JP4112431B2 - Cemented carbide - Google Patents
Cemented carbide Download PDFInfo
- Publication number
- JP4112431B2 JP4112431B2 JP2003144197A JP2003144197A JP4112431B2 JP 4112431 B2 JP4112431 B2 JP 4112431B2 JP 2003144197 A JP2003144197 A JP 2003144197A JP 2003144197 A JP2003144197 A JP 2003144197A JP 4112431 B2 JP4112431 B2 JP 4112431B2
- Authority
- JP
- Japan
- Prior art keywords
- cemented carbide
- average particle
- binder phase
- less
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002245 particle Substances 0.000 claims description 24
- 238000005452 bending Methods 0.000 claims description 20
- 239000012535 impurity Substances 0.000 claims description 6
- 230000002401 inhibitory effect Effects 0.000 claims description 6
- 239000011230 binding agent Substances 0.000 description 26
- 239000000843 powder Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 7
- 238000005245 sintering Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005553 drilling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 206010053759 Growth retardation Diseases 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Landscapes
- Mounting, Exchange, And Manufacturing Of Dies (AREA)
Description
【0001】
【発明が属する技術分野】
本発明は、超硬合金に関し、WCの平均粒径が0.8μm以下の靭性の優れた超硬合金に関する。
【0002】
【従来の技術】
WCの平均粒径が0.8μm以下の超硬合金には、粒成長抑制効果を有する成分を添加する技術が、以下の特許文献1、2、3及び非特許文献4に開示されている。
【特許文献1】
特開平04−46538号公報
【特許文献2】
特許3010859号公報
【特許文献3】
特開2000−712号公報
【非特許文献4】
鈴木、林、福家:粉体及び粉末冶金、9(1973)、187頁
【0003】
特許文献1にはCr、V、Taの3種の添加が開示されている。また、特許文献2、特許文献3には、Cr、V添加の3相合金が開示されている。非特許文献4には、鈴木らの検討結果が開示されている。結合相の中に同一の結晶方位をもつ領域(以下、結合相粒と言う。)が存在し、該結合相粒の粒界部は結合相の最終凝固部であるために、不純物が濃縮され、粒界部は凝固収縮により、Co量が少なくなりマイクロポアを生じやすいことを非特許文献4は開示している。
【0004】
【発明が解決しようとする課題】
微粒超硬合金は細径のドリル、エンドミル、ルーターなどの切削工具用の素材、又は打ち抜きパンチ等の工具用材料として用いられるが、近年これらの径がますます小径化する傾向が顕著であり、これら小径工具の耐折損性を向上するためには微粒超硬合金の抗折力を更に高め強靭化することが求められている。微粒超硬合金については抗折力を高めるために、これまで、WC粒径の微粒化、粒成長抑制成分の選択、量の最適化、結合相量の最適化等がなされてきているが、更なる抗折力向上のためには、これらの適正化だけでは十分とはいえず、なお一層の向上が求められている。
【0005】
【課題を解決するための手段】
本発明は、WCの平均粒径が0.8μm以下である微粒超硬合金において、該微粒超硬合金は、重量%で40%以下のCoと、残りがWC、粒成長抑制成分及び不可避不純物で有り、結合相粒の平均粒径が200μm以下で、試料数30の平均抗折力が4300MPa以上あることを特徴とする超硬合金である。本構成を採用することにより、靭性の優れた超硬合金を得ることができる。
【0006】
【発明の実施の形態】
本発明者らは、基礎的な検討結果はあるものの、これまで注目されていなかった、結合相粒の平均粒径に着目し、この結合相粒の平均粒径を一定値以下に規定することにより、抗折力を大幅に向上させることが可能であることを見出し、本発明に至った。結合相粒の平均粒径を200μm以下とすることにより、粒界部の不健全性を抗折力に影響しないレベルに健全化させることが可能である。ここで言う粒界部の健全性とは、粒界部分の不純物や粒成長抑制成分の含有量が、結合相粒内部の含有量と同等である状態の場合、健全であると言い、一方、粒界部分の不純物や粒成長抑制成分の含有量が、結合相粒内部の含有量よりも極めて多量である状態の場合、不健全であると言う。
粒成長抑制成分を含む晶出相は結合相粒界部の中でも特に粒界三重点に生じやすい。結合相粒の平均粒径が200μmを超えて大きい場合は、抗折力測定時に破壊の起点となり、抗折力の低下を招き、好ましくないため、結合相粒の平均粒径を200μm以下に限定した。結合相粒の平均粒径が200μm以下であることにより、靭性の優れた超硬合金を得ることができた。
【0007】
WC及び重量%で40%以下のCoを主成分とし、粒成長抑制成分及び不可避不純物を含有することが、優れた靭性を得るために好ましい。Co量を40%以下とする理由は、40%を超えるとCoが多すぎることにより、超硬合金として必要な硬さがえられなくなるからである。以下に、本発明の超硬合金を実施例により詳細に説明する。
【0008】
【実施例】
(実施例1)
組成が、Co:8wt%、VC:0.3wt%、Cr3C2:0.7wt%、TaC:0.1wt%、残りWC及び不可避不純物からなる超硬合金において、焼結後の冷却速度を種々変化させることにより、種々の結合相粒の平均粒径を持つ試験片を作製し、それらの抗折力を調査した。結果を表1に示す。
【0009】
【表1】
【0010】
結合相粒の平均粒径は、試験片を鏡面ラップ加工したのち、熱触刻法により結合相粒を現出させ、それを倍率が50倍の写真に撮影し、画像処理により視野内の結合相粒の平均粒径を求めた。この結果より、本発明例1から4の結合相粒の平均粒径が200μm以下の場合に抗折力は4300MPa以上を示し、ほぼ一定値であるのに対して、比較例5から7の200μmを超える場合は、結合相粒が大きいほど、抗折力は低下することが明らかである。
【0011】
(実施例2)
平均粒径0.6μmのWC粉末、平均粒径1.2μmのVC粉末、平均粒径1.4μmのCr3C2粉末、平均粒径1.3μmのTaC粉末、平均粒径0.8μmのCo粉末を原料粉末とし、これらの粉末を表2に示す組成に配合し、アトライタにてアルコールを溶媒として6時間混合した。
【0012】
【表2】
【0013】
混合後乾燥し、この乾燥粉を用いて、焼結後のサイズが4.5×8.5×25mmとしたJIS試験片をプレス成形した。得られた成形体を1350〜1450℃の所定の焼結温度にて、最初に6.65Paの真空度にて30分間焼結した後、30分間、4.9MPaのAr雰囲気下でシンターHIP処理を行った。シンターHIP後には強制冷却にて、10〜15℃/minの速度で冷却した。得られた焼結体を研磨し、熱触刻法にて結合相粒を現出させ、結合相粒の平均粒径を測定した。また各組成条件の試験片を30本用いて、研削後抗折力試験を行い、抗折力値及びばらつきの評価を行った。これら抗折力測定を行った試験片につき、破壊の起点の調査を行うために、破面近傍の張力面を研磨、熱触刻法にて結合相粒を現出させ、破壊の起点と結合相粒界とが一致するかどうかにつき評価を行った。また比較例として冷却速度を5℃/minとした以外は実施例1と同一の条件で焼結した試験片を準備して同様な評価をした。評価結果を表2に併記する。
【0014】
表2より、本発明例8から20の結合相粒の平均粒径が200μm以下の超硬合金は、比較例21から23の超硬合金に比べ、30本の試験片の平均抗折力が高く、抗折力のばらつきを示す平均抗折力の80%未満の本数も少ない。また、本発明例8から20は破壊の起点と結合相粒界の一致するものもなく、結合相粒界部の健全性が大きく改善されていることがわかる。一方、比較例21から23の超硬合金はいずれも結合相粒の平均粒径が200μmを超えており、平均抗折力が低くばらつきも大きい。また破壊の起点と結合相粒界の一致するものも多く、明らかに結合相粒界の健全性が確保できていない。
【0015】
(実施例3)
実施例2で用いた乾燥粉に溶剤及びワックスを添加して混練し、焼結後のサイズがφ3.4となるように押出し成形にて丸棒成形体を作製した。脱ワックス処理を行い、実施例2と同じ条件にて焼結を行った。得られた焼結体の結合相粒の平均粒径を実施例2と同様の測定法にて測定し、実施例2の結合相粒の平均粒径と差がないことを確認した。この丸棒素材を加工し、外径がφ0.2mm〜0.08mmのプリント基板用ドリルを作製した。
これらのドリルを用いて、表2に示す穴あけ加工条件において、各例とも5本づつ、厚さが1.6mmのガラスエポキシ基板を3枚重ねた基板の穴あけ加工を行い、折損寿命の評価を行ない、平均穴あけ数を求めた。結果を表2に併記する。表2より、本発明例8から20のドリルは3000〜4000穴、加工できたのに対し、比較例21から23のドリルは2000台の穴数であり、折損寿命までの穴あけ数が多いことが明らかである。
【0016】
【発明の効果】
本発明の超硬合金を適用することによって、結合相粒界部の健全性が向上し、その結果抗折力が高く、抗折力のばらつきも大幅に低減される。本発明の超硬合金を、例えばプリント基板用のドリルとして使用した場合、折損寿命も著しく改善することが明らかであり、本発明は工業上非常に有意義である。[0001]
[Technical field to which the invention belongs]
The present invention relates to a cemented carbide and relates to a cemented carbide excellent in toughness having an average WC particle size of 0.8 μm or less.
[0002]
[Prior art]
The following Patent Documents 1, 2, 3 and Non-Patent Document 4 disclose techniques for adding a component having an effect of suppressing grain growth to a cemented carbide having an average particle diameter of WC of 0.8 μm or less.
[Patent Document 1]
Japanese Patent Laid-Open No. 04-46538 [Patent Document 2]
Japanese Patent No. 3010859 [Patent Document 3]
JP 2000-712 [Non-Patent Document 4]
Suzuki, Hayashi, Fukuya: Powder and powder metallurgy, 9 (1973), p. 187
Patent Document 1 discloses the addition of three types of Cr, V, and Ta. Patent Documents 2 and 3 disclose Cr and V-added three-phase alloys. Non-Patent Document 4 discloses the results of studies by Suzuki et al. A region having the same crystal orientation in the binder phase (hereinafter referred to as a binder phase grain) exists, and the grain boundary portion of the binder phase grain is the final solidified portion of the binder phase. Non-Patent Document 4 discloses that the grain boundary portion is less likely to cause micropores due to the decrease in the amount of Co due to solidification shrinkage.
[0004]
[Problems to be solved by the invention]
Fine cemented carbide is used as a material for cutting tools such as small diameter drills, end mills, and routers, or as a material for tools such as punching punches. In recent years, these tendencies have become increasingly smaller. In order to improve the breakage resistance of these small-diameter tools, it is required to further increase the toughness and toughness of the fine-grain cemented carbide. In order to increase the bending strength of fine cemented carbide, the WC grain size has been reduced, the selection of grain growth inhibiting components, the amount has been optimized, the amount of binder phase has been improved, and so on. In order to further improve the bending strength, these optimizations are not sufficient, and further improvement is required.
[0005]
[Means for Solving the Problems]
The present invention provides a fine cemented carbide average grain size of WC is 0.8μm or less, the fine particle cemented carbide, 40% and less Co in weight percent, the remainder WC, grain growth suppression component and inevitable impurities The cemented carbide is characterized in that the average particle size of the binder phase grains is 200 μm or less and the average bending strength of 30 samples is 4300 MPa or more . By adopting this configuration, a cemented carbide having excellent toughness can be obtained.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Although the present inventors have a basic examination result, paying attention to the average particle diameter of the binder phase grains, which has not been noticed so far, to define the average grain diameter of the binder phase grains below a certain value. Thus, it was found that the bending strength can be greatly improved, and the present invention was achieved. By setting the average particle size of the binder phase grains to 200 μm or less, it is possible to make the unsoundness of the grain boundary part healthy to a level that does not affect the bending strength. The soundness of the grain boundary part referred to here is said to be sound when the content of impurities and grain growth inhibiting components in the grain boundary part is equivalent to the content inside the binder phase grains, When the content of impurities and grain growth inhibiting components in the grain boundary part is much larger than the content inside the binder phase grains, it is said to be unhealthy.
The crystallization phase containing the grain growth inhibiting component is likely to occur particularly at the triple boundary of the grain boundary in the bonded phase grain boundary. When the average particle size of the binder phase grains exceeds 200 μm, it becomes a starting point of fracture at the time of measuring the bending strength, leading to a decrease in the bending strength, which is not preferable. Therefore, the average particle size of the binder phase grains is limited to 200 μm or less. did. When the average particle size of the binder phase grains is 200 μm or less, a cemented carbide having excellent toughness can be obtained.
[0007]
In order to obtain excellent toughness, WC and 40% by weight or less of Co as a main component and containing a grain growth inhibiting component and inevitable impurities are preferable. The reason why the amount of Co is 40% or less is that when it exceeds 40%, too much Co cannot be obtained, and the necessary hardness as a cemented carbide cannot be obtained. Hereinafter, the cemented carbide of the present invention will be described in detail with reference to examples.
[0008]
【Example】
(Example 1)
Cooling rate after sintering in a cemented carbide having a composition of Co: 8 wt%, VC: 0.3 wt%, Cr 3 C 2 : 0.7 wt%, TaC: 0.1 wt%, remaining WC and inevitable impurities The test pieces having various average particle sizes of the binder phase grains were produced by varying the slab, and their bending strengths were investigated. The results are shown in Table 1.
[0009]
[Table 1]
[0010]
The average particle size of the bonded phase grains is obtained by mirror-wrapping the test piece, then revealing the bonded phase grains by a thermal engraving method, taking a photograph with a magnification of 50 times, and bonding within the field of view by image processing. The average particle size of the phase grains was determined. From this result, when the average particle size of the binder phase grains of Invention Examples 1 to 4 is 200 μm or less, the bending strength is 4300 MPa or more, which is almost constant, whereas the 200 μm of Comparative Examples 5 to 7 is 200 μm. It is clear that the bending strength decreases as the binder phase grains increase.
[0011]
(Example 2)
WC powder with an average particle size of 0.6 μm, VC powder with an average particle size of 1.2 μm, Cr 3 C 2 powder with an average particle size of 1.4 μm, TaC powder with an average particle size of 1.3 μm, an average particle size of 0.8 μm Co powder was used as a raw material powder, and these powders were blended in the composition shown in Table 2, and mixed with an attritor for 6 hours using alcohol as a solvent.
[0012]
[Table 2]
[0013]
It dried after mixing, and using this dried powder, a JIS test piece having a size after sintering of 4.5 × 8.5 × 25 mm was press-molded. The obtained compact was first sintered at a predetermined sintering temperature of 1350 to 1450 ° C. at a vacuum degree of 6.65 Pa for 30 minutes, and then subjected to sintering HIP treatment in an Ar atmosphere of 4.9 MPa for 30 minutes. Went. After sinter HIP, it was cooled at a rate of 10 to 15 ° C./min by forced cooling. The obtained sintered body was polished, and bonded phase grains were exposed by a thermal contact method, and the average particle diameter of the bonded phase grains was measured. Further, 30 post-grinding bending strength tests were performed using 30 test pieces of each composition condition, and bending strength values and variations were evaluated. In order to investigate the starting point of fracture for these specimens for which the bending strength was measured, the tension surface near the fracture surface was polished, and the bonded phase grains were revealed by the thermal contact method, and bonded to the starting point of the fracture. Evaluation was made as to whether or not the grain boundaries coincided with each other. As a comparative example, a test piece sintered under the same conditions as in Example 1 was prepared except that the cooling rate was 5 ° C./min. The evaluation results are also shown in Table 2.
[0014]
From Table 2, the cemented carbide having the average particle size of the binder phase grains of Invention Examples 8 to 20 having an average particle size of 200 μm or less has an average bending strength of 30 test pieces as compared with the cemented carbide of Comparative Examples 21 to 23. The number is less than 80% of the average bending force that is high and shows variations in bending strength. Further, in Examples 8 to 20 of the present invention, there is no coincidence between the starting point of fracture and the binder phase grain boundary, and it can be seen that the soundness of the binder phase grain boundary part is greatly improved. On the other hand, the cemented carbides of Comparative Examples 21 to 23 all have an average particle size of the binder phase grains exceeding 200 μm, and the average bending strength is low and the variation is large. In many cases, the starting point of the fracture coincides with the binder phase grain boundary, and clearly the integrity of the binder phase grain boundary cannot be secured.
[0015]
(Example 3)
A solvent and wax were added to the dry powder used in Example 2 and kneaded, and a round bar molded body was prepared by extrusion molding so that the size after sintering was φ3.4. Dewaxing treatment was performed, and sintering was performed under the same conditions as in Example 2. The average particle size of the binder phase grains of the obtained sintered body was measured by the same measurement method as in Example 2, and it was confirmed that there was no difference from the average particle size of the binder phase grains in Example 2. This round bar material was processed to produce a printed circuit board drill having an outer diameter of φ0.2 mm to 0.08 mm.
Using these drills, under the drilling conditions shown in Table 2, drilling was performed on five substrates each having three glass epoxy substrates each having a thickness of 1.6 mm, and evaluation of breakage life was performed. The average number of holes was determined. The results are also shown in Table 2. From Table 2, the drills of Invention Examples 8 to 20 were able to process 3000 to 4000 holes, whereas the drills of Comparative Examples 21 to 23 had 2000 holes, and the number of drills to breakage life was large. Is clear.
[0016]
【The invention's effect】
By applying the cemented carbide of the present invention, the soundness of the binder phase grain boundary is improved. As a result, the bending strength is high and the variation in the bending strength is greatly reduced. When the cemented carbide of the present invention is used, for example, as a drill for a printed circuit board, it is clear that the breakage life is remarkably improved, and the present invention is very significant industrially.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003144197A JP4112431B2 (en) | 2003-05-22 | 2003-05-22 | Cemented carbide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003144197A JP4112431B2 (en) | 2003-05-22 | 2003-05-22 | Cemented carbide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004346370A JP2004346370A (en) | 2004-12-09 |
JP4112431B2 true JP4112431B2 (en) | 2008-07-02 |
Family
ID=33531702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003144197A Expired - Fee Related JP4112431B2 (en) | 2003-05-22 | 2003-05-22 | Cemented carbide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4112431B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006218589A (en) * | 2005-02-14 | 2006-08-24 | Hitachi Tool Engineering Ltd | Amorphous carbon film coated member |
JP2009024214A (en) * | 2007-07-19 | 2009-02-05 | Tungaloy Corp | Hard metal and manufacturing method therefor |
JP7441415B2 (en) * | 2020-03-06 | 2024-03-01 | 三菱マテリアル株式会社 | WC-based cemented carbide and WC-based cemented carbide cutting tools |
-
2003
- 2003-05-22 JP JP2003144197A patent/JP4112431B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004346370A (en) | 2004-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101545346B1 (en) | Fine grained cemented carbide with refined structure | |
JP2004059946A (en) | Ultra-fine grain hard metal | |
JP4112431B2 (en) | Cemented carbide | |
JP6667264B2 (en) | Manufacturing method of high-rigidity iron-based sintered alloy | |
JP4598212B2 (en) | Method for producing WC-based composite ceramic sintered body | |
JP2003013169A (en) | WC-Co FINE-PARTICULATE CEMENTED CARBIDE SUPERIOR IN OXIDATION RESISTANCE | |
JPH08118123A (en) | High strength tungsten carbide group superhard alloy-made miniature drill | |
KR101640644B1 (en) | Titanium sintered alloy with improved thermal impact resistance and cutting tools using the same | |
JPH0598384A (en) | Tungsten carbide base sintered hard alloy having high strength and high hardness | |
JP2005068515A (en) | Hard metal containing fine particles | |
KR102178996B1 (en) | Cutting insert for heat resistant alloy | |
JP4126280B2 (en) | Fine cemented carbide | |
JP2003193172A (en) | Tungsten carbide cemented carbide and production method therefor | |
JP2004052110A (en) | Hyper-fine grained cemented carbide | |
JP2805969B2 (en) | Aluminum oxide based ceramics with high toughness and high strength | |
JP2008087988A (en) | Conductive composite ceramic | |
JPH05117799A (en) | Tungsten carbide-based sintered hard alloy | |
JPS61201750A (en) | Sintered hard alloy | |
JP2003193171A (en) | Cemented carbide and production method therefor | |
JPH0723263B2 (en) | Cutting tool made of aluminum oxide based ceramics | |
JPH09227981A (en) | Cemented carbide | |
RU2773448C1 (en) | Hard alloy with a viscosity-increasing structure | |
JP3458533B2 (en) | Manufacturing method of WC-based cemented carbide cutting tool | |
JP2019123903A (en) | Heat-resistant WC-based composite material having high thermal conductivity and method for producing the same | |
JP3008532B2 (en) | High hardness, high toughness cemented carbide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040507 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070808 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071005 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080404 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080409 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4112431 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110418 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110418 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110418 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110418 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120418 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120418 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140418 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |