terminal and K is a cathode terminal.
[0011]
Next, the operation of this PiN diode will be described separately during energization and during reverse recovery.
[0012]
First, the operation during energization will be described. When a positive voltage larger than the built-in voltage generated at the junction between the N − base layer 101 and the P emitter layer 102 is applied between the anode electrode 104 and the cathode electrode 105, the P emitter layer 102 passes through the N − base layer 101. Holes are injected into the. Depending on the amount of holes injected, electrons are injected from the N emitter layer 103 into the N-base layer 101, and the carriers (electrons and holes) injected into the N-base layer 101 are accumulated. The resistance of 101 decreases.
[0013]
Next, the operation at the time of reverse recovery will be described. The reverse recovery operation of a diode is an operation that occurs when the voltage applied between the anode and cathode electrodes of a current-carrying diode is reversed (a reverse voltage is applied between the anode electrode 104 and the cathode electrode 105). It is. When the applied voltage is reversed in the energized state, the electrons and holes accumulated in the N − base layer 101 are correspondingly discharged to the N emitter layer 103 and the P emitter layer 102, and the N − base layer 101 and the P emitter are discharged. The depletion layer begins to spread from the junction (main junction) between the layers 102. As a result, a reverse voltage is applied between the anode and the cathode, and the diode is in a reverse blocking state.
[0014]
  FIG. 33B schematically shows the electric field intensity distribution in the depth direction from the anode to the cathode during the reverse recovery operation of the PiN diode of FIG. If this distribution is expressed according to the actual size in the depth direction,As shown in FIG.It becomes almost a triangle.
[0015]
By the way, in recent years, in order to improve the efficiency of the above-described inverter circuit and the like, the switching frequency of the switching element S has been increased, and reduction of the reverse recovery loss of the diode D is required.
[0016]
In order to satisfy this, the amount of carriers accumulated in the N − base layer 101 may be reduced, and as an effective means for that purpose, the impurity concentration of the P emitter layer 102 may be lowered.
[0017]
However, lowering the surface concentration of the P emitter layer 102 is not preferable in order to keep the contact resistance between the P emitter layer 102 and the anode electrode 104 low, and it is necessary to reduce the thickness of the P emitter layer 102. there were. Therefore, as the thickness of the P emitter layer 102 is reduced, the possibility that the PiN diode is destroyed by the power applied during reverse recovery increases.
[0018]
In recent years, the switching element S has been speeded up in order to reduce the noise and loss of equipment using the inverter circuit as described above, and the diode depends on the switching time of the switching element S. The reverse recovery operation of D is also accelerated.
[0019]
However, in the conventional PiN diode, when the reverse recovery operation becomes faster, the peak reverse recovery current Irrp shown in FIG. 30 becomes larger, the energy applied instantaneously becomes larger, and it breaks when exceeding a certain limit value. There was a problem.
[0020]
On the other hand, an SBD having a low on-voltage and high speed is used in a portion where a voltage of 100 V or less is applied to a switching power supply, particularly a DC-DC converter. This loss of SBD is a conduction loss determined by on-resistance and a recovery loss at the time of recovery. The on-resistance is determined by the impurity concentration of the n − layer forming the Schottky junction, and the impurity concentration of the n − layer also affects the withstand voltage, so that the on-resistance and the withstand voltage of the SBD have a trade-off determined by the material. Exists.
[0021]
In order to improve this SBD trade-off, a buried p layer is formed in the n − layer to relax the electric field in the n − layer, thereby increasing the n − layer impurity concentration while maintaining the breakdown voltage, thereby reducing the low on-state. Structures that achieve resistance are known.
[0022]
FIG. 34 is a cross-sectional view schematically showing the structure of a conventional SBD.
[0023]
In this SBD, an n + cathode layer 202 is formed on one surface of an n − drift layer (n − layer) 201, and a cathode electrode 203 is formed on the n + cathode layer 202. A p guard ring layer 204 is selectively formed on the other surface of the n − layer 201, and a p buried layer 205 is formed in the n − layer 201. The p buried layer 205 is in an electrically floating state.
[0024]
In such an SBD, the electric field in the n − layer 201 is divided by the p buried layer 205 in the off state where a voltage is applied in the reverse direction. For example, when the p buried layer 205 is a single layer, the electric field of the n − layer 201 is divided into two, and assuming a device with a withstand voltage of 100V, the required withstand voltage between the p buried layer 205 is 50V.
[0025]
Since the breakdown voltage is lowered in this manner, the impurity concentration of the n − layer 201 can be doubled compared to the case where the p buried layer 205 is not provided, and the electric resistance in the n − layer 201 can be reduced. Therefore, the on-resistance of the element can be reduced to about ½.
[0026]
  In the SBD having the conventional structure as described above, it is indispensable to form a high-density and fine p buried layer 205 in order to reduce the on-resistance while maintaining the withstand voltage. In order to maintain the breakdown voltage, electric field division by the p buried layer 205 is necessary.ButIn order to divide the electric field, a high-density p-buried layer 205 is required so that the electric lines of force terminate between the p-buried layer 205 and the p guard ring layer 204. In this case, since the resistance between the p buried layers 205 becomes a parasitic resistance, a fine p buried layer 205 is necessary to achieve a low on-resistance.
[0027]
However, if the buried crystal growth is performed when forming the p buried layer 205, re-diffusion occurs during the crystal growth, and it is difficult to form a fine p buried layer.
[0028]
[Problems to be solved by the invention]
As described above, the conventional PiN diode has a problem that if the thickness of the P emitter layer is reduced in order to meet the demand for reducing the reverse recovery loss, the possibility of destruction due to the power applied during the reverse recovery increases. was there.
[0029]
In addition, the conventional high-voltage fast diode has a problem that when the reverse recovery operation becomes faster, the peak reverse recovery current Irrp becomes larger and the energy applied instantaneously becomes larger, and it breaks when exceeding a certain limit value. .
[0030]
Further, in the conventional SBD, it is necessary to form a high-density and fine p-type buried layer in order to achieve a low on-resistance while maintaining a withstand voltage, but it is difficult to form a fine p-type buried layer. There was a problem.
[0031]
  The present invention has been made to solve the above problems, and can realize a PiN diode with improved reverse recovery characteristics and improved withstand capability during reverse recovery.diodeThe purpose is to provide.
[0032]
  Another object of the present invention is to perform reverse recovery operation.BreakHigh breakdown voltage and high speed that can suppress breakageDiodeIs to provide.
[0034]
[Means for Solving the Problems]
  The first diode of the present invention includes a first conductivity type base layer, a first conductivity type emitter layer formed on a first main surface of the first conductivity type base layer, and a first conductivity type base layer. A second conductivity type emitter layer formed on the two main surfaces; and a second conductivity type emitter layer selectively formed in the first conductivity type base layer in contact with the second conductivity type emitter layer and having an impurity concentration of the first conductivity type base layer A first conductivity type pillar layer set at a higher concentration, and a second conductivity type formed in the first conductivity type base layer in contact with the first conductivity type base layer and the first conductivity type pillar layer. A pillar layer,The impurity concentration of the second conductivity type pillar layer is larger than the impurity concentration of the first conductivity type pillar layer;The first conductivity type pillar layer and the second conductivity type pillar layer are depleted when a high voltage is applied.
[0035]
  The second diode of the present invention isA first conductive type base layer; a first conductive type emitter layer formed on a first main surface of the first conductive type base layer; and a second formed on a second main surface of the first conductive type base layer. A first conductive type emitter layer and a second conductive type emitter layer that are selectively formed in the first conductive type base layer in contact with the first conductive type base layer, and an impurity concentration is set higher than that of the first conductive type base layer. A first conductivity type pillar layer; a first conductivity type base layer; a second conductivity type pillar layer formed in the first conductivity type base layer in contact with the first conductivity type pillar layer; The width of the two conductivity type pillar layer is wider than the width of the first conductivity type pillar layer, and the first conductivity type pillar layer and the second conductivity type pillar layer are depleted when a high voltage is applied.It is characterized by that.
[0036]
  First of the present invention3ofdiodeA first conductivity type first semiconductor layer, a second conductivity type second semiconductor layer formed on one surface of the first semiconductor layer and having a high impurity concentration, and the first semiconductor layer A third semiconductor layer having a high impurity concentration of the first conductivity type formed on the other surface; and the first semiconductor layerWhenThe second semiconductor layerBetweenThe fourth semiconductor layer of the second conductivity type for electric field relaxation formed onA first main electrode connected to the surface of the second semiconductor layer, and a second main electrode connected to the surface of the third semiconductor layerIt is characterized by comprising.
[0039]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0040]
In the following embodiments, the first conductivity type is n-type and the second conductivity type is p-type. In the drawings, components having substantially the same functions and configurations are denoted by the same reference numerals, and redundant description will be given only when necessary.
[0041]
<First Embodiment>
According to the inventors' research, it has been found that in order to obtain good reverse recovery characteristics in a silicon PiN diode having a breakdown voltage of about 4.5 kV, the thickness of the P-type emitter layer needs to be 5 μm or less.
[0042]
However, it has been found that when the thickness of the P-type emitter layer is 5 μm or less, the PiN diode is likely to be destroyed by the power applied during reverse recovery. This is because the portion where the highest electric field is generated is the main junction as in the conventional example shown in FIG. 31B, and the avalanche phenomenon occurs due to the reverse recovery current and the high electric field at the main junction near the surface. It is thought that it becomes easy to destroy.
[0043]
Therefore, in the first embodiment, several examples of PiN diodes that improve reverse recovery characteristics and improve withstand capability during reverse recovery will be described.
[0044]
(First embodiment)
1A and 1B are a cross-sectional view schematically showing the structure of a high breakdown voltage PiN diode according to a first embodiment of the present invention and an electric field in the depth direction from the anode to the cathode during reverse recovery operation. It is a characteristic view which shows intensity distribution roughly.
[0045]
In this diode, a P emitter layer 2 is formed on an N − base layer 1 and an N emitter layer 3 is formed on the opposite side as in the conventional diode described above with reference to FIG. Yes. An anode electrode 4 is formed on the P emitter layer 2, and a cathode electrode 5 is formed on the N emitter layer 3. Further, an N pillar layer 6 and a P pillar layer 7 are inserted between the N − base layer 1 and the P emitter layer 2.
[0046]
  Here, the impurity concentration of the N pillar layer 6 is set higher than that of the N− base layer 1, for example.The MaThe impurity concentration of the P pillar layer 7 is set to be approximately the same as that of the N pillar layer 6. Further, the pillar layers 6 and 7 have a depth / width ratio (aspect ratio) set to 5-7.
[0047]
When the depletion layer is spread in the reverse blocking state by forming the N pillar layer 6 and the P pillar layer 7 between the N − base layer 1 and the P emitter layer 2, the diode having the above structure is generated by impurity ions. The charges cancel each other out between the N pillar layer 6 and the P pillar layer 7, and the effective impurity concentration is lowered. Therefore, a low-concentration P-type impurity layer can be created by setting the impurity concentration of the P pillar layer 7 higher than the N pillar layer 6 by a specified amount.
[0048]
According to such a diode, as shown in FIG. 1B, the highest electric field is generated between the N − base layer 1 and the pillar layers 6 and 7, so that the region where the avalanche phenomenon is most severe is the N − base layer 1. And a boundary portion between the pillar layers 6 and 7. As described above, the avalanche phenomenon becomes weak immediately under the P emitter layer 2, so that the destruction of the diode can be suppressed, and the conduction loss can be reduced without increasing the reverse recovery loss.
[0049]
The thickness of the N pillar layer 6 and the P pillar layer 7 is preferably 5 μm or more in consideration of the region where the avalanche phenomenon occurs.
[0050]
Further, the P emitter layer 2 need not be formed on the entire surface of the N − base layer 1 but may be formed on a part of the surface of the N − base layer 1 as shown in FIG. In this case, the contact between the anode electrode 4 and the N pillar layer 6 and the P pillar layer 7 needs to be a Schottky contact in order to obtain a withstand voltage. When formed as shown in FIG. 29, the area of the P emitter layer 2 for injecting holes is reduced, the injection of holes into the N − base layer 1 is suppressed, and the reverse recovery characteristics can be further improved.
[0051]
(Second embodiment)
FIG. 2 is a cross-sectional view schematically showing the structure of a high voltage PiN diode according to the second embodiment of the present invention.
[0052]
This diode is obtained by changing the structure outside the junction termination region where the junction between the P emitter layer 2 and the N − base layer terminates in the diode described above with reference to FIG.
[0053]
In this diode, a field plate 8 is formed on an N − base layer 1 via an insulating film 11 in order to relax the electric field at the peripheral edge of the P emitter layer 2. Further, an N-type EQR (Equi-Potential Ring) layer 9 and an EQR electrode 10 are formed at the peripheral edge of the chip to suppress the spread of the depletion layer and stabilize the potential.
[0054]
In the reverse blocking state of the diode configured as described above, the field plate 8 is at the same potential as the anode electrode 4, and the interval between equipotential surfaces under the field plate 8 is widened, so that the electric field is relaxed and the breakdown voltage of the element is improved. be able to.
[0055]
Note that the impurity concentration ratio between the N-pillar layer 6 and the P-pillar layer 7 at the junction termination may be set to substantially the same concentration in order to promote depletion, unlike the element central portion.
[0056]
Further, the P emitter layer 2 need not be formed on the entire surface of the N − base layer 1 but may be formed on a part of the surface of the N − base layer 1 as shown in FIG. In this case, the contact between the anode electrode 4 and the N − base layer 1 needs to be a Schottky contact in order to obtain a breakdown voltage. When formed as shown in FIG. 30, the area of the P emitter layer 2 for injecting holes is reduced, the injection of holes into the N − base layer 1 is suppressed, and the reverse recovery characteristics can be further improved.
[0057]
(Third embodiment)
FIG. 3 is a sectional view schematically showing the structure of a high breakdown voltage PiN diode according to the third embodiment of the present invention.
[0058]
In this diode, the outside of the junction termination in the diode described above with reference to FIG. 2 is changed to a two-stage field plate structure.
[0059]
By adopting the two-stage field plate structure in this way, the electric field relaxation effect is enhanced as compared with the single-stage field plate structure of FIG. 2, so that the breakdown voltage of the element is improved.
[0060]
The field plate 8 is not limited to a two-stage structure, and may be a multi-stage field plate having two or more stages.
[0061]
(Fourth embodiment)
FIG. 4 is a sectional view schematically showing the structure of a high voltage PiN diode according to the fourth embodiment of the present invention.
[0062]
In this diode, the outside of the junction termination portion of the diode shown in FIG. 2 or 3 is replaced with a RESURF structure.
[0063]
In this diode, a P--RESURF layer 12 having a low impurity concentration is formed outside the peripheral edge of the P emitter layer 2, and this P--RESURF layer 12 is set to a concentration that is depleted in the reverse blocking state. Has been.
[0064]
By adopting such a RESURF structure, the P--RESURF layer 12 is depleted in the reverse blocking state, so that a state similar to the presence of negative charges on the surface portion of the P--RESURF layer 12 is obtained. As with the field plate structure shown in FIG. 2 or FIG. 3, the electric field at the junction termination is relaxed and the breakdown voltage is improved.
[0065]
(Fifth embodiment)
FIG. 5 is a sectional view schematically showing the structure of a high breakdown voltage PiN diode according to the fifth embodiment of the present invention.
[0066]
This diode is modified such that the P--Resurf layer 12 in the diode described above with reference to FIG. 4 is formed deeper than the P emitter layer 2.
[0067]
By adopting such a structure, the action of relaxing the electric field at the junction termination portion is strengthened, and the breakdown voltage is further improved.
[0068]
(Sixth embodiment)
The diode shown in FIG. 4 or FIG. 5 has the P--RESURF layer 12 inserted therein, so that the reverse recovery current concentrates on the junction termination of the diode, and the diode may be destroyed. Explained.
[0069]
FIG. 6 is a sectional view schematically showing the structure of a high breakdown voltage PiN diode according to the sixth embodiment of the present invention.
[0070]
In this diode, the outside of the junction termination in the diode described above with reference to FIG. 4 or FIG. 5 is changed to a two-stage RESURF structure.
[0071]
This diode is modified such that a P-ring layer 13 set to a concentration that does not deplete is inserted between the P emitter layer 2 and the P-- RESURF layer 12.
[0072]
By adopting such a structure, it is possible to relax the current concentration at the junction termination and improve the withstand capability during reverse recovery.
[0073]
In FIG. 6, the P--RESURF layer 12 is formed at the same depth as the P emitter layer 2, but it may be formed deeper than the P emitter layer 2. Further, by forming the P− ring layer 13 shallower than the P emitter layer 2, the current at the junction termination can be further suppressed.
[0074]
2 to 6 exemplify the case where the field plate structure and the RESURF structure are applied individually, but other RFP (Registive Field Plate) structures may be applied independently or used in combination. May be.
[0075]
(Seventh embodiment)
FIG. 7 is a cross-sectional view schematically showing the structure of a high voltage PiN diode according to the seventh embodiment of the present invention.
[0076]
This diode is different from the diode described with reference to FIG. 1A in that the width of the P pillar layer 7 is set wider than the width of the N pillar layer 6.
[0077]
  By adopting such a structure, the impurity concentration of the P pillar layer 7 and the N pillar layer 6As in the case where the values are different from each other, the gradient of the electric field distribution similar to that shown in FIG. 1B can be obtained.
[0078]
(Eighth embodiment)
FIGS. 8A and 8B are cross-sectional views schematically showing the structure of a high breakdown voltage PiN diode according to the eighth embodiment of the present invention, and the electric field in the depth direction from the anode to the cathode during reverse recovery operation. It is a characteristic view which shows intensity distribution roughly.
[0079]
In this diode, the N pillar layer 6 and the P pillar layer 7 are omitted, and a P + type potential fixing layer 20 is inserted in the N − base layer 1 as compared with the diode described above with reference to FIG. Is different. Here, the impurity concentration of the P + potential fixed layer 20 is set to a concentration that does not deplete in the reverse blocking state.
[0080]
In the reverse blocking state of this diode, when a depletion layer spreads between the P emitter layer 2 and the P + potential fixed layer 20, the potential is fixed at the potential specified by the impurity concentration of the N− base layer 1, and a larger voltage is applied. When applied, the depletion layer begins to spread from the P + potential fixed layer 20 and a potential distribution as shown in FIG. 8B is obtained.
[0081]
In this case, by forming the P + potential fixing layer 20 closer to the P emitter layer 2 than half the thickness of the N- base layer 1, the portion where the maximum electric field region occurs is directly below the P + potential fixing layer 20. Can be set to
[0082]
By adopting such a structure, the maximum electric field region is generated away from the main junction, so that the reverse recovery tolerance is improved in the same manner as the diode shown in FIG.
[0083]
(Ninth embodiment)
FIG. 9 is a sectional view schematically showing the structure of a high breakdown voltage PiN diode according to the ninth embodiment of the present invention.
[0084]
In this diode, a junction termination structure is formed on the diode described above with reference to FIG.
[0085]
In this diode, a P + guard ring layer 21 is formed in the junction termination region in order to relax the electric field. An insulating film 11 is formed on the junction termination portion. An N-type EQR layer 9 and an EQR electrode 10 are formed at the peripheral edge of the element.
[0086]
With such a structure, in the reverse blocking state of the diode, the potential of the P + guard ring layer 21 is fixed according to the spread to the depletion layer, so that the electric field is relaxed and the breakdown voltage of the diode is improved. be able to.
[0087]
It should be noted that the interval between the P + potential fixed layers 20 at the junction termination portion is formed at an interval necessary for relaxing the concentration of the electric field. Normally, the concentration of the electric field is reduced by forming it densely in a portion close to the P emitter layer 2 (portion where the electric field is large) and sparse in a portion far from the P emitter layer 2 (portion where the electric field is relatively small). can do.
[0088]
(Tenth embodiment)
FIG. 10 is a sectional view schematically showing the structure of a high voltage PiN diode according to the tenth embodiment of the present invention.
[0089]
This diode is modified so that the P + guard ring layer 21 and the P + potential fixing layer 20 of the diode of FIG. With this structure, the P + guard ring layer 21 and the P + potential fixing layer 20 have the same potential, so that the potential of the P + potential fixing layer 20 is stabilized and the breakdown voltage can be stabilized.
[0090]
9 and 10 exemplify the guard ring structure as the junction termination structure, the junction termination structure is not limited to the guard ring structure, and the field plate structure illustrated in FIGS. 2 and 3 and FIGS. 4 to 6. The RESURF structure exemplified in the above, other RFP structures, a combination structure thereof, or the like can be applied.
[0091]
<Second Embodiment>
In the second embodiment, a diode having a main pn junction on the n-type substrate 1, for example, various high voltage power diodes as disclosed in "Comparison of High Voltage Power Rectifier Structures" 1993 IEEE pp.199-204. Several examples to which the present invention is applied will be described.
[0092]
(Eleventh embodiment)
FIG. 11A is a sectional view schematically showing the structure of a high voltage PiN diode according to the eleventh embodiment of the present invention.
[0093]
In this PiN diode, a second conductivity type high concentration impurity layer 22 is formed on one surface of a first conductivity type semiconductor substrate 21, and a first conductivity type high concentration impurity layer 23 is formed on the other surface. Further, a second conductivity type impurity layer 26 is formed on one surface of the semiconductor substrate, and the total amount of impurities per unit area of the two conductivity type impurity layer 26 is 2 × 10.12cm-2It is characterized by the following.
[0094]
That is, in FIG. 11A, reference numeral 21 denotes a high-resistance (low impurity concentration) n-type semiconductor layer (n-base layer, n-layer), and one surface thereof has a shallow high impurity of about 10 μm or less. A p-type anode layer (p + anode layer) 22 having a concentration and a p-type well layer 26 having a deep low impurity concentration of about 60 μm are formed.
[0095]
On the other surface of the n @-layer 21, an n @ + cathode layer 23 is formed. An anode electrode 24 is formed as a first main electrode on the surface of the p + anode layer 22, and a cathode electrode 25 is formed as a second main electrode on the surface of the n + cathode layer 23.
[0096]
When a forward voltage is applied to the diode, holes are injected from the p + anode layer 22 through the p-well 26 into the n − layer 21, and electrons are injected from the n + cathode layer 23 into the n − layer 21. 21 has a high concentration of electron-hole pairs.
[0097]
Next, when a reverse voltage is applied to the diode for reverse recovery operation, electrons accumulated in the n− layer 21 move to the n + cathode layer 23 and holes move to the p + anode layer 22. A depletion layer spreads from the junction between the p-well 26 and the n- layer 21.
[0099]
  FIG. 11 (b) schematically shows the electric field intensity distribution in the depth direction from the anode to the cathode during the reverse recovery operation of the diode of FIG. 11 (a). hereAnd SThe areas of 1 and S2 indicate the voltages applied to the p-well 26 and the n-layer 21, respectively.
[0100]
  When the voltage applied during the reverse recovery operation of the diode of this example is equal to the voltage applied during the reverse recovery operation of the diode of the conventional example, the area of S1 + S2 in the characteristics of FIG.FIG.The area of S3 in the characteristics of the conventional example shown in FIG.
[0101]
S1 + S2 = S3
here,
S2 = W · Emax / 2
S3 = W ′ · Emax ′ / 2
Because
S1 + W · Emax / 2 = W ′ · Emax ′ / 2 (1)
It becomes.
[0102]
Further, when the currents flowing in the diode of this example and the diode of the conventional example are also equal, the gradient of the electric field strength in the n − layer 21 and the electric field strength in the n − substrate 101 become equal, and the following equation (2) is established.
[0103]
Emax / W = Emax ′ / W ′ (2)
When the above equations (1) and (2) are solved, the following equation (3) is obtained.
[0104]
  {1- (W / W ′)} = 2S1 {1+ (W / W ′)} / Emax ′ (3)
  Here, all variables are positive values
  {1- (W / W ')}>0 (4)
When the above equations (4) and (2) are solved, the following equation (5) is obtained.
[0105]
Emax ′> Emax (5)
The above equation (5) shows that the maximum electric field of the diode of this example is always smaller than the maximum electric field of the diode of the conventional example, that is, the maximum electric field in the diode is relaxed by the p-well 26.
[0106]
When the maximum electric field in the diode is relaxed in this way, the power loss density P = ExJ generated locally in the diode is relaxed, so that the breakdown resistance of the diode is improved.
[0107]
That is, the high breakdown voltage PiN diode of the eleventh embodiment reduces the maximum electric field generated in the diode during the reverse recovery operation by forming the deep diffusion p-well 26 that is completely depleted during the reverse recovery operation. And the destruction of the diode during the reverse recovery operation can be suppressed.
[0108]
Here, the total amount of impurities of p-well 26 is 2 × 10.12cm-2The grounds for the following will be described. This value is a condition for the p-well 26 to be completely depleted before the pn junction (here, the junction between the p-well 26 and the n − layer 21) causes avalanche breakdown.
[0109]
When the depletion layer extends in p-well 26, the maximum electric field Emax (V / cm) and the total impurity amount Q (cm) in the depleted region are solved by solving Poisson's equation which is a basic equation of semiconductor.-2) Between the following:
[0110]
Emax = (q / εSiQ ... (6)
Here, q is the amount of elementary charges of electrons and is 1.6 × 10-19(C), εSiIs the dielectric constant of silicon 1.05 × 10-12(F / cm).
[0111]
In order for p-well 26 to be fully depleted before the pn junction causes avalanche breakdown, Emax should be smaller than the critical electric field strength Ec at which avalanche breakdown occurs. That means
Emax <Ec (7)
It is.
[0112]
In general, Ec is 2-3 × 10FiveSince it is (V / cm), when the above equations (6) and (7) are solved,
Q = εSi Ec / q ≦ 2 × 1012(Cm-2... (8)
The following conditions are obtained. However, since this value depends on the element structure, it is not a strict critical condition.
[0113]
(Twelfth embodiment)
FIG. 12 is a cross-sectional view schematically showing the structure of a high voltage P-iN diode according to the twelfth embodiment of the present invention.
[0114]
This P-iN diode is different from the PiN diode described above with reference to FIG. 11A in that a p-anode layer 22a is formed on the surface of the n- layer 21 instead of the p + anode layer 22. Are different and the others are the same.
[0115]
The p @-anode layer 22a has a smaller total amount of impurities per unit area than the p @ + anode layer 22 in FIG. 11A, and its diffusion depth is shallow, being 2 to 4 .mu.m.
[0116]
(Thirteenth embodiment)
FIG. 13 is a sectional view schematically showing the structure of a high breakdown voltage MPS (Merged PIN / Schottky) diode according to a thirteenth embodiment of the present invention.
[0117]
In this MPS diode, a p + anode layer 22 is selectively formed on the surface of the n − layer 21 as compared with the PiN diode described above with reference to FIG. The contact surface has an ohmic contact surface and a Schottky contact surface, and the others are the same.
[0118]
(Fourteenth embodiment)
FIG. 14 is a sectional view schematically showing the structure of a high voltage SSD (Static Shielding Diode) diode according to the fourteenth embodiment of the present invention.
[0119]
Compared with the MPS diode described above with reference to FIG. 13, the SSD diode has a small total amount of impurities per unit area on the Schottky contact surface of the anode electrode 24 and a diffusion depth of about 0.2 to 1 μm. The difference is that it has a very shallow p-anode layer 22a, and the others are the same.
[0120]
(15th Example)
FIG. 15 is a cross-sectional view schematically showing the structure of a high breakdown voltage SPEED (Self adapting P-Emitter Efficiency Diode) diode according to a fifteenth embodiment of the present invention.
[0121]
This SPEED diode differs from the SSD diode described above with reference to FIG. 14 in that it has a p anode layer 22b having a different injection efficiency so as to surround the p + anode layer 22 instead of the p − anode layer 22a. Others are the same.
[0122]
  (Sixteenth embodiment)
  FIG. 16 shows a high withstand voltage SFD (Soft and Fast) according to the sixteenth embodiment of the present invention.recovery (Diode) It is sectional drawing which shows the structure of a diode typically.
[0123]
This SFD diode is different from the SSD diode described above with reference to FIG. 14 in that the Schottky contact surface of the anode electrode 24 is formed of Al—Si—Alloy 27, and the others are the same.
[0124]
(Seventeenth embodiment)
FIG. 17 is a sectional view schematically showing the structure of a high voltage TMBS diode according to the seventeenth embodiment of the present invention.
[0125]
This TMBS diode differs from the MPS diode described above with reference to FIG. 13 in that an anode electrode 24 is formed in the trench groove via an oxide film 28 instead of the p + anode layer 22. Others are the same.
[0126]
<Third Embodiment>
In the third embodiment, several examples in which the present invention is applied to a power SBD will be described.
[0127]
(Eighteenth embodiment)
FIG. 18 is a sectional view schematically showing the structure of the power SBD according to the eighteenth embodiment of the present invention.
[0128]
In this SBD, a high impurity concentration semiconductor layer (for example, an n + cathode layer) 32 is formed on one surface of an n − layer 31 which is a first semiconductor layer. A main electrode (cathode electrode) 33 is formed.
[0129]
On the other surface of the n − layer 31, a plurality of p guard ring layers 34 are selectively formed as second semiconductor layers spaced apart from each other and diffused in the form of planar stripes. Is formed and embedded with an insulator 37. A p buried layer 35 is formed as a third semiconductor layer at the bottom of the groove. A second main electrode (anode electrode) 36 that forms a Schottky junction with the n − layer 31 is formed.
[0130]
19A to 19F are cross-sectional views schematically showing the structure according to the manufacturing process (process flow) of the SBD of FIG.
[0131]
First, as shown in FIG. 19A, a semiconductor wafer (original substrate) having an n @-layer 31 formed on an n @ + layer 32 by epitaxial growth is prepared. Next, as shown in FIG. 19B, an oxide film (SiO 2) is formed on the surface of the n − layer 31.2Film) 51, a pattern of resist 52 is formed, and a groove 53 is formed in the n − layer 31.
[0132]
Next, as shown in FIG. 19 (c), boron is ion-implanted into the bottom of the trench 53 and activated, thereby selectively forming the p buried layer 35 as shown in FIG. 19 (d). . Thereafter, the insulating material (SiO2) Embed at 37. Thereafter, as shown in FIG. 19 (e), a p guard ring layer 34 is selectively formed on the surface of the n @-layer 31, and thereafter, as shown in FIG. Form.
[0133]
In this process, the main thermal process is only the activation annealing of the p buried layer 35 and the p guard ring layer 34, and the diffusion of the p buried layer 35 can be suppressed. It becomes possible to form.
[0134]
Further, as a process of suppressing the diffusion of the p buried layer 35, conversely to the above process, when the p guard ring layer 34 is formed on the surface of the n − layer 31, a groove is formed to form the p buried layer 35. Since the p buried layer 35 can be formed under annealing conditions different from those for the guard ring layer 34, miniaturization is possible.
[0135]
  Here, as an example of a diode having a breakdown voltage of 100V, the n @-layer 31 has an impurity concentration of 4.times.10.15cm -3 The n + cathode layer 32 has an impurity concentration of about 1 × 10 5.19cm-3The thickness is about 200 μm.
[0136]
The n + cathode layer 32 may be formed as necessary. The trench embedded with the insulator 37 is formed with a width of 0.6 μm and a depth of 4 μm, and the p-buried layer 35 at the bottom is formed with a depth of 1 μm, a width of 1.4 μm, and a lateral pitch of 3 μm. Yes.
[0137]
When the p buried layer 205 is formed by using buried crystal growth as in the conventional example shown in FIG. 34, the p buried layer 205 has a depth of about 2.5 μm and a width of about 3 μm by re-diffusion during the buried growth. Therefore, the parasitic resistance between the p buried layers 205 is increased.
[0138]
That is, as described above, when the trench 53 is formed without using the buried crystal growth and the p buried layer 35 is formed at the bottom thereof, the process temperature is lowered, and the high density and fine p buried layer 35 is formed. It becomes possible.
[0139]
FIG. 20 shows the on-resistance / breakdown voltage of the SBD when the p buried layer 35 is formed at the groove bottom as in this embodiment and when the p buried layer 205 is formed using buried crystal growth as in the conventional example. It is shown to explain the trade-off relationship. For comparison, the characteristics of the SBD having no p buried layer are also shown.
[0140]
Compared with the case where there is no p-type buried layer, when the p buried layer is present, the on-resistance becomes low. In this case, when the buried crystal growth is used as in the conventional example, the p buried layer is wide, but when the p buried layer 35 is formed at the bottom of the groove as in this embodiment, it can be formed finely. The example has a lower on-resistance than the conventional example. In particular, in a diode with a withstand voltage of 100 V or less, when embedded growth is used as in the conventional example, the parasitic resistance between the p embedded layers cannot be ignored, and the on-resistance is the same as when there is no embedded layer. In this embodiment, even when the breakdown voltage is 100 V or less, a lower on-resistance can be expected than when no p buried layer is provided.
[0141]
Further, in this embodiment, after the p buried layer 35 is formed at the bottom of the groove, the p − layer is formed on the sidewall of the groove using ion implantation or vapor phase diffusion from an oblique direction before filling the groove with the insulator 37. When the p guard ring layer 34 and the p buried layer 35 are connected by forming, the p buried layer 35 depleted when a reverse voltage is applied can be quickly charged during forward recovery, which is advantageous for high-speed operation. is there.
[0142]
(Nineteenth embodiment)
FIG. 21 is a cross-sectional view schematically showing the structure of the power SBD according to the nineteenth embodiment of the present invention.
[0143]
In this SBD, a p-guard ring layer 34a having a two-layer structure is formed by a polycrystalline semiconductor (polysilicon) 38 filling a groove and a p-guard ring layer 34 around the groove, as compared with the diode described above with reference to FIG. The other points are the same.
[0144]
According to such a structure, since the p guard ring layer 34 is formed only in the groove portion, the narrow and deep p guard ring layer 34 that cannot be obtained by thermal diffusion like the diode shown in FIG. 18 is formed. Can be formed.
[0145]
As a result, the leakage current of the Schottky junction and the parasitic resistance between the p guard ring layers 34 can be reduced. In addition, the process of forming the p guard ring layer 34 using the groove can shorten the thermal diffusion time for forming the p guard ring layer 34. The p guard ring layer 34 and the p buried layer 35 When diffusion is performed simultaneously, the diffusion time is shortened, which is suitable for forming a fine p buried layer 35.
[0146]
(20th embodiment)
FIG. 22 is a cross-sectional view schematically showing the structure of the power SBD according to the twentieth embodiment of the present invention.
[0147]
This SBD is different from the diode described above with reference to FIG. 18 in that the p guard ring layer 34 and the p buried layer 35 are formed in the same groove, and the others are the same.
[0148]
In the nineteenth embodiment shown in FIG. 21, the p guard ring layer 34 and the p buried layer 35 are formed in separate grooves. First, the p buried layer 35 is formed in the groove bottom to insulate the groove. If the insulator 37 is dug by wet etching and the p-type polysilicon 38 is buried after the material 37 is buried, the dry etching process can be omitted once compared to the nineteenth embodiment. .
[0149]
(Twenty-first embodiment)
FIG. 23 is a cross-sectional view schematically showing the structure of the power SBD according to the twenty-first embodiment of the present invention.
[0150]
This SBD is different from the diode described above with reference to FIG. 18 in that the p guard ring layer 34 and the p buried layer 35 are formed in a planar stripe shape and are orthogonal to each other.
[0151]
With such a structure, each period can be controlled independently. Since the period of the p guard ring layer 34 affects the Schottky junction leakage, and the period of the p buried layer 35 affects the electric field division in the n − layer 31, it is possible to optimize each of them.
[0152]
Further, as described above, the p guard ring layer 34 may have a structure in which polysilicon is embedded in the groove.
[0153]
(Twenty-second embodiment)
FIG. 24 is a sectional view schematically showing the structure of the power SBD according to the twenty-second embodiment of the present invention.
[0154]
Compared with the diode described above with reference to FIG. 18, this SBD has a p-buried layer 35 formed in a lattice pattern by arranging the grooves for forming the p-buried layer so as to have a planar grid pattern. Is different.
[0155]
In addition, at the element termination portion, a p guard ring layer 34 is formed on the anode side surface, and a p buried layer 35 is formed in the n − layer 31 to reduce the electric field, thereby suppressing a decrease in breakdown voltage. In this case, even if the period of the p guard ring layer 34 at the element termination is different from the period of the p buried layer 35, the present invention can be implemented.
[0156]
By adopting such a structure, the parasitic resistance between the p buried layers 35 can be reduced and the on-resistance can be lowered as compared with the case where the p buried layers 35 are formed in a stripe shape as described above. .
[0157]
The groove for forming the p buried layer may be arranged so as to be a planar staggered pattern in which the lattice pattern is shifted in a zigzag pattern.
[0158]
(23rd embodiment)
FIG. 25 is a sectional view schematically showing the structure of the power SBD according to the twenty-third embodiment of the present invention.
[0159]
This SBD is different from the diode described above with reference to FIG. 24 in that the trench for forming the p buried layer is formed in a stripe shape at the center of the element and in a lattice shape at the end of the element. .
[0160]
The p buried layer 35 needs to be periodically formed even at the element termination portion. If the groove for forming the p buried layer is also formed in a stripe shape at the terminal portion, carriers are confined by the insulator 37 when the depletion layer extends in the lateral direction when a reverse voltage is applied. As a result, the electric field concentrates and the withstand voltage decreases. Therefore, at the termination portion, the groove for forming the p buried layer is formed in a lattice shape or a staggered lattice shape so that carriers are not confined during depletion when a reverse voltage is applied, thereby reducing the breakdown voltage. Can be suppressed.
[0161]
(Twenty-fourth embodiment)
FIG. 26 is a sectional view schematically showing the structure of the power SBD according to the twenty-fourth embodiment of the present invention.
[0162]
In this SBD, a p buried layer 35 is formed by using a groove for forming a p buried layer in a horizontal SBD. Here, 31 is an n @-layer, 32 is an n @ + cathode layer, 33 is a cathode electrode, 34 is a p guard ring layer, 35 is a p buried layer having a structure in which polysilicon 39 is buried in the groove, and 36 is an anode electrode. is there. It is desirable that the n − substrate 30 serving as the SBD substrate has a lower impurity concentration than the n − layer 31 on which carriers travel.
[0163]
Further, by increasing the number of electric field divisions by increasing the number of p buried layers 35 in the n − layer 31 between the anode electrode 36 and the cathode electrode 33, the concentration of the n − layer 31 is proportional to the division number. Since it is possible to increase, it is possible to further reduce the on-resistance.
[0164]
The p buried layer 35 can be formed by using ion implantation and thermal diffusion without using the groove as described above. However, in order to obtain the deep and narrow p buried layer 35, the groove is used. It is desirable to form.
[0165]
As shown by the dotted line in the figure, when a p- layer 40 is formed on the surface of the n- layer 31, and the p buried layer 35 and the p guard ring layer 34 are connected by the p- layer 40, the forward recovery of the diode is achieved. The p buried layer 35 is quickly charged through the p − layer 40 and is suitable for high speed operation.
[0166]
Further, the cathode electrode 33 and the anode electrode 36 can each be formed using a groove to form a deep electrode, and the effective electrode area through which carriers flow can be increased, so that the chip area is not increased. The on-resistance can be lowered.
[0167]
(25th embodiment)
FIG. 27 is a sectional view schematically showing the structure of the power SBD according to the twenty-fifth embodiment of the present invention.
[0168]
This SBD is different from the lateral diode described above with reference to FIG. 26 in that a Schottky metal 41 is embedded instead of the p buried layer 35.
[0169]
With such a structure, the buried Schottky metal 41 exhibits the same effect as the p buried layer 35, so that electric field division is possible and low on-resistance can be realized.
[0170]
The anode electrode 36 and the embedded Schottky metal 41 can be formed by forming grooves at the same time and simultaneously embedding the Schottky metal.
[0171]
Also, a process such as forming a p layer at the bottom or corner of the groove in which the anode electrode 36 or the Schottky metal 41 is embedded, or rounding the corner of the groove using hydrogen annealing, wet etching, chemical dry etching, or the like. By performing the above, it is possible to relax the electric field and suppress the leakage current.
[0172]
Further, if the n + cathode layer 32 is formed deeply using the groove, the area in which the carrier travels can be increased, and the on-resistance can be reduced.
[0173]
(Twenty-sixth embodiment)
FIG. 28 is a cross-sectional view schematically showing the structure of the power SBD according to the twenty-sixth embodiment of the present invention.
[0174]
This SBD differs from the lateral diode described above with reference to FIG. 26 in that the insulator 42 is buried in the groove instead of the p buried layer 35, but operates on the same principle.
[0175]
With such a structure, the buried insulator 42 exhibits the same effect as the p buried layer 35, so that electric field division is possible and low on-resistance can be realized.
[0176]
Note that electrons are accumulated in the U-shaped groove by making the shape of the insulator 42 into a plane U-shape. Since both the acceptor ions of the p buried layer 35 and the electrons accumulated at the interface of the insulator 42 are negative charges and have the role of electric field division, they are effective in reducing the on-resistance. Further, when the surface of the SBD is covered with the insulator 42, electrons are easily trapped and electric field division is facilitated.
[0177]
In FIG. 28, two layers of the insulator 42 are formed in the n − layer 31 between the anode electrode 36 and the cathode electrode 33. Even when this insulator 42 is formed in one layer, it is effective for reducing the on-resistance. If the number of layers of the insulator 42 is further increased, the on-resistance can be further reduced. Further, if the Schottky electrode and the n + cathode layer 32 are formed deeply using the trench, the on-resistance can be further reduced.
[0178]
Note that the SBD according to the third embodiment is not limited to the eighteenth to twenty-sixth examples. For example, in the eighteenth to twenty-third embodiments, the structure in which the p buried layer 35 is a single layer has been described, but the same effect as described above can be obtained even in a structure having two or more p buried layers 35. The plurality of p buried layers in each layer are not limited to the stripe shape described above, and may be formed in a mesh shape.
[0179]
In addition, the SBD using silicon (Si) as the semiconductor has been described. As the semiconductor, for example, a compound semiconductor such as silicon carbide (SiC), gallium nitride (GaN), or aluminum nitride (AlN), or diamond is used. it can.
[0180]
Furthermore, although the third embodiment has been described with an SBD having a buried layer with a floating potential, in a switching element such as a MOSFET, SIT, or JFET having a layer with a floating potential, or a composite or integrated element of an SBD and a switching element. Can also be implemented according to the SBD described above.
[0181]
【The invention's effect】
  As mentioned aboveClearlyAccordingly, it is possible to realize a PiN diode with improved reverse recovery characteristics and improved withstand capability during reverse recovery.
[0182]
  In addition, this departureClearlyAccording to reverse recovery operationBreakA high-voltage high-speed diode capable of suppressing breakage can be realized.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing the structure of a high breakdown voltage PiN diode according to a first embodiment of the present invention, and schematically shows the electric field strength distribution in the depth direction from the anode to the cathode during reverse recovery operation. Characteristic diagram.
FIG. 2 is a cross-sectional view schematically showing a structure of a high voltage PiN diode according to a second embodiment of the present invention.
FIG. 3 is a cross-sectional view schematically showing the structure of a high voltage PiN diode according to a third embodiment of the present invention.
FIG. 4 is a cross-sectional view schematically showing the structure of a high voltage PiN diode according to a fourth embodiment of the present invention.
FIG. 5 is a sectional view schematically showing the structure of a high voltage PiN diode according to a fifth embodiment of the present invention.
FIG. 6 is a cross-sectional view schematically showing the structure of a high voltage PiN diode according to a sixth embodiment of the present invention.
FIG. 7 is a cross-sectional view schematically showing the structure of a high breakdown voltage PiN diode according to a seventh embodiment of the present invention.
FIG. 8 is a cross-sectional view schematically showing the structure of a high breakdown voltage PiN diode according to an eighth embodiment of the present invention, and schematically shows the electric field strength distribution in the depth direction from the anode to the cathode during reverse recovery operation. Characteristic diagram.
FIG. 9 is a cross-sectional view schematically showing the structure of a high voltage PiN diode according to a ninth embodiment of the present invention.
FIG. 10 is a sectional view schematically showing the structure of a high voltage PiN diode according to a tenth embodiment of the present invention.
FIG. 11 is a cross-sectional view schematically showing the structure of a high breakdown voltage PiN diode according to an eleventh embodiment of the present invention, and schematically shows the electric field strength distribution in the depth direction from the anode to the cathode during reverse recovery operation. Characteristic diagram.
FIG. 12 is a cross-sectional view schematically showing the structure of a high voltage P-iN diode according to a twelfth embodiment of the present invention.
FIG. 13 is a sectional view schematically showing the structure of a high breakdown voltage MPS (Merged PiN / Schottky) diode according to a thirteenth embodiment of the present invention.
FIG. 14 is a sectional view schematically showing the structure of a high breakdown voltage SSD (Static Shielding Diode) diode according to a fourteenth embodiment of the present invention.
FIG. 15 is a sectional view schematically showing the structure of a high breakdown voltage SPEED (Self adapting P-Emitter Efficiency Diode) diode according to a fifteenth embodiment of the present invention;
FIG. 16 shows a high breakdown voltage SFD (Soft and Fast) according to a sixteenth embodiment of the present invention.recovery Diode) A sectional view schematically showing the structure of a diode.
FIG. 17 is a sectional view schematically showing the structure of a high voltage TMBS diode according to a seventeenth embodiment of the present invention.
FIG. 18 is a cross-sectional view schematically showing the structure of a power SBD according to an eighteenth embodiment of the present invention.
19 is a cross-sectional view schematically showing the structure in accordance with the manufacturing process (process flow) of the SBD of FIG.
FIG. 20 is a diagram for explaining a trade-off relationship between on-resistance / breakdown voltage of an SBD in which a p-buried layer is formed using the SBD of FIG. 19 and buried crystal growth and an SBD without the p-buried layer;
FIG. 21 is a sectional view schematically showing the structure of a power SBD according to a nineteenth embodiment of the present invention.
FIG. 22 is a sectional view schematically showing the structure of a power SBD according to a twentieth embodiment of the present invention.
FIG. 23 is a cross-sectional view schematically showing the structure of a power SBD according to a twenty-first embodiment of the present invention.
FIG. 24 is a sectional view schematically showing the structure of a power SBD according to a twenty-second embodiment of the present invention.
FIG. 25 is a cross-sectional view schematically showing the structure of a power SBD according to a twenty-third embodiment of the present invention.
FIG. 26 is a sectional view schematically showing the structure of a power SBD according to a twenty-fourth embodiment of the present invention.
FIG. 27 is a sectional view schematically showing the structure of a power SBD according to a twenty-fifth embodiment of the present invention.
FIG. 28 is a sectional view schematically showing the structure of a power SBD according to a twenty-sixth embodiment of the present invention.
FIG. 29 is a cross-sectional view schematically showing the structure of a high breakdown voltage PiN diode according to a modification of the first embodiment of the present invention.
FIG. 30 is a cross-sectional view schematically showing the structure of a high breakdown voltage PiN diode according to a modification of the second embodiment of the present invention.
FIG. 31 is a circuit diagram schematically showing a conventional motor control inverter circuit.
FIG. 32 is a cross-sectional view schematically showing the structure of a conventional example of a high breakdown voltage PiN diode and a characteristic diagram schematically showing the electric field strength distribution in the depth direction from the anode to the cathode during the reverse recovery operation.
FIG. 33 is a characteristic diagram schematically showing the electric field strength distribution in the depth direction from the anode to the cathode during the reverse recovery operation of the conventional high voltage diode.
FIG. 34 is a cross-sectional view schematically showing the structure of a conventional SBD.
[Explanation of symbols]
1 ... N-base layer,
2 ... P emitter layer,
3 ... N emitter layer,
4 ... anode electrode,
5 ... Cathode electrode,
6 ... N pillar layer,
7: P pillar layer.

Claims (3)

第1導電型ベース層と、
前記第1導電型ベース層の第1主表面に形成された第1導電型エミッタ層と、
前記第1導電型ベース層の第2主表面に形成された第2導電型エミッタ層と、
前記第2導電型エミッタ層に接して前記第1導電型ベース層中に選択的に形成され、不純物濃度が前記第1導電型ベース層よりも高濃度に設定された第1導電型ピラー層と、
前記第1導電型ベース層と前記第1導電型ピラー層に接して前記第1導電型ベース層中に形成された第2導電型ピラー層とを具備し、
前記第2導電型ピラー層の不純物濃度が前記第1導電型ピラー層の不純物濃度より大きくされており、
高電圧印加時に前記第1導電型ピラー層および第2導電型ピラー層が空乏層化されることを特徴とするダイオード。
A first conductivity type base layer;
A first conductivity type emitter layer formed on a first main surface of the first conductivity type base layer;
A second conductivity type emitter layer formed on the second main surface of the first conductivity type base layer;
A first conductivity type pillar layer selectively formed in the first conductivity type base layer in contact with the second conductivity type emitter layer and having an impurity concentration set higher than that of the first conductivity type base layer; ,
Comprising a first conductivity type base layer and a second conductivity type pillar layer formed in the first conductivity type base layer in contact with the first conductivity type pillar layer;
The impurity concentration of the second conductivity type pillar layer is larger than the impurity concentration of the first conductivity type pillar layer;
The diode characterized in that the first conductivity type pillar layer and the second conductivity type pillar layer are depleted when a high voltage is applied.
前記第2導電型ピラー層の幅が前記第1導電型ピラー層の幅よりも広いことを特徴とする請求項1記載のダイオード。2. The diode according to claim 1, wherein the width of the second conductivity type pillar layer is wider than the width of the first conductivity type pillar layer. 第1導電型ベース層と、A first conductivity type base layer;
前記第1導電型ベース層の第1主表面に形成された第1導電型エミッタ層と、A first conductivity type emitter layer formed on a first main surface of the first conductivity type base layer;
前記第1導電型ベース層の第2主表面に形成された第2導電型エミッタ層と、A second conductivity type emitter layer formed on the second main surface of the first conductivity type base layer;
前記第2導電型エミッタ層に接して前記第1導電型ベース層中に選択的に形成され、不純物濃度が前記第1導電型ベース層よりも高濃度に設定された第1導電型ピラー層と、A first conductivity type pillar layer selectively formed in the first conductivity type base layer in contact with the second conductivity type emitter layer and having an impurity concentration set higher than that of the first conductivity type base layer; ,
前記第1導電型ベース層と前記第1導電型ピラー層に接して前記第1導電型ベース層中に形成された第2導電型ピラー層とを具備し、A first conductivity type base layer and a second conductivity type pillar layer formed in the first conductivity type base layer in contact with the first conductivity type pillar layer;
前記第2導電型ピラー層の幅が前記第1導電型ピラー層の幅よりも広くされており、A width of the second conductivity type pillar layer is wider than a width of the first conductivity type pillar layer;
高電圧印加時に前記第1導電型ピラー層および第2導電型ピラー層が空乏層化されることを特徴とするダイオード。The diode characterized in that the first conductivity type pillar layer and the second conductivity type pillar layer are depleted when a high voltage is applied.
JP2002100515A 2002-04-02 2002-04-02 diode Expired - Lifetime JP4119148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002100515A JP4119148B2 (en) 2002-04-02 2002-04-02 diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002100515A JP4119148B2 (en) 2002-04-02 2002-04-02 diode

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007191283A Division JP2007311822A (en) 2007-07-23 2007-07-23 Schottky barrier diode

Publications (2)

Publication Number Publication Date
JP2003298072A JP2003298072A (en) 2003-10-17
JP4119148B2 true JP4119148B2 (en) 2008-07-16

Family

ID=29388420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002100515A Expired - Lifetime JP4119148B2 (en) 2002-04-02 2002-04-02 diode

Country Status (1)

Country Link
JP (1) JP4119148B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393056A (en) * 2014-11-10 2015-03-04 电子科技大学 Accumulating diode

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857527B2 (en) * 2004-05-24 2012-01-18 株式会社デンソー Method for manufacturing silicon carbide semiconductor device
JP4935075B2 (en) * 2006-01-05 2012-05-23 住友電気工業株式会社 Nitride semiconductor device with integrated electrode
JP5061473B2 (en) * 2006-02-24 2012-10-31 住友電気工業株式会社 Nitride semiconductor devices
JP5358882B2 (en) * 2007-02-09 2013-12-04 サンケン電気株式会社 Composite semiconductor device including rectifying element
JP5194273B2 (en) 2007-09-20 2013-05-08 三菱電機株式会社 Semiconductor device
JP2009088345A (en) * 2007-10-01 2009-04-23 Toshiba Corp Semiconductor device
DE102010043088A1 (en) 2010-10-29 2012-05-03 Robert Bosch Gmbh Semiconductor arrangement with Schottky diode
JP5999678B2 (en) * 2011-12-28 2016-09-28 ローム株式会社 Semiconductor device and manufacturing method of semiconductor device
JP6237336B2 (en) * 2014-02-27 2017-11-29 住友電気工業株式会社 Wide band gap semiconductor device
US9093568B1 (en) * 2014-04-16 2015-07-28 Infineon Technologies Ag Semiconductor diode
JP2014195089A (en) * 2014-04-28 2014-10-09 Toshiba Corp Semiconductor device
JP2016225333A (en) * 2015-05-27 2016-12-28 トヨタ自動車株式会社 Sbd
JP6588774B2 (en) 2015-09-02 2019-10-09 株式会社東芝 Semiconductor device
CN107768245A (en) * 2016-08-16 2018-03-06 北大方正集团有限公司 The preparation method and PIN diode of PIN diode
JP6952631B2 (en) 2018-03-20 2021-10-20 株式会社東芝 Semiconductor device
CN109638083B (en) * 2018-12-29 2024-04-05 捷捷半导体有限公司 Fast recovery diode and preparation method thereof
CN113471302B (en) * 2021-07-09 2022-10-14 弘大芯源(深圳)半导体有限公司 Schottky diode with inner and outer potential protection rings
CN117747673B (en) * 2024-02-21 2024-05-03 北京怀柔实验室 Power diode and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393056A (en) * 2014-11-10 2015-03-04 电子科技大学 Accumulating diode

Also Published As

Publication number Publication date
JP2003298072A (en) 2003-10-17

Similar Documents

Publication Publication Date Title
JP4119148B2 (en) diode
US7572683B2 (en) Semiconductor device, the method of manufacturing the same, and two-way switching device using the semiconductor devices
US9620631B2 (en) Power semiconductor device
US9087893B2 (en) Superjunction semiconductor device with reduced switching loss
JP4843253B2 (en) Power semiconductor device
KR100937276B1 (en) Semiconductor device and manufacturing method thereof
US8896084B2 (en) Semiconductor device
JP4564510B2 (en) Power semiconductor device
US7838926B2 (en) Semiconductor device
KR20140023942A (en) Recessed termination structures and methods of fabricating electronic devices including recessed termination structures
KR20190072631A (en) Power semiconductor devices and related methods having gate trenches and buried termination structures
JP2007311822A (en) Schottky barrier diode
JP2011503871A (en) A power semiconductor device having a mesa structure and a buffer layer including a mesa step
KR20000010929A (en) Schottky barrier rectifiers and methods of forming same
US9349797B2 (en) SiC devices with high blocking voltage terminated by a negative bevel
JP2003101022A (en) Power semiconductor device
JP6833848B2 (en) Area-efficient floating field ring termination
KR20110094066A (en) Bipolar punch-through semiconductor device and method for manufacturing such a semiconductor device
JP2000252456A (en) Semiconductor device and power converter using the same
EP3154091A1 (en) Reverse-conducting semiconductor device
EP1737042A1 (en) Voltage-controlled semiconductor device
Lorenz et al. Key power semiconductor device concepts for the next decade
JP2002076370A (en) Super junction schottky diode
KR102170068B1 (en) Bipolar non-punch-through power semiconductor device
WO2022119743A1 (en) Finfet power semiconductor devices

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080424

R151 Written notification of patent or utility model registration

Ref document number: 4119148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

EXPY Cancellation because of completion of term