[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6667264B2 - Manufacturing method of high-rigidity iron-based sintered alloy - Google Patents

Manufacturing method of high-rigidity iron-based sintered alloy Download PDF

Info

Publication number
JP6667264B2
JP6667264B2 JP2015222555A JP2015222555A JP6667264B2 JP 6667264 B2 JP6667264 B2 JP 6667264B2 JP 2015222555 A JP2015222555 A JP 2015222555A JP 2015222555 A JP2015222555 A JP 2015222555A JP 6667264 B2 JP6667264 B2 JP 6667264B2
Authority
JP
Japan
Prior art keywords
powder
iron
rigidity
particles
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015222555A
Other languages
Japanese (ja)
Other versions
JP2016102262A (en
Inventor
松本 伸彦
伸彦 松本
賢武 三宅
賢武 三宅
近藤 幹夫
幹夫 近藤
直生 渡部
直生 渡部
和宏 外山
和宏 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Publication of JP2016102262A publication Critical patent/JP2016102262A/en
Application granted granted Critical
Publication of JP6667264B2 publication Critical patent/JP6667264B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、構造部材等の高剛性化(高ヤング率化)と低コスト化を高次元で両立し得る高剛性鉄基焼結合金とその製造方法に関する。   The present invention relates to a high-rigidity iron-based sintered alloy capable of achieving both high rigidity (high Young's modulus) and low cost of structural members and the like at a high level, and a method for producing the same.

構造部材は、破損しないことは勿論、それ以外に所望の変形特性や振動特性等が要求される。このため構造部材に用いられる金属材料は、通常、高強度であると共に高ヤング率であると好ましい場合が多い。このような観点から、多くの構造部材に鉄鋼材料が用いられている。   The structural member is required not only to be not damaged but also to have desired deformation characteristics and vibration characteristics. For this reason, it is often preferable that the metal material used for the structural member has high strength and high Young's modulus. From such a viewpoint, steel materials are used for many structural members.

鉄鋼材料の強度は、熱処理等による組織制御や成分調整によって容易に変更し得るが、ヤング率は物性値であるため、通常、鉄鋼材料のヤング率はその組成や金属組織に拘わらず190〜210GPa程度でほぼ一定である。   The strength of the steel material can be easily changed by controlling the structure or adjusting the composition by heat treatment or the like. However, since the Young's modulus is a physical property value, the Young's modulus of the steel material is usually 190 to 210 GPa regardless of its composition or metal structure. The degree is almost constant.

しかし、各種部材の軽薄短小化やそれに伴う機械装置(例えばエンジン等)の性能向上を図るため、ヤング率をさらに高めた鉄鋼材料(適宜、「高剛性鋼」という。)が求められる傾向があり、このような高剛性鋼に関連する記載が、例えば下記の特許文献にある。なお、本明細書では、炭素(C)を含有していない鉄基材料も、適宜、便宜的に「鋼」という。   However, in order to reduce the size and weight of various members and to improve the performance of mechanical devices (eg, engines and the like), there is a tendency to require a steel material with a further increased Young's modulus (referred to as “high-rigidity steel” as appropriate). The description related to such high-rigidity steel is found in, for example, the following patent documents. In the present specification, an iron-based material that does not contain carbon (C) is also appropriately referred to as “steel” for convenience.

特許第3314505号公報Japanese Patent No. 3314505 特許第3898387号公報Japanese Patent No. 3898387 特開2002−47527号公報JP 2002-47527 A 特開平5−239504号公報JP-A-5-239504 特許第3478930号公報Japanese Patent No. 3478930

特許文献1〜3は、鉄基マトリックス中にニホウ化チタン粒子(TiB粒子)を分散させた高剛性鋼を提案している。また特許文献4は、ステンレスマトリックス中にTiB粒子以外のセラミック粒子を分散させた高剛性鋼を提案している。 Patent Literatures 1 to 3 propose high-rigidity steels in which titanium diboride particles (TiB 2 particles) are dispersed in an iron-based matrix. The patent document 4 proposes a high-rigidity steel dispersed with ceramic particles other than TiB 2 particles in a stainless matrix.

もっとも、これらの特許文献では、焼結体に、熱間押出しや熱間据込み等の熱間加工を施したり、HIP処理を行ったりして、緻密化することによって所望の高ヤング率を達成している。熱間加工等を行うと、工数増大によってコスト上昇を招くと共に、最終形状に近い焼結体をそのまま用いて部材の製造コスト低減を図るという、焼結法本来の優位性が阻害される。   However, in these patent documents, a desired high Young's modulus is achieved by subjecting a sintered body to hot working such as hot extrusion or hot upsetting, or HIP treatment, and densification. are doing. When hot working or the like is performed, the cost is increased due to an increase in man-hours, and the original advantage of the sintering method of reducing the manufacturing cost of a member by using a sintered body having a final shape as it is is hindered.

特許文献5は、溶製法により、鉄基マトリックス中にTiB粒子等を晶出または析出させた高剛性鋼を提案している。このような溶製法を行うには、2000〜2600℃もの高温まで加熱できる特殊溶解装置が必要となり、設備コストが増大する。また、こうして得られる高剛性鋼は、通常、バルク状であるか、形状自由度の小さい鋳物であるため、焼結法のような(ニア)ネットシェイプによる構造部材の製造コスト低減等を図ることは困難である。 Patent Document 5 proposes a high-rigidity steel in which TiB 2 particles and the like are crystallized or precipitated in an iron-based matrix by a smelting method. In order to perform such a smelting method, a special melting apparatus capable of heating to a high temperature of 2000 to 2600 ° C. is required, and equipment costs increase. In addition, since the thus obtained high-rigidity steel is usually a bulk or a casting having a small degree of freedom in shape, it is necessary to reduce the manufacturing cost of structural members by a (near) net shape such as a sintering method. It is difficult.

本発明は、このような事情に鑑みて為されたものであり、高剛性粒子(TiB粒子)を比較的多く含む場合でも、熱間加工等による緻密化を施すまでもなく、焼結体のままでも十分な高ヤング率を発揮する鉄基焼結合金と、その製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and even when a relatively large amount of high-rigidity particles (TiB 2 particles) are contained, the sintered body is not necessarily densified by hot working or the like. An object of the present invention is to provide an iron-based sintered alloy exhibiting a sufficiently high Young's modulus even as it is, and a method for producing the same.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、TiB粒子と共にZrが少量存在すると、熱間加工等を施すまでもなく、TiB粒子が鉄基マトリックス中に微細に分散した緻密な焼結体が得られることを新たに見出した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 The present inventors have conducted extensive research to solve this problem, a result of repeated trial and error, the Zr with TiB 2 particles are present in small amounts, even without performing hot working, etc., TiB 2 particles in the iron-based matrix It has been newly found that a finely dispersed and dense sintered body can be obtained. By developing these results, the present invention described below has been completed.

《高剛性鉄基焼結合金》
(1)本発明の高剛性鉄基焼結合金は、鉄(Fe)または鉄合金からなるマトリックスに、該マトリックスよりもヤング率の大きい高剛性粒子が分散してなる高剛性鉄基焼結合金であって、前記高剛性粒子は、前記高剛性鉄基焼結合金全体を100体積%として10〜50体積%を占めるニホウ化チタン(TiB)粒子を含み、さらに、前記マトリックス全体を100質量%として0.1〜3質量%のジルコニウム(Zr)を含むことを特徴とする。
《High-rigidity iron-based sintered alloy》
(1) A high-rigidity iron-based sintered alloy according to the present invention is a high-rigidity iron-based sintered alloy in which high-rigidity particles having a higher Young's modulus than the matrix are dispersed in a matrix made of iron (Fe) or an iron alloy. Wherein the high-rigidity particles include titanium diboride (TiB 2 ) particles occupying 10 to 50% by volume with the entire high-rigidity iron-based sintered alloy being 100% by volume. % Of zirconium (Zr).

(2)本発明の高剛性鉄基焼結合金(適宜、単に「焼結合金」という。)は、適量のZrを含有することにより、TiB粒子を多く含む場合(例えば10体積%以上)でも、TiB粒子がマトリックス中に均質的に分散し、空孔等が非常に少ない緻密な金属組織となる。これにより本発明の焼結合金は、熱間加工等によって緻密化されるまでもなく、高密度となり、TiB粒子の存在割合に応じた(ほぼ複合則に沿った)高ヤング率を安定的に発揮し得る。 (2) When the high-rigidity iron-based sintered alloy of the present invention (hereinafter, simply referred to as “sintered alloy”) contains an appropriate amount of Zr and contains a large amount of TiB 2 particles (for example, 10% by volume or more). However, the TiB 2 particles are homogeneously dispersed in the matrix, resulting in a dense metal structure with very few voids and the like. Thus, the sintered alloy of the present invention has a high density without being densified by hot working or the like, and has a high Young's modulus (almost in accordance with the composite rule) in accordance with the abundance ratio of TiB 2 particles. Can be demonstrated.

しかも、TiB粒子は熱(力学)的安定性が非常に高く、焼結時にマトリックスと反応して過度な液相を生じることがない。このため本発明に係る焼結体は、成形体に対して相似的に縮小することがあるとしても、成形体の形状(焼結前形状)をほぼそのまま維持し、形状保持性や寸法変化の予測性にも優れる。従って本発明の焼結合金を用いれば、上述した熱間加工等の省略に加えて、(ニア)ネットシェイプによる機械加工等の大幅な削減も可能となり、複雑形状の構造部材でも、高剛性鋼化と製造コスト低減を高次元で両立し得る。 Moreover, the TiB 2 particles have extremely high thermal (mechanical) stability, and do not react with the matrix during sintering to generate an excessive liquid phase. For this reason, the sintered body according to the present invention maintains the shape (shape before sintering) of the formed body almost as it is, even if the shaped body may be reduced in a similar manner with respect to the formed body, and maintains shape retention and dimensional change. Excellent predictability. Therefore, when the sintered alloy of the present invention is used, in addition to the above-mentioned omission of hot working and the like, it is also possible to greatly reduce machining and the like by (near) net shape. And higher manufacturing cost can be achieved at the same time.

なお、当然であるが、TiB粒子(比重4.3〜4.7g/cm)はマトリックスの主たる構成元素であるFe(比重7.8〜7.9g/cm)よりも低密度で硬質であるため、TiB粒子量に応じて焼結合金が軽量化および高強度化される。 Although of course, TiB 2 particles (specific gravity 4.3~4.7g / cm 3) is a lower density than Fe (specific gravity 7.8~7.9g / cm 3) which is a main constituent element of the matrix since a hard sintered alloy is lightweight and high strength in accordance with the TiB 2 particle amount.

(3)本発明の焼結合金が、このような優れた特性を発揮する理由は必ずしも定かではないが、現状では次のように考えられる。TiB粒子は、上述したように熱的安定性に優れるが、焼結時、TiB粒子の表面から僅かに遊離したBと、その近傍(粒界)にあるマトリックスのFeとが反応し、焼結温度がFe−Bの共晶点(約1140℃)以上になると、それらの粒界に液相が生じ得る。 (3) The reason why the sintered alloy of the present invention exhibits such excellent characteristics is not always clear, but is considered as follows at present. Although the TiB 2 particles have excellent thermal stability as described above, during sintering, B slightly released from the surface of the TiB 2 particles reacts with Fe of the matrix in the vicinity (grain boundary) thereof, When the sintering temperature is equal to or higher than the eutectic point of Fe-B (about 1140 ° C.), a liquid phase may be generated at the grain boundaries.

もっとも、本来、TiB粒子は熱的安定性に優れるため、そのような粒界に生じる液相は僅かであり、またTiB粒子と粒界に生じた液相との濡れ性も悪い。このため、含有または配合されたTiB粒子量が増加すると、TiB粒子の凝集部分へ液相が十分に浸透等せず、TiB粒子の凝集部分に空孔が残留してしまう。その結果、TiB粒子量が増加するほど、焼結体の相対密度は低下し、その相対密度の低下に応じてそのヤング率も低下するようになる。 However, since the TiB 2 particles are originally excellent in thermal stability, the liquid phase generated at such a grain boundary is small, and the wettability between the TiB 2 particles and the liquid phase generated at the grain boundary is poor. Therefore, when TiB 2 particle amount which is contained or formulation is increased, TiB 2 not liquid phase is sufficiently penetrate like to aggregate portion of the particles, voids may remain in the aggregation portion of the TiB 2 particles. As a result, as the amount of TiB 2 particles increases, the relative density of the sintered body decreases, and as the relative density decreases, the Young's modulus also decreases.

ところが理由は定かではないが、焼結合金中に少量でもZrが存在すると、ZrはTiB粒子と粒界に生じた液相との濡れ性を大幅に改善し、TiB粒子の凝集部分の空孔に液相が浸透し易くする。これにより、TiB粒子の凝集部分の空孔が減少し、焼結体の相対密度ひいてはヤング率も高まる。こうして本発明の焼結合金は、TiB粒子の含有量を多くした場合でも、熱間鍛造等を施すまでもなく、焼結したままで、TiB粒子の含有量に応じた高ヤング率を発現するようになったと考えられる。 But the reason is not clear, when the Zr even a small amount of the sintered alloy is present, Zr was greatly improved wettability with the liquid phase arising in the TiB 2 particles and a grain boundary, the aggregation portion of the TiB 2 particles The liquid phase is easy to penetrate the pores. This reduces the vacancies aggregate portion of TiB 2 particles, relative density and thus the Young's modulus of the sintered body also increases. Thus, even when the content of the TiB 2 particles is increased, the sintered alloy of the present invention has a high Young's modulus according to the content of the TiB 2 particles without being subjected to hot forging or the like, and remains sintered. It is considered that the expression has started.

上述したように、本発明のような焼結合金では、高剛性粒子量(体積%)に応じてヤング率が向上するという複合則(配合則)に単純に支配される訳ではなく、焼結合金のヤング率はその相対密度とも強い相関を示す。このため焼結合金の高剛性化を図るには、所望のヤング率に応じた高剛性粒子量を含有(配合)させると共に、高い相対密度の確保が不可欠となる。そこで本発明の焼結合金は、真密度(ρ)に対する嵩密度(ρ)の比である相対密度(ρ/ρ×100%)が96%以上、97%以上さらには98%以上であると好適である。 As described above, in the sintered alloy according to the present invention, the simple rule is not simply governed by the compound rule (combination rule) that the Young's modulus is improved in accordance with the amount (volume%) of the high-rigidity particles. Gold's Young's modulus also shows a strong correlation with its relative density. Therefore, in order to increase the rigidity of the sintered alloy, it is essential to contain (blend) a high rigidity particle amount according to a desired Young's modulus and to secure a high relative density. Therefore, the sintered alloy of the present invention has a relative density (ρ / ρ 0 × 100%), which is a ratio of a bulk density (ρ) to a true density (ρ 0 ), of 96% or more, 97% or more, and even 98% or more. It is preferred that there be.

《高剛性鉄基焼結合金の製造方法》
(1)本発明は、次のような高剛性鉄基焼結合金の製造方法としても把握できる。すなわち本発明は、鉄または鉄合金からなる鉄系粉末とニホウ化チタン粒子を含む高剛性粉末とジルコニウム源粉末とを混合した混合粉末を加圧成形した成形体を得る成形工程と、該成形体を加熱して焼結体を得る焼結工程とを備え、該焼結体からなる高剛性鉄基焼結合金を得ることを特徴とする高剛性鉄基焼結合金の製造方法でもよい。さらに本発明は、上述した焼結合金とは独立して、上記の製造方法により得られた高剛性鉄基焼結合金としても把握できる。
《Manufacturing method of high rigidity iron-based sintered alloy》
(1) The present invention can be understood as a method for producing a high-rigidity iron-based sintered alloy as described below. That is, the present invention provides a molding step of obtaining a molded product obtained by press-molding a mixed powder obtained by mixing an iron-based powder made of iron or an iron alloy, a highly rigid powder containing titanium diboride particles, and a zirconium source powder, And a sintering step of obtaining a high-rigidity iron-based sintered alloy comprising the sintered body. Further, the present invention can be understood as a high-rigidity iron-based sintered alloy obtained by the above-described manufacturing method independently of the above-described sintered alloy.

(2)この製造方法を踏まえて、上述した高剛性鉄基焼結合金は次のようにも把握できる。すなわち本発明の高剛性鉄基焼結合金は、鉄または鉄合金の粒子である鉄系粒子からなる鉄系粉末とTiB粒子を含む高剛性粉末とジルコニウム源粉末とを混合した混合粉末を加圧した成形体を焼結して得られた焼結体からなる高剛性鉄基焼結合金であり、前記高剛性粉末は、前記混合粉末全体を100体積%としたときに10〜50体積%のTiB粒子を含み、前記ジルコニウム源粉末は、該混合粉末から該高剛性粉末を除いた粉末全体を100質量%としたときに0.1〜3質量%のZrを含むことを特徴とするものでもよい。 (2) Based on this manufacturing method, the above-described high-rigidity iron-based sintered alloy can be understood as follows. That rigid iron-based sintered alloy of the present invention, pressure to the mixed powder of the high rigidity powder and the zirconium source powder containing iron-based powder and the TiB 2 particles made of an iron-based particles are particles of iron or an iron alloy A high-rigidity iron-based sintered alloy comprising a sintered body obtained by sintering a pressed compact, wherein the high-rigidity powder is 10 to 50% by volume when the entire mixed powder is 100% by volume. by weight of TiB 2 particles, wherein the zirconium source powder is characterized in that it comprises 0.1 to 3 wt% of Zr when the entire powder excluding the high-rigidity powder from the mixed powder is 100 mass% It may be something.

さらに本発明の高剛性鉄基焼結合金は、鉄または鉄合金の粒子である鉄系粒子からなる鉄系粉末とTiB粒子を含む高剛性粉末とジルコニウム源粉末とを混合した混合粉末を加圧した成形体を焼結して得られた焼結体からなる高剛性鉄基焼結合金であり、前記高剛性粉末は、前記混合粉末全体を100質量%としたときに5〜35質量%、10〜30質量%さらには15〜25質量%含まれ、前記ジルコニウム源粉末は、該混合粉末全体を100質量%としたときに0.2〜4質量%、0.4〜2.5質量%さらには0.7〜1.5質量%含まれることを特徴とするものでもよい。 Furthermore rigid iron-based sintered alloy of the present invention, pressure to the mixed powder of the high rigidity powder and the zirconium source powder containing iron-based powder and the TiB 2 particles made of an iron-based particles are particles of iron or an iron alloy A high-rigidity iron-based sintered alloy made of a sintered body obtained by sintering a pressed compact, wherein the high-rigidity powder is 5 to 35% by mass when the entire mixed powder is 100% by mass. , 10 to 30% by mass, more preferably 15 to 25% by mass, and the zirconium source powder is 0.2 to 4% by mass, 0.4 to 2.5% by mass when the whole mixed powder is 100% by mass. %, Or 0.7 to 1.5% by mass.

このとき鉄系粉末は、鉄系粉末全体を100質量%として、0.2〜4質量%さらには0.4〜2.5質量%のMoと、0.5〜6質量%さらには1.5〜4質量%のCrの少なくとも一方を含む鉄合金粉末であると好ましい。   At this time, the iron-based powder is Mo of 0.2 to 4% by mass, more preferably 0.4 to 2.5% by mass, and 0.5 to 6% by mass, and more preferably 1. to 100% by mass of the entire iron-based powder. An iron alloy powder containing at least one of 5 to 4% by mass of Cr is preferable.

また焼結体は、鉄系粒子とホウ化物粒子の粒界の少なくとも一部で液相を生じる焼結温度以上で加熱されてなると好ましい。   Preferably, the sintered body is heated at a sintering temperature or higher at which a liquid phase is formed at at least a part of the grain boundary between the iron-based particles and the boride particles.

《その他》
(1)本明細書でいう体積割合(体積%)は、特に断らない限り、空孔(Pore)を除いたポアフリー体積(PFV)に基づいて算出される。例えば、「焼結合金全体を100体積%として」とは、焼結合金の見掛体積(嵩体積)から、そこに含まれる空孔(Pore)を除いて求めた体積(PFV)を100体積%として、という意味である。
《Other》
(1) The volume ratio (vol%) referred to in the present specification is calculated based on a pore-free volume (PFV) excluding pores (Pore), unless otherwise specified. For example, “with the entire sintered alloy as 100% by volume” means that the volume (PFV) obtained by removing the pores (Pore) contained therein from the apparent volume (bulk volume) of the sintered alloy is 100 volumes. It means as%.

また本明細書でいう「相対密度」は焼結体(成形体も同様)の真密度(ρ)に対する焼結体(成形体)の嵩密度(ρ)の比(ρ/ρ×100%)である。この際、嵩密度(ρ)は計測用試験片(例えば基準寸法:φ14×10mmの円柱状試験片)の実測した寸法と質量から算出される。真密度(ρ)は、その試験片から空孔を除いて求めた体積(PFV)で、実測した質量を除して求められる(ポアフリー密度:PFD)。 The term “relative density” as used in the present specification refers to the ratio (ρ / ρ 0 × 100) of the bulk density (ρ) of the sintered body (molded body) to the true density (ρ 0 ) of the sintered body (also the molded body). %). At this time, the bulk density (ρ) is calculated from the actually measured dimensions and mass of a test piece for measurement (for example, a cylindrical test piece having a reference size of φ14 × 10 mm). The true density (ρ 0 ) is obtained by dividing the actually measured mass by the volume (PFV) obtained by removing holes from the test piece (pore-free density: PFD).

焼結合金の製造時であれば、各原料粉末の配合質量(Wi)とその真密度(Di:文献値またはカタログ値)から、各原料粉末の占める体積(Vi=Wi/Di)が求まり、その各体積の総和(ΣVi)が混合粉末全体の体積となり、これを焼結合金のポアフリー体積(PFV:ΣVi)とした。なお、各原料粉末の配合質量(Wi)は実測値である。   When manufacturing a sintered alloy, the volume (Vi = Wi / Di) occupied by each raw material powder is determined from the blended mass (Wi) of each raw material powder and its true density (Di: literature value or catalog value), The sum of the respective volumes (ΣVi) was the total volume of the mixed powder, and this was defined as the pore-free volume (PFV: ΣVi) of the sintered alloy. In addition, the compounding mass (Wi) of each raw material powder is an actually measured value.

このポアフリー体積(PFV:ΣVi)を用いれば、焼結合金中のTiB粒子の体積割合または混合粉末中における高剛性粉末(特にTiB粒子)の体積割合、さらには相対密度も容易に算出できる。例えば、配合質量(Wt)とその真密度(Dt)から求めたTiB粒子(粉末)の体積(Vt=Wt/Dt)を、ポアフリー体積(ΣVi)で除することにより、焼結合金中または混合粉末中におけるTiB粒子(粉末)の体積割合を算出することができる(Vt/ΣVi×100%)。 By using this pore-free volume (PFV: ΔVi), the volume ratio of TiB 2 particles in the sintered alloy or the volume ratio of high-rigidity powder (particularly TiB 2 particles) in the mixed powder, and further, the relative density can be easily calculated. . For example, by dividing the volume (Vt = Wt / Dt) of TiB 2 particles (powder) determined from the blended mass (Wt) and its true density (Dt) by the pore-free volume (ΣVi), The volume ratio of TiB 2 particles (powder) in the mixed powder can be calculated (Vt / ΣVi × 100%).

(2)本明細書でいう「ヤング率」は、円柱状の計測用試験片(φ14×10mm)に対して超音波パルス法により測定される。 (2) The "Young's modulus" referred to in this specification is measured by an ultrasonic pulse method on a cylindrical measurement test piece (φ14 × 10 mm).

(3)本明細書でいう粉末の「平均粒径」は、レーザー回折式粒度分布測定器による粒度分布測定に基づくメジアン径(D50)より特定される。また粉末の粒度は、篩い分けにより特定する。例えば、公称目開きがaμmの篩いを通過した粒子からなる粉末は、粒度を「−aμm」として表す。なお、篩いを用いた分級に関してはJIS Z 8801に準拠する。 (3) The “average particle size” of the powder referred to in the present specification is specified by a median diameter (D50) based on a particle size distribution measurement using a laser diffraction type particle size distribution analyzer. The particle size of the powder is specified by sieving. For example, a powder consisting of particles that have passed through a sieve with a nominal opening of a μm has a particle size expressed as “−a μm”. The classification using a sieve conforms to JIS Z8801.

(4)本発明に係る高剛性粒子は、その全部または大部分がTiB粒子からなるが、それとは異なる高ヤング率な粒子、例えば、炭化物粒子、窒化物粒子、酸化物粒子、TiB以外のホウ化物粒子等を少量含んでいてもよい。 (4) The high-rigidity particles according to the present invention are entirely or mostly composed of TiB 2 particles, but are different from the particles having a high Young's modulus, such as carbide particles, nitride particles, oxide particles and TiB 2. May be contained in a small amount.

本発明に係るマトリックスは、高剛性粒子の組成にも依るが、Fe、Mo、Cr、Cu、Ni等以外に、少量の改質元素(Mn、Si、V、Co、Ti、Nb、W、P、B等)や不可避不純物を含み得る。改質元素により、高剛性鉄基焼結合金の強度、靱性、延性、寸法安定性等の向上を図ることが可能となる。   The matrix according to the present invention depends on the composition of the high-rigidity particles, but in addition to Fe, Mo, Cr, Cu, Ni, etc., a small amount of modifying elements (Mn, Si, V, Co, Ti, Nb, W, P, B, etc.) and unavoidable impurities. The modifying element makes it possible to improve the strength, toughness, ductility, dimensional stability, and the like of the high-rigidity iron-based sintered alloy.

(5)本発明の焼結合金は、その形態を問わず、例えば、インゴット状、棒状、管状、板状等の素材であっても良いし、最終製品またはそれに近い部材であっても良い。もっとも本発明に係る焼結体は、焼結したままでも高密度、高ヤング率、高強度等を発揮すると共に、焼結前の形態(成形体の形状)が少なくとも相似的に保持される。従って、本発明の焼結合金は、(ニア)ネットシェイプを利用できる焼結部材(構造部材等)であると、その高剛性化と低コスト化の両立を高次元で図れて好ましい。 (5) Regardless of the form, the sintered alloy of the present invention may be, for example, a material such as an ingot, a rod, a tube, or a plate, or a final product or a member similar thereto. However, the sintered body according to the present invention exhibits high density, high Young's modulus, high strength and the like even when sintered, and at least the shape before sintering (the shape of the molded body) is maintained at least similarly. Therefore, it is preferable that the sintered alloy of the present invention is a sintered member (structural member or the like) that can utilize the (near) net shape because both high rigidity and low cost can be achieved at a high level.

(6)本発明の高剛性鉄基焼結合金が発揮するヤング率、強度、伸び(靱性)等の機械的特性は、各原料粉末の種類や組成、成形条件(成形方法、成形圧力等)、焼結条件(温度、時間、雰囲気等)等により異なるため、一概に特定することは困難である。敢ていうなら、本発明の高剛性鉄基焼結合金は、ヤング率が230GPa以上さらには250GPa以上であると好ましい。 (6) The mechanical properties such as Young's modulus, strength and elongation (toughness) exhibited by the high-rigidity iron-based sintered alloy of the present invention are determined by the type and composition of each raw material powder, molding conditions (molding method, molding pressure, etc.). , Sintering conditions (temperature, time, atmosphere, etc.), etc., it is difficult to specify all of them. To put it bluntly, the high-rigidity iron-based sintered alloy of the present invention preferably has a Young's modulus of 230 GPa or more, more preferably 250 GPa or more.

(7)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。また、特に断らない限り、高剛性粒子(特にTiB粒子)以外をマトリックスと考える。 (7) Unless otherwise specified, “x to y” in this specification includes the lower limit x and the upper limit y. A range such as “ab” may be newly set as a new lower limit or upper limit using various numerical values or numerical values included in the numerical range described in the present specification. Unless otherwise specified, a matrix other than the highly rigid particles (particularly TiB 2 particles) is considered as a matrix.

助剤を添加しないときのTiB粒子量と焼結体の相対密度の関係を示すグラフである。4 is a graph showing the relationship between the amount of TiB 2 particles and the relative density of a sintered body when no auxiliary agent is added. そのときのTiB粒子量と焼結体のヤング率の関係を示すグラフである。It is a graph showing the TiB 2 particles amounts and sintered Young's modulus of the relationship at that time. 種々のホウ化物からなる助剤(1質量%)を添加した焼結体の相対密度を比較した棒グラフである。It is the bar graph which compared the relative density of the sintered compact which added the auxiliary agent (1 mass%) which consists of various borides. それらの焼結体のヤング率を比較した棒グラフである。It is a bar graph which compared Young's modulus of those sintered compacts. 種々の炭化物からなる助剤(1質量%)を添加した焼結体の相対密度を比較した棒グラフである。It is the bar graph which compared the relative density of the sintered compact which added the auxiliary agent (1 mass%) which consists of various carbides. それらの焼結体のヤング率を比較した棒グラフである。It is a bar graph which compared Young's modulus of those sintered compacts. 酸化物または窒化物からなる助剤(1質量%)を添加した焼結体の相対密度を比較した棒グラフである。It is the bar graph which compared the relative density of the sintered compact which added the auxiliary agent (1 mass%) which consists of an oxide or a nitride. それらの焼結体のヤング率を比較した棒グラフである。It is a bar graph which compared Young's modulus of those sintered compacts. 助剤(ZrBまたはZrC)の添加量と焼結体の相対密度の関係を示すグラフである。It is a graph showing the relationship between the relative density of the added amount and the sintered body aid (ZrB 2 or ZrC). その助剤の添加量と焼結体のヤング率の関係を示すグラフである。4 is a graph showing the relationship between the amount of the additive and the Young's modulus of the sintered body. その助剤の添加量と焼結体の引張強さの関係を示すグラフである。4 is a graph showing the relationship between the amount of the additive and the tensile strength of the sintered body. その助剤の添加量と焼結体の伸びの関係を示すグラフである。4 is a graph showing the relationship between the amount of the additive and the elongation of the sintered body. 助剤(ZrB:1質量%)を添加したときのTiB粒子量と焼結体の相対密度の関係を示すグラフである。Aid: is a graph showing the relationship between the relative density of TiB 2 particle amount and the sintered body (ZrB 2 1 wt%) upon addition of. そのときのTiB粒子量と焼結体のヤング率の関係を示すグラフである。It is a graph showing the TiB 2 particles amounts and sintered Young's modulus of the relationship at that time. 焼結温度と焼結体の相対密度の関係を示すグラフである。4 is a graph showing a relationship between a sintering temperature and a relative density of a sintered body. 焼結温度と焼結体のヤング率の関係を示すグラフである。4 is a graph showing a relationship between a sintering temperature and a Young's modulus of a sintered body. 焼結温度と焼結体の引張強さの関係を示すグラフである。4 is a graph showing a relationship between a sintering temperature and a tensile strength of a sintered body. 焼結温度と焼結体の伸びの関係を示すグラフである。It is a graph which shows the relationship between sintering temperature and elongation of a sintered compact. 助剤(ZrB:1質量%)を添加したときの焼結温度の異なる各焼結体の金属組織写真である。Aids: a different metallographic photograph of each sintered body having a sintering temperature of (ZrB 2 1 wt%) upon addition of. 助剤を添加していないときの焼結温度の異なる各焼結体の金属組織写真である。It is a metallographic structure photograph of each sintered compact from which sintering temperature differs when an auxiliary agent is not added. Cu粉末を添加したときのTiB粒子量と焼結体の相対密度の関係を示すグラフである。Is a graph showing the relationship between the relative density of TiB 2 particle amount and the sintered body when the addition of Cu powder. そのときのTiB粒子量と焼結体のヤング率の関係を示すグラフである。It is a graph showing the TiB 2 particles amounts and sintered Young's modulus of the relationship at that time. そのときのTiB粒子量と焼結体の引張強さの関係を示すグラフである。It is a graph showing the tensile strength of the relationship of TiB 2 particle amount and the sintered body at that time. そのときのTiB粒子量と焼結体の伸びの関係を示すグラフである。4 is a graph showing the relationship between the amount of TiB 2 particles and the elongation of a sintered body at that time. Cr系鉄系粉末を用いて試料を製作したときの成形圧力と焼結体の相対密度の関係を示すグラフである。4 is a graph showing a relationship between a molding pressure and a relative density of a sintered body when a sample is manufactured using a Cr-based iron-based powder. そのときの成形圧力と焼結体のヤング率の関係を示すグラフである。It is a graph which shows the relationship between the molding pressure at that time and the Young's modulus of a sintered compact. Ni粉末を添加したときの成形圧力と成形体の相対密度の関係を示すグラフである。It is a graph which shows the relationship between the compacting pressure at the time of adding Ni powder, and the relative density of a compact. その成形圧力と焼結体の相対密度の関係を示すグラフである。It is a graph which shows the relationship between the molding pressure and the relative density of a sintered compact. その成形圧力と焼結体のヤング率の関係を示すグラフである。4 is a graph showing the relationship between the molding pressure and the Young's modulus of the sintered body.

本明細書で説明する内容は、本発明の高剛性鉄基焼結合金のみならず、その製造方法にも該当し得る。製造方法に関する構成要素は、プロダクトバイプロセスクレームとして理解すれば物に関する構成要素ともなり得る。上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The contents described in this specification can apply not only to the high-rigidity iron-based sintered alloy of the present invention, but also to a method of manufacturing the same. A component related to a manufacturing method can be a component related to a product if understood as a product-by-process claim. One or more components arbitrarily selected from the present specification can be added to the components of the present invention described above. Which embodiment is best depends on the target, required performance, and the like.

《マトリックス》
本発明の焼結合金を構成するマトリックスは、純鉄でも良いが、高剛性化と共に高強度化等を図るため、種々の合金元素を含む鉄合金からなると好適である。各合金元素は、Fe中に固溶していても、Feや他の元素と化合物を形成して析出等していてもよい。このような合金元素として、例えば、モリブデン(Mo)、クロム(Cr)、銅(Cu)、ニッケル(Ni)等があり、そのいずれか一種以上がマトリックス中に適量含まれると好適である。なお、各合金元素は、単独粉末として供給されても、合金粉末(鉄合金粉末等)として供給されてもよい。
"matrix"
The matrix constituting the sintered alloy of the present invention may be pure iron, but is preferably made of an iron alloy containing various alloy elements in order to increase the rigidity and the strength. Each alloy element may be dissolved in Fe or form a compound with Fe or another element to precipitate. Such alloy elements include, for example, molybdenum (Mo), chromium (Cr), copper (Cu), nickel (Ni), and the like. It is preferable that at least one of them is contained in a matrix in an appropriate amount. Each alloy element may be supplied as a single powder or may be supplied as an alloy powder (such as an iron alloy powder).

MoとCrは、焼結合金(マトリックス)の強度や靱性を向上させる元素である。これらの元素が過少では効果がなく、過多になると焼結合金の靱性が低下する。Moは、0.1〜3質量%(単に「%」で表す。)、0.3〜2.5%さらには0.5〜2%含まれると好適である。Crは、0.3〜5%、1〜4%さらには2〜3.5%含まれると好適である。特にCrとMoが共に含まれるときは、それらの合計が2〜5%さらには2.5〜4%であると好ましい。またCuも、焼結合金の強度を向上させる元素であり、0.3〜5%、1〜4%さらには1.5〜3%含まれると好ましい。さらにNiは、焼結合金を緻密化させて、その相対密度またはヤング率を向上させる元素であり、0.3〜3%さらには0.5〜2%含まれると好ましい。Niは単独でも、TiB粒子を含む焼結合金の緻密化を促進するが、特にZrと共存するときに、その効果が大きい。なお、本明細書で説明する合金元素の組成は、特に断らない限り、マトリックス全体を100質量%としたときの質量割合である。 Mo and Cr are elements that improve the strength and toughness of the sintered alloy (matrix). If these elements are too small, there is no effect, and if they are too large, the toughness of the sintered alloy decreases. Mo is preferably contained in an amount of 0.1 to 3% by mass (simply represented by "%"), 0.3 to 2.5%, and more preferably 0.5 to 2%. It is preferable that Cr be contained in an amount of 0.3 to 5%, 1 to 4%, and more preferably 2 to 3.5%. In particular, when both Cr and Mo are contained, the total thereof is preferably 2 to 5%, more preferably 2.5 to 4%. Cu is also an element for improving the strength of the sintered alloy, and is preferably contained in an amount of 0.3 to 5%, 1 to 4%, and more preferably 1.5 to 3%. Further, Ni is an element that densifies the sintered alloy to improve its relative density or Young's modulus, and preferably contains 0.3 to 3%, more preferably 0.5 to 2%. Although Ni alone promotes the densification of the sintered alloy containing TiB 2 particles, the effect is particularly great when coexisting with Zr. The composition of the alloy element described in this specification is a mass ratio when the entire matrix is 100% by mass, unless otherwise specified.

《高剛性粒子》
高剛性粒子は、鉄系マトリックスよりもヤング率の大きな粒子であり、ホウ化物(TiB、FeB、MoB、CrB、NbB、VB、HfB、ZrB等)、炭化物(ZrC、TiC、VC、MoC、NbC等)、窒化物(ZrN等)、酸化物(ZrO、TiO等)など、種々のセラミックスからなる粒子を用い得る。但し、高温時でも鉄基マトリックス中で安定であり、安定した高ヤング率を発揮する高剛性粒子として、TiB粒子が最も優れている。
《High-rigidity particles》
The high rigidity particles are particles having a larger Young's modulus than the iron-based matrix, and include borides (TiB 2 , FeB, MoB, Cr 2 B, NbB 2 , VB 2 , HfB 2 , ZrB 2, etc.) and carbides (ZrC, TiC, VC, Mo 2 C, NbC , etc.), nitrides (ZrN, etc.), such as an oxide (ZrO 2, TiO 2, etc.), may be used particles composed of a variety of ceramics. However, TiB 2 particles are the most excellent as highly rigid particles that are stable in an iron-based matrix even at high temperatures and exhibit a stable high Young's modulus.

そこで本発明の焼結合金では、その全体を100体積%として、TiB粒子を10〜50体積%、20〜40体積%さらには25〜35体積%含むと好ましい。TiB粒子が過少では焼結合金の高ヤング率化が不十分となり、TiB粒子が過多では、焼結合金の伸び(靱性)が大きく低下したり、成形自体が困難となって好ましくない。なお、本発明に係る高剛性粒子は、TiB粒子のみでもよいし、それ以外に上述した他種のセラミックス粒子が少量含まれてもよい。 In the sintered alloy of the present invention therefore, the entire 100 vol%, TiB 2 particles 10 to 50 vol%, when 20 to 40% by volume further comprises 25-35% by volume preferred. TiB 2 particles are too small becomes insufficient high Young's modulus of the sintered alloy, is a TiB 2 particles excessive, lowered elongation of the sintered alloy (toughness) is large, unfavorably becomes difficult to mold itself. The high-rigidity particles according to the present invention may be only TiB 2 particles, or may contain a small amount of the above-mentioned other types of ceramic particles.

《製造方法》
(1)原料粉末
本発明に係る原料粉末は、上述した所望組成のマトリックスが形成されるように配合された鉄系粉末および任意に添加される合金元素源粉末と、ジルコニウム源粉末と、TiB粒子を含む高剛性粉末とを混合した混合粉末からなる。
"Production method"
(1) Raw Material Powder The raw material powder according to the present invention includes an iron-based powder and an optional alloy element source powder, a zirconium source powder, and a TiB 2 powder mixed so as to form a matrix having the above-described desired composition. It is composed of a mixed powder obtained by mixing a high-rigidity powder containing particles.

鉄系粉末は、例えば、純鉄粉、Fe−(1〜2%)Mo、Fe−(1〜5%)Cr−(0.1〜0.8%)Moなどの鉄合金粉末を用いると好ましい。   As the iron-based powder, for example, iron alloy powder such as pure iron powder, Fe- (1-2%) Mo, Fe- (1-5%) Cr- (0.1-0.8%) Mo is used. preferable.

また、合金元素源粉末には、上記の鉄系粉末と組成の異なる鉄合金粉末(CrやMoを含んでもよい)の他、純銅、銅合金、銅化合物等からなる銅源粉末等を用いることができる。   In addition, as the alloy element source powder, in addition to the above-described iron-based powder, an iron alloy powder having a different composition from that of the iron-based powder (which may contain Cr or Mo), a copper source powder made of pure copper, a copper alloy, a copper compound, or the like is used. Can be.

これら鉄系粉末や合金元素源粉末は、平均粒径(メジアン径:D50)が1〜20μmさらには5〜15μmであるか、篩い分けで−45μmに分級されたものであると、高鋼性粒子の分散性、焼結による密度向上に優れて好ましい。   If the average particle diameter (median diameter: D50) of these iron-based powders and alloy element source powders is 1 to 20 μm, and more preferably 5 to 15 μm, or they are classified to −45 μm by sieving, they have high steel properties. It is preferable because it is excellent in dispersibility of particles and density improvement by sintering.

高剛性粉末は、上述したようにTiB粉末のみでもよいし、他種の高剛性粉末を含んでもよい。高剛性粉末は、平均粒径(D50)が0.5〜5μmさらには1〜4μmであると、成形性や取扱性に優れて好ましい。 The high-rigidity powder may be only the TiB 2 powder as described above, or may include another type of high-rigidity powder. It is preferable that the high rigidity powder has an average particle size (D50) of 0.5 to 5 μm, and more preferably 1 to 4 μm, because of excellent moldability and handleability.

ジルコニウム源粉末は、前述したZrのホウ化物粉末、炭化物粉末、酸化物粉末または窒化物粉末のいずれか一種以上からなると好ましい。ジルコニウム源粉末も、平均粒径(D50)が0.5〜5μmさらには1〜4μmであると、成形性や取扱性に優れて好ましい。   The zirconium source powder is preferably made of any one or more of the aforementioned Zr boride powder, carbide powder, oxide powder and nitride powder. The zirconium source powder preferably has an average particle size (D50) of 0.5 to 5 μm, and more preferably 1 to 4 μm, because of excellent moldability and handleability.

(2)成形工程
成形工程は、上述した各種粉末を所望組成に配合した混合粉末を加圧して成形体を得る工程である。成形圧力は、例えば、350〜1500MPa、600〜1350MPaさらには800〜1200MPaの範囲とすると良い。成形圧力が過小では成形体ひいては焼結体の密度が不十分となり、成形圧力が過大では金型寿命の低下や設備コストの増大を招き好ましくない。なお、本発明の場合、成形圧力をあまり大きくするまでもなく、ジルコニウム源粉末の配合と焼結温度の選択により、十分に高密度な焼結体を得ることができる。
(2) Molding Step The molding step is a step of obtaining a molded body by pressing a mixed powder obtained by mixing the above-mentioned various powders into a desired composition. The molding pressure may be, for example, in the range of 350 to 1500 MPa, 600 to 1350 MPa, and more preferably 800 to 1200 MPa. If the molding pressure is too low, the density of the formed body and thus the sintered body will be insufficient, and if the molding pressure is too large, the life of the mold will decrease and the equipment cost will increase, which is not preferable. In the case of the present invention, a sufficiently high-density sintered body can be obtained by mixing the zirconium source powder and selecting the sintering temperature without increasing the molding pressure too much.

なお成形工程は、冷間成形(室温成形)でも温間成形でも良い。また、混合粉末と金型との潤滑は、内部潤滑剤を混合粉末に配合して行ってもよいし、金型潤滑により行ってもよい。金型潤滑を行う場合、金型潤滑温間加圧成形法(詳細は特許3309970号公報等を参照)を用いると好ましい。   The forming step may be cold forming (room temperature forming) or warm forming. Further, the lubrication between the mixed powder and the mold may be performed by mixing an internal lubricant with the mixed powder, or may be performed by mold lubrication. When performing mold lubrication, it is preferable to use a mold lubrication warm press forming method (for details, see Japanese Patent No. 3309970).

(3)焼結工程
焼結工程は、成形体を加熱して焼結体を得る工程である。焼結温度および焼結時間は、焼結合金の所望特性、生産性等を考慮して適宜選択されるが、それらが過大ではエネルギーコストが増大し、それらが過小では相対密度やヤング率を十分に確保できない。特に焼結温度は、鉄系粒子と高剛性粒子(TiB粒子)との間で液相を生じる1140℃以上であると好ましい。そこで焼結温度は、例えば、1140℃〜1350℃、1180〜1300℃さらには1200〜1280℃とすると好ましい。焼結時間(上記の焼結温度を保持する時間)は、例えば、0.1〜3時間さらには0.1〜1時間であると好ましい。なお、焼結工程は、真空雰囲気、アルゴンガス雰囲気(大気圧以上)、アルゴンガスパーシャル雰囲気(大気圧に対して減圧(例えば0.5〜2kPa)されたアルゴンガス雰囲気)等の酸化防止雰囲気でなされると好ましい。
(3) Sintering step The sintering step is a step of heating a molded body to obtain a sintered body. The sintering temperature and sintering time are appropriately selected in consideration of the desired properties, productivity, etc. of the sintered alloy, but if they are too large, the energy cost increases, and if they are too small, the relative density and the Young's modulus are sufficient. Cannot be secured. In particular, the sintering temperature is preferably 1140 ° C. or higher at which a liquid phase occurs between the iron-based particles and the highly rigid particles (TiB 2 particles). Therefore, the sintering temperature is preferably, for example, 1140 ° C to 1350 ° C, 1180 ° to 1300 ° C, and more preferably 1200 ° to 1280 ° C. The sintering time (time for maintaining the above sintering temperature) is preferably, for example, 0.1 to 3 hours, and more preferably 0.1 to 1 hour. The sintering process is performed in an oxidation preventing atmosphere such as a vacuum atmosphere, an argon gas atmosphere (atmospheric pressure or higher), an argon gas partial atmosphere (an argon gas atmosphere reduced in pressure (for example, 0.5 to 2 kPa) with respect to the atmospheric pressure). It is preferred that this be done.

(4)その他
本発明の場合、焼結工程後の冷却工程(特に冷却速度)は必ずしも問わない。もっとも、焼結工程における加熱後の冷却速度が大きいと、焼結体の金属組織の粗大化等を抑制できて好ましい。
(4) Others In the case of the present invention, the cooling step (especially the cooling rate) after the sintering step is not necessarily required. However, it is preferable that the cooling rate after heating in the sintering step is high, because the coarsening of the metal structure of the sintered body can be suppressed.

《鉄基焼結合金部材》
本発明の焼結合金を用いれば、各種部材の高剛性化を容易に図れ、部材の機械的特性(強度等)や振動特性等の改善、ひいては部材の軽薄短小化や設計自由度の拡大が可能となる。本発明の焼結合金は具体的な用途を問わないが、例えば、自動車等のエンジン部品(例えばコンロッド)、変速機部品、シャーシ部品、サスペンション部品、各種のシャフト類やプーリー類、音響部品等の素材や最終形状に近い製品として用いられると好ましい。
《Iron-based sintered alloy members》
By using the sintered alloy of the present invention, it is possible to easily increase the rigidity of various members, to improve the mechanical characteristics (strength, etc.) and vibration characteristics of the members, and to reduce the weight and thickness of the members and to increase the degree of freedom in designing. It becomes possible. The sintered alloy of the present invention may be used in any applications, for example, engine parts (for example, connecting rods) for automobiles, transmission parts, chassis parts, suspension parts, various shafts and pulleys, and acoustic parts. It is preferably used as a material or a product close to the final shape.

原料粉末の種類(組成、粒度等)、配合組成、成形条件、焼結条件等を種々変更した多数の試料(鉄基焼結合金)を製作し、それら試料の測定、組織観察および評価を行った。これらを通じて、本発明の内容をさらに具体的に説明する。   A large number of samples (iron-based sintered alloys) with various changes in the type (composition, particle size, etc.), composition, molding conditions, sintering conditions, etc. of the raw material powders are manufactured, and the measurement, structure observation and evaluation of these samples are performed. Was. Through these, the contents of the present invention will be described more specifically.

《試料の製造》
(1)原料粉末
原料粉末として、鉄系粉末と、高剛性粉末であるTiB粉末と、助剤粉末(Zr源粉末等)と、合金元素源粉末とを用意した。なお、各粉末の成分組成は、各粉末全体を100質量%として、単に「%」で表した。また、各粉末の粒径(粒度)は、既述した方法により特定される。
《Production of sample》
(1) Raw Material Powder As a raw material powder, an iron-based powder, a TiB 2 powder which is a high rigidity powder, an auxiliary powder (a Zr source powder or the like), and an alloy element source powder were prepared. In addition, the component composition of each powder was simply represented by “%”, with the whole of each powder being 100% by mass. The particle size (particle size) of each powder is specified by the method described above.

鉄系粉末には、エプソンアトミックス株式会社製の低合金綱微細粉末であるFe−1.5%Mo粉末(平均粒径:12μm)またはFe−3%Cr−0.5%Mo粉末(平均粒径:11μm)を用いた。これら鉄系粉末がマトリックスを構成する主たる原料粉末(助剤粉末および合金元素源粉末以外の残部)となる。   Examples of the iron-based powder include Fe-1.5% Mo powder (average particle size: 12 μm) or Fe-3% Cr-0.5% Mo powder (average particle diameter), which is a low alloy steel fine powder manufactured by Epson Atmix Co. (Particle size: 11 μm). These iron-based powders are the main raw material powders constituting the matrix (the remainder other than the auxiliary powder and the alloy element source powder).

TiB粉末には、新日本金属株式会社製のTiB−N(平均粒径:2.9μm)を用いた。また助剤粉末には次のいずれかを用いた。なお、ZrO粉末、TiO粉末およびZrN粉末は株式会社高純度化学製であり、それ以外のホウ化物粉末等は日本新金属株式会社製であった。FeB粉末(Fe−17.2%B/粒度:−63μm/品番:Fe-B H1)、MoB粉末(Mo−10.2%B/平均粒径:4.1μm/品番:MoB-O)、CrB粉末(Cr−28.4%B/平均粒径:5.7μm/品番:CrB2-O)、NbB粉末(Nb−18.5B%/平均粒径:2.1μm/品番:NbB2-O)、VB粉末(V−28.4B%/平均粒径:3.9μm/品番:VB2-O)、HfB粉末(Hf−10.4B%/平均粒径:3.9μm/品番:HfB2-O)、ZrB粉末(Zr−18.8B%/平均粒径:3.3μm/品番:ZrB2-O)、ZrC粉末(Zr−11.2C%/平均粒径:2.7μm/品番:ZrC-O)、TiC粉末(Ti−19.7C%/平均粒径:1.8μm/品番:TiC)、VC粉末(V−16.7C%/平均粒径:1.4μm/品番:VC)、MoC粉末(Mo−5.9C%/平均粒径:1.7μm/品番:Mo2C)、NbC粉末(Nb−11.4C%/平均粒径:1.1μm/品番:NbC)、ZrO粉末(純度98%/平均粒径:約1μm)、TiO粉末(純度99.9%/平均粒径:約2μm)、ZrN粉末(純度98%/平均粒径:3μm)。 The TiB 2 powder, Nippon Metal Co., Ltd. of TiB 2 -N (average particle size: 2.9 .mu.m) was used. Any of the following was used as the auxiliary powder. The ZrO 2 powder, TiO 2 powder and ZrN powder were manufactured by Kojundo Chemical Co., Ltd., and the other boride powders were manufactured by Nippon Shinkin Co., Ltd. FeB powder (Fe-17.2% B / particle size: -63 μm / product number: Fe-B H1), MoB powder (Mo-10.2% B / average particle size: 4.1 μm / product number: MoB-O), CrB powder (Cr-28.4% B / average particle size: 5.7 μm / product number: CrB 2 -O), NbB 2 powder (Nb-18.5 B% / average particle size: 2.1 μm / product number: NbB 2) -O), VB 2 powder (V-28.4B% / average particle size: 3.9 .mu.m / part: VB 2 -O), HfB 2 powder (Hf-10.4B% / average particle size: 3.9 .mu.m / Product number: HfB 2 -O), ZrB 2 powder (Zr-18.8 B% / average particle size: 3.3 μm / product number: ZrB 2 -O), ZrC powder (Zr-11.2 C% / average particle size: 2) 0.7 μm / product number: ZrC-O), TiC powder (Ti-19.7 C% / average particle size: 1.8 μm / product number: TiC), VC powder (V-16.7 C% / average particle size: 1.4 μm) / Part No. VC), MoC 2 powder (Mo-5.9C% / average particle size: 1.7 [mu] m / Part: Mo 2 C), NbC powder (Nb-11.4C% / average particle size: 1.1 .mu.m / Part: NbC ), ZrO 2 powder (purity 98% / average particle diameter: about 1 μm), TiO 2 powder (purity 99.9% / average particle diameter: about 2 μm), ZrN powder (purity 98% / average particle diameter: 3 μm).

合金元素源粉末には、銅源粉末である純Cu粉末(福田金属箔粉工業株式会社製CE−25/平均粒径:63μm以下)を用いた。   As the alloy element source powder, pure Cu powder (CE-25, manufactured by Fukuda Metal Foil & Powder Co., Ltd./average particle size: 63 μm or less), which is a copper source powder, was used.

(2)混合粉末
上述した各原料粉末を表1〜表9に示す割合(配合量)にそれぞれ秤量した配合粉末を、乳鉢で3分間混合した後、さらにボールミルで30分間回転混合して、種々の混合粉末を得た(混合工程)。なお、配合組成は、混合粉末全体を100質量%または100体積%として示した。各原料粉末の配合体積(Vi)は、既述したように、それぞれの配合質量と比重(公表値または表示値)とに基づいて算出され、各原料粉末の配合体積(Vi)の総和(ΣVi)を混合粉末全体の体積とした。
(2) Mixed powder The compounded powder obtained by weighing each of the raw material powders described above in the proportions (compounding amounts) shown in Tables 1 to 9 was mixed in a mortar for 3 minutes, and further rotated and mixed in a ball mill for 30 minutes to obtain various mixed powders. (Mixing step). In addition, the composition was shown as 100% by mass or 100% by volume of the whole mixed powder. As described above, the blending volume (Vi) of each raw material powder is calculated based on each blending mass and specific gravity (published value or indicated value), and the total (ΣVi) of the blending volume (Vi) of each raw material powder is calculated. ) Was taken as the volume of the whole mixed powder.

(3)成形工程
キャビティ形状が異なる2種の金型を用意して、前述した金型潤滑温間加圧成形法により各混合粉末を加圧成形した。この際、金型はバンドヒータにより150℃(成形温度)に加熱した。この加熱した金型の内周面には、水に分散させた1%の溶液ステアリン酸リチウム(LiSt)溶液(高級脂肪酸系潤滑剤)を塗布した。成形圧力は各表に示すように392〜1176MPaの範囲で調整したが、特に断らない限り成形圧力は784MPaとした。その他、金型潤滑温間加圧成形法に関しては、特許3309970号公報等の記載を参照にした。
(3) Molding Step Two kinds of molds having different cavity shapes were prepared, and each mixed powder was molded under pressure by the mold lubrication warm pressure molding method described above. At this time, the mold was heated to 150 ° C. (molding temperature) by a band heater. A 1% solution of lithium stearate (LiSt) solution (higher fatty acid-based lubricant) dispersed in water was applied to the inner peripheral surface of the heated mold. The molding pressure was adjusted in the range of 392 to 1176 MPa as shown in each table, but the molding pressure was 784 MPa unless otherwise specified. In addition, for the mold lubrication warm press forming method, reference was made to the description in Japanese Patent No. 3309970 and the like.

こうして、円柱状の計測用試験片(φ14×10mm)および平板状の引張試験片(概形55×20×3mm)となる2種の成形体を得た。   In this way, two types of molded articles were obtained, which were a cylindrical test specimen (φ14 × 10 mm) and a flat tensile test specimen (approximately 55 × 20 × 3 mm).

(4)焼結工程
バッチ式焼結炉(島津メクテム株式会社製PVSGgr20/20)を用いて、真空雰囲気中(1〜5×10-2Pa・A程度)にて、各成形体を加熱し焼結させた。焼結温度は、各表に示すように900〜1300℃の範囲で調整したが、特に断らない限り焼結温度は1250℃とした。また、その焼結温度を保持する均熱保持時間(焼結時間)は30分間とした。
(4) Sintering step Each molded body is heated in a vacuum atmosphere (about 1 to 5 × 10 -2 Pa · A) using a batch type sintering furnace (PVSGgr 20/20 manufactured by Shimadzu Mectem Co., Ltd.). Sintered. The sintering temperature was adjusted in the range of 900 to 1300 ° C. as shown in each table, but the sintering temperature was 1250 ° C. unless otherwise specified. The soaking time (sintering time) for maintaining the sintering temperature was 30 minutes.

なお、焼結後の加熱状態にある焼結体は、900℃まで炉冷(徐冷)した後、900℃からNガスを吹きつけて60℃まで急冷した(冷却工程)。この急冷時の冷却速度は、約70℃/分(1.2℃/秒)であった。 The sintered body in the heated state after sintering was furnace-cooled (slowly cooled) to 900 ° C. and then rapidly cooled to 900 ° C. to 60 ° C. by blowing N 2 gas (cooling step). The cooling rate during the rapid cooling was about 70 ° C./min (1.2 ° C./sec).

《測定・観察》
(1)密度、密度変化、寸法変化、
各試料に係る計測用試験片を用いて、焼結前後の寸法および重量を測定し、成形体の嵩密度(G.D.)と相対密度(%)、焼結体の嵩密度(S.D.)と相対密度(%)、焼結前後の寸法変化率(ΔT:厚さの変化率、ΔD:直径の変化率)を算出した。なお、寸法変化率は、焼結後の寸法から焼結前の寸法を引いた差分を、焼結前の寸法で除して求めた。こうして得られた結果を各表にまとめて示した。
<< Measurement / Observation >>
(1) Density, density change, dimensional change,
The dimensions and weight before and after sintering were measured using the measurement test piece for each sample, and the bulk density (GD) and relative density (%) of the compact and the bulk density (S. D.), relative density (%), and dimensional change before and after sintering (ΔT: thickness change, ΔD: diameter change). In addition, the dimensional change rate was obtained by dividing the difference obtained by subtracting the dimension before sintering from the dimension after sintering by the dimension before sintering. The results thus obtained are summarized in each table.

(2)ヤング率、引張強さおよび(破断)伸び
各試料に係る焼結後の円柱状の計測用試験片に、縦波用および横波用の振動子を用いて超音波パルスを伝播させ、試験片内を伝播する縦波及び横波の伝播速度からヤング率を算出した(超音波パルス法)。こうして得られた結果を各表にまとめて示した。
(2) Young's modulus, tensile strength and (breaking) elongation Ultrasonic pulses are propagated through a sintered columnar measuring test piece of each sample using longitudinal and transverse wave transducers, The Young's modulus was calculated from the propagation speed of the longitudinal wave and the transverse wave propagating in the test piece (ultrasonic pulse method). The results thus obtained are summarized in each table.

また、オートグラフ(株式会社島津製作所)で引張試験を行い、各試験片が破断するまでの強度(引張強さ)と伸びを測定した。このときの試験速度は2.0mm/minとした。こうして得られた結果を各表にまとめて示した。   Further, a tensile test was performed with an autograph (Shimadzu Corporation), and the strength (tensile strength) and elongation until each test piece was broken were measured. The test speed at this time was 2.0 mm / min. The results thus obtained are summarized in each table.

(3)組織観察
一部の試料の金属組織を走査型電子顕微鏡(SEM)を用いて観察した。この観察は、試験片から採取した切断片を樹脂に埋め込み、その表面を鏡面研磨後、行った。金属組織の詳細については後述する。
(3) Structure observation The metal structure of some samples was observed using a scanning electron microscope (SEM). This observation was performed after embedding a cut piece taken from the test piece into a resin and mirror-polishing the surface thereof. Details of the metal structure will be described later.

《評価》
種々の評価項目に沿って、各表に示した試料群から代表的な試料を抽出し、それらの特性をグラフ(各図)に示して比較した。それらに基づいて、本発明の焼結合金の特徴を具体的に説明する。
《Evaluation》
Along with various evaluation items, representative samples were extracted from the sample groups shown in each table, and their characteristics were shown in graphs (each figure) and compared. Based on these, the features of the sintered alloy of the present invention will be specifically described.

(1)相対密度とヤング率
助剤粉末を配合せずに、鉄系粉末とTiB粉末のみを用いて製造した各試料の特性を表1と、図1Aおよび図1B(両者を併せて単に「図1」という。)に示した。
(1) Relative Density and Young's Modulus The characteristics of each sample manufactured using only iron-based powder and TiB 2 powder without blending the auxiliary powder are shown in Table 1 and FIG. 1A and FIG. (Referred to as “FIG. 1”).

これらから明らかなように、焼結体の相対密度とそのヤング率は明確に相関しており、相対密度が大きくなるほど、焼結体のヤング率も大きくなることがわかった。このためTiB粒子量を単に増加させても、焼結体の相対密度が増加しない限り、いわゆる配合則(複合則)に沿った焼結合金の高剛化を図ることは困難であることが明らかとなった。そして、助剤粉末が添加されない場合、TiB粒子量が20〜25%を超えると、高圧成形をしても、鉄基焼結合金のヤング率を増加させることができず、逆にそのヤング率が低下する傾向となることもわかった。 As is clear from these, the relative density of the sintered body and its Young's modulus are clearly correlated, and it was found that as the relative density increases, the Young's modulus of the sintered body also increases. For this reason, even if the amount of TiB 2 particles is simply increased, it is difficult to increase the rigidity of the sintered alloy according to the so-called compounding rule (composite rule) unless the relative density of the sintered body increases. It became clear. When the auxiliary powder is not added and the TiB 2 particle amount exceeds 20 to 25%, the Young's modulus of the iron-based sintered alloy cannot be increased even if high pressure molding is performed. It was also found that the rate tended to decrease.

(2)助剤の種類
鉄系粉末とTiB粉末に加えて、さらに種々の助剤粉末を添加した混合粉末を用いて製造した各試料の特性を表2〜4と、図2A〜図4Bに示した。なお、いずれの試料も、TiB粉末は焼結合金中のTiB粒子の体積割合が30体積%となるように配合し、各助剤粉末の添加量は1質量%とした。また各図に示した試料はいずれも、成形圧力:784MPa、焼結温度:1250℃で製造したものである。これらの点は特に断らない限り、以降でも同様である。
(2) In addition to the type of iron-based powder and TiB 2 powder auxiliary agent, and Tables 2-4 the characteristics of each sample was prepared using the powdery mixture was added various aids powders, FIG 2A~-4B It was shown to. In each of the samples, the TiB 2 powder was blended so that the volume ratio of the TiB 2 particles in the sintered alloy was 30% by volume, and the amount of each auxiliary powder was 1% by mass. All the samples shown in each figure were manufactured at a molding pressure of 784 MPa and a sintering temperature of 1250 ° C. The same applies to the following points unless otherwise specified.

助剤粉末を添加せずに、TiB粒子:30体積%とした焼結合金(試料143)は、相対密度が約91%、ヤング率が約200GPaであったが、図2Aおよび図2B(両者を併せて単に「図2」という。)から明らかなように、ホウ化物からなる助剤粉末を添加した焼結合金は、NbB粉末を添加した場合を除いて、いずれもその相対密度およびヤング率が増加することがわかった。特に、ジルコニウムホウ化物(ZrB)粉末を添加した場合、相対密度:98%以上、ヤング率:275GPa以上にまで著しく増加することがわかった。 2A and 2B (FIG. 2A and FIG. 2B), a sintered alloy (sample 143) in which TiB 2 particles: 30% by volume without adding the auxiliary powder had a relative density of about 91% and a Young's modulus of about 200 GPa. As is clear from both figures, the sintered alloy to which the auxiliary powder composed of boride was added, except for the case where NbB 2 powder was added, all of which had a relative density and a relative density. It was found that the Young's modulus increased. In particular, it was found that when zirconium boride (ZrB 2 ) powder was added, the relative density was significantly increased to 98% or more and the Young's modulus to 275 GPa or more.

この傾向は、図3Aおよび図3B(両者を併せて単に「図3」という。)および図4Aおよび図4B(両者を併せて単に「図4」という。)から明らかなように、ジルコニウム炭化化物(ZrC)粉末、ジルコニウム酸化物(ZrO)粉末またはジルコニウム窒化物(ZrN粉末)を添加した場合でも同様であった。このように、焼結合金(マトリックス)中にZrが存在することにより、TiB粒子量が大きい場合でも、焼結合金の相対密度およびヤング率をそのTiB粒子量に応じて確実に向上させ得ることが明らかとなった。また、Zrの添加形態は種々あり得るが、Zr化合物を用いる場合であれば、ZrB>ZrC>ZrN>ZrOの順で焼結合金の相対密度やヤング率を向上させ易いことも明らかとなった。 This tendency is evident from FIGS. 3A and 3B (both are simply referred to as “FIG. 3”) and FIGS. 4A and 4B (both are simply referred to as “FIG. 4”). The same was true when (ZrC) powder, zirconium oxide (ZrO 2 ) powder or zirconium nitride (ZrN powder) was added. As described above, the presence of Zr in the sintered alloy (matrix) ensures that the relative density and Young's modulus of the sintered alloy are improved in accordance with the amount of TiB 2 particles even when the amount of TiB 2 particles is large. It is clear that it will be obtained. In addition, Zr can be added in various forms, but when a Zr compound is used, it is apparent that the relative density and Young's modulus of the sintered alloy can be easily improved in the order of ZrB 2 >ZrC>ZrN> ZrO 2. became.

(3)助剤(ZrBおよびZrC)の添加量
TiB粒子を多く含有させた焼結合金の相対密度とヤング率の向上に特に有効な助剤であるZrBとZrCの添加量を種々変更して製造した各試料の特性を表5Aおよび表5B(両者を併せて単に「表5」という。)と、図5A〜図5D(各図を併せて単に「図5」という。)に示した。これらから明らかなように、助剤(ZrBまたはZrC)が極少量添加されるだけでも、焼結体の相対密度、ヤング率、引張強さおよび伸びのいずれも、急激に向上することがわかる。但し、このような傾向は助剤の添加量が1質量%以下(伸びは0.5質量%以下)の範囲で顕著であり、助剤をそれ以上(1質量%超)添加しても、各特性は飽和状態となり得ることも明らかとなった。そして助剤を過剰(2質量%超)に添加すると逆に、焼結合金の引張強さが低下することも明らかとなった。
(3) Amounts of Additives (ZrB 2 and ZrC) The amounts of ZrB 2 and ZrC, which are particularly effective for improving the relative density and Young's modulus of the sintered alloy containing a large amount of TiB 2 particles, are varied. Tables 5A and 5B (together, simply referred to as “Table 5”) and FIGS. 5A to 5D (together, simply referred to as “FIG. 5”) are shown in Tables 5A and 5B. Indicated. As is clear from these, even when a very small amount of the auxiliary agent (ZrB 2 or ZrC) is added, all of the relative density, Young's modulus, tensile strength and elongation of the sintered body are rapidly improved. . However, such a tendency is remarkable when the additive amount of the auxiliary agent is 1% by mass or less (elongation is 0.5% by mass or less), and even if the auxiliary agent is added more (more than 1% by mass), It was also found that each characteristic could be saturated. It has also been found that, when the auxiliary is added excessively (more than 2% by mass), the tensile strength of the sintered alloy is reduced.

(4)TiB粒子の配合量
ZrB粉末の添加量を0.5質量%、1質量%または2質量%として、TiB粒子の配合量と成形圧力を種々変更して製造した各試料の特性を表6A〜表6C(各表を併せて単に「表6」という。)と、図6Aおよび図6B(各図を併せて単に「図6」という。)に示した。なお、図6にはZrB粉末の添加量を1質量%添加した場合を示した。
(4) Compounding amount of TiB 2 particles The amount of the ZrB 2 powder was set to 0.5% by mass, 1% by mass or 2% by mass, and the mixing amount of the TiB 2 particles and the molding pressure were variously changed. The characteristics are shown in Tables 6A to 6C (each table is simply referred to as “Table 6”) and FIGS. 6A and 6B (each figure is simply referred to as “FIG. 6”). FIG. 6 shows a case where the amount of ZrB 2 powder added was 1% by mass.

これらから明らかなように、助剤(ZrB)が添加される場合、TiB粒子の配合量が30体積%程度までなら、高圧成形するまでもなく、焼結体の相対密度を97%以上さらには98%とすることができ、そのヤング率もほぼ複合則に沿ったものとなることが明らかとなった。また、高圧成形(1000MPa以上)をすれば、TiB粒子の配合量が40体積%以上となっても高い相対密度を確保でき、ヤング率が320GPa以上という非常に高剛性な焼結合金を得ることもできた。但し、TiB粒子量が60体積%以上になると、金型成形による試験片の作製自体が困難であった。 As is clear from these, when the auxiliary agent (ZrB 2 ) is added, the relative density of the sintered body can be increased to 97% or more without high-pressure molding if the amount of TiB 2 particles is up to about 30% by volume. Further, it can be set to 98%, and it has become clear that the Young's modulus almost conforms to the compound rule. In addition, if high-pressure molding (1000 MPa or more) is performed, a high relative density can be secured even when the amount of TiB 2 particles is 40% by volume or more, and a very high-rigidity sintered alloy having a Young's modulus of 320 GPa or more is obtained. I was able to do it. However, the TiB 2 particles amount is more than 60 vol%, making itself specimens by die molding was difficult.

(5)焼結温度の影響
ZrB粉末を添加(1質量%)した場合と添加しなかった場合とについて、焼結温度を種々変更して製造した各試料の特性を表7と、図7A〜図7D(各図を併せて単に「図7」という。)に示した。
(5) Influence of sintering temperature The characteristics of each sample manufactured by changing the sintering temperature variously when the ZrB 2 powder was added (1% by mass) and when it was not added were shown in Table 7 and FIG. To FIG. 7D (the figures are collectively referred to simply as “FIG. 7”).

これらから明らかなように、焼結温度を1140℃以上とすることによって、焼結体の相対密度、ヤング率および引張強さが急激に増加することが明らかとなった。そして、ZrB粉末が添加されると、いずれの特性も大幅に向上することが明らかとなった。特に引張強さは、ZrB粉末の添加により著しく高くなることが明らかとなった。 As is evident from these, it was clarified that the relative density, Young's modulus and tensile strength of the sintered body rapidly increased by setting the sintering temperature to 1140 ° C. or higher. And it became clear that when the ZrB 2 powder was added, all the characteristics were greatly improved. Particularly tensile strength, was found to significantly higher by the addition of ZrB 2 powder.

(6)金属組織
ZrB粉末を添加した場合と添加しなかった場合とについて、焼結温度が異なる各試料(焼結体)の金属組織写真を図8Aおよび図8B(両図を併せて単に「図8」という。)に示した。各写真中、濃灰部がTiB粒子であり、淡灰部がマトリックスであり、黒色部分が残留空孔である。
(6) Metal structure FIGS. 8A and 8B (simply a combination of both figures) show a metal structure photograph of each sample (sintered body) having a different sintering temperature between the case where ZrB 2 powder was added and the case where ZrB 2 powder was not added. FIG. 8). During each photograph, a Kohai portion TiB 2 particles are Awahai unit matrix, the black part is the residual vacancy.

図8から明らかなように、焼結温度が1100℃である試料の金属組織は、ZrB粉末の添加の有無に拘わらず、TiB粒子の凝集部分には空孔(黒色部)が残留した状態となった。ところが、焼結温度が1150℃以上である試料の金属組織は、ZrB粉末の添加の有無によって残留気子の分布状態が大きく異なった。 As is clear from FIG. 8, in the metal structure of the sample in which the sintering temperature was 1100 ° C., pores (black portions) remained in the agglomerated portion of TiB 2 particles regardless of the presence or absence of the addition of ZrB 2 powder. It became a state. However, in the metal structure of the sample having a sintering temperature of 1150 ° C. or higher, the distribution state of residual air particles greatly differs depending on whether or not ZrB 2 powder is added.

すなわち、ZrB粉末が添加されている場合、焼結温度の上昇に伴ってTiB粒子の凝集部分の残留空孔が大幅に減少し、緻密化が促進されることがわかった。一方、ZrB粉末が添加されていない場合、焼結温度を1300℃以上としなければ、焼結温度が上昇しても多量の空孔が残留していた。 That is, it was found that when the ZrB 2 powder was added, the residual vacancies in the aggregated portion of the TiB 2 particles were significantly reduced as the sintering temperature was increased, and the densification was promoted. On the other hand, when the ZrB 2 powder was not added, unless the sintering temperature was 1300 ° C. or higher, a large amount of pores remained even when the sintering temperature was increased.

表7と図8を対比するとわかるように、焼結体の相対密度とヤング率は、大きく相関しているといえる。これらのことから、ZrB粉末を添加することにより、焼結温度が1150℃以上で緻密化が促進されて、高いヤング率が得られたと考えられる。 As can be seen by comparing Table 7 and FIG. 8, it can be said that the relative density of the sintered body and the Young's modulus are greatly correlated. From these facts, it is considered that by adding ZrB 2 powder, densification was promoted at a sintering temperature of 1150 ° C. or higher, and a high Young's modulus was obtained.

(7)Cu粉末の添加
合金元素源粉末としてCu粉末(2質量%)を鉄系粉末に添加した場合と添加しなかった場合とについて、TiB粒子の配合量を種々変更して製造した各試料の特性を表8と、図9A〜図9D(各図を併せて単に「図9」という。)に示した。なお、図9には、Cu粉末を添加しなかった試料と、さらにZrB粉末も添加しなかった試料の特性も併せて示した。
(7) Addition of Cu powder Regarding the case where Cu powder (2% by mass) was added to the iron-based powder as the alloying element source powder and the case where Cu powder was not added, each was manufactured by changing the blending amount of TiB 2 particles in various ways. The characteristics of the sample are shown in Table 8 and FIGS. 9A to 9D (each figure is simply referred to as “FIG. 9”). FIG. 9 also shows the characteristics of a sample to which no Cu powder was added and a sample to which no ZrB 2 powder was further added.

図9から明らかなように、Cu粉末を添加すると、焼結体の相対密度およびヤング率は殆ど変化しないが、焼結体の引張強さは大幅に向上し、その伸びは低下する傾向を示すことが確認された。さらに、TiB粒子の配合量が30体積%以上になると、Cu粉末の添加は焼結体の伸びに影響を及ぼさないことも明らかとなった。従ってTiB粒子の配合量を25体積%以上さらには30体積%以上とする場合、Cu粉末を添加することにより、高剛性化のみならず、高強度化も図れることが確認できた。 As is clear from FIG. 9, when the Cu powder is added, the relative density and the Young's modulus of the sintered body hardly change, but the tensile strength of the sintered body is largely improved and its elongation tends to be reduced. It was confirmed that. Furthermore, when the blending amount of the TiB 2 particles was 30% by volume or more, it was also clarified that the addition of the Cu powder did not affect the elongation of the sintered body. Therefore, it was confirmed that when the blending amount of the TiB 2 particles is 25 vol% or more, and more preferably 30 vol% or more, the addition of Cu powder not only increases the rigidity but also increases the strength.

(8)鉄系粉末の組成
Crを含む鉄系粉末を用いて成形圧力を種々変更して製造した各試料の特性を表9と、図10Aおよび図10B(各図を併せて単に「図10」という。)に示した。なお、図10には、同じ鉄系粉末を用いつつ、ZrB粉末も添加しなかった試料の特性をも併せて示した。図10から明らかなように、鉄系粉末がCr系低合金鋼粉末であっても、Mo系低合金鋼粉末の場合と同様な傾向となることが確認された。
(8) Composition of iron-based powder Table 9 shows the characteristics of each sample manufactured by changing the molding pressure using an iron-based powder containing Cr, and FIG. 10A and FIG. "). FIG. 10 also shows the characteristics of a sample in which the same iron-based powder was used and ZrB 2 powder was not added. As is clear from FIG. 10, it was confirmed that the same tendency as in the case of the Mo-based low alloy steel powder was obtained even when the iron-based powder was a Cr-based low alloy steel powder.

(9)Ni粉末の添加
合金元素源粉末(または助剤粉末の一種)としてNi粉末(1質量%)を鉄系粉末に添加した試料と添加しなかった試料を製造して、それらの特性を表10と、図11A〜図11C(各図を併せて単に「図10」という。)に示した。これら試料の製造に際して、鉄系粉末にはFe−1.5%Mo粉末、高剛性粉末には既述したTiB粉末、Ni粉末にはカルボニルNi粉(Inco製/平均粒径:3.9μm)を用いた。成形工程、焼結工程および試料の測定は既述した通りに行った。但し、焼結後の冷却は、1000℃まで炉冷(徐冷)した後、1000℃からNガスを吹きつけて急冷した(冷却工程)。なお、表10および図11には、ZrB粉末もNi粉末も添加しなかった試料の特性も併せて示した。
(9) Addition of Ni powder As an alloy element source powder (or a kind of auxiliary powder), a sample in which Ni powder (1% by mass) was added to an iron-based powder and a sample in which Ni powder was not added were manufactured, and their characteristics were measured. The results are shown in Table 10 and FIGS. 11A to 11C (the drawings are collectively referred to simply as “FIG. 10”). In producing these samples, Fe-1.5% Mo powder was used for the iron-based powder, the above-mentioned TiB 2 powder was used for the high-rigidity powder, and carbonyl Ni powder (manufactured by Inco / average particle size: 3.9 μm) was used for the Ni powder. ) Was used. The forming step, the sintering step, and the measurement of the sample were performed as described above. However, for cooling after sintering, the furnace was cooled (slowly cooled) to 1000 ° C. and then rapidly cooled by blowing N 2 gas from 1000 ° C. (cooling step). Table 10 and FIG. 11 also show the characteristics of samples to which neither ZrB 2 powder nor Ni powder was added.

先ず、図11Aから明らかなように、成形体の相対密度は、混合粉末の組成に拘わらず、成形圧力にほぼ比例して大きくなっている。ところが、図11Bおよび図11Cから明らかなように、Ni粉末を単独添加すると、Ni粉末を添加しないときに比べて、成形圧力が低くても、焼結体の相対密度およびヤング率はかなり大きくなった。そして、Ni粉末をZrB粉末と共に添加すると、成形圧力が低いときでも、成形圧力が高いときと同程度以上に、焼結体の相対密度およびヤング率が著しく向上することがわかった。従って、ZrB粉末に加えてNi粉末を添加することにより、成形圧力が低い領域でも、十分に高い相対密度またはヤング率を有する焼結合金が得られることが明らかとなった。 First, as is clear from FIG. 11A, the relative density of the molded body increases almost in proportion to the molding pressure regardless of the composition of the mixed powder. However, as is clear from FIGS. 11B and 11C, when Ni powder alone is added, the relative density and Young's modulus of the sintered body are significantly increased even when the molding pressure is lower than when no Ni powder is added. Was. Then, it was found that when Ni powder was added together with ZrB 2 powder, the relative density and Young's modulus of the sintered body were remarkably improved even when the molding pressure was low, at least as high as when the molding pressure was high. Therefore, it has been clarified that by adding Ni powder in addition to ZrB 2 powder, a sintered alloy having a sufficiently high relative density or Young's modulus can be obtained even in a region where the molding pressure is low.

(10)寸法変化
表1〜表10に示した各試料に係る厚さ方向の寸法変化率(ΔT)と径方向の寸法変化率(ΔD)から明らかなように、Zrを含む助剤粉末を添加した場合、各試料の焼結体は成形体に対して少し縮小するものの、ΔTとΔDの差は小さいことがわかった。このことから各焼結体は、相対密度およびヤング率が増加しても、成形体の形状が相似的に維持されることが確認された。
(10) Dimensional change As is clear from the dimensional change rate (ΔT) in the thickness direction and the dimensional change rate (ΔD) in the radial direction of each sample shown in Tables 1 to 10, the auxiliary powder containing Zr was used. When added, the sintered body of each sample was slightly reduced with respect to the compact, but the difference between ΔT and ΔD was small. From this, it was confirmed that, even when the relative density and the Young's modulus of each sintered body increased, the shape of the formed body was maintained similarly.

Claims (9)

鉄または鉄合金からなる鉄系粉末とTiB粒子を含む高剛性粉末とジルコニウム源粉末とを混合した混合粉末を350〜1500MPaで加圧して成形体を得る成形工程と、
該成形体を1140〜1350℃で加熱して焼結体を得る焼結工程とを備え、
該TiB粒子は、該混合粉末全体を100体積%としたときに10〜50体積%含まれ、
該ジルコニウム源粉末は、該混合粉末から該高剛性粉末を除いた粉末全体を100質量%としたときに0.1〜3質量%のZrを含み、
該焼結体からなりヤング率が230GPa以上である高剛性鉄基焼結合金が得られる高剛性鉄基焼結合金の製造方法。
A molding step of pressing a mixed powder obtained by mixing an iron-based powder made of iron or an iron alloy, a highly rigid powder containing TiB 2 particles, and a zirconium source powder at 350 to 1500 MPa to obtain a molded body;
A sintering step of heating the molded body at 1140 to 1350 ° C. to obtain a sintered body,
The TiB 2 particles include 10 to 50% by volume when the entire mixture powder is 100% by volume,
The zirconium source powder contains 0.1 to 3% by mass of Zr when the entire powder obtained by removing the high-rigidity powder from the mixed powder is 100% by mass,
A method for producing a high-rigidity iron-based sintered alloy comprising a sintered body and a high-rigidity iron-based sintered alloy having a Young's modulus of 230 GPa or more.
前記焼結体は、前記鉄系粉末の粒子と前記TiB粒子を少なくとも含むホウ化物粒子との粒界の少なくとも一部で液相を生じる焼結温度以上で加熱されてなる請求項1に記載の高剛性鉄基焼結合金の製造方法。 2. The sintered body according to claim 1, wherein the sintered body is heated at a sintering temperature or higher at which a liquid phase is formed at at least a part of a grain boundary between the iron-based powder particles and the boride particles including at least the TiB 2 particles. For manufacturing high-rigidity iron-based sintered alloys. 前記焼結工程は、焼結温度を1180〜1300℃とする工程である請求項1または2に記載の高剛性鉄基焼結合金の製造方法。 The method for producing a high-rigidity iron-based sintered alloy according to claim 1 or 2, wherein the sintering step is a step of setting a sintering temperature to 1180 to 1300 ° C. 前記ジルコニウム源粉末は、ジルコニウムのホウ化物、炭化物、酸化物および窒化物のいずれか一種以上からなる請求項1〜3のいずれかに記載の高剛性鉄基焼結合金の製造方法。   The method for producing a high-rigidity iron-based sintered alloy according to any one of claims 1 to 3, wherein the zirconium source powder comprises at least one of a boride, a carbide, an oxide, and a nitride of zirconium. 前記鉄系粉末は、モリブデン(Mo)および/またはクロム(Cr)を含む鉄合金からなる請求項1〜4のいずれかに記載の高剛性鉄基焼結合金の製造方法。   The method for producing a high-rigidity iron-based sintered alloy according to any one of claims 1 to 4, wherein the iron-based powder is made of an iron alloy containing molybdenum (Mo) and / or chromium (Cr). 前記混合粉末は、さらに、銅源粉末を含む請求項1〜5のいずれかに記載の高剛性鉄基焼結合金の製造方法。   The method for producing a high-rigidity iron-based sintered alloy according to any one of claims 1 to 5, wherein the mixed powder further includes a copper source powder. 前記高剛性粉末は、前記混合粉末全体を100質量%としたときに5〜35質量%含まれ、
前記ジルコニウム源粉末は、該混合粉末全体を100質量%としたときに0.2〜4質量%含まれる請求項1〜6のいずれかに記載の高剛性鉄基焼結合金の製造方法。
The high-rigidity powder is contained in an amount of 5 to 35% by mass when the entire mixed powder is 100% by mass,
The method for producing a high-rigidity iron-based sintered alloy according to any one of claims 1 to 6, wherein the zirconium source powder is contained in an amount of 0.2 to 4% by mass when the entire mixed powder is taken as 100% by mass.
前記鉄系粉末は、該鉄系粉末全体を100質量%としたときに、0.2〜4質量%のMoと0.5〜6質量%のCrの少なくとも一方を含む鉄合金粉末である請求項5に記載の高剛性鉄基焼結合金の製造方法。   The iron-based powder is an iron alloy powder containing at least one of 0.2 to 4% by mass of Mo and 0.5 to 6% by mass of Cr, assuming that the entire iron-based powder is 100% by mass. Item 6. A method for producing a high-rigidity iron-based sintered alloy according to Item 5. 前記焼結体は、真密度(ρ)に対する嵩密度(ρ)の比である相対密度(ρ/ρ×100%)が96%以上である請求項1〜8のいずれかに記載の高剛性鉄基焼結合金の製造方法。 9. The sintered body according to claim 1, wherein a relative density (ρ / ρ 0 × 100%), which is a ratio of a bulk density (ρ) to a true density (ρ 0 ), is 96% or more. Manufacturing method of high-rigidity iron-based sintered alloy.
JP2015222555A 2014-11-14 2015-11-13 Manufacturing method of high-rigidity iron-based sintered alloy Expired - Fee Related JP6667264B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014232179 2014-11-14
JP2014232179 2014-11-14

Publications (2)

Publication Number Publication Date
JP2016102262A JP2016102262A (en) 2016-06-02
JP6667264B2 true JP6667264B2 (en) 2020-03-18

Family

ID=56089039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015222555A Expired - Fee Related JP6667264B2 (en) 2014-11-14 2015-11-13 Manufacturing method of high-rigidity iron-based sintered alloy

Country Status (1)

Country Link
JP (1) JP6667264B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017211077A (en) 2016-05-23 2017-11-30 株式会社ジェイテクト Clutch device
DE112017007022T5 (en) * 2017-02-08 2019-10-24 Sumitomo Electric Sintered Alloy, Ltd. METHOD FOR PRODUCING A SINTERING COMPONENT AND SINTERING COMPONENT
JP7492697B2 (en) 2018-10-26 2024-05-30 山陽特殊製鋼株式会社 Powder for high stiffness, low thermal expansion alloys
JP2023032589A (en) * 2021-08-27 2023-03-09 トヨタ自動車株式会社 High-rigidity iron-based alloy and method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3314505B2 (en) * 1993-12-27 2002-08-12 株式会社豊田中央研究所 High-rigidity iron-based alloy and method for producing the same
JPH08104958A (en) * 1994-10-04 1996-04-23 Mitsubishi Materials Corp Contact strip material of pantagraph for current collecting made of iron-base sintered alloy excellent in electrical conductivity and wear resistance
JPH08104960A (en) * 1994-10-04 1996-04-23 Mitsubishi Materials Corp Contact strip material of pantagraph for current collecting made of iron-base sintered alloy excellent in electrical conductivity and wear resistance
JP3409301B2 (en) * 2000-02-25 2003-05-26 株式会社豊田中央研究所 Reciprocating member

Also Published As

Publication number Publication date
JP2016102262A (en) 2016-06-02

Similar Documents

Publication Publication Date Title
JP5427380B2 (en) Carbide composite material and manufacturing method thereof
US11247268B2 (en) Methods of making metal matrix composite and alloy articles
JP6667264B2 (en) Manufacturing method of high-rigidity iron-based sintered alloy
JP2010248615A (en) Molybdenum alloy and method for manufacturing the same
JP2016098393A (en) Hard metal alloy
JPWO2014208447A1 (en) Cermet, manufacturing method thereof and cutting tool
KR20160102483A (en) A method for producing a sintered component and a sintered component
JP6011946B2 (en) Nickel-based intermetallic compound composite sintered material and method for producing the same
Safari et al. High Temperature Mechanical Properties of an Extruded Mg–TiO2 Nano‐Composite
JP6259978B2 (en) Ni-based intermetallic compound sintered body and method for producing the same
US20160303649A1 (en) Light weight high stiffness metal composite
JPH04325648A (en) Production of sintered aluminum alloy
JP6942434B2 (en) Manufacturing method of high-density iron-based sintered material
JP6805454B2 (en) Cemented carbide and its manufacturing method, and cemented carbide tools
Paidpilli et al. Sintering Response of Aluminum 6061-TiB 2 Composite: Effect of Prealloyed and Premixed Matrix
JP2015101749A (en) α+β TYPE TITANIUM ALLOY AND METHOD FOR PRODUCING THE ALLOY
JPH0578708A (en) Production of aluminum-based grain composite alloy
JP7186144B2 (en) Iron-based alloy member
JP6743663B2 (en) Cemented Carbide and Cemented Carbide
JP6875682B2 (en) Machine parts
JP2005082855A (en) Al ALLOY MATERIAL
JPS62287041A (en) Production of high-alloy steel sintered material
JP2015127455A (en) Powder high speed tool steel
JP2000129389A (en) Molybdenum sintered compact and its manufacture
JPWO2008146856A1 (en) cermet

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200225

R150 Certificate of patent or registration of utility model

Ref document number: 6667264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees