JP4192879B2 - Display panel - Google Patents
Display panel Download PDFInfo
- Publication number
- JP4192879B2 JP4192879B2 JP2004287642A JP2004287642A JP4192879B2 JP 4192879 B2 JP4192879 B2 JP 4192879B2 JP 2004287642 A JP2004287642 A JP 2004287642A JP 2004287642 A JP2004287642 A JP 2004287642A JP 4192879 B2 JP4192879 B2 JP 4192879B2
- Authority
- JP
- Japan
- Prior art keywords
- transistor
- wiring
- power supply
- drain
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000758 substrate Substances 0.000 claims description 29
- 239000011159 matrix material Substances 0.000 claims description 17
- 239000010410 layer Substances 0.000 description 128
- 239000010408 film Substances 0.000 description 114
- 239000010409 thin film Substances 0.000 description 24
- 239000003990 capacitor Substances 0.000 description 23
- 238000000034 method Methods 0.000 description 18
- 230000001681 protective effect Effects 0.000 description 14
- 239000010949 copper Substances 0.000 description 13
- 230000003071 parasitic effect Effects 0.000 description 13
- 239000004065 semiconductor Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 238000005401 electroluminescence Methods 0.000 description 11
- 239000007788 liquid Substances 0.000 description 10
- 239000005871 repellent Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- 230000002940 repellent Effects 0.000 description 7
- 238000005530 etching Methods 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000002894 organic compounds Chemical group 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 229910052788 barium Inorganic materials 0.000 description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 230000005525 hole transport Effects 0.000 description 3
- 229910003437 indium oxide Inorganic materials 0.000 description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 2
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910017150 AlTi Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- BEQNOZDXPONEMR-UHFFFAOYSA-N cadmium;oxotin Chemical compound [Cd].[Sn]=O BEQNOZDXPONEMR-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Images
Landscapes
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Description
本発明は、発光素子をサブピクセルとして用いたディスプレイパネルに関する。 The present invention relates to a display panel using light emitting elements as subpixels.
有機エレクトロルミネッセンスディスプレイパネルは大きく分けてパッシブ駆動方式のものと、アクティブマトリクス駆動方式のものに分類することができるが、アクティブマトリクス駆動方式の有機エレクトロルミネッセンスディスプレイパネルが高コントラスト、高精細といった点でパッシブ駆動方式よりも優れている。例えば特許文献1に記載された従来のアクティブマトリクス駆動方式の有機エレクトロルミネッセンスディスプレイパネルにおいては、有機エレクトロルミネッセンス素子(以下、有機EL素子という。)と、画像データに応じた電圧信号がゲートに印加されて有機EL素子に電流を流す駆動トランジスタと、この駆動トランジスタのゲートに画像データに応じた電圧信号を供給するためのスイッチングを行うスイッチ用トランジスタとが、サブピクセルごとに設けられている。この有機エレクトロルミネッセンスディスプレイパネルでは、走査線が選択されるとスイッチング用トランジスタがオンになり、その時に輝度を表すレベルの電圧が信号線を介して駆動トランジスタのゲートに印加される。これにより、駆動トランジスタがオンになり、ゲート電圧のレベルに応じた大きさの駆動電流が電源から駆動トランジスタのソース−ドレインを介して有機EL素子に流れ、有機EL素子が電流の大きさに応じた輝度で発光する。走査線の選択が終了してから次にその走査線が選択されるまでの間では、スイッチ用トランジスタがオフになっても駆動トランジスタのゲート電圧のレベルが保持され続け、有機EL素子が電圧に応じた駆動電流の大きさに従った輝度で発光する。
Organic electroluminescence display panels can be broadly classified into passive drive type and active matrix drive type. Active matrix drive type organic electroluminescence display panels are passive in terms of high contrast and high definition. It is superior to the drive system. For example, in the conventional active matrix driving organic electroluminescence display panel described in
有機エレクトロルミネッセンスディスプレイパネルを駆動するために、有機エレクトロルミネッセンスディスプレイパネルの周辺に駆動回路を設け、有機エレクトロルミネッセンスディスプレイパネルに敷設された走査線、信号線、電源線等に電圧を印加することが行われている。 In order to drive an organic electroluminescence display panel, a drive circuit is provided around the organic electroluminescence display panel, and a voltage is applied to a scanning line, a signal line, a power supply line, etc. laid on the organic electroluminescence display panel. It has been broken.
また、従来のアクティブマトリクス駆動方式の有機エレクトロルミネッセンスディスプレイパネルでは、電源線のような有機EL素子に電流を流す配線はスイッチ用トランジスタ、駆動トランジスタ等といった薄膜トランジスタの材料を用いて薄膜トランジスタのパターニング工程と同時にパターニングされる。即ち、有機エレクトロルミネッセンスディスプレイパネルを製造するにあたって、薄膜トランジスタの電極のもととなる導電性薄膜に対してフォトリソグラフィー法、エッチング法を行うことによって、その導電性薄膜から薄膜トランジスタの電極を形状加工するとともに、同時に電極に接続される配線も形状加工する。そのため、配線が導電性薄膜から形成されると、配線が薄膜トランジスタの電極の厚さと同じになる。
しかしながら、薄膜トランジスタの電極は、トランジスタとして機能することを前提に設計されているため、言い換えれば有機EL素子に電流を流すことを前提として設計していないため、その名の通り薄膜であり、このため、配線から複数の有機EL素子に電流を流そうとすると、配線の電気抵抗によって、電圧降下が発生したり、配線を通じた電流の流れの遅延が生じたりする。電圧降下及び電流遅延を抑えるために配線を低抵抗化することが望まれるが、そのためにトランジスタのソース、ドレインとなる金属層やゲートとなる金属層を厚くしたり、これら金属層を電流が十分に流れる程度にかなり幅広にパターニングして低抵抗配線としたりすると、配線が他の配線や導電体等と平面視して重なる面積が増えてしまい、それらの間で寄生容量が発生してしまい、電流の流れを遅くする要因を発生してしまい、或いはトランジスタアレイ基板側からEL光を出射するいわゆるボトムエミッション構造の場合、有機EL素子からの発光を配線が遮光してしまうので、発光面積の割合である開口率の低下を招いてしまっていた。また低抵抗化するために薄膜トランジスタのゲートを厚くすると、ゲートの段差を平坦化するための平坦化膜(例えば薄膜トランジスタが逆スタガ構造の場合、ゲート絶縁膜に相当)まで厚くしなければならず、トランジスタ特性が大きく変化してしまう恐れがあり、またソース、ドレインを厚くすると、ソース、ドレインのエッチング精度が低下してしまうため、やはりトランジスタの特性に悪影響を及ぼす恐れがある。 However, since the electrode of the thin film transistor is designed on the assumption that it functions as a transistor, in other words, it is not designed on the assumption that a current flows through the organic EL element. When a current is caused to flow from the wiring to the plurality of organic EL elements, a voltage drop occurs due to the electrical resistance of the wiring, or a delay of the current flow through the wiring occurs. In order to suppress the voltage drop and current delay, it is desirable to reduce the resistance of the wiring. For this purpose, the metal layers that serve as the source and drain of the transistor and the metal layer that serves as the gate are made thicker, or the current is sufficient for these metal layers. If it is patterned to be so wide that it flows to a low resistance wiring, the area where the wiring overlaps with other wiring or conductors in plan view increases, and parasitic capacitance occurs between them, In the case of a so-called bottom emission structure that causes the current flow to slow down or emits EL light from the transistor array substrate side, the light from the organic EL element is shielded, so the ratio of the light emitting area This has led to a decrease in the aperture ratio. Further, when the gate of the thin film transistor is made thicker in order to reduce the resistance, it is necessary to increase the thickness to a flattening film (for example, corresponding to a gate insulating film when the thin film transistor has an inverted staggered structure) for flattening the step of the gate, The transistor characteristics may change greatly, and if the source and drain are made thicker, the etching accuracy of the source and drain is lowered, which may also adversely affect the characteristics of the transistor.
そこで、本発明は、配線を通じた電圧降下・信号遅延を抑えることを目的とする。 Accordingly, an object of the present invention is to suppress voltage drop and signal delay through wiring.
以上の課題を解決するために、請求項1に記載のディスプレイパネルは、
基板と、
前記基板上において、サブピクセルごとに設けられた駆動トランジスタと、
ソースとドレインのうちの一方を前記駆動トランジスタのソースとドレインのうちの一方に導通させ、前記基板上においてサブピクセルごとに設けられたスイッチトランジスタと、
ソースとドレインのうちの一方を前記駆動トランジスタのソースとドレインのうちの他方に導通させ、ソースとドレインのうちの他方を前記駆動トランジスタのゲートに導通させ、前記基板上にサブピクセルごとに設けられた保持トランジスタと、
前記駆動トランジスタ、前記スイッチトランジスタ及び前記保持トランジスタを被覆するように形成され、且つ複数の溝が形成された絶縁膜と、
前記各溝に埋設されるとともに前記絶縁膜から凸設され、前記駆動トランジスタのソースとドレインのうちの他方に導通し、前記駆動トランジスタ、前記スイッチトランジスタ及び前記保持トランジスタのゲート、ソース及びドレインとは異なる導電層によって形成された給電配線と、
前記絶縁膜上においてサブピクセルごとに且つマトリクス状に設けられ、前記駆動トランジスタのソースとドレインのうちの一方に導通したサブピクセル電極と、
前記サブピクセル電極の上面に形成された発光層と、
前記発光層を被覆するように形成された対向電極と、
前記絶縁膜の前記給電配線が埋設された溝とは異なる溝であって前記絶縁膜に形成された溝に埋設され、前記スイッチトランジスタ及び前記保持トランジスタを選択する選択配線と、
前記対向電極に接続された共通配線と、
を備え、
前記給電配線は、下層が前記選択配線とともに形成され、上層が前記共通配線とともに形成されている。
In order to solve the above problems, the display panel according to
A substrate,
A driving transistor provided for each subpixel on the substrate;
One of a source and a drain is electrically connected to one of a source and a drain of the driving transistor, and a switch transistor provided for each subpixel on the substrate;
One of the source and drain is conducted to the other of the source and drain of the driving transistor, and the other of the source and drain is conducted to the gate of the driving transistor, and is provided for each subpixel on the substrate. Holding transistor,
An insulating film formed to cover the driving transistor, the switch transistor, and the holding transistor, and having a plurality of grooves;
Wherein the projecting manner from the insulating film together when it is buried in each groove, electrically connected to the other of the source and drain of the driving transistor, the driving transistor, the switching transistor and a gate of the holding transistor, the source and drain A power supply wiring formed by a different conductive layer from
A sub-pixel electrode provided in a matrix for each sub-pixel on the insulating film and electrically connected to one of a source and a drain of the driving transistor;
A light emitting layer formed on an upper surface of the subpixel electrode;
A counter electrode formed to cover the light emitting layer;
A selection wiring for selecting the switch transistor and the holding transistor, which is a groove different from the groove in which the power supply wiring of the insulating film is embedded, and is embedded in the groove formed in the insulating film;
A common wiring connected to the counter electrode;
Equipped with a,
The power supply wiring has a lower layer formed with the selection wiring and an upper layer formed with the common wiring .
好ましくは、前記サブピクセル電極が前記給電配線に沿って配列されている。 Preferably, the subpixel electrodes are arranged along the power supply wiring.
本発明では、前記スイッチトランジスタ及び前記保持トランジスタを選択する選択配線が、前記絶縁膜の前記給電配線が埋設された溝とは異なる溝であって前記絶縁膜に形成された溝に埋設されている。 In the present invention, the selection wiring for selecting the switch transistor and the holding transistor is embedded in a groove formed in the insulating film which is different from the groove in which the power supply wiring of the insulating film is embedded. .
また、前記対向電極に接続された共通配線が設けられている。 Further , a common wiring connected to the counter electrode is provided.
特に、前記スイッチトランジスタ及び前記保持トランジスタを選択する選択配線が、前記絶縁膜の前記給電配線が埋設された溝とは異なる溝であって前記絶縁膜に形成された溝に埋設され、前記対向電極に接続された共通配線が設けられ、前記給電配線は、下層が前記選択配線とともに形成され、上層が前記共通配線とともに形成されている。 In particular, the selection wiring for selecting the switch transistor and the holding transistor is embedded in a groove formed in the insulating film which is different from the groove in which the power supply wiring of the insulating film is embedded, and the counter electrode The power supply wiring is formed such that a lower layer is formed with the selection wiring and an upper layer is formed with the common wiring.
好ましくは、前記給電配線は、前記選択配線よりも厚く、また、前記共通配線よりも厚い。 Preferably, the power supply wiring is thicker than the selection wiring and thicker than the common wiring.
好ましくは、前記給電配線は、前記駆動トランジスタ、前記スイッチトランジスタ及び前記保持トランジスタのゲート、ソース又はドレインとともにパターニングされ且つ前記溝によって露出された供給線に積層されている。 Preferably, the power supply wiring is patterned together with the gate, source or drain of the drive transistor, the switch transistor and the holding transistor, and is stacked on the supply line exposed by the groove.
なお、前記ディスプレイパネルは、前記各給電配線を被覆し、撥水性・撥油性及び絶縁性を有し、前記対向電極によって被覆された疎水絶縁膜を更に備えても良い。また、前記発光層が湿式塗布法により成膜されたものである。 The display panel may further include a hydrophobic insulating film that covers each of the power supply wirings, has water repellency, oil repellency, and insulation and is covered with the counter electrode. The light emitting layer is formed by a wet coating method.
請求項6に記載のディスプレイパネルは、
基板と、
前記基板上に設けられた発光素子と、
前記発光素子の一方の電極に接続され、駆動電流を供給する第一トランジスタと、
前記第一トランジスタを制御する第二トランジスタと、
前記第二トランジスタのゲート、ソース及びドレインとは異なる導電層によって形成された第二トランジスタを選択する選択配線と、
下層が前記選択配線とともに形成され、前記下層の上に上層が形成されてなり、前記第一トランジスタに接続され、前記選択配線よりも単位長さあたりの抵抗が低い給電配線と、
前記給電配線の上層とともに形成され、前記発光素子の他方の電極に接続された共通配線と、
を備える。
The display panel according to
A substrate,
A light emitting device provided on the substrate;
A first transistor connected to one electrode of the light emitting element and supplying a drive current;
A second transistor for controlling the first transistor;
A selection wiring for selecting the second transistor formed by a conductive layer different from the gate, source and drain of the second transistor;
A lower layer is formed together with the selection wiring, an upper layer is formed on the lower layer , connected to the first transistor, and a power supply wiring having a lower resistance per unit length than the selection wiring,
A common line formed together with the upper layer of the power supply line and connected to the other electrode of the light emitting element;
Is provided.
請求項1記載の発明によれば、給電配線がトランジスタとは異なる導電層によって形成されたので、駆動トランジスタ、スイッチトランジスタ及び保持トランジスタのゲート、ソース及びドレインの厚さに関わらず給電配線を厚くすることができ、給電配線を低抵抗化することができる。そのため、給電配線を通じてトランジスタ・サブピクセル電極に信号を出力した場合でも、電圧降下を抑えることができるとともに信号遅延も抑えることができる。 According to the first aspect of the present invention, since the power supply wiring is formed of a conductive layer different from that of the transistor, the power supply wiring is made thick regardless of the thicknesses of the gate, source and drain of the drive transistor, switch transistor and holding transistor. And the resistance of the power supply wiring can be reduced. Therefore, even when a signal is output to the transistor / subpixel electrode through the power supply wiring, the voltage drop can be suppressed and the signal delay can be suppressed.
請求項6記載の発明によれば、選択配線が第二トランジスタとは異なる導電層によって形成されているので第二トランジスタの設計に関わらず厚く且つ低抵抗に形成することができるため電圧降下を抑えることができ、給電配線をさらに選択配線よりも単位長さあたりの抵抗を低くしたので電圧降下を抑えて発光素子に駆動電流を速やかに流すことができる。 According to the sixth aspect of the present invention, since the selection wiring is formed of a conductive layer different from that of the second transistor, it can be formed thick and low resistance regardless of the design of the second transistor, so that the voltage drop is suppressed. In addition, since the resistance per unit length of the power supply wiring is further lower than that of the selection wiring, a voltage drop can be suppressed and a driving current can be passed quickly to the light emitting element.
以下に、本発明を実施するための最良の形態について図面を用いて説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲を以下の実施形態及び図示例に限定するものではない。また、以下の説明において、エレクトロルミネッセンス(Electro Luminescence)という用語をELと略称する。 The best mode for carrying out the present invention will be described below with reference to the drawings. However, although various technically preferable limitations for implementing the present invention are given to the embodiments described below, the scope of the invention is not limited to the following embodiments and illustrated examples. Further, in the following description, the term electroluminescence is abbreviated as EL.
〔ディスプレイパネルの平面レイアウト〕
図1には、アクティブマトリクス駆動方式で動作するカラー表示のディスプレイパネル1の画素3の概略平面図が示されている。このディスプレイパネル1においては、1ピクセルの画素3につき1ドットの赤サブピクセルPrと、1ドットの緑サブピクセルPgと、1ドットの青サブピクセルPbとが垂直方向(列方向)に隣り合って配列されている。このディスプレイパネル1においては、複数の画素3がマトリクス状に配列されている。それぞれ水平方向(行方向)に沿った複数のサブピクセルPrで構成された行,複数のサブピクセルPgで構成された行,及びサブピクセルPbで構成された行が配列されている。垂直方向には、1つの赤サブピクセルPr、1つの緑サブピクセルPg、1つの青サブピクセルPbの順に繰り返し配列されており、全体としてサブピクセルPr,Pg,Pbがマトリクス状に配列されている。以下の説明において、サブピクセルPはこれら赤サブピクセルPr、緑サブピクセルPg、青サブピクセルPbの中の任意のサブピクセルを表し、サブピクセルPについての説明は赤サブピクセルPr、緑サブピクセルPg、青サブピクセルPbの何れについても適用される。
[Planar layout of display panel]
FIG. 1 shows a schematic plan view of a
また、垂直方向の画素3の列に沿って信号線Yr,Yg,Ybが延在し、垂直方向の画素3の列1列につき3本の信号線Yr,Yg,Ybが設けられている。信号線Yrは垂直方向に沿った画素3の一列のうち全ての赤サブピクセルPrに対して信号を供給するものであり、信号線Ygは垂直方向に沿った画素3の一列のうち全ての緑サブピクセルPgに対して信号を供給するものであり、信号線Ybは垂直方向に沿った画素3の一列のうち全ての青サブピクセルPbに対して信号を供給するものである。
Further, signal lines Yr, Yg, Yb extend along the columns of the
また、複数本の走査線Xが水平方向に沿って延在し、これら走査線Xに対して複数本の供給線Z、複数本の選択配線89、複数本の給電配線90及び複数本の共通配線91A,91Bが平行に設けられている。水平方向の画素3の列1列につき、1本の走査線Xと、1本の供給線Zと、1本の給電配線90と、1本の選択配線89と、2本の共通配線91A,91Bとが設けられている。具体的には、共通配線91Aは水平方向の赤サブピクセルPrの一行とこの行に隣接する緑サブピクセルPgの一行との間に配置され、共通配線91Bは水平方向の緑サブピクセルPgの一行とこの行に隣接する青サブピクセルPbの一行との間に配置されている。走査線X及び選択配線89は水平方向の緑サブピクセルPgの一行とこの行に隣接する青サブピクセルPbの一行との間に配置され、供給線Z及び給電配線90は水平方向の赤サブピクセルPrの一行とこの行に隣接する青サブピクセルPbの一行との間に配置されている。
A plurality of scanning lines X extend in the horizontal direction, and a plurality of supply lines Z, a plurality of
ここで、走査線Xは水平方向に沿って三行にわたって配列された画素3の全サブピクセルPr,Pg,Pbに信号を供給するものであり、供給線Zも水平方向に沿って三行にわたって配列された画素3の全サブピクセルPr,Pg,Pbに信号を供給するものである。
Here, the scanning line X supplies signals to all the sub-pixels Pr, Pg, and Pb of the
走査線X及び供給線Zがそれぞれm本設けられ、信号線Yr,Yg,Ybがそれぞれn本設けられている場合、サブピクセルPr,Pg,Pbがそれぞれ(m×n)ドット設けられ、サブピクセルPr,Pg,Pbの総計が(3×m×n)ドットになる。この場合、画素3が垂直方向にmピクセル、水平方向にnピクセルだけ配列されている。
When m scanning lines X and supply lines Z are provided, and n signal lines Yr, Yg, and Yb are provided, subpixels Pr, Pg, and Pb are provided (m × n) dots, respectively. The sum of the pixels Pr, Pg, and Pb is (3 × m × n) dots. In this case, the
また、平面視して、走査線Xには選択配線89が重なっており、供給線Zには給電配線90が重なっており、選択配線89に共通配線91Bが重なっている。詳細には後述するが、選択配線89は走査線Xに電気的に導通し、給電配線90は供給線Zに電気的に導通しているが、共通配線91Bは走査線Xにも選択配線89にも導通していない。
Also, in plan view, the
サブピクセルPr,Pg,Pbの色は、後述する有機EL素子20(図2等に図示)の発光色によって定まる。ディスプレイパネル1全体に着目して平面視した場合、有機EL素子20のアノードであるサブピクセル電極20a(図2等に図示)がマトリクス状に配列されており、1つのサブピクセル電極20aによって1ドットのサブピクセルPが定まる。
The colors of the subpixels Pr, Pg, and Pb are determined by the emission color of the organic EL element 20 (shown in FIG. 2 and the like) described later. When viewed in plan with a focus on the
〔サブピクセルの回路構成〕
次に、サブピクセルPr,Pg,Pbの回路構成について図2の等価回路図を用いて説明する。何れのサブピクセルPr,Pg,Pbも同様に構成されており、1ドットのサブピクセルPにつき、有機EL素子20、Nチャネル型のアモルファスシリコン薄膜トランジスタ(以下単にトランジスタと記述する。)21,22,23及びキャパシタ24が設けられている。以下では、トランジスタ21をスイッチトランジスタ21と称し、トランジスタ22を保持トランジスタ22と称し、トランジスタ23を駆動トランジスタ23と称する。なお、図2及び以下の説明において、赤サブピクセルPrの場合では信号線Yが図1の信号線Yrを表し、緑サブピクセルPgの場合では信号線Yが図1の信号線Ygを表し、青サブピクセルPbの場合では信号線Yが図1の信号線Ybを表す。
[Sub-pixel circuit configuration]
Next, the circuit configuration of the subpixels Pr, Pg, and Pb will be described with reference to the equivalent circuit diagram of FIG. All of the subpixels Pr, Pg, and Pb are configured in the same manner. For each subpixel P of one dot, the
スイッチトランジスタ21においては、ソース21sが信号線Yに導通し、ドレイン21dが有機EL素子20のサブピクセル電極20a、駆動トランジスタ23のソース23s及びキャパシタ24の上層電極24Bに導通し、ゲート21gが保持トランジスタ22のゲート22gとともに走査線X及び選択配線89に導通している。
In the
保持トランジスタ22においては、ソース22sが駆動トランジスタ23のゲート23g及びキャパシタ24の下層電極24Aに導通し、ドレイン22dが駆動トランジスタ23のドレイン23d及び供給線Zに導通し、ゲート22gがスイッチトランジスタ21のゲート21g及び走査線Xに導通している。
In the holding
駆動トランジスタ23においては、ソース23sが有機EL素子20のサブピクセル電極20a、スイッチトランジスタ21のドレイン21d及びキャパシタ24の電極24Bに導通し、ドレイン23dが保持トランジスタ22のドレイン22d及び供給線Zに導通し、ゲート23gが保持トランジスタ22のソース22s及びキャパシタ24の下層電極24Aに導通している。
In the
有機EL素子20のカソードとなる対向電極20cは共通配線91A,91Bに導通している。
The
垂直方向に沿って一列に配列された画素3の列の何れの赤サブピクセルPrのスイッチトランジスタ21のソース21sも共通の信号線Yrに導通し、垂直方向に沿って一列に配列された画素3の列の何れの緑サブピクセルPgのスイッチトランジスタ21のソース21sも共通の信号線Ygに導通し、垂直方向に沿って一列に配列された画素3の列の何れの青サブピクセルPbのスイッチトランジスタ21のソース21sも共通の信号線Ybに導通している。
The
一方、水平方向に沿って配列された一行分の画素3の何れのサブピクセルPr,Pg,Pbのスイッチトランジスタ21のゲート21gも共通の走査線Xに導通し、水平方向に沿って配列された一行分の画素3の何れのサブピクセルPr,Pg,Pbの保持トランジスタ22のゲート22gも共通の走査線Xに導通し、水平方向に沿って配列された一行分の画素3の何れのサブピクセルPr,Pg,Pbの保持トランジスタ22のドレイン22dも共通の供給線Zに導通し、水平方向に沿って配列された一行分の画素3の何れのサブピクセルPr,Pg,Pbの駆動トランジスタ23のドレイン23dも共通の供給線Zに導通している。
On the other hand, the
〔画素の平面レイアウト〕
画素3の平面レイアウトについて図3〜図5を用いて説明する。図3は、赤サブピクセルPrの電極を主に示した平面図であり、図4は、緑サブピクセルPgの電極を主に示した平面図であり、図5は、青サブピクセルPbの電極を主に示した平面図である。なお、図3〜図5においては、図面を見やすくするために、有機EL素子20のサブピクセル電極20a及び対向電極20cの図示を省略する。
[Plane layout of pixels]
The planar layout of the
図3に示すように、赤サブピクセルPrにおいては、平面視して、駆動トランジスタ23が供給線Z及び給電配線90に沿うように配置され、スイッチトランジスタ21が共通配線91Aに沿うように配置され、保持トランジスタ22が供給線Zの近くの赤サブピクセルPrの角部に配置されている。
As shown in FIG. 3, in the red subpixel Pr, the driving
図4に示すように、緑サブピクセルPgにおいては、平面視して、駆動トランジスタ23が共通配線91Aに沿うように配置され、スイッチトランジスタ21が走査線X及び選択配線89に沿うように配置され、保持トランジスタ22が共通配線91Aの近くの緑サブピクセルPgの角部に配置されている。
As shown in FIG. 4, in the green subpixel Pg, the driving
図5に示すように、青サブピクセルPbにおいては、平面視して、駆動トランジスタ23が走査線Xに沿うように配置され、スイッチトランジスタ21が隣の行の供給線Z及び給電配線90に沿うように配置され、保持トランジスタ22が走査線Xの近くの青サブピクセルPbの角部に配置されている。
As shown in FIG. 5, in the blue subpixel Pb, the driving
何れのサブピクセルPr,Pg,Pbでも、キャパシタ24が隣の列の信号線Yrに沿って配置されている。
In any of the subpixels Pr, Pg, Pb, the
なお、ディスプレイパネル1全体を平面視して、全てのサブピクセルPr,Pg,Pbのスイッチトランジスタ21だけに着目すると、複数のスイッチトランジスタ21がマトリクス状に配列され、全てのサブピクセルPr,Pg,Pbの保持トランジスタ22だけに着目すると、複数の保持トランジスタ22がマトリクス状に配列され、全てのサブピクセルPr,Pg,Pbの駆動トランジスタ23だけに着目すると、複数の駆動トランジスタ23がマトリクス状に配列されている。
When the
〔ディスプレイパネルの層構造〕
ディスプレイパネル1の層構造について図6を用いて説明する。ここで、図6は、図3〜図5に示された破断線VI−VIに沿って絶縁基板2の厚さ方向に切断した矢視断面図である。
[Layer structure of display panel]
The layer structure of the
ディスプレイパネル1は、光透過性を有する絶縁基板2に対して種々の層を積層したものである。絶縁基板2は可撓性のシート状に設けられているか、又は剛性の板状に設けられている。
The
まず、トランジスタ21〜23の層構造について説明する。図6に示すように、スイッチトランジスタ21は、絶縁基板2上に形成されたゲート21gと、ゲート21gを被覆したゲート絶縁膜31を挟んでゲート21gに対向した半導体膜21cと、半導体膜21cの中央部上に形成されたチャネル保護膜21pと、半導体膜21cの両端部上において互いに離間するよう形成され、チャネル保護膜21pに一部重なった不純物半導体膜21a,21bと、不純物半導体膜21a上に形成されたドレイン21dと、不純物半導体膜21b上に形成されたソース21sと、から構成されている。なお、ドレイン21d及びソース21sは一層構造であっても良いし、二層以上の積層構造であっても良い。
First, the layer structure of the
駆動トランジスタ23は、絶縁基板2上に形成されたゲート23gと、ゲート絶縁膜31を挟んでゲート23gに対向した半導体膜23cと、半導体膜23cの中央部上に形成されたチャネル保護膜23pと、半導体膜23cの両端部上において互いに離間するよう形成され、チャネル保護膜23pに一部重なった不純物半導体膜23a,23bと、不純物半導体膜23a上に形成されたドレイン23dと、不純物半導体膜23b上に形成されたソース23sと、から構成されている。図3〜図5に示すように平面視した場合、駆動トランジスタ23が櫛歯状に設けられていることで、駆動トランジスタ23のチャネル幅が広くなっている。ドレイン23d及びソース23sは一層構造であっても良いし、二層以上の積層構造であっても良い。
The driving
なお、保持トランジスタ22は、駆動トランジスタ23と同様の層構造となっているため、保持トランジスタ22の断面図については省略する。また、何れのサブピクセルPr,Pg,Pbでも、スイッチトランジスタ21、保持トランジスタ22及び駆動トランジスタ23が同様の層構造になっている。
Note that since the holding
次に、キャパシタ24の層構造について図3〜図5を用いて説明する。キャパシタ24は、絶縁基板2上に形成された下層電極24Aと、ゲート絶縁膜31を挟んで下層電極24Aに対向した上層電極24Bと、から構成されている。何れのサブピクセルPr,Pg,Pbでもキャパシタ24は同様の層構造になっている。
Next, the layer structure of the
なお、図3に示すように、絶縁基板2とゲート絶縁膜31との間には、接続線96が画素3ごとに形成されている。平面視して、接続線96は、各画素3において赤サブピクセルPrから青サブピクセルPbまで縦断するよう延在している。
As shown in FIG. 3, a
次に、トランジスタ21〜23及びキャパシタ24の各層と信号線Y、走査線X及び供給線Zとの関係について図3〜図6を用いて説明する。
Next, the relationship among the layers of the
接続線96、全てのサブピクセルPr,Pg,Pbのスイッチトランジスタ21のゲート21g、保持トランジスタ22のゲート22g、駆動トランジスタ23のゲート23g及びキャパシタ24の下層電極24A並びに全ての信号線Yr,Yg,Ybは、絶縁基板2上にべた一面に成膜された同一の導電性膜をフォトリソグラフィー法・エッチング法によってパターニングすることで形成されたものである。以下では、接続線96、スイッチトランジスタ21のゲート21g、保持トランジスタ22のゲート22g、駆動トランジスタ23のゲート23g及びキャパシタ24の電極24A並びに信号線Yr,Yg,Ybの元となる導電性膜をゲートレイヤーという。
ゲート絶縁膜31は、全てのサブピクセルPr,Pg,Pbのスイッチトランジスタ21、保持トランジスタ22、駆動トランジスタ23及びキャパシタ24に共通した絶縁膜であり、面内にべた一面に成膜されている。従って、ゲート絶縁膜31は、スイッチトランジスタ21のゲート21g、保持トランジスタ22のゲート22g、駆動トランジスタ23のゲート23g及びキャパシタ24の下層電極24A並びに信号線Yr,Yg,Ybを被覆している。
The gate insulating film 31 is an insulating film common to the
全てのサブピクセルPr,Pg,Pbのスイッチトランジスタ21のドレイン21d・ソース21s、保持トランジスタ22のドレイン22d・ソース22s、駆動トランジスタ23のドレイン23d・ソース23s及びキャパシタ24の上層電極24B並びに全ての走査線X及び供給線Zは、ゲート絶縁膜31上にべた一面に成膜された同一の導電性膜をフォトリソグラフィー法・エッチング法によってパターニングすることで形成されたものである。以下では、スイッチトランジスタ21のドレイン21d・ソース21s、保持トランジスタ22のドレイン22d・ソース22s、駆動トランジスタ23のドレイン23d・ソース23s及びキャパシタ24の上層電極24B並びに走査線X及び供給線Zの元となる導電性膜をドレインレイヤーという。
The
1ピクセルの画素3につき1つのコンタクトホール92がゲート絶縁膜31の走査線Xに重なる箇所に形成され、サブピクセルPr,Pg,Pbのスイッチトランジスタ21のゲート21g及び保持トランジスタ22のゲート22gがコンタクトホール92を介して走査線Xに導通している。1ドットのサブピクセルPにつき1つのコンタクトホール94がゲート絶縁膜31の信号線Yに重なる箇所に形成され、何れのサブピクセルPr,Pg,Pbにおいても、スイッチトランジスタ21のソース21sがコンタクトホール94を介して信号線Yに導通している。1ドットのサブピクセルPにつき1つのコンタクトホール93がゲート絶縁膜31の下層電極24Aに重なる箇所に形成され、何れのサブピクセルPr,Pg,Pbにおいても保持トランジスタ22のソース22sが駆動トランジスタ23のゲート23g及びキャパシタ24の下層電極24Aに導通している。
One
赤サブピクセルPrにおいては、保持トランジスタ22のドレイン22d及び駆動トランジスタ23のドレイン23dが供給線Zと一体に設けられている。それに対して、緑サブピクセルPg及び青サブピクセルPbにおいては、保持トランジスタ22のドレイン22d及び駆動トランジスタ23のドレイン23dの何れも、供給線Zに対して別体に設けられている。そこで、緑サブピクセルPg及び青サブピクセルPbの保持トランジスタ22のドレイン22d及び駆動トランジスタ23のドレイン23dは、以下のようにして供給線Zに導通している。
In the red subpixel Pr, the
すなわち、1ピクセルの画素3につき1本の接続線96が画素3を垂直方向に縦断するよう設けられている。この接続線96は、ゲートレイヤーをパターニングすることで形成されたものであり、ゲート絶縁膜31によって被覆されている。ゲート絶縁膜31の供給線Zと接続線96が重なる箇所には、コンタクトホール97が形成され、そのコンタクトホール97を介して接続線96が供給線Zに導通している。また、緑サブピクセルPgにおいては、コンタクトホール98がゲート絶縁膜31の接続線96と駆動トランジスタ23のドレイン23dとが重なる箇所に形成され、そのコンタクトホール98を介して接続線96と駆動トランジスタ23のドレイン23dが導通している。青サブピクセルPbにおいては、コンタクトホール99がゲート絶縁膜31の接続線96と駆動トランジスタ23のドレイン23dとが重なる箇所に形成され、そのコンタクトホール99を介して接続線96と駆動トランジスタ23のドレイン23dが導通している。以上により、緑サブピクセルPg及び青サブピクセルPbのどちらにおいても、保持トランジスタ22のドレイン22d及び駆動トランジスタ23のドレイン23dが接続線96を介して供給線Z及び給電配線90に導通している。
That is, one
全てのサブピクセルPr,Pg,Pbのスイッチトランジスタ21、保持トランジスタ22及び駆動トランジスタ23並びに全ての走査線X及び供給線Zは、べた一面に成膜された窒化シリコン又は酸化シリコン等の保護絶縁膜32によって被覆されている。なお、詳細については後述するが、保護絶縁膜32は、走査線X及び供給線Zに重なる箇所で矩形状に分断されている。
The
保護絶縁膜32には平坦化膜33が積層されており、絶縁基板2から平坦化膜33までの積層構造をトランジスタアレイ基板50という。この平坦化膜33は、スイッチトランジスタ21、保持トランジスタ22及び駆動トランジスタ23並びに走査線X及び供給線Zによる凹凸を解消するものである。つまり、平坦化膜33の表面が平坦となっている。平坦化膜33はポリイミド等の感光性絶縁樹脂を硬化させたものであり、平坦化膜33も保護絶縁膜32と同様に絶縁性を有する。なお、詳細については後述するが、平坦化膜33は、走査線X及び供給線Zに重なる箇所で矩形状に分断されている。
A
このディスプレイパネル1をボトムエミッション型として用いる場合、すなわち、絶縁基板2を表示面として用いる場合には、ゲート絶縁膜31、保護絶縁膜32及び平坦化膜33には透明な材料を用いる。
When the
保護絶縁膜32及び平坦化膜33の各供給線Zに重なる箇所には、供給線Zに沿った溝34が凹設され、更に、保護絶縁膜32及び平坦化膜33の各走査線Xに重なる箇所には走査線Xに沿った溝35が凹設されている。これら溝34,35によって保護絶縁膜32及び平坦化膜33が矩形状に分断されており、溝34の底に供給線Zがあり、溝35の底に走査線Xがある。溝34には給電配線90が埋められており、溝34内において給電配線90が供給線Zにそれぞれ積層されることによって電気的に接続されている。溝35には選択配線89が埋められており、溝35内において選択配線89が走査線Xにそれぞれ積層されることによって電気的に接続されている。
A
給電配線90の下層部分及び選択配線89は、それぞれ溝34によって露出された供給線Z及び溝35によって露出された走査線Xを下地電極とした電解メッキ法により形成されたものであるので、信号線Y、走査線X及び供給線Zよりも十分に厚い。選択配線89及び給電配線90の下層部分のどちらも、銅、アルミ、金若しくはニッケルのうちの少なくともいずれかを含むことが好ましい。
The lower layer portion of the
平坦化膜33の表面、即ちトランジスタアレイ基板50の表面上には、複数のサブピクセル電極20aがマトリクス状に配列されている。具体的には、赤サブピクセルPrのサブピクセル電極20aが供給線Zと共通配線91Aとの間において供給線Zに沿って一列に配列され、緑サブピクセルPgのサブピクセル電極20aが共通配線91Aと走査線Xとの間のおいて共通配線91Aに沿って一列に配列され、青サブピクセルPbのサブピクセル電極20aが走査線Xと供給線Zとの間において走査線Xに沿って一列に配列されている。これらサブピクセル電極20aは、平坦化膜33上にべた一面に成膜された透明導電性膜をフォトリソグラフィー法・エッチング法によってパターニングしたものである。
A plurality of
サブピクセル電極20aは、有機EL素子20のアノードとして機能する電極である。即ち、サブピクセル電極20aの仕事関数が比較的高く、後述する有機EL層20bへ正孔を効率よく注入するものが好ましい。サブピクセル電極20aは、例えば、錫ドープ酸化インジウム(ITO)、亜鉛ドープ酸化インジウム、酸化インジウム(In2O3)、酸化スズ(SnO2)、酸化亜鉛(ZnO)又はカドミウム−錫酸化物(CTO)からなる。
The
1ドットのサブピクセルPにつき1つのコンタクトホール88が平坦化膜33及び保護絶縁膜32のサブピクセル電極20aに重なる箇所に形成され、そのコンタクトホール88に導電性パッドが埋設されている。何れのサブピクセルPr,Pg,Pbにおいても、サブピクセル電極20aが、キャパシタ24の上層電極24B、スイッチトランジスタ21のドレイン21d及び駆動トランジスタ23のソース23sに導通している。
One
このディスプレイパネル1をボトムエミッション型として用いる場合、サブピクセル電極20aが可視光に対して透過性を有している。一方、このディスプレイパネル1をトップエミッション型として用いる場合、すなわち、絶縁基板2の反対側を表示面として用いる場合には、サブピクセル電極20aと平坦化膜33との間に、導電性且つ可視光反射性の高い反射膜を成膜するか、サブピクセル電極20a自体を反射性電極とすれば良い。
When this
なお、図6に示すように、サブピクセル電極20aのもととなる透明導電性膜をエッチングすることで、サブピクセル電極20aがパターニングされるが、選択配線89上にも透明導電性膜の一部51が残留する。
As shown in FIG. 6, the
平坦化膜33の表面、即ちトランジスタアレイ基板50の表面上であって水平方向の赤サブピクセルPrのサブピクセル電極20aの行とこの行に隣接する緑サブピクセルPgのサブピクセル電極20aの行との間には、走査線Xに平行な絶縁ライン61が形成されている。平坦化膜33の表面、即ちトランジスタアレイ基板50の表面上であって水平方向の緑サブピクセルPgのサブピクセル電極20aの行とこの行に隣接する青サブピクセルPbのサブピクセル電極20aの行との間には、走査線Xに平行な絶縁ライン62が選択配線89及びその上層の透明導電性膜の残留部51を覆うように形成されている。絶縁ライン61及び絶縁ライン62は、窒化シリコン又は酸化シリコンからなる。
A row of the
絶縁ライン61上には、絶縁ライン61より幅狭の共通配線91Aが積層され、絶縁ライン62上には、絶縁ライン62より幅狭の共通配線91Bが積層されている。共通配線91A,91Bは、無電解メッキ法により形成されたものであるので、信号線Y、走査線X及び供給線Zよりも十分に厚く、平坦化膜33の表面に対して凸設されている。共通配線91A,91Bは、銅、アルミ、金若しくはニッケルのうちの少なくともいずれかを含むことが好ましい。なお、平坦化膜33及び保護絶縁膜32を開口する溝34は、絶縁ライン61及び絶縁ライン62とともに形成された絶縁ライン60まで開口しており、給電配線90の上層部分(下層部分の上)は、共通配線91A,91Bとともに無電解メッキにより形成され、給電配線90の下層部分は、上述のごとく選択配線89とともに電解メッキにより形成される。つまり、給電配線90の厚さは、選択配線89の厚さに共通配線91A,91Bの厚さを加えたものになる。つまり、給電配線90は、選択配線89より厚く、共通配線91A,91Bよりも厚い。これにより、給電配線90が溝34に埋設されるとともに平坦化膜33の表面から凸設される。
On the insulating
共通配線91A,91Bの表面には、撥水性・撥油性を有した撥液性導電層55A,55Bがそれぞれ成膜されている。撥液性導電層55A,55Bは、次の化学式(1)に示されたトリアジルトリチオールのチオール基(−SH)の水素原子(H)が還元離脱し、硫黄原子(S)が共通配線91A,91Bの表面に酸化吸着したものである。
Liquid repellent
撥液性導電層55A,55Bは単分子層である。つまり、撥液性導電層55A,55Bは、トリアジルトリチオール分子が共通配線91A,91Bの表面に規則正しく並んだ分子一層からなる膜であるから、撥液性導電層55A,55Bが非常に低抵抗であって導電性を有する。なお、撥水性・撥油性を顕著にするためにトリアジルトリチオールに代えて、トリアジルトリチオールの1又は2のチオール基がフッ化アルキル基に置換されたものでも良い。
The liquid repellent
給電配線90の表面には、撥水性・撥油性を有した疎水絶縁膜54が成膜されている。疎水絶縁膜54は給電配線90に電着されたフッ素樹脂電着塗料からなり、電着塗装によって成膜されたものである。
A hydrophobic insulating
サブピクセル電極20a上には、有機EL素子20の有機EL層20bが成膜されている。有機EL層20bは広義の発光層であり、有機EL層20bには、有機化合物である発光材料(蛍光体)が含有されている。有機EL層20bは、サブピクセル電極20aから順に正孔輸送層、狭義の発光層の順に積層した二層構造である。正孔輸送層は、導電性高分子であるPEDOT(ポリチオフェン)及びドーパントであるPSS(ポリスチレンスルホン酸)からなり、狭義の発光層は、ポリフルオレン系発光材料からなる。
An
赤サブピクセルPrの場合には、有機EL層20bが赤色に発光し、緑サブピクセルPgの場合には、有機EL層20bが緑色に発光し、青サブピクセルPbの場合には、有機EL層20bが青色に発光する。
In the case of the red subpixel Pr, the
有機EL層20bはサブピクセル電極20aごとに独立して設けられ、平面視した場合、複数の有機EL層20bがマトリクス状に配列されている。なお、赤サブピクセルPrが水平方向に沿った一行に配列されているので、水平方向に沿った一行に配列された複数の赤サブピクセルPrのサブピクセル電極20aが、水平方向に沿って帯状に長尺な共通の赤色発光の有機EL層20bによって被覆されていても良い。隣りにおいて水平方向に配列された複数の緑サブピクセルPgのサブピクセル電極20aが、水平方向に沿って帯状に長尺な共通の緑色発光の有機EL層20bによって被覆されていても良いし、反対隣りにおいて水平方向に配列された複数の青サブピクセルPbのサブピクセル電極20aが水平方向に沿って帯状に長尺な共通の青色発光の有機EL層20bによって被覆されていても良い。
The
有機EL層20bは、撥液性導電層55A,55B及び疎水絶縁膜54の形成後に湿式塗布法(例えば、インクジェット法)によって成膜される。この場合、サブピクセル電極20aに有機化合物含有液を塗布するが、水平方向に隣り合うサブピクセル電極20a間に撥液性導電層55A,55B又は疎水絶縁膜54が設けられているから、サブピクセル電極20aに塗布された有機化合物含有液が隣のサブピクセル電極20aに漏れることがない。従って、有機EL層20bを湿式塗布法によって色ごとに塗り分けることができる。
The
更に、撥液性導電層55A,55B又は疎水絶縁膜54の撥水性・撥油性によって、サブピクセル電極20aに塗布された有機化合物含有液がサブピクセル電極20aの周囲で厚くならないので、有機EL層20bを均一な膜厚で成膜することができる。
Further, since the organic compound-containing liquid applied to the
なお、有機EL層20bは、二層構造の他に、サブピクセル電極20aから順に正孔輸送層、狭義の発光層、電子輸送層となる三層構造であっても良いし、狭義の発光層からなる一層構造であっても良いし、これらの層構造において適切な層間に電子或いは正孔の注入層が介在した積層構造であっても良いし、その他の積層構造であっても良い。
In addition to the two-layer structure, the
有機EL層20b上には、有機EL素子20のカソードとして機能する対向電極20cが成膜されている。対向電極20cは、全てのサブピクセルPr,Pg,Pbに共通して形成された共通電極であり、べた一面に成膜されている。対向電極20cがべた一面に成膜されることで、対向電極20cが撥液性導電層55A,55Bを挟んで共通配線91を被覆している。そのため、図2の回路図に示すように、対向電極20cは共通配線91に対して導通している。一方、選択配線89上には絶縁ライン61が成膜され、給電配線90には疎水絶縁膜54がコーティングされているので、対向電極20cが選択配線89及び給電配線90の何れに対しても絶縁されている。
On the
対向電極20cは、サブピクセル電極20aよりも仕事関数の低い材料で形成されており、例えば、マグネシウム、カルシウム、リチウム、バリウム、インジウム、希土類金属の少なくとも一種を含む単体又は合金で形成されていることが好ましい。また、対向電極20cは、上記各種材料の層が積層された積層構造となっていても良いし、以上の各種材料の層に加えてシート抵抗を低くするために酸化されにくい金属層が堆積した積層構造となっていても良く、具体的には、有機EL層20bと接する界面側に設けられた低仕事関数の高純度のバリウム層と、バリウム層を被覆するように設けられたアルミニウム層との積層構造や、下層にリチウム層、上層にアルミニウム層が設けられた積層構造が挙げられる。またトップエミッション構造の場合、対向電極20cを上述のような低仕事関数の薄膜とその上にITO等の透明導電膜を積層した透明電極としてもよい。
The
対向電極20c上には、無機又は有機の封止絶縁膜56が成膜されている。封止絶縁膜56は対向電極20c全体を被覆し、対向電極20cの劣化を防止するために設けられている。
An inorganic or organic sealing insulating
なお、従来、トップエミッション型構造のELディスプレイパネルは、対向電極20cの少なくとも一部を金属酸化物のように抵抗値が高い透明電極を用いることになるが、このような材料は十分に厚くしなければシート抵抗が十分に低くならないので、厚くすることによって必然的に有機EL素子の透過率が下がってしまい、大画面になるほど面内で均一の電位になりにくく表示特性が低くなってしまっていた。
Conventionally, an EL display panel having a top emission type structure uses a transparent electrode having a high resistance value such as a metal oxide for at least a part of the
しかしながら、本実施形態では、水平方向に十分な厚さのために低抵抗な複数の共通配線91A,91Bを設けているので、対向電極20cと合わせて有機EL素子20,20,…のカソード電極全体のシート抵抗値を下げ、十分且つ面内で均一に大電流を流すことが可能となる。さらにこのような構造では、共通配線91A,91Bがカソード電極としてのシート抵抗を下げているので、対向電極20cを薄膜にして透過率を向上したりすることが可能である。なおトップエミッション構造では、サブピクセル電極20aを反射性の材料としてもよい。
However, in this embodiment, since a plurality of low-resistance
そして、薄膜トランジスタ21〜23を形成する際の導電層以外の厚膜の導電層を用いて形成された給電配線90を供給線Zにそれぞれ電気的に接続するように設けているので、薄膜トランジスタ21〜23の導電層のみで形成された供給線での電圧降下による複数の有機EL素子20に後述する書込電流や駆動電流が所定の電流値に達するまでの遅延を防止し、良好に駆動することが可能となる。
Since the
さらに、薄膜トランジスタを形成する際の導電層以外の厚膜の導電層を用いて形成された選択配線89を走査線Xにそれぞれ電気的に接続するように設けているので薄膜トランジスタの導電層のみで形成された走査線Xでの電圧降下による信号遅延を防止し、迅速にスイッチトランジスタ21及び保持トランジスタ22をスイッチして良好に駆動することが可能となる。
Further, since the
〔ディスプレイパネルの駆動方法〕
ディスプレイパネル1をアクティブマトリクス方式で駆動するには、図7又は図8のタイミングチャートに示すようになる。駆動方法の説明において、走査線Xに下付けした数字がディスプレイパネル1の上からの配列順を表し、供給線Zに下付けした数字がディスプレイパネル1の上から配列順を表し、信号線Yに下付けした数字がディスプレイパネル1の左からの配列順を表す。即ち、1〜mのうちの任意の数をiとし、1〜nのうちの任意の数をjとした場合、走査線Xiは上からi番目であり、供給線Ziは上からi番目であり、信号線Yjは左からj番目である。また、サブピクセルPi,jは、走査線Xi、供給線Zi、信号線Yjに接続されたサブピクセルPを表す。
[Driving method of display panel]
In order to drive the
図7に示すような駆動方法においては、対向電極20c及び共通配線91A,91Bが配線端子によって外部と接続され、ディスプレイパネル1の駆動中において対向電極20c及び共通配線91A,91Bが一定のコモン電位Vcom(例えば、接地=0ボルト)に保たれている。
In the driving method as shown in FIG. 7, the
また、走査線X1〜走査線Xmに接続された選択ドライバ(シフトレジスタ)によって、走査線X1〜走査線Xmに対して1行目から行順次(走査線Xmの次は走査線X1)にハイレベルのシフトパルスを印加することにより走査線X1〜Xmを順次選択する。なお、各走査線X1〜走査線Xmに接続された選択配線89にも選択ドライバによってシフトパルスが行順次に印加される。
Further, the scanning lines X 1 ~ scan line X m to the connected selection driver (shift register), the next scanning line sequentially (scan line X m from the first row to the scan lines X 1 ~ scan line X m The scanning lines X 1 to X m are sequentially selected by applying a high level shift pulse to the line X 1 ). Note that a shift pulse is applied to the
また、給電ドライバ(シフトレジスタ)によって、選択ドライバと同期するよう、供給線Z1〜供給線Zmに対して1行目から行順次(供給線Zmの次は供給線Z1)にローレベル(有機EL素子20の対向電極20cの電圧より低レベル)の書込給電電圧VLを印加することにより供給線Z1〜供給線Zmを順次選択する。供給線Z1〜供給線Zmに接続された給電配線90にも給電ドライバによってローレベルの書込給電電圧VLが行順次に印加される。
In addition, the power supply driver (shift register) is low in order from the first row with respect to the supply line Z 1 to supply line Z m so as to synchronize with the selected driver (the supply line Z 1 is next to the supply line Z m ). The supply line Z 1 to the supply line Z m are sequentially selected by applying a write power supply voltage VL at a level (a level lower than the voltage of the
また、選択ドライバによって各走査線X1〜Xmが選択されている時に、信号線Y1〜信号線Ynに接続されたデータドライバによって、電流の大きさで表されたデータを全信号線Y1〜信号線Ynに書き込む。具体的には、信号線Y1〜信号線Ynからデータドライバに向かった向きの引抜電流である書込電流をデータドライバによって全信号線Y1〜信号線Ynに流す。 In addition, when each scanning line X 1 to X m is selected by the selection driver, the data driver connected to the signal line Y 1 to signal line Y n converts the data represented by the magnitude of the current to all signal lines. Write to Y 1 to signal line Y n . Specifically, a write current that is a drawing current directed from the signal line Y 1 to the signal line Y n toward the data driver is caused to flow to all the signal lines Y 1 to Y n by the data driver.
走査線Xiの選択期間においては、走査線Xi及び選択配線89にシフトパルスが印加されているから、スイッチトランジスタ21及び保持トランジスタ22がオン状態となる。走査線Xiの選択期間においては、データドライバ側の電位は、給電配線90及び供給線Ziに出力された書込給電電圧VL以下で且つこの書込給電電圧VLはコモン電位Vcom以下に設定されている。そのため、走査線Xiの選択期間においては、有機EL素子20から信号線Y1〜信号線Ynに流れることはないので図2に示すように、データドライバによって階調に応じた大きさの書込電流が矢印Aの通りに信号線Y1〜信号線Ynに流れ、サブピクセルPi,jにおいては給電配線90及び供給線Ziから駆動トランジスタ23のソース−ドレイン間、スイッチトランジスタ21のソース−ドレイン間を介して信号線Yjに向かった書込電流が流れる。このように駆動トランジスタ23のソース−ドレイン間を流れる電流の大きさは、データドライバによって一義的に制御され、データドライバは、外部から入力された階調に応じて書込電流の大きさを設定する。書込電流が流れている間、各駆動トランジスタ23のゲート23g−ソース23s間の電圧のレベルは、それぞれ信号線Y1〜信号線Ynに流れる書込電流の大きさ、つまり駆動トランジスタ23のVg−Ids特性の経時変化にかかわらず駆動トランジスタ23のドレイン23d−ソース23s間を流れる書込電流の大きさに見合うように強制的に設定され、この電圧のレベルに従った大きさの電荷がキャパシタ24にチャージされて、書込電流の大きさが駆動トランジスタ23のゲート23g−ソース23s間の電圧のレベルに変換される。
In the selection period of the scan line X i, because the shift pulse to the scan line X i and the selection lines 89 is applied, the
その後の発光期間では、走査線Xi及びそれに接続された選択配線89がローレベルになり、スイッチトランジスタ21及び保持トランジスタ22がオフ状態となるが、オフ状態の保持トランジスタ22によってキャパシタ24の電極24A側の電荷が閉じ込められてフローティング状態になり、駆動トランジスタ23のソース23sの電圧が選択期間から発光期間に移行する際に変調しても、駆動トランジスタ23のゲート23g−ソース23s間の電位差がそのまま維持される。この発光期間では、供給線Zi及びそれに接続された給電配線90の電位が駆動給電電圧VHとなり、対向電極20c及び共通配線91A,91Bの電位Vcomより高くなることによって、供給線Zi及びそれに接続された給電配線90から駆動トランジスタ23を介して有機EL素子20に駆動電流が矢印Bの方向に流れ、有機EL素子20が発光する。駆動電流の大きさは駆動トランジスタ23のゲート23g−ソース23s間の電圧のレベルに依存するため、発光期間における駆動電流の大きさは、選択期間における書込電流(引抜電流)の大きさに等しくなる。
In the subsequent light emission period, the scanning line X i and the
ディスプレイパネル1の別のアクティブマトリクス駆動方法は次のようになる。すなわち、対向電極20c及び給電配線90の一定のコモン電位Vcom(例えば、接地=0ボルト)に保たれている。
Another active matrix driving method for the
また、図8に示すように、発振回路によって給電配線90及び供給線Z1〜供給線Zmに対してクロック信号を出力する。クロック信号がローレベルの場合には、給電配線90及び供給線Z1〜供給線Zmの電圧のレベルは、有機EL素子20の対向電極20cの電圧Vcom以下であり、書込給電電圧VLである。クロック信号がハイレベルの場合には、給電配線90及び供給線Z1〜供給線Zmの電圧のレベルは有機EL素子20の対向電極20cの電圧Vcomよりも高く、駆動給電電圧VHである。
Further, as shown in FIG. 8, a clock signal is output to the
また、選択ドライバによって走査線X1〜走査線Xmに対して1行目から行順次(走査線Xmの次は走査線X1)にハイレベルのシフトパルスを印加することにより走査線X1〜走査線Xmを順次選択するが、選択ドライバによって各走査線X1〜走査線Xmにシフトパルスが印加されている時には発振回路のクロック信号がローレベルになる。なお、各走査線X1〜走査線Xmに接続された選択配線89にも選択ドライバによってシフトパルスが印加される。
Further, by applying a high-level shift pulse from the first row to the scanning lines X 1 to X m by the selection driver (scanning line X 1 next to scanning line X m ), scanning line X 1 is applied. While sequentially selecting one to scan line X m, the clock signal of the oscillation circuit becomes low level when the shift pulse is applied to the scan lines X 1 through scan line X m by the selection driver. Note that a shift pulse is also applied to the
また、選択ドライバによって各走査線X1〜走査線Xmが選択されている時に、信号線Y1〜信号線Ynに接続されたデータドライバによって、電流の大きさで表されたデータを全信号線Y1〜信号線Ynに書き込む。具体的には、信号線Y1〜信号線Ynからデータドライバに向かった向きの引抜電流である書込電流をデータドライバによって全信号線Y1〜信号線Ynに流す。 In addition, when each of the scanning lines X 1 to X m is selected by the selection driver, the data driver connected to the signal lines Y 1 to Y n converts all the data represented by the magnitude of the current. Write to the signal lines Y 1 to Y n . Specifically, a write current that is a drawing current directed from the signal line Y 1 to the signal line Y n toward the data driver is caused to flow to all the signal lines Y 1 to Y n by the data driver.
走査線Xiの選択期間においては、i行目の走査線Xiにシフトパルスが印加されているから、スイッチトランジスタ21及び保持トランジスタ22がオン状態となる。走査線Xiの選択期間においては、データドライバ側の電位は、給電配線90及び供給線Z1〜供給線Zmに出力されたクロック信号のローレベル以下で且つこのクロック信号のローレベルはコモン電位Vcom以下に設定されている。そのため、走査線Xiの選択期間においては、有機EL素子20から信号線Y1〜信号線Ynに流れることはないので図2に示すように、データドライバによって階調に応じた大きさの書込電流が矢印Aの通りに信号線Y1〜信号線Ynに流れ、サブピクセルPi,jにおいては給電配線90及び供給線Ziから駆動トランジスタ23のソース−ドレイン間、スイッチトランジスタ21のソース−ドレイン間を介して信号線Yjに向かった書込電流が流れる。このように駆動トランジスタ23のソース−ドレイン間を流れる電流の大きさは、データドライバによって一義的に制御され、データドライバは、外部から入力された階調に応じて書込電流の大きさを設定する。書込電流が流れている間、駆動トランジスタ23のゲート23g−ソース23s間の電圧のレベルは、それぞれ信号線Y1〜信号線Ynに流れる書込電流(引抜電流)の大きさ、つまり駆動トランジスタ23のVg−Ids特性の経時変化にかかわらず駆動トランジスタ23のドレイン23d−ソース23s間を流れる書込電流の大きさに見合うように強制的に設定され、この電圧のレベルに従った大きさの電荷がキャパシタ24にチャージされて、書込電流の大きさが駆動トランジスタ23のゲート23g−ソース23s間の電圧のレベルに変換される。
In the selection period of the scan line X i, from the shift pulse to the i-th scanning line X i is applied, the
その後の発光期間では、走査線Xiがローレベルになり、スイッチトランジスタ21及び保持トランジスタ22がオフ状態となるが、オフ状態の保持トランジスタ22によってキャパシタ24の電極24A側の電荷が閉じ込められてフローティング状態になり、駆動トランジスタ23のソース23sの電圧が選択期間から発光期間に移行する際に変調しても、駆動トランジスタ23のゲート23g−ソース23s間の電位差がそのまま維持される。この発光期間のうち、いずれの行の選択期間でもない間、つまり、クロック信号が給電配線90及び供給線Ziの電位が有機EL素子20の対向電極20c及び共通配線91A,91Bの電位Vcomより高いハイレベルの間、より高電位の給電配線90及び供給線Ziから駆動トランジスタ23のソース−ドレイン間を介して有機EL素子20に駆動電流が矢印Bの方向に流れ、有機EL素子20が発光する。駆動電流の大きさは駆動トランジスタ23のゲート23g−ソース23s間の電圧のレベルに依存するため、発光期間における駆動電流の大きさは、選択期間における書込電流の大きさに等しくなる。また発光期間において、別の行の選択期間の間、つまりクロック信号がローレベルである時は、給電配線90及び供給線Ziの電位が対向電極20c及び共通配線91A,91Bの電位Vcom以下であるので、有機EL素子20に駆動電流は流れず発光しない。
In the subsequent light emission period, the scanning line X i becomes a low level, and the
何れの駆動方法においても、スイッチトランジスタ21は、駆動トランジスタ23のソース23sと信号線Yとの間の電流のオン(選択期間)・オフ(発光期間)を行うものとして機能する。また、保持トランジスタ22は、選択期間に駆動トランジスタ23のソース23s−ドレイン23d間に電流が流れることができる状態にし、発光期間に駆動トランジスタ23のゲート23g−ソース23s間に印加した電圧を保持するものとして機能する。そして、駆動トランジスタ23は、発光期間中に供給線Z及び給電配線90がハイレベルになった時に、階調に応じた大きさの電流を有機EL素子20に流して有機EL素子20を駆動するものとして機能する。
In any driving method, the
以上のように、給電配線90に流れる電流の大きさは供給線Ziに接続された(3×n)個の有機EL素子20に流れる駆動電流の大きさの和になるので、VGA以上の画素数で動画駆動するための選択期間に設定した場合、給電配線90の寄生容量が増大してしまい、薄膜トランジスタ21〜23のゲート又はソース、ドレインのような薄膜からなる配線では(3×n)個の有機EL素子20に書込電流を流すには抵抗が高すぎるが、本実施形態では、薄膜トランジスタ21〜23のゲート・ソース・ドレインとは異なる導電層によって給電配線90をそれぞれ構成しているので給電配線90による電圧降下は小さくなり、短い選択期間であっても遅延なく十分に書込電流を流すことができる。そして、給電配線90を厚くすることで給電配線90を低抵抗化したので、給電配線90の幅を狭くすることができる。そのため、ボトムエミッションの場合、画素開口率の減少を最小限に抑えることができる。
As described above, the magnitude of the current flowing through the
同様に、発光期間に共通配線91A,91Bに流れる電流の大きさは、選択期間に給電配線90に流れる書込電流の大きさと同じであるが、薄膜トランジスタ21〜23のゲート・ソース・ドレインとは異なる導電層を共通配線91に用いているので共通配線91を十分な厚さにすることができるため、共通配線91を低抵抗化することができ、さらに対向電極20c自体が薄膜化してより高抵抗になっても対向電極20cの電圧を面内で一様にすることができる。従って、仮に全てのサブピクセル電極20aに同じ電圧を印加した場合でも、どの有機EL層20bの発光強度もほぼ等しくなり、面内の発光強度を一様することができる。また、ディスプレイパネル1をトップエミッション型として用いた場合、対向電極20cをより薄膜化ことが可能なので、有機EL層20bを発した光が対向電極20cを透過中に減衰し難くなる。更に、平面視して水平方向に隣り合うサブピクセル電極20aの間に共通配線91が設けられているため、画素開口率の減少を最小限に抑えることができる。
そして、走査線Xに接続された選択配線89は、薄膜トランジスタ21〜23のゲート・ソース・ドレインとは異なる導電層によって形成されているので、選択期間に所定行に接続された複数のスイッチトランジスタ21のゲートの寄生容量及び当該所定行に接続された複数の保持トランジスタ22ゲートの寄生容量による走査線Xの選択電圧の電圧降下を抑制することができる。したがって、選択期間を長くすることなくスイッチトランジスタ21及び保持トランジスタ22を選択することができる。
なお、給電配線90は、信号線Y1〜信号線Ynにそれぞれ所定の書込電流を流すために、選択期間内までに、選択されたサブピクセル毎に、保持トランジスタ22の寄生容量、駆動トランジスタ23の寄生容量、キャパシタ24の寄生容量、スイッチトランジスタ21の寄生容量、及び信号線Yの寄生容量をチャージアップしなければならず、給電配線90の寄生容量は選択配線89の寄生容量よりも大きい。このため選択配線89よりも大きい電流を流さなければならないが、給電配線90を選択配線89よりも厚く成膜しているので給電配線90は選択配線89よりも単位長さあたりの抵抗が低くなるので寄生容量による電圧降下を抑制することができる。
Similarly, the magnitude of the current flowing through the
Since the
Note that the
〔給電配線及び共通配線の幅、断面積及び抵抗率〕
以下、ディスプレイパネル1の給電配線90及び共通配線91A,91Bの幅、断面積及び抵抗率を定義する。ここで、ディスプレイパネル1のサブピクセル数をWXGA(768×1366)としたときに、給電配線90及び共通配線91A,91Bの望ましい幅、断面積を定義する。図9は、各サブピクセルの駆動トランジスタ23及び有機EL素子20の電流−電圧特性を示すグラフである。
[Width, cross-sectional area and resistivity of power supply wiring and common wiring]
Hereinafter, the width, cross-sectional area, and resistivity of the
図9において、縦軸は1つの駆動トランジスタ23のソース23s−ドレイン23d間を流れる書込電流の大きさ又は1つの有機EL素子20のアノード−カソード間を流れる駆動電流の大きさを表し、横軸は1つの駆動トランジスタ23のソース23s−ドレイン23d間の電圧(同時に1つの駆動トランジスタ23のゲート23g−ドレイン23d間の電圧)のレベルを表す。図中、実線Ids maxは、最高輝度階調(最も明るい表示)のときの書込電流及び駆動電流であり、一点鎖線Ids midは、最高輝度階調と最低輝度階調との間の中間輝度階調のときの書込電流及び駆動電流であり、二点鎖線Vpoは駆動トランジスタ23の不飽和領域(線形領域)と飽和領域との閾値つまりピンチオフ電圧であり、三点鎖線Vdsは駆動トランジスタ23のソース23s−ドレイン23d間を流れる書込電流であり、破線Ielは有機EL素子20のアノード−カソード間を流れる駆動電流である。
In FIG. 9, the vertical axis represents the magnitude of the write current flowing between the
ここで電圧VP1は、最高輝度階調時の駆動トランジスタ23のピンチオフ電圧であり、電圧VP2は、駆動トランジスタ23が最高輝度階調の書込電流が流れるときのソース−ドレイン間電圧であり、電圧VELmax(電圧VP4−電圧VP3)は有機EL素子20が最高輝度階調の書込電流と大きさが等しい最高輝度階調の駆動電流で発光するときのアノード−カソード間の電圧である。電圧VP2’は、駆動トランジスタ23が中間輝度階調の書込電流が流れるときのソース−ドレイン間電圧であり、電圧(電圧VP4’−電圧VP3’)は有機EL素子20が中間輝度階調の書込電流と大きさが等しい中間輝度階調の駆動電流で発光するときのアノード−カソード間電圧である。
Here, the voltage VP1 is a pinch-off voltage of the driving
駆動トランジスタ23及び有機EL素子20はいずれも飽和領域で駆動させるために、(給電配線90の発光期間時の電圧VH)から(共通配線91A,91Bの発光期間時の電圧Vcom)を減じた値VXは下記の式(1)を満たす。
In order to drive both the
VX=Vpo+Vth+Vm+VEL ……(1) VX = Vpo + Vth + Vm + VEL (1)
Vth(最高輝度時の場合VP2−VP1に等しい)は駆動トランジスタ23の閾値電圧であり、VEL(最高輝度時の場合VELmaxに等しい)は有機EL素子20のアノード−カソード間電圧であり、Vmは、階調に応じて変位する許容電圧である。
Vth (equal to VP2−VP1 at the maximum luminance) is a threshold voltage of the
図から明らかなように、電圧VXのうち、輝度階調が高くなる程、トランジスタ23のソース−ドレイン間に要する電圧(Vpo+Vth)が高くなるとともに有機EL素子20のアノード−カソード間に要する電圧VELが高くなる。したがって、許容電圧Vmは、輝度階調が高くなるほど低くなり、最小許容電圧VminはVP3−VP2となる。
As is apparent from the figure, the higher the luminance gradation of the voltage VX, the higher the voltage (Vpo + Vth) required between the source and drain of the
有機EL素子20は低分子EL材料及び高分子EL材料にかかわらず一般的に経時劣化し、高抵抗化する。10000時間後のアノード−カソード間電圧は初期時の1.4倍程度になることが確認されている。つまり、電圧VELは、同じ輝度階調時でも時間が経つ程高くなる。このため、駆動初期時の許容電圧Vmが高い程長期間にわたって動作が安定するので、電圧VELが8V以上、より望ましくは13V以上となるように電圧VXを設定している。
The
この許容電圧Vmには、有機EL素子20の高抵抗化ばかりでなく、さらに、給電配線90による電圧降下の分も含まれる。
This allowable voltage Vm includes not only the increase in resistance of the
給電配線90の配線抵抗のために電圧降下が大きいとディスプレイパネル1の消費電力が著しく増大してしまうため、給電配線90の電圧降下は1V以下に設定することが特に好ましい。
When the voltage drop is large due to the wiring resistance of the
行方向の一つのサブピクセルPの長さであるサブピクセル幅Wpと、行方向のサブピクセル数(1366)と、を考慮した結果、ディスプレイパネル1のパネルサイズが32インチ、40インチの場合、給電配線90の全長はそれぞれ706.7mm、895.2mmとなる。ここで、給電配線90の線幅WL及び共通配線91A,91Bの線幅WLが広くなると、構造上有機EL層20bの面積が小さくなり、さらに他の配線との重なり寄生容量を発生してさらなる電圧降下をもたらすため、給電配線90の幅WL及び共通配線91A,91Bの線幅WLはそれぞれサブピクセル幅Wpの5分の1以下に抑えることが望ましい。このようなことを考慮すると、ディスプレイパネル1のパネルサイズが32インチ、40インチの場合、幅WLはそれぞれ34μm以内、44μm以内となる。また給電配線90及び共通配線91A,91Bの最大膜厚Hmaxはアスペクト比を考慮すると、トランジスタ21〜23の最小加工寸法4μmの1.5倍、つまり6μmとなる。したがって給電配線90及び共通配線91A,91Bの最大断面積Smaxは32インチ、40インチで、それぞれ204μm2、264μm2となる。
As a result of considering the subpixel width Wp which is the length of one subpixel P in the row direction and the number of subpixels (1366) in the row direction, when the panel size of the
このような32インチのディスプレイパネル1について、最大電流が流れるように全点灯したときの給電配線90及び共通配線91A,91Bのそれぞれの最大電圧降下を1V以下にするためには図10に示すように、給電配線90及び共通配線91A,91Bのそれぞれの配線抵抗率ρ/断面積Sは4.7Ω/cm以下に設定される必要がある。図11に32インチのディスプレイパネル1の給電配線90及び共通配線91A,91Bのそれぞれの断面積と電流密度の相関関係を表す。なお、上述した給電配線90及び共通配線91A,91Bの最大断面積Smax時に許容される抵抗率は、32インチで9.6μΩcm、40インチで6.4μΩcmとなる。
In order to reduce the maximum voltage drop of the
そして、40インチのディスプレイパネル1について、最大電流が流れるように全点灯したときの給電配線90及び共通配線91A,91Bのそれぞれの最大電圧降下を1V以下にするためには図12に示すように、給電配線90及び共通配線91A,91Bのそれぞれの配線抵抗率ρ/断面積Sは2.4Ω/cm以下に設定される必要がある。図13に40インチのディスプレイパネル1の給電配線90及び共通配線91A,91Bのそれぞれの断面積と電流密度の相関関係を表す。
Then, for the 40-
給電配線90及び共通配線91A,91Bの故障により動作しなくなる故障寿命MTFは、下記の式(2)を満たす。
The failure life MTF that stops operating due to the failure of the
MTF=A exp(Ea/KbT)/ρJ2 ……(2) MTF = A exp (Ea / K b T) / ρJ 2 (2)
Eaは活性化エネルギー、KbT=8.617×10―5eV、ρは給電配線90及び共通配線91A,91Bの抵抗率、Jは電流密度である。
Ea is the
給電配線90及び共通配線91A,91Bの故障寿命MTFは抵抗率の増大やエレクトロマイグレーションに律速する。給電配線90及び共通配線91A,91BをAl系(Al単体或いはAlTiやAlNd等の合金)に設定し、MTFが10000時間、85℃の動作温度で試算すると、電流密度Jは2.1×104A/cm2以下にする必要がある。同様に給電配線90及び共通配線91A,91BをCuに設定すると、2.8×106A/cm2以下にする必要がある。なおAl合金内のAl以外の材料はAlよりも低い抵抗率であることを前提としている。
これらのことを考慮して、32インチのディスプレイパネル1では、全点灯状態で10000時間に給電配線90及び共通配線91A,91Bが故障しないようなAl系の給電配線90及び共通配線91A,91Bのそれぞれの断面積Sは、図10から、57μm2以上必要になり、同様にCuの給電配線90及び共通配線91A,91Bのそれぞれの断面積Sは、図11から、0.43μm2以上必要になる。
The failure life MTF of the
In consideration of these matters, in the 32-
そして40インチのディスプレイパネル1では、全点灯状態で10000時間に給電配線90及び共通配線91A,91Bが故障しないようなAl系の給電配線90及び共通配線91A,91Bのそれぞれの断面積Sは、図12から、92μm2以上必要になり、同様にCuの給電配線90及び共通配線91A,91Bのそれぞれの断面積Sは、図13から、0.69μm2以上必要になる。
In the 40-
Al系の給電配線90及び共通配線91A,91Bでは、Al系の抵抗率が4.00μΩcmとすると、32インチのディスプレイパネル1では上述のように配線抵抗率ρ/断面積Sが4.7Ω/cm以下なので、最小断面積Sminは85.1μm2となる。このとき上述のように給電配線90及び共通配線91A,91Bの配線幅WLは34μm以内なので給電配線90及び共通配線91A,91Bの最小膜厚Hminは2.50μmとなる。
Assuming that the Al-based
またAl系の給電配線90及び共通配線91A,91Bの40インチのディスプレイパネル1では上述のように配線抵抗率ρ/断面積Sが2.4Ω/cm以下なので、最小断面積Sminは167μm2となる。このとき上述のように給電配線90及び共通配線91A,91Bの配線幅WLは44μm以内なので給電配線90及び共通配線91A,91Bの最小膜厚Hminは3.80μmとなる。
Further, in the 40-
Cuの給電配線90及び共通配線91A,91Bでは、Cuの抵抗率が2.10μΩcmとすると、32インチのディスプレイパネル1では上述のように配線抵抗率ρ/断面積Sが4.7Ω/cm以下なので、最小断面積Sminは44.7μm2となる。このとき上述のように給電配線90及び共通配線91A,91Bの配線幅WLは34μm以内なので給電配線90及び共通配線91A,91Bの最小膜厚Hminは1.31μmとなる。
In the Cu
またCuの給電配線90及び共通配線91A,91Bの40インチのディスプレイパネル1では上述のように配線抵抗率ρ/断面積Sが2.4Ω/cm以下なので、最小断面積Sminは87.5μm2となる。このとき上述のように給電配線90及び共通配線91A,91Bの配線幅WLは44μm以内なので給電配線90及び共通配線91A,91Bの最小膜厚Hminは1.99μmとなる。
Further, in the 40-
以上のことから、ディスプレイパネル1を正常且つ消費電力を低く動作させるには、給電配線90及び共通配線91A,91Bでの電圧降下を1V以下にした方が好ましく、このような条件にするには、給電配線90及び共通配線91A,91BがAl系の32インチのパネルでは、膜厚Hが2.50μm〜6μm、幅WLが14.1μm〜34.0μm、抵抗率が4.0μΩcm〜9.6μΩcmとなり、給電配線90及び共通配線91A,91BがAl系の40インチのパネルでは、給電配線90及び共通配線91A,91BがAl系の場合、膜厚Hが3.80μm〜6μm、幅WLが27.8μm〜44.0μm、抵抗率が4.0μΩcm〜9.6μΩcmとなる。
From the above, in order to operate the
総じてAl系の給電配線90及び共通配線91A,91Bの場合、膜厚Hが2.50μm〜6μm、幅WLが14.1μm〜44μm、抵抗率が4.0μΩcm〜9.6μΩcmとなる。
同様に、給電配線90及び共通配線91A,91BがCuの32インチのパネルでは、膜厚Hが1.31μm〜6μm、幅WLが7.45μm〜34μm、抵抗率が2.1μΩcm〜9.6μΩcmとなり、給電配線90及び共通配線91A,91BがCuの40インチのパネルでは、給電配線90及び共通配線91A,91BがCu系の場合、膜厚Hが1.99μm〜6μm、幅WLが14.6μm〜44.0μm、抵抗率が2.1μΩcm〜9.6μΩcmとなる。
In general, in the case of the Al-based
Similarly, in a 32-inch panel in which the
総じてCuの給電配線90及び共通配線91A,91Bの場合、膜厚Hが1.31μm〜6μm、幅WLが7.45μm〜44μm、抵抗率が2.1μΩcm〜9.6μΩcmとなる。
したがって、給電配線90及び共通配線91A,91BとしてAl系材料又はCuを適用した場合、ディスプレイパネル1の給電配線90及び共通配線91A,91Bは、膜厚Hが1.31μm〜6μm、幅WLが7.45μm〜44μm、抵抗率が2.1μΩcm〜9.6μΩcmとなる。
In general, in the case of the Cu
Therefore, when an Al-based material or Cu is applied as the
以上のように、対向電極20cに導通した共通配線91A,91Bがトランジスタ21〜23の電極とは別層で形成されているから、共通配線91A,91Bを厚膜にすることができ、共通配線91A,91Bを低抵抗化することができる。そして、低抵抗な共通配線91A,91Bが対向電極20cに導通しているから、対向電極20c自体が薄膜化してより高抵抗になっても対向電極20cの電圧を面内で一様にすることができる。従って、仮に全てのサブピクセル電極20aに同じ電位を印加した場合でも、どの有機EL層20bの発光強度もほぼ等しくなり、面内の発光強度を一様することができる。
As described above, since the
また、ディスプレイパネル1をトップエミッション型として用いた場合、対向電極20cをより薄膜化することが可能なので、有機EL層20bを発した光が対向電極20cを透過中に減衰し難くなる。更に、サブピクセル電極20aの間に選択配線89、給電配線90、共通配線91A,91Bが設けられているため、画素開口率の減少を最小限に抑えることができる。
Further, when the
また、平坦化膜33及び保護絶縁膜32の溝に埋設され且つ平坦化膜33からの表面から突出した給電配線90がトランジスタ21〜23の電極とは別層で形成されているから、給電配線90を厚膜にすることができ、給電配線90を低抵抗化することができる。低抵抗な給電配線90が薄膜の供給線Zにそれぞれ積層されているから、供給線Zの電圧降下を抑えることができ、更には供給線Z及び給電配線90の信号遅延を抑えることができる。例えば、仮に給電配線90がない場合にディスプレイパネル1を大画面化したときには、供給線Zの電圧降下によって面内の発光強度のムラが発生したり、発光しない有機EL素子20が存在したりするおそれがある。しかしながら、本実施形態では、低抵抗な給電配線90が供給線Zに導通しているから、面内の発光強度のムラを抑えることができ、更に発光しない有機EL素子20をなくすことができる。
Further, since the
更に、給電配線90を厚くすることで給電配線90を低抵抗化したので、給電配線90の幅を狭くすることができる。更に、平面視して垂直方向に隣り合うサブピクセル電極20aの間に幅の狭い給電配線90が設けられているから、画素開口率の減少を最小限に抑えることができる。
Further, since the resistance of the
また、走査線Xに積層された選択配線89を厚膜にしたから、走査線X及び選択配線89の信号遅延を抑えることができる。即ち、水平方向のサブピクセルPの列に着目した場合、シフトパルスがどのサブピクセルPでも遅延せずに同時にハイレベルになる。また、選択配線89を厚くすることで選択配線89を低抵抗化したので、選択配線89の幅を狭くすることができる。そのため、画素開口率の減少を最小限に抑えることができる。
Further, since the
また、凸設された選択配線89及び共通配線91A,91Bが厚く設けられているから、有機EL層20bを湿式塗布法によって色ごとに塗り分けることができる。そのため、サブピクセルPの間を仕切るバンクを別途設ける必要がなくなり、ディスプレイパネル1を簡単に製造することができる。
Further, since the protruding
〔変形例1〕
なお、本発明は、上記実施の形態に限定されることなく、本発明の趣旨を逸脱しない範囲において、種々の改良並びに設計の変更を行っても良い。
[Modification 1]
The present invention is not limited to the above embodiment, and various improvements and design changes may be made without departing from the spirit of the present invention.
上記実施形態では、トランジスタ21〜23がNチャネル型の電界効果トランジスタとして説明を行った。トランジスタ21〜23がPチャネル型の電界効果トランジスタであっても良い。その場合、図2の回路構成では、トランジスタ21〜23のソース21s,22s,23sとトランジスタ21〜23のドレイン21d,22d,23dの関係が逆になる。例えば、駆動トランジスタ23がPチャネル型の電界効果トランジスタの場合には、駆動トランジスタ23のドレイン23dが有機EL素子20のサブピクセル電極20aに導通し、ソース23sが供給線Zに導通する。
In the above embodiment, the
〔変形例2〕
また、上記実施形態では、信号線Yがゲートレイヤーからパターニングされたものであるが、信号線Yがドレインレイヤーからパターニングされたものでも良い。この場合、走査線X及び供給線Zがゲートレイヤーからパターニングされたものとなり、信号線Yが走査線X及び供給線Zよりも上層になる。
[Modification 2]
In the above embodiment, the signal line Y is patterned from the gate layer, but the signal line Y may be patterned from the drain layer. In this case, the scanning line X and the supply line Z are patterned from the gate layer, and the signal line Y is higher than the scanning line X and the supply line Z.
〔変形例3〕
また、上記実施形態では、行毎に、赤サブピクセルPrの有機EL層20b、緑サブピクセルPgの有機EL層20b、青サブピクセルPbの有機EL層20bの順に繰り返し配列したが、必ずしもこの順に配列しなくてもよい。
[Modification 3]
In the above embodiment, the
〔変形例4〕
また、上記各実施形態では、対向電極20cを有機EL素子20のカソードとし、サブピクセル電極20aを有機EL素子20のアノードとしたが、対向電極20cを有機EL素子20のアノードとし、サブピクセル電極20aを有機EL素子20のカソードとしてもよい。
[Modification 4]
In each of the above embodiments, the
〔変形例5〕
また上記各実施形態では、保持トランジスタ22のドレイン22dは、供給線Zに接続されていたが、これに限らず、保持トランジスタ22のドレイン22dは駆動トランジスタ23のドレイン23dと導通せずに走査線Xに接続されていてもよい。
なお、整合性のある限り、上記変形例を複数組み合わせても差し支えない。
[Modification 5]
In each of the above embodiments, the
As long as there is consistency, a plurality of the modified examples may be combined.
2 絶縁基板
20a サブピクセル電極
20b 有機EL層(発光層)
20c 対向電極
21 スイッチトランジスタ(第二トランジスタ)
22 保持トランジスタ(第二トランジスタ)
23 駆動トランジスタ(第一トランジスタ)
21s、22s、23s ソース
21d、22d、23d ドレイン
21g、22g、23g ゲート
32 保護絶縁膜(絶縁膜)
33 平坦化膜(絶縁膜)
34 溝
90 給電配線
Pr 赤サブピクセル
Pg 緑サブピクセル
Pr 青サブピクセル
2 Insulating
22 Holding transistor (second transistor)
23 Drive transistor (first transistor)
21s, 22s,
33 Planarization film (insulating film)
34
Claims (8)
前記基板上において、サブピクセルごとに設けられた駆動トランジスタと、
ソースとドレインのうちの一方を前記駆動トランジスタのソースとドレインのうちの一方に導通させ、前記基板上においてサブピクセルごとに設けられたスイッチトランジスタと、
ソースとドレインのうちの一方を前記駆動トランジスタのソースとドレインのうちの他方に導通させ、ソースとドレインのうちの他方を前記駆動トランジスタのゲートに導通させ、前記基板上にサブピクセルごとに設けられた保持トランジスタと、
前記駆動トランジスタ、前記スイッチトランジスタ及び前記保持トランジスタを被覆するように形成され、且つ複数の溝が形成された絶縁膜と、
前記各溝に埋設されるとともに前記絶縁膜から凸設され、前記駆動トランジスタのソースとドレインのうちの他方に導通し、前記駆動トランジスタ、前記スイッチトランジスタ及び前記保持トランジスタのゲート、ソース及びドレインとは異なる導電層によって形成された給電配線と、
前記絶縁膜上においてサブピクセルごとに且つマトリクス状に設けられ、前記駆動トランジスタのソースとドレインのうちの一方に導通したサブピクセル電極と、
前記サブピクセル電極の上面に形成された発光層と、
前記発光層を被覆するように形成された対向電極と、
前記絶縁膜の前記給電配線が埋設された溝とは異なる溝であって前記絶縁膜に形成された溝に埋設され、前記スイッチトランジスタ及び前記保持トランジスタを選択する選択配線と、
前記対向電極に接続された共通配線と、
を備え、
前記給電配線は、下層が前記選択配線とともに形成され、上層が前記共通配線とともに形成されていることを特徴とするディスプレイパネル。 A substrate,
A driving transistor provided for each subpixel on the substrate;
One of a source and a drain is electrically connected to one of a source and a drain of the driving transistor, and a switch transistor provided for each subpixel on the substrate;
One of the source and drain is conducted to the other of the source and drain of the driving transistor, and the other of the source and drain is conducted to the gate of the driving transistor, and is provided for each subpixel on the substrate. Holding transistor,
An insulating film formed to cover the driving transistor, the switch transistor, and the holding transistor, and having a plurality of grooves;
Wherein the projecting manner from the insulating film together when it is buried in each groove, electrically connected to the other of the source and drain of the driving transistor, the driving transistor, the switching transistor and a gate of the holding transistor, the source and drain A power supply wiring formed by a different conductive layer from
A sub-pixel electrode provided in a matrix for each sub-pixel on the insulating film and electrically connected to one of a source and a drain of the driving transistor;
A light emitting layer formed on an upper surface of the subpixel electrode;
A counter electrode formed to cover the light emitting layer;
A selection wiring for selecting the switch transistor and the holding transistor, which is a groove different from the groove in which the power supply wiring of the insulating film is embedded, and is embedded in the groove formed in the insulating film;
A common wiring connected to the counter electrode;
Equipped with a,
The power supply wiring has a lower layer formed with the selection wiring and an upper layer formed with the common wiring .
前記基板上に設けられた発光素子と、
前記発光素子の一方の電極に接続され、駆動電流を供給する第一トランジスタと、
前記第一トランジスタを制御する第二トランジスタと、
前記第二トランジスタのゲート、ソース及びドレインとは異なる導電層によって形成された第二トランジスタを選択する選択配線と、
下層が前記選択配線とともに形成され、前記下層の上に上層が形成されてなり、前記第一トランジスタに接続され、前記選択配線よりも単位長さあたりの抵抗が低い給電配線と、
前記給電配線の上層とともに形成され、前記発光素子の他方の電極に接続された共通配線と、
を備えることを特徴とするディスプレイパネル。 A substrate,
A light emitting device provided on the substrate;
A first transistor connected to one electrode of the light emitting element and supplying a drive current;
A second transistor for controlling the first transistor;
A selection wiring for selecting the second transistor formed by a conductive layer different from the gate, source and drain of the second transistor;
A lower layer is formed together with the selection wiring, an upper layer is formed on the lower layer , connected to the first transistor, and a power supply wiring having a lower resistance per unit length than the selection wiring,
A common line formed together with the upper layer of the power supply line and connected to the other electrode of the light emitting element;
A display panel comprising:
前記第二のトランジスタは、前記第一トランジスタから前記信号線に書込電流を流すスイッチトランジスタであることを特徴とする請求項6に記載のディスプレイパネル。 A signal line,
The display panel according to claim 6 , wherein the second transistor is a switch transistor that causes a write current to flow from the first transistor to the signal line.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004287642A JP4192879B2 (en) | 2004-09-30 | 2004-09-30 | Display panel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004287642A JP4192879B2 (en) | 2004-09-30 | 2004-09-30 | Display panel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006098977A JP2006098977A (en) | 2006-04-13 |
JP4192879B2 true JP4192879B2 (en) | 2008-12-10 |
Family
ID=36238831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004287642A Expired - Fee Related JP4192879B2 (en) | 2004-09-30 | 2004-09-30 | Display panel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4192879B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4857688B2 (en) | 2005-09-29 | 2012-01-18 | カシオ計算機株式会社 | Display device and manufacturing method thereof |
TW200802843A (en) | 2006-05-10 | 2008-01-01 | Casio Computer Co Ltd | Display device and manufacturing method thereof |
JP4415971B2 (en) * | 2006-05-10 | 2010-02-17 | カシオ計算機株式会社 | Display device and manufacturing method thereof |
JP4497185B2 (en) | 2007-09-18 | 2010-07-07 | カシオ計算機株式会社 | Manufacturing method of display device |
CN101796562A (en) | 2008-07-02 | 2010-08-04 | 富士电机控股株式会社 | Surface-emitting display device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3809758B2 (en) * | 1999-10-28 | 2006-08-16 | ソニー株式会社 | Display device and manufacturing method of display device |
JP2002352963A (en) * | 2001-05-23 | 2002-12-06 | Sony Corp | Display device |
JP2003186420A (en) * | 2001-12-21 | 2003-07-04 | Seiko Epson Corp | Active matrix substrate, electrooptic device, manufacturing method for electrooptic device, and electronic equipment |
JP4627966B2 (en) * | 2002-01-24 | 2011-02-09 | 株式会社半導体エネルギー研究所 | Light emitting device and manufacturing method thereof |
JP4310984B2 (en) * | 2002-02-06 | 2009-08-12 | 株式会社日立製作所 | Organic light emitting display |
JP2003330387A (en) * | 2002-03-05 | 2003-11-19 | Sanyo Electric Co Ltd | Display apparatus |
JP5067999B2 (en) * | 2002-03-20 | 2012-11-07 | ティーピーオー ホンコン ホールディング リミテッド | Active matrix display device and manufacturing method thereof |
JP2004101948A (en) * | 2002-09-10 | 2004-04-02 | Dainippon Printing Co Ltd | Display device and its manufacturing method |
JP3952965B2 (en) * | 2003-02-25 | 2007-08-01 | カシオ計算機株式会社 | Display device and driving method of display device |
-
2004
- 2004-09-30 JP JP2004287642A patent/JP4192879B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006098977A (en) | 2006-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4254675B2 (en) | Display panel | |
JP4517804B2 (en) | Display panel | |
JP4379278B2 (en) | Transistor array substrate and display panel | |
JP4265515B2 (en) | Display panel | |
JP5017826B2 (en) | Display panel and driving method thereof | |
JP4747543B2 (en) | Display panel | |
JP4192879B2 (en) | Display panel | |
JP4706296B2 (en) | Display panel | |
JP4217834B2 (en) | Display panel | |
JP4379285B2 (en) | Display panel | |
JP5212405B2 (en) | Display panel | |
JP4687179B2 (en) | Display panel | |
JP4792748B2 (en) | Display panel | |
JP4962838B2 (en) | Manufacturing method of display device | |
JP4893753B2 (en) | Display panel | |
JP2006100727A (en) | Display panel | |
KR100835032B1 (en) | Display panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080610 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080731 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080826 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080908 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4192879 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121003 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121003 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131003 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |