[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004346370A - Cemented carbide - Google Patents

Cemented carbide Download PDF

Info

Publication number
JP2004346370A
JP2004346370A JP2003144197A JP2003144197A JP2004346370A JP 2004346370 A JP2004346370 A JP 2004346370A JP 2003144197 A JP2003144197 A JP 2003144197A JP 2003144197 A JP2003144197 A JP 2003144197A JP 2004346370 A JP2004346370 A JP 2004346370A
Authority
JP
Japan
Prior art keywords
cemented carbide
binder phase
average particle
particle size
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003144197A
Other languages
Japanese (ja)
Other versions
JP4112431B2 (en
Inventor
Yutaka Kubo
裕 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2003144197A priority Critical patent/JP4112431B2/en
Publication of JP2004346370A publication Critical patent/JP2004346370A/en
Application granted granted Critical
Publication of JP4112431B2 publication Critical patent/JP4112431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To further improve the deflective strength of superfine cemented carbide for coping with the fine diameter of a drill or the like as its main application. <P>SOLUTION: In the superfine cemented carbide in which the mean grain size of WC is ≤0.8 μm, the mean grain size of bonding phase grains is ≤200 μm. By adopting the constitution, the soundness in the grain boundary of the bonding phase is improved, and can be improved to a level free from influence on its deflective strength. Thus, the further improvement of the deflective strength and the reduction of variation are realized, so that the service life of a fine-diameter tool can be improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、超硬合金に関し、WCの平均粒径が0.8μm以下の靭性の優れた超硬合金に関する。
【0002】
【従来の技術】
WCの平均粒径が0.8μm以下の超硬合金には、粒成長抑制効果を有する成分を添加する技術が、以下の特許文献1、2、3及び非特許文献4に開示されている。
【特許文献1】特開平04−46538号公報
【特許文献2】特許3010859号公報
【特許文献3】特開2000−712号公報
【非特許文献4】鈴木、林、福家:粉体及び粉末冶金、9(1973)、187頁
【0003】
特許文献1にはCr、V、Taの3種の添加が開示されている。また、特許文献2、特許文献3には、Cr、V添加の3相合金が開示されている。非特許文献4には、鈴木らの検討結果が開示されている。結合相の中に同一の結晶方位をもつ領域(以下、結合相粒と言う。)が存在し、該結合相粒の粒界部は結合相の最終凝固部であるために、不純物が濃縮され、粒界部は凝固収縮により、Co量が少なくなりマイクロポアを生じやすいことを非特許文献4は開示している。
【0004】
【発明が解決しようとする課題】
微粒超硬合金は細径のドリル、エンドミル、ルーターなどの切削工具用の素材、又は打ち抜きパンチ等の工具用材料として用いられるが、近年これらの径がますます小径化する傾向が顕著であり、これら小径工具の耐折損性を向上するためには微粒超硬合金の抗折力を更に高め強靭化することが求められている。微粒超硬合金については抗折力を高めるために、これまで、WC粒径の微粒化、粒成長抑制成分の選択、量の最適化、結合相量の最適化等がなされてきているが、更なる抗折力向上のためには、これらの適正化だけでは十分とはいえず、なお一層の向上が求められている。
【0005】
【課題を解決するための手段】
本発明は、WCの平均粒径が0.8μm以下である微粒超硬合金において、結合相粒の平均粒径が200μm以下であることを特徴とする超硬合金である。本構成を採用することにより、靭性の優れた超硬合金を得ることができる。また、WC及び重量%で40%以下のCoを成分とし、残りが粒成長抑制成分及び不可避不純物を含有することが、靭性の優れた超硬合金を得るのに好ましい。
【0006】
【発明の実施の形態】
本発明者らは、基礎的な検討結果はあるものの、これまで注目されていなかった、結合相粒の平均粒径に着目し、この結合相粒の平均粒径を一定値以下に規定することにより、抗折力を大幅に向上させることが可能であることを見出し、本発明に至った。結合相粒の平均粒径を200μm以下とすることにより、粒界部の不健全性を抗折力に影響しないレベルに健全化させることが可能である。ここで言う粒界部の健全性とは、粒界部分の不純物や粒成長抑制成分の含有量が、結合相粒内部の含有量と同等である状態の場合、健全であると言い、一方、粒界部分の不純物や粒成長抑制成分の含有量が、結合相粒内部の含有量よりも極めて多量である状態の場合、不健全であると言う。
粒成長抑制成分を含む晶出相は結合相粒界部の中でも特に粒界三重点に生じやすい。結合相粒の平均粒径が200μmを超えて大きい場合は、抗折力測定時に破壊の起点となり、抗折力の低下を招き、好ましくないため、結合相粒の平均粒径を200μm以下に限定した。結合相粒の平均粒径が200μm以下であることにより、靭性の優れた超硬合金を得ることができた。
【0007】
WC及び重量%で40%以下のCoを主成分とし、粒成長抑制成分及び不可避不純物を含有することが、優れた靭性を得るために好ましい。Co量を40%以下とする理由は、40%を超えるとCoが多すぎることにより、超硬合金として必要な硬さがえられなくなるからである。以下に、本発明の超硬合金を実施例により詳細に説明する。
【0008】
【実施例】
(実施例1)
組成が、Co:8wt%、VC:0.3wt%、Cr:0.7wt%、TaC:0.1wt%、残りWC及び不可避不純物からなる超硬合金において、焼結後の冷却速度を種々変化させることにより、種々の結合相粒の平均粒径を持つ試験片を作製し、それらの抗折力を調査した。結果を表1に示す。
【0009】
【表1】

Figure 2004346370
【0010】
結合相粒の平均粒径は、試験片を鏡面ラップ加工したのち、熱触刻法により結合相粒を現出させ、それを倍率が50倍の写真に撮影し、画像処理により視野内の結合相粒の平均粒径を求めた。この結果より、本発明例1から4の結合相粒の平均粒径が200μm以下の場合に抗折力は4300MPa以上を示し、ほぼ一定値であるのに対して、比較例5から7の200μmを超える場合は、結合相粒が大きいほど、抗折力は低下することが明らかである。
【0011】
(実施例2)
平均粒径0.6μmのWC粉末、平均粒径1.2μmのVC粉末、平均粒径1.4μmのCr粉末、平均粒径1.3μmのTaC粉末、平均粒径0.8μmのCo粉末を原料粉末とし、これらの粉末を表2に示す組成に配合し、アトライタにてアルコールを溶媒として6時間混合した。
【0012】
【表2】
Figure 2004346370
【0013】
混合後乾燥し、この乾燥粉を用いて、焼結後のサイズが4.5×8.5×25mmとしたJIS試験片をプレス成形した。得られた成形体を1350〜1450℃の所定の焼結温度にて、最初に6.65Paの真空度にて30分間焼結した後、30分間、4.9MPaのAr雰囲気下でシンターHIP処理を行った。シンターHIP後には強制冷却にて、10〜15℃/minの速度で冷却した。得られた焼結体を研磨し、熱触刻法にて結合相粒を現出させ、結合相粒の平均粒径を測定した。また各組成条件の試験片を30本用いて、研削後抗折力試験を行い、抗折力値及びばらつきの評価を行った。これら抗折力測定を行った試験片につき、破壊の起点の調査を行うために、破面近傍の張力面を研磨、熱触刻法にて結合相粒を現出させ、破壊の起点と結合相粒界とが一致するかどうかにつき評価を行った。また比較例として冷却速度を5℃/minとした以外は実施例1と同一の条件で焼結した試験片を準備して同様な評価をした。評価結果を表2に併記する。
【0014】
表2より、本発明例8から20の結合相粒の平均粒径が200μm以下の超硬合金は、比較例21から23の超硬合金に比べ、30本の試験片の平均抗折力が高く、抗折力のばらつきを示す平均抗折力の80%未満の本数も少ない。また、本発明例8から20は破壊の起点と結合相粒界の一致するものもなく、結合相粒界部の健全性が大きく改善されていることがわかる。一方、比較例21から23の超硬合金はいずれも結合相粒の平均粒径が200μmを超えており、平均抗折力が低くばらつきも大きい。また破壊の起点と結合相粒界の一致するものも多く、明らかに結合相粒界の健全性が確保できていない。
【0015】
(実施例3)
実施例2で用いた乾燥粉に溶剤及びワックスを添加して混練し、焼結後のサイズがφ3.4となるように押出し成形にて丸棒成形体を作製した。脱ワックス処理を行い、実施例2と同じ条件にて焼結を行った。得られた焼結体の結合相粒の平均粒径を実施例2と同様の測定法にて測定し、実施例2の結合相粒の平均粒径と差がないことを確認した。この丸棒素材を加工し、外径がφ0.2mm〜0.08mmのプリント基板用ドリルを作製した。
これらのドリルを用いて、表2に示す穴あけ加工条件において、各例とも5本づつ、厚さが1.6mmのガラスエポキシ基板を3枚重ねた基板の穴あけ加工を行い、折損寿命の評価を行ない、平均穴あけ数を求めた。結果を表2に併記する。表2より、本発明例8から20のドリルは3000〜4000穴、加工できたのに対し、比較例21から23のドリルは2000台の穴数であり、折損寿命までの穴あけ数が多いことが明らかである。
【0016】
【発明の効果】
本発明の超硬合金を適用することによって、結合相粒界部の健全性が向上し、その結果抗折力が高く、抗折力のばらつきも大幅に低減される。本発明の超硬合金を、例えばプリント基板用のドリルとして使用した場合、折損寿命も著しく改善することが明らかであり、本発明は工業上非常に有意義である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cemented carbide, and more particularly to a cemented carbide excellent in toughness having an average particle diameter of WC of 0.8 μm or less.
[0002]
[Prior art]
Patent Literatures 1, 2, and 3 and Non-Patent Literature 4 disclose techniques for adding a component having an effect of suppressing grain growth to a cemented carbide having an average particle diameter of WC of 0.8 μm or less.
[Patent Document 1] Japanese Patent Application Laid-Open No. 04-46538 [Patent Document 2] Japanese Patent No. 3010859 [Patent Document 3] Japanese Patent Application Laid-Open No. 2000-712 [Non-Patent Document 4] Suzuki, Hayashi, Fukuya: Powder and Powder Metallurgy , 9 (1973), p. 187
Patent Literature 1 discloses three types of additions of Cr, V, and Ta. Patent Literature 2 and Patent Literature 3 disclose three-phase alloys to which Cr and V are added. Non-Patent Document 4 discloses the results of a study by Suzuki et al. A region having the same crystal orientation exists in the binder phase (hereinafter, referred to as a binder phase grain), and since the grain boundary portion of the binder phase grain is the final solidified portion of the binder phase, impurities are concentrated. Non-Patent Document 4 discloses that the amount of Co decreases at the grain boundary due to solidification shrinkage, and micropores are easily generated.
[0004]
[Problems to be solved by the invention]
Fine-grain cemented carbide is used as a material for cutting tools such as small-diameter drills, end mills and routers, or as a material for tools such as punching punches. In order to improve the breakage resistance of these small-diameter tools, it is required to further increase the bending strength of the fine-grained cemented carbide and toughen it. For fine-grain cemented carbides, in order to increase the transverse rupture strength, the WC grain size has been reduced, the grain growth inhibiting component is selected, the amount is optimized, and the amount of the binder phase is optimized. In order to further improve the transverse rupture strength, it cannot be said that these optimizations alone are sufficient, and further improvement is required.
[0005]
[Means for Solving the Problems]
The present invention provides a fine-grained cemented carbide having an average particle size of WC of 0.8 μm or less, wherein the average particle size of binder phase particles is 200 μm or less. By employing this configuration, a cemented carbide having excellent toughness can be obtained. Further, it is preferable to obtain a cemented carbide having excellent toughness by using WC and 40% or less by weight of Co as components and the remainder containing a grain growth inhibiting component and unavoidable impurities.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have focused on the average particle size of the binder phase particles, which has not been noticed, although there are basic study results, and defines the average particle size of the binder phase particles to a certain value or less. As a result, it has been found that the transverse rupture strength can be greatly improved, and the present invention has been achieved. By setting the average particle size of the binder phase particles to 200 μm or less, it is possible to reduce the unsoundness of the grain boundary to a level that does not affect the transverse rupture strength. Here, the soundness of the grain boundary portion means that, when the content of the impurities and the grain growth inhibiting component in the grain boundary portion is equivalent to the content inside the binder phase grains, the soundness is defined as sound. When the content of the impurities in the grain boundary portion or the content of the grain growth suppressing component is much larger than the content in the inside of the binder phase grains, it is said that the material is unhealthy.
The crystallized phase containing the grain growth inhibiting component tends to occur particularly at the grain boundary triple point among the binder phase grain boundaries. If the average particle size of the binder phase particles is larger than 200 μm, it becomes a starting point of fracture at the time of the transverse rupture strength measurement, which causes a decrease in the transverse rupture force, which is not preferable. Therefore, the average particle size of the binder phase particles is limited to 200 μm or less. did. When the average particle size of the binder phase particles was 200 μm or less, a cemented carbide having excellent toughness could be obtained.
[0007]
It is preferable to contain WC and 40% by weight or less of Co as a main component and contain a grain growth suppressing component and an unavoidable impurity in order to obtain excellent toughness. The reason for setting the Co content to 40% or less is that if it exceeds 40%, the amount of Co is too large, so that the required hardness as a cemented carbide cannot be obtained. Hereinafter, the cemented carbide of the present invention will be described in detail with reference to examples.
[0008]
【Example】
(Example 1)
Composition, Co: 8wt%, VC: 0.3wt%, Cr 3 C 2: 0.7wt%, TaC: 0.1wt%, the cemented carbide consisting of the remaining WC and unavoidable impurities, cooling rate after sintering The test pieces having various average particle diameters of the binder phase particles were prepared by changing variously, and their transverse rupture strength was investigated. Table 1 shows the results.
[0009]
[Table 1]
Figure 2004346370
[0010]
The average particle size of the binder phase particles can be determined by mirror lapping the test piece, exposing the binder phase particles by hot stamping, taking a 50-times photograph of the binder particles, and combining them in the visual field by image processing. The average grain size of the phase grains was determined. From these results, when the average particle size of the binder phase particles of Examples 1 to 4 of the present invention is 200 μm or less, the transverse rupture force is 4300 MPa or more, which is almost constant, whereas the transverse rupture force of Comparative Examples 5 to 7 is 200 μm. It is clear that, when it exceeds, the larger the binder phase grains, the lower the transverse rupture strength.
[0011]
(Example 2)
WC powder having an average particle size of 0.6 μm, VC powder having an average particle size of 1.2 μm, Cr 3 C 2 powder having an average particle size of 1.4 μm, TaC powder having an average particle size of 1.3 μm, and 0.8 μm having an average particle size of 0.8 μm Co powder was used as a raw material powder, and these powders were blended in the composition shown in Table 2 and mixed with an attritor using alcohol as a solvent for 6 hours.
[0012]
[Table 2]
Figure 2004346370
[0013]
After mixing and drying, a JIS test piece having a size after sintering of 4.5 × 8.5 × 25 mm was press-formed using the dried powder. After sintering the obtained molded body at a predetermined sintering temperature of 1350 to 1450 ° C. at a vacuum degree of 6.65 Pa for 30 minutes, sinter HIP treatment is performed for 30 minutes in an atmosphere of 4.9 MPa Ar. Was done. After the sinter HIP, cooling was performed at a rate of 10 to 15 ° C./min by forced cooling. The obtained sintered body was polished, bonding phase particles were revealed by a hot stamping method, and the average particle size of the bonding phase particles was measured. Further, a bending force test after grinding was performed using 30 test pieces of each composition condition to evaluate a bending force value and variation. In order to investigate the starting point of fracture, the tensile surface near the fractured surface was polished and the bonding phase grains were exposed by the hot stamping method to investigate the starting point of fracture for the specimens subjected to these bending force measurements. Evaluation was made as to whether or not the phase grain boundaries coincided with each other. As a comparative example, a test piece sintered under the same conditions as in Example 1 except that the cooling rate was 5 ° C./min was prepared, and the same evaluation was performed. Table 2 also shows the evaluation results.
[0014]
As shown in Table 2, the cemented carbide having an average particle diameter of 200 μm or less of the binder phase particles of Examples 8 to 20 of the present invention has an average transverse rupture force of 30 test pieces as compared with the cemented carbides of Comparative Examples 21 to 23. It is high, and the number of less than 80% of the average transverse rupture force showing the variation in transverse rupture force is small. In addition, in Examples 8 to 20 of the present invention, there is no coincidence between the fracture starting point and the binder phase grain boundary, and it can be seen that the soundness of the binder phase grain boundary part is greatly improved. On the other hand, in all of the cemented carbides of Comparative Examples 21 to 23, the average grain size of the binder phase grains exceeded 200 μm, and the average bending strength was low and the dispersion was large. In addition, the fracture origin and the binder phase boundary often coincide, and the soundness of the binder phase boundary has not clearly been secured.
[0015]
(Example 3)
A solvent and a wax were added to the dry powder used in Example 2, and the mixture was kneaded, and extruded so that the size after sintering became φ3.4 to produce a round bar molded body. A dewaxing treatment was performed, and sintering was performed under the same conditions as in Example 2. The average particle size of the binder phase particles of the obtained sintered body was measured by the same measurement method as in Example 2, and it was confirmed that there was no difference from the average particle size of the binder phase particles of Example 2. This round bar material was processed to produce a printed board drill having an outer diameter of φ0.2 mm to 0.08 mm.
Using these drills, under the drilling processing conditions shown in Table 2, holes were drilled for three boards of 1.6 mm thick glass epoxy board in each case, and the evaluation of the break life was performed. And the average number of holes drilled. The results are also shown in Table 2. As shown in Table 2, the drills of Examples 8 to 20 of the present invention were able to process 3000 to 4000 holes, whereas the drills of Comparative Examples 21 to 23 were 2,000 holes, indicating that the number of holes until the break life was large. Is evident.
[0016]
【The invention's effect】
By applying the cemented carbide of the present invention, the soundness of the grain boundary portion of the binder phase is improved, and as a result, the transverse rupture strength is high, and the variation in the transverse rupture force is greatly reduced. When the cemented carbide of the present invention is used, for example, as a drill for a printed circuit board, it is clear that the break life is significantly improved, and the present invention is industrially very significant.

Claims (2)

WCの平均粒径が0.8μm以下である微粒超硬合金において、結合相粒の平均粒径が200μm以下であることを特徴とする超硬合金。A fine-grain cemented carbide having an average particle size of WC of 0.8 μm or less, wherein the average particle size of binder phase particles is 200 μm or less. 請求項1項記載の超硬合金において、WC及び重量%で40%以下のCoを成分とし、残りが粒成長抑制成分及び不可避不純物とすることを特徴とする超硬合金。2. The cemented carbide according to claim 1, wherein the cemented carbide comprises WC and 40% or less by weight of Co as a component, and the remainder is a grain growth inhibiting component and inevitable impurities.
JP2003144197A 2003-05-22 2003-05-22 Cemented carbide Expired - Fee Related JP4112431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003144197A JP4112431B2 (en) 2003-05-22 2003-05-22 Cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003144197A JP4112431B2 (en) 2003-05-22 2003-05-22 Cemented carbide

Publications (2)

Publication Number Publication Date
JP2004346370A true JP2004346370A (en) 2004-12-09
JP4112431B2 JP4112431B2 (en) 2008-07-02

Family

ID=33531702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003144197A Expired - Fee Related JP4112431B2 (en) 2003-05-22 2003-05-22 Cemented carbide

Country Status (1)

Country Link
JP (1) JP4112431B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218589A (en) * 2005-02-14 2006-08-24 Hitachi Tool Engineering Ltd Amorphous carbon film coated member
JP2009024214A (en) * 2007-07-19 2009-02-05 Tungaloy Corp Hard metal and manufacturing method therefor
JP2021139021A (en) * 2020-03-06 2021-09-16 三菱マテリアル株式会社 Wc-based super-hard alloy and wc-based super-hard alloy cutting tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218589A (en) * 2005-02-14 2006-08-24 Hitachi Tool Engineering Ltd Amorphous carbon film coated member
JP2009024214A (en) * 2007-07-19 2009-02-05 Tungaloy Corp Hard metal and manufacturing method therefor
JP2021139021A (en) * 2020-03-06 2021-09-16 三菱マテリアル株式会社 Wc-based super-hard alloy and wc-based super-hard alloy cutting tool
JP7441415B2 (en) 2020-03-06 2024-03-01 三菱マテリアル株式会社 WC-based cemented carbide and WC-based cemented carbide cutting tools

Also Published As

Publication number Publication date
JP4112431B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP3762777B1 (en) Cemented carbide
JP2004076049A (en) Hard metal of ultra-fine particles
JP2004059946A (en) Ultra-fine grain hard metal
JP2004346370A (en) Cemented carbide
JP5170836B2 (en) Cemented carbide miniature drill with excellent breakage resistance
JP2003013169A (en) WC-Co based fine-grain cemented carbide with excellent oxidation resistance
JP2005068515A (en) Hard metal containing fine particles
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JPH08118123A (en) High strength tungsten carbide group superhard alloy-made miniature drill
JPH0598384A (en) Tungsten carbide base sintered hard alloy having high strength and high hardness
JPH10212165A (en) Composite carbide powder and its production
JP2008196041A (en) Cemented carbide
JP4126280B2 (en) Fine cemented carbide
JPH09227981A (en) Cemented carbide
JPH05117799A (en) Tungsten carbide-based sintered hard alloy
JP3063310B2 (en) Manufacturing method of tungsten carbide based cemented carbide with high strength and high hardness
JPH0723263B2 (en) Cutting tool made of aluminum oxide based ceramics
JP2003193171A (en) Cemented carbide and production method therefor
JP2003193172A (en) Tungsten carbide cemented carbide and production method therefor
RU2773448C1 (en) Hard alloy with a viscosity-increasing structure
JP3458533B2 (en) Manufacturing method of WC-based cemented carbide cutting tool
JP2005054258A (en) Fine-grained cemented carbide
JP2003193170A (en) Tungsten carbide-cemented carbide
JP3008532B2 (en) High hardness, high toughness cemented carbide
JP2626863B2 (en) Cemented carbide and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080409

R150 Certificate of patent or registration of utility model

Ref document number: 4112431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees