[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4022450B2 - ポリマー溶液製造方法及び装置 - Google Patents

ポリマー溶液製造方法及び装置 Download PDF

Info

Publication number
JP4022450B2
JP4022450B2 JP2002230363A JP2002230363A JP4022450B2 JP 4022450 B2 JP4022450 B2 JP 4022450B2 JP 2002230363 A JP2002230363 A JP 2002230363A JP 2002230363 A JP2002230363 A JP 2002230363A JP 4022450 B2 JP4022450 B2 JP 4022450B2
Authority
JP
Japan
Prior art keywords
polymer solution
temperature
solvent
jacket
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002230363A
Other languages
English (en)
Other versions
JP2004067907A (ja
Inventor
忠宏 辻本
幸祐 片井
操 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2002230363A priority Critical patent/JP4022450B2/ja
Priority to US10/634,846 priority patent/US7291660B2/en
Priority to CNB031274544A priority patent/CN100339429C/zh
Publication of JP2004067907A publication Critical patent/JP2004067907A/ja
Application granted granted Critical
Publication of JP4022450B2 publication Critical patent/JP4022450B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/22Post-esterification treatments, including purification
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/10Esters of organic acids
    • C09D101/12Cellulose acetate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Optics & Photonics (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Moulding By Coating Moulds (AREA)
  • Polarising Elements (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリマー溶液製造方法及び装置に関し、更に詳しくはセルロースアシレートフイルムを製膜するためのポリマー溶液製造方法及び装置に関するものである。
【0002】
【従来の技術】
フイルムを製造する方法としては、従来から溶融押出方法と溶液製膜方法とが知られている。例えば、セルローストリアセテートフイルムは、一般的に溶液製膜方法により製造されている。溶液製膜方法は、溶融押出方法などの他の製造方法と比較して、光学的性質や物性が優れたフイルムを製造することができるため、特に写真フイルムのベースフイルムを製造する際に好ましく用いられている。
【0003】
溶液製膜方法は、ポリマーを溶媒に溶解したポリマー溶液を流延ダイより支持体(例えば、流延ベルトや回転ドラムなどが挙げられる)上に流延して、乾燥、剥離してフイルムを得る方法である。この方法で製造されるフイルムは、溶融押出法で得られるフイルムに比べ、光学等方性、厚み均一性に優れ、また異物も少ない。ポリマーにセルロースアシレート、特にセルローストリアセテート(以下、TACと称する)を用いて製膜されたフイルムは、偏光板保護フイルム、位相差フイルム、透明導電性フイルム、防眩性反射防止フイルムなどのオプト・エレクトロニクス製品の用途として利用されている。
【0004】
フイルムの溶液製膜を効率的に生産するためには流延製膜するポリマー溶液中のポリマー濃度が高いことが望ましい。ポリマー濃度が低いと溶液を調製する際に大量の溶媒が必要であり、また支持体上に流延し、乾燥する際に乾燥負荷が増加して支持体から剥離するための時間が増加して生産性が低下する。さらに乾燥で発生した溶媒ガスを回収処理して再利用するためのエネルギーコストは、溶液製膜方法を用いた際、多くの場合に支持体面からの剥離時間により決まるため、その時間が長いとコスト削減の際の大きな問題となっている。
【0005】
【発明が解決しようとする課題】
そこで、流延するポリマー溶液のポリマー濃度を高濃度化させることが考えられるが、ポリマー溶液を直接高濃度に調製することには多くの困難が伴う。例えば、ポリマーの紛体を溶剤に分散、混合する際に発生するままこ(継粉)は、均一な溶解を阻害する。均一な分散を行なうために特開2001−340735号公報に記載されているように高速攪拌機やインラインの分散機などが用いられることがある。また、特開2000−256468号公報や、特開2001−206981号公報には、溶解性を向上させたり、溶解時間を短縮するために高温、高圧で溶解したり、超臨界条件で溶解したりする方法なども提案されている。また、ポリマーを分散、膨潤させて低温にすることによって溶解性を向上させることも提案されている。しかしながら、ポリマー濃度(溶解濃度)が高くなるといずれの方法によっても溶解性が低下してしまう。このようにポリマーを直接溶媒に溶解する直接溶解法の溶解能力は溶解濃度により支配的な影響を受けるという欠点がある。
【0006】
このような背景から予め低濃度で溶解させたポリマー溶液を濃縮する方法が提案されている。濃縮方法には、特開平4−259511号公報に記載されているように回転翼によりポリマー溶液を薄膜化して蒸発させた溶媒を回収してポリマー溶液の濃度を濃縮する方法(薄膜蒸発法)がある。また、特開2002−103357号公報には、高温、高圧のポリマー溶液をフラッシュさせて蒸発した溶媒を回収、分離してポリマー溶液を濃縮する方法(フラッシュ濃縮法)などが提案されている。薄膜蒸発法に比較するとフラッシュ濃縮法は設備の構造が単純で設備コスト、ランニングコスト的にも有利である。
【0007】
そこで、本発明の目的は、フラッシュ濃縮法を安定的に行い、皮張りやゲルの発生を防止してフイルム製膜に適したポリマー溶液製造方法及び装置を提供することである。
【0008】
さらに、本発明の他の目的は、ポリマー溶液の濃縮を連続的に行い、かつ濃縮後のポリマー溶液の組成比の変動幅が、一定の基準値内にある濃縮ポリマー溶液の製造方法を提供することである。
【0009】
【課題を解決するための手段】
本発明のポリマー溶液製造方法は、ポリマーと溶媒とを含むポリマー溶液をフラッシュ濃縮部により濃縮し、その際に蒸発した溶媒を凝縮部により回収するポリマー溶液製造方法において、容器内の下部に前記フラッシュ濃縮部を、前記容器内の上部に前記凝縮部の凝縮面を配置し、同一容器内で濃縮と濃縮により蒸発した溶媒の凝縮を行い、前記濃縮ポリマー溶液のポリマー濃度を検出して、その濃度を基準変動幅内で一定に保つように、前記ポリマー溶液を前記容器に送液する送液流量と、前記ポリマー溶液を濃縮する際の温度と、前記蒸発した溶媒の回収流量と、のうち少なくとも1つを制御し、前記容器を、水平面を境界として鉛直方向で区分される第1〜第3のジャケットにより下から順に覆い、前記第1のジャケットにより前記容器内に貯留されるポリマー溶液が接触する部分を該容器の外側から覆って該第1のジャケットに加熱媒体を通し前記ポリマー溶液が気化しやすい温度に保持し、前記第3のジャケットにより前記凝縮部を覆って該第3のジャケットに冷却媒体を通し気化溶媒の凝縮回収しやすい温度に保持し、前記第1のジャケットの上側に設けられる第2のジャケットにより、前記容器内に貯留されるポリマー溶液が接触しない部分を該容器の外側から覆って該第2のジャケットに加熱媒体を通し前記ポリマー溶液中の溶媒が気液平衡に達しない温度に保持し、前記第1のジャケットへの加熱媒体の温度を20℃〜60℃の範囲内とし、前記第2のジャケットへの加熱媒体の温度を40℃〜100℃の範囲内とし、前記第3のジャケットへの冷却媒体の温度を−20℃〜20℃の範囲内とすることを特徴とする。
【0010】
また、本発明のポリマー溶液製造方法は、前記蒸発した溶媒の回収流量を検出して、その回収流量を基準変動幅内で一定に保つように、前記ポリマー溶液を濃縮する際の温度と、
前記ポリマー溶液を前記容器に送液する送液流量と、前記蒸発した溶媒の凝縮温度と、のうち少なくとも1つを制御する。
【0011】
また、本発明のポリマー溶液製造方法は、前記容器内のポリマー溶液の気液界面の位置を検出して、その位置を基準変動幅内で一定に保つように、前記ポリマー溶液を前記容器に送液する送液流量と、前記ポリマー溶液を濃縮する際の温度と、前記蒸発した溶媒の回収流量と、のうち少なくとも1つを制御する
【0014】
上記のようにして、容器内の前記ポリマー溶液を濃縮し、蒸発した溶媒を凝縮面を用いた凝縮により回収する。この際に、フラッシュ温度と凝縮温度との制御精度を±10℃以内、フラッシュ圧力の制御精度を±0.05MPa以内、前記ポリマー溶液の送液流量の制御精度を±10%以内、の少なくとも1つを制御することが好ましい。また、フラッシュ温度と凝縮温度との制御精度を±10℃以内とし、フラッシュ圧力の制御精度を±0.05MPa以内とし、前記ポリマー溶液の送液流量の制御精度を±10%以内とすることがより好ましい。
【0015】
前記ポリマー溶液を構成する溶媒の大気圧での沸点以上の温度に加熱したポリマー溶液を、その加熱温度における前記溶媒の蒸気圧よりも少なくとも0.1MPa以上高い圧力に加圧しつつフラッシュ法を行うことが好ましい。また、流路の断面積が10cm2 以下の単一または複数のフラッシュ手段を用いて、略大気圧または大気圧以下に保持した前記容器内に前記ポリマー溶液をフラッシュさせることが好ましい。さらに、前記ポリマー溶液を構成する溶媒の沸点以上の温度に加熱したポリマー溶液を、その温度における前記溶媒の蒸気圧よりも少なくとも0.1MPa以上高い圧力に加圧しつつ、流路の断面積が10cm2 以下の単一または複数のフラッシュ手段を用いて、略大気圧または大気圧以下に保持した前記容器内に前記ポリマー溶液をフラッシュさせることがより好ましい。
【0016】
前記フラッシュ手段を用いて前記容器に前記ポリマー溶液をフラッシュさせている際に、前記容器内の絶対圧力を1.5MPa以下に制御することが好ましい。また、前記ポリマー溶液中の溶媒の一部を蒸発させ前記溶媒を凝縮するために用いられる凝縮面の温度を、前記ポリマー溶液を構成する溶媒の大気圧下での沸点よりも少なくとも2℃以上低くすることが好ましい。さらに、前記凝縮面の温度分布が20℃以下であることが好ましい。さらには、前記凝縮に用いられる凝縮面の温度が、前記ポリマー溶液を構成する溶媒の大気圧下での沸点よりも少なくとも2℃以上低く、かつ前記凝縮面の温度分布が20℃以下であることがより好ましい。
【0017】
前記凝縮面の総括伝熱係数が、50W/(m2 ・K)以上であることが好ましい。また、前記フラッシュ法により前記ポリマー溶液を濃縮する前に、前記ポリマー溶液を加熱するための加熱面を有する加熱手段を用い、その加熱面の総括伝熱係数が、50W/(m2 ・K)以上であることが好ましい。さらに、前記フラッシュ手段と、前記フラッシュ手段の上流側に設けられた前記加熱手段と、の間の前記ポリマー溶液の経路であって、前記ポリマー溶液と直接接触する部分の材質にニッケル合金、ステンレス合金、チタン合金のうち少なくとも1つを用いることが好ましい。
【0018】
前記容器内のポリマー溶液の気液界面の面積S1と、前記凝縮面の面積S2との比(S1/S2)が、0.01≦(S1/S2)≦5であることが好ましく、より好ましくは0.01≦(S1/S2)≦1であり、最も好ましくは0.01≦(S1/S2)≦0.5である。また、前記濃縮されたポリマー溶液を前記容器から連続的に移送するための移送手段を用いることが好ましい。さらに、前記移送手段の吸入側のヘッド圧を1000Pa以上とすることが好ましい。
【0019】
前記蒸発した溶媒を前記凝縮面で凝縮液化させ、連続的に前記容器外に移送する際に、重力、表面張力または液体移送手段のうち少なくとも1つを用い、前記容器内の圧力を基準変動幅以下に保つように移送することが好ましい。また、前記フラッシュ法を行う前に、前記ポリマー溶液を所定の圧力、温度まで加圧、加熱するための手段が設けられた調整ラインを用いて、前記ポリマー溶液が、前記所定の圧力、温度に達したのちに経路切り替えにより、前記フラッシュ法を開始することが好ましい。さらに、前記調整ラインが、循環経路であることがより好ましい。
【0020】
前述したいずれか1つ記載のポリマー溶液製造方法に用いられる装置を複数備えた製造ラインを用いたポリマー溶液製造方法も本発明には含まれる。また、前記溶媒が、ジクロロメタン、酢酸メチル、蟻酸メチル、アセトン、シクロペンタノン、シクロヘキサノン、ジオキソランのうち少なくとも1つを含むものを用いることが好ましい。さらに、前記ポリマー溶液または前記溶媒と接触する部分の表面粗さRaが10μm以下である部材を用いることが好ましい。
【0021】
前記凝縮面に対する前記凝縮した溶媒の接触角が60度未満となる凝縮面を用いることが好ましい。また、前記ポリマーに、セルロースアシレート、ポリカーボネート、アラミド系ポリマー、ポリスルホン、シクロパラフィン系ポリマー(ノルボルネン系ポリマー)のうち少なくとも1つを含むものを用いることが好ましい。
【0022】
前記ポリマーがセルロースアシレートであることが好ましい。また、前記セルロースアシレートが下記の式(1)及び(2)の関係を満たすことがより好ましい。
2.5≦A+B≦3.0・・(1)
0.7≦A≦1.0・・(2)
なお、Aは6位の水酸基のアシレート化率、Bは2位および3位の水酸基のアシレート化率を表す。
【0023】
本発明の溶液製膜方法は、前述したいずれかのポリマー溶液製造方法により得られた濃縮ポリマー溶液を流延する。また、前記濃縮ポリマー溶液を少なくとも1つの層に含む共流延法により、流延することも含まれる。さらに、前記濃縮ポリマー溶液を少なくとも1つの層に含む逐次延法も含まれる。さらには、前記濃縮ポリマー溶液を少なくとも1つの層に含む共流延法と逐次流延とにより、流延することも含まれる。なお、本発明の溶液製膜方法では、前記流延を流延ベルト上で行っても良く、また、流延ドラム上で行っても良い。
【0024】
本発明には、前述したいずれか1つ記載の溶液製膜方法により製膜されたフイルムも含まれる。また、クロスニコル下で、前記フイルムの20μm以上の輝点欠陥が、200個/cm2 以下であることが好ましい。さらに、前記フイルムを用いて構成された偏光板保護膜、前記偏光板保護膜を用いて構成された偏光板も本発明には含まれる。さらには、前記フイルムを用いて構成された光学機能性膜も含まれる。
【0025】
【発明の実施の形態】
以下、本発明に用いられるポリマー溶液(以下、ドープとも称する)を構成する溶質(ポリマー及び添加剤)と溶媒について説明する。その後に、本発明のポリマー溶液製造方法、そのポリマー溶液を用いた溶液製膜方法、製膜されたフイルム、フイルムを用いた光学用製品の順で説明する。なお、ポリマーには、TACを用いた例により説明を行うが、本発明はそれに限定されるものではない。TACを他のポリマーに代えたポリマー溶液製造の際にも本発明は適用することが可能である。
【0026】
[ポリマー]
本発明に用いられるポリマーは特に限定されないが、セルロースアシレート,ポリカーボネート,アラミド系ポリマー,ポリスルホン,シクロパラフィン系ポリマー(ノルボルネン系ポリマー)などを用いることが好ましい。また、セルロースアシレートの中では、特に、セルロースアセテートを使用することが好ましい。さらに、このセルロースアセテートの中では、その平均酢化度が57.5ないし62.5%のセルローストリアセテート(TAC)を使用することが最も好ましい。なお、セルロースアシレートの最も好ましい形態は、後述する。酢化度とは、セルロース単位重量当りの結合酢酸量を意味する。酢化度は、ASTM:D−817−91(セルロースアセテート等の試験方法)におけるアセチル化度の測定および計算に従う。本発明では、セルロースアシレート粒子を使用し、使用する粒子の90重量%以上が0.1ないし4mmの粒子径、好ましくは1ないし4mmを有する。また、好ましくは95重量%以上、より好ましくは97重量%以上、さらに好ましくは98重量%以上、最も好ましくは99重量%以上の粒子が0.1ないし4mmの粒子径を有する。さらに、使用する粒子の50重量%以上が2ないし3mmの粒子径を有することが好ましい。より好ましくは70重量%以上、さらに好ましくは80重量%以上、最も好ましくは90重量%以上の粒子が2ないし3mmの粒子径を有する。セルロースアシレートの粒子形状は、なるべく球に近い形状を有することが好ましい。
【0027】
本発明のポリマーにセルロースアシレートを用いた場合の好ましい形態について説明する。化1に示したようにセルロースは、β−グルコースが重縮合したものである。グルコースユニットには、3個の水酸基(−OH)が含まれている。6位の水酸基(H6またはH6’)は、化2の反応式に従いアシル化される。そのアシル化率をAとする。また、2位(H2,H2’)及び3位(H3,H3’)の水酸基がアシル化されたアシル化率をBとする。本発明のセルロースアシレートには、全水酸基のアシル化率(A+B)が、
2.5≦A+B≦3.0であり、
6位の水酸基のアシル化率(A)が、
0.7≦A≦1.0であるセルローストリアシレートを用いることが好ましい。なお、化2中のRは、アルキル基やフェニル基などを意味している。特に、Rがメチル基(−CH3 )であるセルローストリアセテートを用いることがより好ましい。
【0028】
【化1】
Figure 0004022450
【0029】
【化2】
Figure 0004022450
【0030】
[添加剤]
本発明で用いられる添加剤としては、可塑剤、紫外線吸収剤などがある。可塑剤としては、リン酸エステル系(例えば、トリフェニルフォスフェート(以下、TPPと称する)、トリクレジルフォスフェート、クレジルジフェニルフォスフェート、オクチルジフェニルフォスフェート、ビフェニルジフェニルフォスフェート(以下、DBPと称する)、トリオクチルフォスフェート、トリブチルフォスフェートなど)、フタル酸エステル系(例えば、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレートなど)、グリコール酸エステル系(例えば、トリアセチン、トリブチリン、ブチルフタリルブチルグリコレート、エチルフタリルエチルグリコレート(以下、エチルフタリルグリコールエチルエステルとも称する)、メチルフタリルエチルグリコレート、ブチルフタリルブチルグリコレートなど)、アセテート系(例えば、ジペンタエリスリトールヘキサアセテート、ジトリメチロールプロパンテトラアセテートなど)及びその他の可塑剤を用いることができる。
【0031】
ドープには、紫外線吸収剤を添加することもできる。例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物及びその他の紫外線吸収剤を用いることができる。特に好ましい紫外線吸収剤は、ベンゾトリアゾール系化合物やベンゾフェノン系化合物である。さらにドープには、必要に応じて種々の添加剤、例えば、離型剤、剥離促進剤、フッ素系界面活性剤などをドープの調製前から調製後のいずれかの段階で添加してもよい。
【0032】
[溶媒]
本発明に用いられる溶媒としては、ハロゲン化炭化水素類、エステル類、ケトン類、エーテル類、アルコール類などがあるが、特に限定されない。溶媒は、市販品の純度であれば、特に制限される要因はない。溶媒は、単独(100重量%)で使用しても良いし、炭素数1ないし6のアルコール類、ケトン類、エステル類、エーテル類を混合した混合溶媒を使用してもよい。使用できる溶媒の例には、ハロゲン化炭化水素類(例えば、ジクロロメタン、クロロホルムなど)、エステル類(例えば、酢酸メチル、メチルホルメート(蟻酸メチル)、エチルアセテート、アミルアセテート、ブチルアセテートなど)、ケトン類(例えば、アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノンなど)、エーテル類(例えば、ジオキサン、ジオキソラン、テトラヒドロフラン、ジエチルエーテル,メチル−t−ブチルエーテルなど)、アルコール類(例えば、メタノール、エタノールなど)などが挙げられ、特に、ジクロロメタン、酢酸メチル、蟻酸メチル、アセトン、シクロペンタノン、シクロヘキサノン、ジオキソランを用いることが好ましい。なお、用いる溶媒を、予め脱水処理しておくことが好ましい。
【0033】
[ポリマー溶液製造方法]
図1に本発明に係るポリマー溶液製造方法に用いられるドープ製造ライン10を示すが、本発明に係るポリマー溶液製造方法に用いられる製造ラインは、図示した形態に限定されるものではない。ドープ(ポリマー溶液)の製造は、始めに溶媒タンク11からバルブ12を開き、溶媒を溶解タンク13に送る。次に、計量器14に仕込まれているTACを溶解タンク13に計量しながら送り込む。
【0034】
さらに、添加剤タンク15から添加剤溶液をバルブ16の開閉操作を行って必要量を溶解タンク13に送り込む。なお、添加剤は、溶液として送り込む方法以外にも、例えば、添加剤が常温で液体の場合には、その液体の状態で溶解タンク13に送り込むことも可能である。また、添加剤が固体の場合には、計量器を用いて溶解タンク13に送り込むことも可能である。なお、本発明において用いられる添加剤の種類は1種類に限定されない。その場合には、添加剤タンク15に複数種類の添加剤を仕込む方法や、多数の添加剤タンクを用いて、それぞれ独立した配管により溶解タンクに送り込む方法などを用いることも可能である。
【0035】
また、前述した説明においては、溶解タンク13に仕込む順番が、溶媒、TAC、可塑剤の順であったが、本発明は必ずしもこの順に限定されるものではない。例えば、TACを計量し、溶解タンク13に送り込んだ後に、好ましい量の溶媒を送液することも可能である。また、添加剤は必ずしも溶解タンク13に予め送り込む必要はなく、後の工程でTACと溶媒との混合物(以下、これらの混合物もドープと称する場合がある)に、混合することもできる。
【0036】
溶解タンク13を包み込むようにジャケット17が備えられ、またモータ18により回転する攪拌翼19も備えられている。ジャケット17に媒体を流して溶解タンク13内に注入されている溶媒などの温度を調整する。また、モータ18を回転駆動させることで攪拌翼19を回転させ、溶解タンク13内の溶質を溶媒に溶解させて、分散溶液20を得る。
【0037】
次に分散溶液20を調製タンク21に送り込む。調製タンク21にも、ジャケット22,モータ23,攪拌翼24が備えられている。また、気化した溶媒を液体に戻すための凝縮器(コンデンサ)25も取り付けられている。分散溶液20は、ドープ供給ポンプ26により流量計27,分析計28を通った後に、加熱装置29に送液される。分散溶液20は、加熱されることにより溶解が進行し、低濃度ポリマー溶液(以下、低濃度ドープと称する)30となる。低濃度ドープ30は、濾過装置31、温度計32を通った後に、切替バルブ(3方バルブ)33を通り、圧力計34により低濃度ドープ30を送液している際の圧力を測定した後に調製タンク21に戻される。なお、前述した低濃度ドープの圧力、温度を調整する調整ライン10aがドープ製造ライン10中に備えられていることが本発明において、フラッシュ条件を変更することが容易になるために好ましい。この調整ライン10aは、循環経路であることがドープを均一な条件に調整することが可能となるためにより好ましい。
【0038】
また、調整ライン10a中で気化した溶媒は、コンデンサ25により液化して調製タンク21に戻される。ドープ供給ポンプ26による分散溶液の送液流量は、流量計27により測定された流量値に基づき、最適な量が決められる。本発明の分析計には、近赤外線プロセス分析計が用いられることが好ましが、他の分析計を用いることも可能である。例えば、超音波の伝播速度を測定する測定器を用いることも可能である。これにより濃縮する前の低濃度ドープ30の組成比を測定することが可能となる。加熱装置29には、静止型混合器が備えられた多管式熱交換器が用いられることが好ましいが、これに限定されるものではない。なお、多管式熱交換器29を用いた際に総括伝熱係数が50W/(m2 ・K)以上となるように通液媒体の温度及び加熱面の面積を選択することが、低濃度ドープの加温を効率良く短時間で行うことができ、ドープの変性が生じることが抑制される。
【0039】
また、加熱温度は、温度計32で測定された値に基づき加熱装置29により調整され、低濃度ドープ30の送液時の圧力は圧力計34で測定された値に基づきドープ供給ポンプ26の送液流量を調整することにより行われる。なお、濃縮する前の低濃度ドープ30は、ポリマー濃度が5重量%〜25重量%の範囲であることが好ましく、温度は70℃〜130℃の範囲であることが好ましく、圧力は0.5MPa〜4MPaの範囲であることが好ましく、送液流量は、1L/min〜1000L/minの範囲であることが好ましい。しかしながら、本発明において各条件は前述した各数値範囲に限定されるものではない。
【0040】
温度計32及び圧力計34で測定される低濃度ドープ30の温度及び圧力が定常値に達すると、温度計32及び圧力計34の指示により切替バルブ33の流路が調整ライン10aから溶液濃縮装置45側へ切り替わる。本発明において、主溶媒をジクロロメタンとしたときの基準値とは、温度70℃〜120℃,圧力0.5MPa〜2MPaの範囲で規定することが好ましい。また、酢酸メチルを主溶媒としたときの基準値は、温度70℃〜130℃,圧力0.1MPa〜2MPaの範囲で規定することが好ましい。また。低濃度ドープ30の送液流量は、1L/min〜1000L/minの範囲で規定することが好ましい。しかしながら、本発明において前記基準値は、前述したものに限定されるものではない。
【0041】
低濃度ドープ30は、切替バルブ33,圧力計41,温度計42,圧力調節バルブ43,流量計44を通り、溶液濃縮装置45内にフラッシュノズル46からフラッシュ蒸発されて濃縮される。なお、この濃縮されたポリマー溶液を以下の説明において、高濃度ドープと称する。また、本発明において濃縮前の低濃度ドープの製造方法は、前述したものに限定されるものではない。例えば、図1ではドープ製造ライン10を用いて連続式で行っているが、低濃度ドープをバッチ式で製造し、バッチ単位で溶液濃縮装置45内にフラッシュ蒸発させることも可能である。
【0042】
溶液濃縮装置45は、図2に示すように溶液濃縮装置本体(以下、装置本体と称する)50が第1ジャケット51、第2ジャケット52、第3ジャケット53に包み込まれている。それぞれのジャケット51〜53には、独立した配管が設けられており、それら配管から供給される媒体をジャケット51〜53と装置本体50との間を通すことにより、装置本体50の温度制御を行っている。装置本体50は、フラッシュ部54と凝縮部55とから構成されている。媒体は、ジャケット51,52には加熱用を用い、ジャケット53には冷却用を用いることで、フラッシュ部54を加熱し、凝縮部55を冷却している。なお、凝縮部55中で溶媒が凝縮される面を凝縮面55aと称する。フラッシュ部54と凝縮部55とは、別体として作製した後に、装置本体として組み合わせたものであっても、一体として作製されたものであっても良い。また、凝縮部55の凝縮面55aは、図2に示したようにその断面が傾斜を有していると、後述する凝縮溶媒56を重力により回収できるために好ましい。しかしながら、本発明に用いられる溶液濃縮装置45は、図示した形態に限定されるものではない。
【0043】
媒体の供給機構については、第3ジャケット53について説明し、その他のジャケットについては、同様に行われるため、説明及び図示は省略する。第3ジャケット53には、配管53a,53bを介して媒体調整機構57が接続している。媒体調整機構57は、凝縮面55aの温度を測定する温度計58で測定された値に基づき、媒体の温度、送液流量を決定し、第3ジャケット53内に媒体57aを送液し、凝縮温度を制御する。なお、凝縮面55aは、総括伝熱係数が50W/(m2 ・K)以上であることが、凝縮面55aでの溶媒の凝縮を効率良く行うことが可能となるために好ましい。
【0044】
前述した凝縮面55aの材質は、特に限定されない。しかしながら、凝縮面55aで凝縮された凝縮溶媒56bの接触角(θ)が、θ<60(°)であると、凝縮面55aに沿って凝縮溶媒56bが重力により流下し易くなるために好ましい。そこで、凝縮面55aは、主溶媒にジクロロメタンを用いた場合には、耐食性のある金属材料(例えば、ステンレス合金(ステンレス鋼)、ニッケル合金,チタン合金など),ガラスなどから形成されていると好ましい。また、主溶媒に酢酸メチルを用いた場合にも、前述した金属材料,ガラスなどから形成されていると好ましい。
【0045】
凝縮面55aの温度は、特に限定されない。しかしながら、本発明において低濃度ポリマー溶液30を構成する溶媒の大気圧下での沸点より少なくとも2℃以上低くすることが、後述する気化溶媒を容易に凝縮して液体にすることが可能となるために好ましい。なお、ポリマー溶液の溶媒が複数からなる混合溶媒の場合には、それらの溶媒のうち大気圧下での沸点が最も低いものを基準とする。また、凝縮面55aの温度分布は凝縮面55a全面において20℃以下となっていると、溶媒の凝縮が凝縮面55a上のいずれの箇所においても同様に起きるため、溶媒56の回収が容易になるためにより好ましい。なお、温度分布を一定にする方法は、図2に示した温度計58のように接触式のものを凝縮面55aを構成する装置本体50に複数取り付けたり(温度計の図示は省略)、非接触式の温度計により凝縮面55aを複数箇所測定したりして、それらの数値から媒体調整機構57を用いて調整する。
【0046】
図2に示すように装置本体50内には低濃度ドープ30が送液され、その一部の溶媒が気化して気化溶媒56aとなり、低濃度ドープ30は濃縮中ドープ59となっている。また、フラッシュノズル46の先端部46aは、その濃縮中ドープ59内になるように配置させることにより、フラッシュノズルからフラッシュされた低濃度ドープ30が装置本体50の内壁面に飛沫することを減少させ、皮張りの発生を抑制できる。このため、フラッシュノズル46には、その先端部46aが液面59aの位置より下になるようにシフト機構46bが取り付けられていることがより好ましい。
【0047】
図1に示すように、圧力計41により圧力調節バルブ43の開閉を制御して、一定圧力でフラッシュノズル46から低濃度ドープ30をフラッシュ蒸発させる。また、低濃度ドープ30を溶液濃縮装置45に送液する際の圧力は、低濃度ドープ30を構成している溶媒のその温度における飽和蒸気圧よりも少なくとも0.1MPa以上高くすることが、濃縮中ドープ59を効率良く濃縮できるために好ましいが、本発明はこの範囲に限定されるものではない。また、流量計44により低濃度ドープ30の送液流量を測定し、その値に従い低濃度ドープ30の送液流量を規定し、送液圧力を調整することも可能である。なお、ドープを構成する溶媒が複数種類ある場合には、フラッシュ蒸発における飽和蒸気圧が最も大きいものを基準とする。低濃度ドープ30をフラッシュさせることにより濃縮中ドープ59の溶媒の気化が激しく生じて、濃縮中ドープ59は、高濃度ドープ70となる。なお、高濃度ドープ70については、後に詳細に説明する。
【0048】
また、フラッシュノズル46は、その断面積C1が10cm2 以下のものを用いるとフラッシュ蒸発が容易に行える圧力が得られ、好ましい。また、フラッシュノズル46を装置本体50に複数本取り付け(図示しない)、それぞれのフラッシュノズルからフラッシュ蒸発させても良い。なお、本発明において、フラッシュノズルの取り付け位置、形態などは、図示したものに限定されるものではない。
【0049】
加熱装置29とフラッシュノズル46との間に設けられている機器を接続している配管47a〜47hで低濃度ポリマー溶液30が接する箇所が、ニッケル合金,ステンレス合金,チタン合金から形成されていることが好ましい。ニッケル合金には、例えばハステロイ(登録商標)を用いることも可能である。低濃度ポリマー溶液30は、加圧及び加熱されているため、その溶解性が極めて向上している。そこで、加熱、加圧後の低濃度ポリマー溶液30が、接する箇所を耐食性に優れた材質から形成することで、ドープの変性が生じるおそれが無くなると共にドープ製造ライン10の腐食を抑制することが可能となる。また、前述した配管47a〜47h以外の濾過装置31,温度計32,3方切替バルブ33,圧力計41、温度計42、圧力調節バルブ43、流量計44、フラッシュノズル46の各機器で低濃度ポリマー溶液30が接する箇所も前述したような耐食性に優れた材質から形成されていることが好ましい。なお、耐食性に優れた材質は、前述した合金に限定されるものではない。
【0050】
装置本体50には、その中の圧力を測定するために圧力計60が取り付けられている。圧力計60で測定された圧力値に従い、圧力調整機構61により装置本体50内の圧力を調整する。圧力調整は、低濃度ドープ30の送液流量の制御や、フラッシュ部54,凝縮部55の温度制御などにより行われる。フラッシュ前には装置本体50内の圧力を略大気圧又は大気圧以下にしておくことが好ましい。また、フラッシュしているときの装置本体50内の圧力(絶対圧力)を1.5MPa以下に制御することで、濃縮中ドープ59から溶媒の気化が激しく生じるために好ましい。なお、本発明において装置本体50内の圧力の調整は、圧力調整機構61を用いる方法以外に、後に詳細に説明する回収溶媒を排出する凝縮溶媒送液配管62に取り付けられている調節バルブ64の開閉を制御したり、高濃度ドープの送液流量を増加させたりする方法などがあり、圧力調整機構61を装置本体50に取り付けることを省略することも可能である。
【0051】
低濃度ドープ30をフラッシュさせて、気化した溶媒(以下、気化溶媒と称する)56aが凝縮面55aに達すると、凝縮して液体(以下、凝縮溶媒と称する)56bとなる。凝縮溶媒56bは、凝縮面55aの表面張力と重力とにより凝縮面55aに沿って下方に落ちてきて、受け器63で回収される。受け器63の溶媒56は、凝縮溶媒送液配管62、調節バルブ64、流量計65を通り、回収溶媒タンク66で回収する。その後に、溶媒56は、調製装置67に送られ、調製された後にドープ製造用の溶媒として再利用される。なお、凝縮溶媒56bを装置本体50から抜き出す際に、重力または表面張力の少なくともいずれかを利用することが、装置本体50内の圧力を基準値値またはその基準値に対して一定の変動幅内に保つと共にコストの点から好ましい。しかしながら、本発明においては、それらと併用または単独で凝縮溶媒移液装置(図示しない)を装置本体50に取り付けても良い。この場合には、凝縮溶媒移液装置によっても、装置本体50内の圧力制御を行なうことも可能となり、前述した圧力調整機構61と併用することで、さらに装置本体50内の圧力変動を抑制することが可能となり、均一な高濃度ドープ70を製造することが可能となる。
【0052】
濃縮中ドープ59の液面59aの面積(気液界面面積)S1と凝縮面55aの面積(凝縮面面積)S2との関係が、
0.01≦(S1/S2)≦5の範囲であることが好ましく、
より好ましくは、
0.01≦(S1/S2)≦1の範囲であり、
最も好ましくは、
0.01≦(S1/S2)≦0.5の範囲である。
凝縮面面積S2が気液界面面積S1より大きい又は同じである場合(0.01≦(S1/S2)≦1)には、液面59aから多量の気化溶媒56aが生じても、凝縮部55内の空間が気化溶媒56aで飽和することが抑制され、気化溶媒56aを効率良く凝縮溶媒56bとすることが可能となる。効率良く凝縮させるためには、0.01≦(S1/S2)≦0.5の範囲であることが、より好ましい。また、凝縮面面積S2が気液界面面積S1より小さい場合(1<(S1/S2)≦5)には、前述した凝縮効率は若干低下するが、溶液濃縮装置45を小型化することが可能となり、設置スペースの確保が容易になる利点がある。
【0053】
液面59aの位置は、液面検出センサ68により測定され、その値がポンプ69に取り付けられているコントローラ69aに送られる。コントローラ69aによりポンプ69の抜出流量を調整しつつ、溶液濃縮装置45から高濃度ドープ70を連続的に抜き出す。、ポンプ69の吸入側に取り付けられている圧力計69bによりポンプ69の吸入側圧力(ヘッド圧)を測定すると、均一の濃度の高濃度ドープ70を連続的に溶液濃縮装置45から抜き出すことができ、また装置本体50内の圧力変動を抑制できるために好ましい。本発明において、ヘッド圧を1000Pa以上、より好ましくは104 Pa〜105 Paの範囲とすることが好ましい。また、装置本体50の容量は、1L〜300Lの範囲が好ましい。しかしながら、本発明は、前述した数値範囲に限定されるものではない。
【0054】
図2に示した液面59aが装置本体50と接している部分59bが、液面59aの位置変動により最も皮張りが発生し易い箇所である。そこで、図2に示すように、フラッシュ部54に取り付けられている2つのジャケット51,52を用いて温度制御をより厳密に行うことが好ましい。第1ジャケット51の媒体は、濃縮中ドープ59が気化し易いような加熱媒体を流す。第2ジャケット52の媒体は、濃縮中ドープ59中の溶媒が装置本体50内で気液平衡に達しない温度となる加熱媒体を用いると、気化溶媒56aが付着しても気化することが抑制されるために、皮張りの発生が生じるおそれがなくなる。なお、本発明においては、ドープが混合溶媒から調製されているときには、最も気液平衡温度が低い溶媒を基準とする。
【0055】
このようにジャケット毎に媒体を変えることにより、装置本体50の内壁面を複数の温度に保持し、効率良くドープの濃縮を行うことが可能となる。具体的には、第1ジャケット51の媒体を20℃〜60℃、第2ジャケット52の媒体を40℃〜100℃、第3ジャケット53の媒体を−20℃〜20℃の範囲内からそれぞれ基準温度となるものを用いて、それら各媒体の温度の変動幅は、±10℃とすることが、ドープの濃縮条件の変化を抑制することができるために好ましい。なお、図2では、3区分に温度条件を変更したものを示したが、本発明は3区分に限定されず、2区分や4区分以上に温度条件を変えたものであっても良い。
【0056】
高濃度ドープ70は、溶液濃縮装置45からポンプ69により抜き出される。このとき、分析計71によりその組成を測定することが好ましい。分析計71の測定結果から組成を変更する必要があるときには、溶液濃縮装置45内での濃縮条件を変更して、必要とする組成の高濃度ドープ70を得ることが可能となる。高濃度ドープ70は、流量計72,2次濾過装置73を通った後に、フイルム製膜ライン100に用いられる。
【0057】
なお、前述したドープ製造ライン10を用いて高濃度ポリマーを製造する際に、低濃度ドープ30のフラッシュするときの温度は、基準温度に対して±10℃以内とし、より好ましくは、±5℃以内、最も好ましくは±3℃以内の変動幅とする。凝縮面55aの温度も基準温度に対して±10℃以内とし、より好ましくは±5℃以内、最も好ましくは±3℃以内の変動幅とする。また、フラッシュする際の低濃度ドープの圧力は、基準圧力値に対して±0.05MPa以内とし、より好ましくは±0.02MPa、最も好ましくは±0.01MPa以内の変動幅とする。さらに、低濃度ドープ30を溶液濃縮装置45に送液する送液流量は、基準流量に対して±10%以内とし、より好ましくは±5%以内、最も好ましくは±1%以内の変動幅とする。このように、各条件の変動幅を一定の範囲内とすることにより、溶液濃縮装置45内でドープの濃縮をより均一に行うことが可能となり、得られる高濃度ポリマー70の組成も一定なものとなる。
【0058】
図3に本発明に係るポリマー溶液製造方法に用いられる他の実施形態のドープ製造ライン80を示す。低濃度ドープ81は、ポリマー濃度が5重量%〜25重量%のものが好ましい。ポリマーにはTACを用いた場合を説明するが、本実施形態においても、前述したように他のポリマー、例えばポリカーボネートなどを用いることも可能である。また、低濃度ドープ81の溶媒としては、前述した実施形態と同様なものを用いることができ、例えばジクロロメタン、酢酸メチルなどが挙げられる。これら溶媒を単独で用いても良いし、他の溶媒を混合した混合溶媒として用いることも可能である。
【0059】
低濃度ドープ81は、ポンプ82により1次濾過装置83に送液されて濾過される。そして、3方バルブ84を通り、加熱装置85により加熱が行われる。低濃度ドープ81の温度は、温度計86により測定される。さらに、ポンプ82の下流側に取り付けられている流量計87により送液流量が測定される。低濃度ドープ81が基準とする温度、送液流量に達していないときは、加熱装置85の上流側に低濃度ドープ81を戻すように、3方バルブ84,88の流路がそれぞれ切り替わる。そして、調整ライン80aにより低濃度ドープ81の送液流量及び温度が調整される。
【0060】
前述した低濃度ドープ81が基準となる温度及び送液流量になったときに、3方バルブ84,88の流路がそれぞれ切り替わり低濃度ドープ81を溶液濃縮装置(以下、濃縮装置と称する)89に送液する。濃縮装置89は、液溜まり部89aと凝縮部89bと温度調整部89cとを備えている。また、凝縮部89bの温度を測定するために温度計89dが備えられ、その値に基づきコントローラ89eが温度調整部89cにより凝縮部89bの凝縮温度を調節する。なお、本発明において、温度調整部89cは濃縮装置89と別体に作製され取り付けられていても良い。また、温度調整部89cにより液溜まり部89aの温度の調節も行うことが、低濃度ドープ81から蒸発する溶媒の量を制御することが可能となるためにより好ましい。さらに、濃縮装置89には液面検出センサ89fが設けられており、濃縮装置89内に送液された低濃度ドープ(濃縮中のドープも含む意味で用いる)の液面81aを検出している。
【0061】
低濃度ドープ81を濃縮して得られた高濃度ドープは、ポンプ90により濃縮装置89から抜き取られる。なお、この際に抜出流量を流量計91で測定し、ポンプコントローラ(図示しない)に送信してポンプの抜出流量を制御する。さらに、高濃度ドープは、分析計92でその組成を分析することにより、好ましい組成の高濃度ドープが得られたことが分かる。この分析値が基準値内となるように濃縮装置89により濃縮を行う。高濃度ドープを2次濾過装置93で再度濾過した後に、精製された高濃度ドープ94を得ることが可能となる。
【0062】
濃縮装置89では、低濃度ドープ81中の溶媒を蒸発させて、凝縮部89bで凝縮させて液体とする。その液体となった溶媒をポンプ95により濃縮装置89から抜き出す。溶媒の抜き出し速度(回収溶媒流量)は、流量計96により測定されて、濃縮装置89内で溶媒の蒸発及び凝縮が連続的に行えるように回収流量が制御される。回収溶媒97の一部または全部を、ドープを製造する際の溶媒として用いると、溶媒の使用量を減少することが可能となり低コスト化を図ることが可能となる。また、廃棄される溶媒も減少するため、廃棄溶媒を処理するコストを低減することも可能となる。
【0063】
本発明において、濃縮装置89の形態は特に限定されるものではなく、ドープの組成を連続的に変化させるものであれば用いることが可能である。例えば、膜分離装置,冷凍分離装置(例えば、溶質を低温で沈殿させる装置である),低温減圧蒸発装置などを用いることが可能である。これら装置に低濃度ドープを仕込み、連続的にドープの組成を変化させ、ドープ中の溶質の濃度を上昇させ、高濃度ドープを得ることが可能となる。
【0064】
本発明において得られる濃縮されたポリマー溶液(高濃度ドープ)94をフイルム製膜を行う際に用いることが好ましい。しかし、高濃度ドープ中に微小な埃などの不純物が含まれていると、フイルムの光学特性を劣化させるおそれが生じる。そこで、本発明では、低濃度ドープを濃縮して高濃度ドープとする前(1次濾過装置83)、あるいは後(2次濾過装置93)で濾過を行うことがより好ましい。さらに、より好ましくは、濃縮前後のいずれでも行う場合である。
【0065】
低濃度ドープ81のポリマー濃度(CL )重量%と高濃度ポリマー94のポリマー濃度(CH )重量%とにおいて、その濃度差(CH −CL )が、1重量%〜20重量%であることが好ましい。1重量%未満であると、低濃度ドープと高濃度ドープとのそれぞれのポリマー濃度が、ほとんど変わらないため効率が悪い。また、ポリマー濃度が20重量%より大きくなるように濃縮を行うと、濃縮時間が長くなり、ポリマー溶液の劣化が生じるおそれもある。また、急激にポリマー溶液の濃縮を行うと、ポリマー溶液中の溶質(主にポリマー)が析出するおそれもある。ポリマーが濃縮装置89内で析出すると、本発明では、溶媒に溶解し難い溶質(特にポリマー)を溶解させているため、濃縮装置89内に付着した溶質を洗浄するために多大な時間が必要になり、コスト高になる。しかしながら、本発明において濃縮前後のポリマー濃度の変化は、前述した範囲に限定されるものではなく、溶質(特にポリマー)の種類によっては、20重量%より大きくポリマー濃度の濃度を上昇させることも可能である。
【0066】
前述した高濃度ドープは、連続的に製造を行っているため、同一の条件下で溶媒の蒸発、凝縮を行っても若干その濃度が変動する場合がある。そこで、本発明では、(1)低濃度ドープの送液流量と、(2)低濃度ドープを濃縮する際の温度と、(3)蒸発した溶媒を液化させる際の凝縮面の温度と、(4)蒸発、凝縮して液化した溶媒の回収流量と、(5)低濃度ドープの濃縮装置89内での気液界面位置81aと、(6)濃縮されたポリマー溶液(高濃度ドープ)を濃縮装置から抜き出す抜出流量とを基準値の変動幅以内とすることにより、変動幅を低濃度ドープから高濃度ドープとした際のポリマー濃度の増加分(CH −CL )に対して±10重量%の範囲とすることが可能となる。また、基準とする高濃度ドープのポリマー濃度の±5重量%の範囲に制御することも可能である。なお、それら各実験条件は以下に詳細に説明する。また、前記(4)で得られた回収溶媒97をドープ調製用の溶媒として再利用することが、使用する溶媒量を減少させることができ、好ましい。
【0067】
本発明では、高濃度ドープ94のポリマー濃度を一定に保つためには、以下の実験条件を制御することで達成可能である。(1)低濃度ドープ81を濃縮装置89へ送液する送液流量と、(2)低濃度ドープを濃縮する際の温度と、(4)回収溶媒97の回収流量と、のうち少なくとも1つを制御する。より好ましくは、前述した(1)(2)(4)の実験条件を組み合わせて制御したり、全てを制御したりすることである。例えば、低濃度ドープ81の溶媒に酢酸メチルを主溶媒とした混合溶媒を用い、ポリマーと添加剤との濃度(以下、固形分濃度と称する)を15重量%に調製した。また、液溜まり部89aの容積が3L〜4L、凝縮部89bの容積が3L〜4L、凝縮面の面積が300cm2 〜800cm2 の濃縮装置89を用いた場合に、分析計92で測定される固形分濃度を18重量%〜22重量%の範囲で、±0.3%の変動幅内で一定にする。このとき具体的な条件として、(1)低濃度ドープ81の送液流量を1L/min〜2L/minとし、(2)低濃度ドープの温度を90℃〜120℃とし、(4)回収溶媒の回収流量を0.03L/min〜0.07L/minとすることにより達成可能である。しかしながら、前述した各条件の範囲は一例を示したものであり、本発明はそれらの実験条件に限定されるものではない。
【0068】
回収溶媒97を濃縮装置89から抜き出す抜出流量を一定に保つことによっても、高濃度ドープ94の組成が均一なものが得られる。抜出流量は、計量計96で測定されその値に基づいてポンプ95を調整することにより行う。なお、この際に(1)低濃度ドープ81を濃縮装置89へ送液する送液流量と、(2)低濃度ドープの温度と、(3)凝縮部89bの凝縮面(図示しない)の温度と、のうち少なくとも1つを制御することにより行う。より好ましくは、前述した(1)〜(3)の実験条件を組み合わせて制御したり、全てを制御したりすることである。具体的には、前述した、低濃度ドープの溶媒、濃縮装置89を用いた場合に、回収溶媒97の抜出流量を0.03L/min〜0.07L/minの範囲で、±5%の変動幅内で一定にする。具体的には、(1)低濃度ドープ81の送液流量を0.95L/min〜1.05L/minとし、(2)低濃度ドープの温度を90℃〜120℃とし、(3)凝縮面の温度を0℃〜15℃とすることにより達成することが可能である。しかしながら、前述した各条件の範囲は一例を示したものであり、本発明はそれらの実験条件に限定されるものではない。
【0069】
濃縮装置89内の低濃度ドープ81の液面(気液界面)81aを液面検出センサ89fによりその変動を一定に保つことによっても、高濃度ドープ94の組成が均一なものが得られる。なお、この際に(1)低濃度ドープ81を濃縮装置89へ送液する送液流量と、(2)低濃度ドープの温度と、(4)回収溶媒97の回収流量と、のうち少なくとも1つを制御することにより行う。より好ましくは、(1)(2)(4)の実験条件を組み合わせて制御したり、全ての条件を制御したりすることである。具体的には、前述した溶媒、濃縮装置89を用いた場合に、定常状態における液面81aの位置を0とし、重力方向を負とした場合に、変動幅を−1cm〜+1cmの範囲で一定にする。具体的には、(1)低濃度ドープ81の送液流量を0.95L/min〜1.05L/minとし、(2)低濃度ドープの温度を90℃〜120℃とし、(4)回収溶媒97の回収流量を0.03L/min〜0.07L/minとすることにより達成することが可能である。しかしながら、前述した各条件の範囲は一例を示したものであり、本発明はそれらの実験条件に限定されるものではない。
【0070】
さらに、この場合に(3)凝縮部89bの凝縮面(図示しない)の温度と、(6)濃縮されたポリマー溶液(高濃度ドープ)を濃縮装置から抜き出す抜出流量と、の少なくとも1つの条件をさらに制御することが好ましい。具体的には、(3)凝縮面の温度を5℃〜10℃とし、(6)濃縮装置からの抜出流量を0.03L/min〜0.07L/minとすることにより容易に達成することが可能である。
【0071】
以上に説明したように、本発明に係るポリマー溶液の固形分濃度(またはポリマー濃度)を連続的に変化させる工程(第1工程)は、
(1)低濃度ドープの送液流量、
(2)低濃度ドープを濃縮する際の温度、
(3)蒸発した溶媒を液化させる際の凝縮面の温度、
(4)蒸発、凝縮して液化した溶媒の回収流量、
(5)低濃度ドープの濃縮装置89内での気液界面位置81a、
(6)濃縮されたポリマー溶液(高濃度ドープ)を濃縮装置から抜き出す抜出流量、
の各実験条件を最適になるように組み合わせることにより、低濃度ドープから高濃度ドープを連続して製造することが可能となる。また、その高濃度ドープを濾過する(第2工程)ことにより、後述するフイルム製膜ライン100(図4参照)を用いたフイルム製膜に適したドープを得ることもできる。
【0072】
本発明のポリマー溶液製造方法に用いられるドープ製造ライン10,80で、ドープを構成する溶媒、低濃度ドープ、濃縮中ドープ、高濃度ドープのいずれかが、前記ライン中で接する部分の表面粗さRaが10μm以下であることが好ましい。表面粗さRaが10μmを超えると、製造ライン(管路)内で溶媒などを送液する際に、不規則な流れが発生し、組成が均一な高濃度ドープが得られないおそれが生じるからである。また、配管内に皮張りやゲルが発生したり、洗浄性が悪くなったりして不都合が生じる。この表面粗さRaは、小さい方がより好ましいが、鏡面仕上げのようにあまりにも小さくすると製造ラインのコストが上昇して現実的ではない。なお、本発明において基準とする表面粗さRaの数値は、前述した10μm以下に限定されない。例えば、溶媒などの送液流量や、高濃度ドープの組成比の許容される変動幅や、製造ラインのコストなどによって、表面粗さRaの基準値を異なったものとすることも可能である。
【0073】
本発明には、前述した溶液濃縮装置45,89を複数備えたドープ製造ラインも含まれる。このときに、複数の溶液濃縮装置それぞれに、加熱装置,ポンプ(ドープ供給ポンプまたは送液用ポンプとも称する),凝縮溶媒回収用ポンプ,高濃度ドープ抜出用ポンプ,高濃度ドープ分析計などが備えられているものを用いることも可能である。また、例えば、上流側から低濃度ドープ加熱装置,送液用ポンプ,第1溶液濃縮装置,移液用ポンプ、第2溶液濃縮装置,抜出用ポンプ,高濃度ドープ分析計の順に、低濃度ドープ加熱装置,送液用ポンプを最も上流側に配置したものでも良い。なお、移液用ポンプは、第1溶液濃縮装置から濃縮したドープを抜き出して第2溶液濃縮装置に送液するためのポンプである。第1及び第2溶液濃縮装置に、それぞれ凝縮溶媒回収用ポンプが取り付けられている。または、第1及び第2溶液濃縮装置で共用できる凝縮溶媒回収用ポンプであっても良い。また、本発明のポリマー溶液製造方法に用いられる溶液濃縮装置は前述した2基でなく、3基以上のものを設けた製造ラインにも適用可能である。
【0074】
[溶液製膜方法]
図4に本発明に係る溶液製膜方法に用いられるフイルム製膜ライン100を示す。高濃度ドープ101は、前述したいずれかのポリマー溶液製造方法を用いて製造される。高濃度ドープ101のポリマー濃度(TAC濃度)は、15重量%〜40重量%であることがフイルム製膜用に適したドープであるが、本発明の溶液製膜方法に用いられるドープのポリマー濃度は前述した範囲に限定されるものではない。高濃度ドープ101が仕込まれているドープ用タンク102は、ポンプ103と濾過装置104とを介して流延ダイ105に接続している。また、ドープ用タンク102には、モータ(図示しない)により回転する攪拌翼106が取り付けられ、高濃度ドープ101を常に均一にしている。高濃度ドープ101には、この際にも、可塑剤、紫外線吸収剤などの添加剤を混合することもできる。
【0075】
流延ダイ105の下方には、回転ローラ107,108に掛け渡された流延バンド109が設けられている。流延バンド109は、図示しない駆動装置により回転ローラ107,108が回転するに伴い無端走行する。高濃度ドープ101は、ドープ用タンク102からポンプ103により送液され、濾過装置104で不純物が除去された後に流延ダイ105に送られる。流延ダイ105により高濃度ドープ101を流延バンド109上に流延し、ゲル膜110を形成する。ゲル膜110は流延バンド109で搬送されながら自己支持性を有するまで徐々に乾燥し、剥取ローラ111によって流延バンド109から剥ぎ取られフイルム112を形成する。
【0076】
フイルム112は、テンタ113により搬送されながら乾燥される。なお、この際に少なくとも一軸以上が所定の幅に引き伸ばされることが好ましい。テンタ113から乾燥ゾーン114に送られたフイルム112は、複数のローラ115に巻き掛けられて搬送されながら乾燥する。乾燥後のフイルム112は、冷却ゾーン116で冷却された後に、巻取機117に巻き取られる。なお、冷却ゾーン116から送り出されたフイルム112は、巻き取られる前に耳切処理が行われたり、ナーリング付与が行われたりしても良い。
【0077】
前記説明は、流延ダイを1基用いた単層流延法について行なった。しかしながら、本発明の溶液製膜方法は、単層流延法に限定されるものではない。図5に他の実施形態の要部断面図を示す。複数のマニホールド130,131,132を有するマルチマニホールド流延ダイ133のそれぞれのマニホールド130〜132にドープ134,135,136が供給され(供給用配管は図示しない)、流路137で合流して、流延バンド138にドープ134〜136を流延して、ゲル膜139を形成する。前記ドープ134〜136のうち少なくとも1つのドープに本発明のポリマー溶液製造方法を用いて製造された高濃度ドープを用いる。そして、ゲル膜139からフイルムが製造される。なお、図ではマルチマニホールド流延ダイ133を用いて説明したが、本発明の溶液製膜方法は、流延ダイの上流側にフィードブロックを設けて複数のドープをフィードブロック式の共流延する方法にも適用が可能である。
【0078】
図6には、更に他の実施形態である逐次流延法について説明するため要部概略断面図を示す。本実施形態では、3基の流延ダイ150,151,152が流延バンド153上に配置されている。各流延ダイ150〜152には、それぞれドープ154,155,156が図示しない供給管から送液されている。前記ドープ154〜156のうち少なくとも1つのドープに本発明のポリマー溶液製造方法を用いて製造された高濃度ドープを用いる。それらドープ154〜156を逐次的に流延バンド153上に流延して、ゲル膜157を形成した後に、フイルムを得る。なお、本発明において、逐次流延によるフイルムの製造は図示した3基の流延ダイを用いた実施形態に限定されず、2基又は4基以上の流延ダイを流延バンド上に配置したものでも良い。また、図5に示した共流延と図6に示した逐次流延とを組み合わせた流延方法にも本発明を適用することが可能である。
【0079】
図4ないし図6では、無端支持体である流延バンド上に高濃度ドープを流延した実施形態を説明した。しかしながら、本発明は図示した形態に限定されずに、図7に示したように回転ドラム170上に流延する溶液製膜方法にも適用できる。図7では、マルチマニホールド流延ダイ171のマニホールド172,173,174に給液管(図示しない)からドープ175,176,177が給液される。これらドープ175〜177のうち少なくとも1つに本発明のポリマー溶液製造方法を用いて製造された高濃度ドープを給液する。そして、ドープ175〜177を流路178で合流させ回転ドラム170上に流延すると、ゲル膜179が形成され、その後に図4で示したフイルム製膜ライン100と同じようにしてフイルムが形成される。なお、回転ドラム170には、温度調整機構180が取り付けられていることが好ましい。温度調整機構180により回転ドラム170の温度を調整する(通常は、冷却するが、加熱することも可能である)ことが可能となる。
【0080】
図7ではマルチマニホールド流延ダイを用いた例を説明したが、本発明の溶液製膜方法は図示した形態に限定されるものではない。例えば、図8に示すように流延ダイ190の上流側にフィードブロック191を取り付け、フィードブロック191に取り付けられた配管191a,191b,191cに図示しない給液装置からドープ192,193,194を送液して共流延を行い、ゲル膜195を形成した後にフイルムを製膜することも可能である。このときにドープ192〜194の内で少なくとも1つに本発明に係るポリマー溶液製造方法により製造された高濃度ドープを用いる。また、本発明では、単層型の流延ダイと回転ドラムとを用いて単層の流延を行うことも可能である。さらに、支持体である回転ドラム上に複数の流延ダイを配置した逐次流延法により製膜を行うことも可能である。
【0081】
[フイルム及び製品]
前述した溶液製膜方法のいずれかにより得られたフイルムを得ることが可能となる。また、そのフイルムから5cm2 のサンプルを10点採取する。それらサンプルをクロスニコル下で輝点欠陥の数を観察する。本発明においては、輝点欠陥のサイズが20μm以上のものが200個/cm2 以下であれば良好な特性を有するフイルムと判断できる。また、より好ましくは15μm以上のものが100個/cm2 以下であり、最も好ましくは15μm以上のものが50個/cm2 以下である。なお、輝点欠陥のサイズ、数は前述した数値範囲に限定されず、目的とするフイルムが必要とする性能を有する範囲であれば良い。
【0082】
前述した溶液製膜方法で製膜されたフイルムは、偏光板保護膜として用いることができる。この偏光板保護膜をポリビニルアルコールなどから形成された偏光膜の両面に貼付することで偏光板を形成することができる。さらに、フイルム上に光学補償シートを貼付した光学補償フイルム、防眩層をフイルム上に積層させた反射防止膜などの光学機能性膜の一部として用いることもできる。これら製品から、液晶表示装置の一部を構成することも可能である。
【0083】
【実施例】
以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれに限定されない。また、高濃度ドープの製造方法の説明については、実施例1及び実施例2で詳細に説明し、実施例3及び実施例4については、それぞれ実施例1及び実施例2と同じ点については説明を省略する。また、実施例5及び実施例6では、実施例1ないし実施例4により製造されたドープを用いた溶液製膜方法について説明する。さらに、実施例7では、実施例1により得られた高濃度ドープからフイルムを製膜する方法を説明する。そして、実施例5ないし実施例7により製膜したフイルムを用いて偏光板、光学補償フイルム及び防眩性反射防止フイルム(以下、反射防止フイルムと称する)などの光学機能性膜を作成して、評価を行った。
【0084】
[実施例1]
図1に示したドープ製造ライン10を用いた。実施例1では、溶液濃縮装置45に図2に示したフラッシュ濃縮装置を用いた。なお、以下の説明において溶液濃縮装置本体50をフラッシュタンク50と称する。溶解タンクにおいて後述する組成のドープA(低濃度ドープ,固形分重量は、18.4重量%)を調製した。溶解タンクには錨型の低速攪拌機と攪拌軸が偏心して設置したディゾルバー型高速攪拌機(図示してない)が取り付けられている。低速攪拌機の回転数は120回転/ 分、高速攪拌機は2000回転/ 分で分散、溶解した。なお、分散温度は25℃であり、分散時間は30分として分散溶液20を得た。
【0085】
さらに分散溶液20を調製タンク21に送液して、40℃で120分間溶解して、低濃度ドープ30を得た。さらにドープ供給ポンプ26によりチューブ内に静止型混合器をセットした多管式熱交換器(加熱装置)29により110℃まで昇温した。加熱媒体としてスチームを用いた。さらに濾過装置31、温度計32を経て3方切替バルブ33を通って調製タンク21に低濃度ドープ30を戻した。
【0086】
この際に、気化した溶媒は、コンデンサ25により凝縮され全量を調整タンク21に戻すことにより調製タンク21内の低濃度ドープ30の組成を一定に保った。温度計32の指示により熱交換器29の出口の温度が定常値に達したら3方切替バルブ33により流路を切り替えて、加熱した低濃度ドープ30は、圧力計41、温度計42、圧力調節バルブ43、流量計44を経てフラッシュノズル46からフラッシュタンク50内に吐出した。温度計42で測定される低濃度ドープ30の温度(フラッシュ温度)が100℃となるように加熱装置29を調整し、また圧力計41で測定される圧力(フラッシュ圧力)が1.2MPaになるように圧力調節バルブ43を調整した。
【0087】
先端部46aが濃縮中ドープ59の液面59aのレベル以下になるように、シフト機構46bにより調整した。定常状態での濃縮中ドープ59のレベル(液面)59aを液面検出センサ68により検出しポンプ69を制御することで一定に保持した。フラッシュタンク50内で気化した気化溶媒56aは3℃に冷却された凝縮面55aで凝縮して凝縮溶媒56bとして凝縮面55aを流下させて受け器(液だまり)63に捕集して、凝縮溶媒送液配管62を使って重力送液し、調節バルブ64により流量計65で測定される流量を一定に保ちながら回収溶媒タンク66に捕集した。回収溶媒の組成をガスクロマトグラフィーにより定量分析し、所定の組成になるように調製装置67を用いて他の溶媒を補正してドープの溶媒として再利用した。
【0088】
この際、凝縮面55aの温度分布は8℃以下であり、気化溶媒56aの凝縮潜熱から算出した凝縮面の総括伝熱係数は350W/(m2 ・K)であり、凝縮面55aに亘っての総括伝熱係数のばらつきは20%以下であった。凝縮面の総面積S2はフラッシュタンク内の気液界面の面積S1の2倍に設定した。定常運転時の圧力計60で計測したフラッシュタンク50内の圧力は大気圧よりも50Pa低くなった。気液界面(液面)59aのレベルの振れは±10mm以下であった。また、圧力計41で計測した低濃度ドープ30のフラッシュ時の圧力の振れは±0.03MPa以内であり、流量計27及び72で計測した送液流量及び抜出流量の変動はそれぞれ±5%以下であった。
【0089】
図1中の多管式熱交換器(加熱装置)29及び1次濾過装置31の接液面の材質はハステロイ(登録商標)合金を使用して、他の配管47a〜47hおよび配管部品の接液面の材質はSUS316Lを用いた。また、加熱装置29からフラッシュノズル46までの各機器の接液面は、バフ仕上げにより表面粗さをRaを0.5μm以下としたものを用いた。また、フラッシュノズル46の断面積C1は0.04cm2 のものを用いた。
【0090】
フラッシュ濃縮後の高濃度ドープ70の組成を分析計71により測定したところ、固形分濃度は22.3重量%であり、以下の説明においてこのドープを高濃度ドープCと称する。フラッシュ濃縮を3時間連続して行ったところ、定常状態での高濃度ドープ70の固形分濃度の変動は±0.8重量%以下であった。また、固形分濃度の増加分の変動も0.2重量%以下であった。
【0091】
定常運転時には低濃度ドープ30をフラッシュタンク50に送液するドープ供給ポンプ26の送液流量を流量計27により一定の目標値(10L/min)に制御した。フラッシュタンク50の下流側に設置した分析計71には、近赤外線プロセス分析計HR−800(横川電機社製)を用いた。高濃度ドープ70中のポリマー濃度または溶媒以外の成分総量(溶質)を計測した結果に基づいて、フラッシュ温度を調節した。フラッシュ温度調節のために温度計42で低濃度ドープ30の温度を測定し、その値に従って加熱装置29の加熱媒体(図示しない)の温度を制御して一定値とした。また、フラッシュ圧力は圧力計41で測定された圧力値により圧力調節バルブ43の開度を調節して一定値に制御した。また、フラッシュタンク50からの高濃度ドープ70の抜出流量は、液面検出センサ68の指示をコントローラ69aに送信して、コントローラ69aが抜出用ポンプ69を制御することにより一定値(抜出流量=8.25L/min)に制御した。また、フラッシュタンク50内の圧力を圧力計60で検出し一定圧力に保持するように凝縮面55aを冷却するジャケット53に流通させる冷媒57aの温度を媒体調整機構57により調節した。なお、フラッシュタンク50内の圧力の調節が、媒体調整機構57のみで不可能になった場合には、圧力調整機構61を起動させ、フラッシュタンク50内の圧力を一定値となるように制御した。
【0092】
[ドープAの組成]
実施例1で用いたドープA(低濃度ドープ)には、下記の処方のものを用いた。
Figure 0004022450
【0093】
[実施例2]
実施例2では、下記の処方のものからドープBを調製した。
Figure 0004022450
【0094】
ドープBの調製方法を説明する。攪拌羽根を有するステンレス製溶解タンクに、15℃に冷却し、前述の溶媒を混合し、その混合溶媒を攪拌しつつ、セルローストリアセテート粉体を徐々に添加して仕込んだ。添加後、30℃にて3時間放置しセルローストリアセテートを膨潤させた。なお、溶媒である酢酸メチルとアセトン、メタノール及びエタノールは、すべてその含水率が0.2重量%以下のものを使用した。
【0095】
セルローストリアセテートが膨潤した分散液を冷却溶解法により、分散物を溶解させた。前述したセルローストリアセテート分散液をスクリュー押出機で送液して、−70℃で3分間となるように冷却部分を通過させた。冷却は冷凍機で冷却した−80℃の冷媒(フロリナート(登録商標)3M社製,)を用いて実施した。次に、冷却により得られた溶液は温度を50℃まで昇温して図1に示す調製タンク21に移送し、それ以降は、実施例1と同様の条件で実験を行った。
【0096】
前述したドープB(低濃度ドープ,固形分重量は、18.47重量%)を用いて、実施例1と同様にフラッシュ濃縮を行なった。フラッシュ温度は120℃(温度計42で測定)、フラッシュ圧力は1.5MPa(圧力計41で測定)に設定し、その値になるように加熱装置29及びドープ供給ポンプ26、圧力調節バルブ43の制御を行った。実施例1と同様の手順により、3時間、定常運転を行なった。
【0097】
この際、凝縮面55aの温度分布は9℃以下であり、気化溶媒56aの凝縮潜熱から算出した凝縮面55aの総括伝熱係数は280W/(m2 ・K)であり、凝縮面55aに亘っての総括伝熱係数のばらつきは15%以下であった。凝縮面の総面積S2はフラッシュタンク50内の気液界面59aの面積S1の2倍のものを用いた。定常運転時の圧力計60で計測したフラッシュタンク50内の圧力は大気圧よりも80Pa低くなった。気液界面のレベルの振れは±8mm以下であった。また、圧力計41で計測したフラッシュ圧力の振れは±0.03MPa以内であり、流量計27及び流量計72で計測した送液流量及び抜出流量の変動はいずれも±5%以下であった。なお、加熱装置29、濾過装置31、及び配管47などの材質、表面粗さRa、フラッシュノズルの形態などは、実施例1と同じものを用いた。
【0098】
フラッシュ濃縮後の高濃度ドープDの固形分濃度は25.2重量%であり、定常状態でのドープの固形分濃度の変動は±0.9重量%以下であり、固形分濃度の増加分の変動も±0.3重量%以下であった。定常運転時には低濃度ドープ30の送液流量を10L/min、フラッシュ温度を110℃、フラッシュ圧力を1.8MPa、高濃度ドープの抜出流量を7.3L/minの一定値になるように実施例1と同じ操作を行った。また、フラッシュタンク内の圧力を圧力計60で検出し、一定圧力(大気圧−80Pa)に保持するように凝縮面55aを冷却する第3ジャケット53に流通させる冷媒57aの温度を調節した。
【0099】
[実施例3]
実施例3は、前述した実施例1の方法を下記のように変更した以外は同様にして操作した。定常運転時にはドープ供給ポンプ26の送液流量を流量計27により一定の目標値(10L/min)に制御した。
【0100】
フラッシュタンク50から回収される溶媒56の流量を濃縮目標の値になるようにフラッシュ温度を100℃に調節した。フラッシュ温度調節のために温度計42により加熱装置29の加熱媒体の温度を制御して一定値(115℃)とした。また、フラッシュ圧力は圧力計41の圧力値に基づき圧力調節バルブ43の開度を調節して一定値(1.5MPa)に制御した。フラッシュタンク50から濃縮ドープ(高濃度ドープ)70の抜出流量は液面検出センサ68の値に基づきコントローラ69aによりポンプ69を制御することにより一定値(8.36L/min)とした。また、フラッシュタンク50内の圧力を圧力計60で検出し、一定圧力(大気圧−60Pa)に保持するように凝縮面55aを冷却するジャケット53に流通させる冷媒57aの温度を調節した。フラッシュ濃縮後の高濃度ドープEの固形分濃度は22重量%であり、定常状態でのドープの固形分濃度の変動は±0.4重量%以下であった。
【0101】
[実施例4]
実施例4の実験では、実施例2の制御の方法を下記のように変更した以外は同様にして操作した。定常運転時にはドープ供給ポンプ26の送液流量を流量計27により一定の目標値(10L/min)に制御した。フラッシュタンク50から回収される溶媒の流量を濃縮目標の値になるようにフラッシュ温度(100℃)を調節した。フラッシュ温度調節のために温度計42により加熱装置29の加熱媒体の温度を制御して一定値とした。また、フラッシュ圧力は圧力計41の圧力により圧力調節バルブ43の開度を調節して一定値(1.5MPa)に制御した。フラッシュタンク50からの高濃度ドープの抜出流量は液面検出センサ68の指示によりポンプ69をコントローラ69aにより制御することにより一定値(8.53L/min)に制御した。また、フラッシュタンク50内の圧力を圧力計60で検出し一定圧力(大気圧−10Pa)に保持するように凝縮面55aを冷却するジャケット53に流通させる冷媒57aの温度を調節した。フラッシュ濃縮後の高濃度ドープFの固形分濃度は21重量%であり、定常状態でのドープの固形分濃度の変動は±0.4重量%以下であった。
【0102】
[溶液製膜方法]
[実施例5]
溶液製膜には、実施例1で製造したドープC(高濃度ドープ)をコア部分とし、また、両外層は実施例1で製造したドープA(低濃度ドープ)を用いた。これらドープを図8に示したように3層用のフィードブロック191をコートハンガーダイ190の上流側に設けて、流延を行った。コア部のドープ193は、乾膜で30μmとなるように送液した。また、両外層のドープ192,194には乾膜で2.5μmになるように送液を行った。ドープ192〜194の各温度を30℃とし、支持体にはハードクロムメッキを施して表面粗さRaを0.02μm以下に加工した回転ドラム170を用いた。回転ドラム170の表面温度は−8℃になるように温度調整機構180により制御した。
【0103】
回転ドラム170から剥離したフイルム112をテンタ113で搬送しながら熱風で乾燥させた(図4参照)。テンタ113には250mm間隔に設置されドロー制御されたローラ6本を経てフイルムの両端部をピンテンタに噛み込ませる構成のものを用いた(テンタ113内部の構成については、図示は省略した)。このときの乾燥温度はピンテンタ入口部を60℃、出口部を140℃とし、入口から出口に向けて温度が上昇するように乾燥温度を変化させた。また、テンタ113内でのフイルム112の幅方向の張力を500N/m以下の範囲搬送しながら、乾燥をおこなった。ピンテンタ内の乾燥時間は3.5分であった。
【0104】
テンタ113から送り出され15秒経過したフイルムの温度が55℃のときに両端部を切除した。そして、ローラ115で搬送される乾燥ゾーン114でさらに乾燥した。乾燥ゾーン114の入口温度を100℃、出口温度を145℃の温度とし、乾燥ゾーン114の温度は入口から出口に向かって昇温する温度パターンに設定した。また、このときフイルム112を80〜150N/mのテンションの範囲で搬送した。乾燥ゾーン114を出たフイルム112は、30℃に冷却してある冷却ゾーン116で冷却し、調湿器(図示しない)により含水率が0.8重量%になるよう調湿した後に巻取機117で巻き取った。巻取機117には、レイオンロールを使い、巻取り長8500mまで巻いた。以下の説明において、このフイルム112をサンプル1とする。
【0105】
サンプル1をクロスニコル(2枚の偏光板を90°直角に配置)下で顕微鏡で輝点欠陥を評価した。フイルムから任意に10点を5cm2 でサンプリングした。評価結果は、20μm以上の輝点欠陥の数は62〜105個/cm2 の範囲に入っており、平均は85個/cm2 であり、表面の輝点欠陥が少ない光学特性に優れたものが得られた。
【0106】
前述した10点のサンプルの、波長632.8nmにおける正面リタデーション(面内リタデーション)の平均値は1.5nmであり、厚さ方向のリタデーションの平均値は30nmであった。また、615nm,25℃,60%RHにおける透過率は99.4%であり、光学異方性が少なく、透過率に優れた良好な光学特性を有するフイルムが得られたことが分かった。
【0107】
[実施例6]
次にドープD(実施例2)をコア部にドープB(実施例2)を両外層にした以外は実施例5と同様にして製膜したフイルムをサンプル2とした。サンプル2の評価も実施例5と同じ条件で行った。20μm以上の輝点欠陥の数は48〜96個/cm2 の範囲であり、平均は78個/cm2 であった。正面リタデーションの平均値は2.3nmであり、厚さ方向リタデーションの平均値は35nmであった。また、透過率は99.6%であり、サンプル1と同様に光学異方性が少なく、透過率に優れた良好な光学特性を有するフイルムが得られた。
【0108】
[実施例7]
実施例1で得られたドープC(高濃度ドープ)を用いて回転ドラム上に単層流延を行った他は、実施例5と同様の条件で製膜を行い乾燥後の厚さが80μmのサンプル3のフイルムを製膜した。サンプル3の評価も実施例5と同じ条件で行った。20μm以上の輝点欠陥の数は70〜86個/cm2 の範囲であり、平均は78個/cm2 であった。正面リタデーションの平均値は2.5nmであり、厚さ方向リタデーションの平均値は33nmであった。また、透過率は93%であり、サンプル1と同様に光学異方性が少なく、透過率に優れた良好な光学特性を有するフイルムが得られた。
【0109】
[偏光板の作製]
延伸したポリビニルアルコールフイルムにヨウ素を吸着させて偏光膜(偏光層)を作製し、ポリビニルアルコール系接着剤を用いて、サンプル1及びサンプル2のフイルムを、その遅相軸が偏光膜の透過軸と平行になるように両側に貼り付け、偏光板を作製した。この偏光板サンプルを80℃、90%RHの雰囲気下で500時間暴露した。
【0110】
[偏光板の偏光度の評価方法]
分光光度計により可視領域における並行透過率Yp、直行透過率Ycを求め次式に基づき偏光度Pを決定した。
P=√((Yp−Yc)/(Yp+Yc))×100 (%)
サンプル1及びサンプル2のフイルムは、いずれも偏光度は99.6%以上であり、十分な耐久性が認められた。
【0111】
[光学補償フイルムの製造及び評価]
延伸したポリビニルアルコールフイルムにヨウ素を吸着させて偏光膜を作製し、ポリビニルアルコール系接着剤を用いて、サンプル1のセルローストリアセテートフイルムを、その遅相軸が偏光膜の透過軸と平行になるように片側に貼り付けた。さらに実施例5(サンプル1)のセルローストリアセテートフイルムにケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光膜の反対側に貼り付けた。更に、光学補償シート(富士写真フイルム(株)製WVフィルム)を同偏光板のセルロールアセテートフイルム側にその遅相軸が互いに平行となるように粘着剤を介して貼り合わせた。このようにして光学補償膜を貼合した光学補償フイルムを作製した。また、サンプル2(実施例6)から作成されたセルローストリアセテートフイルムからも同じ条件で光学補償フイルムを作成した。
【0112】
サンプル1(実施例5)のフイルムから作成した光学補償フイルム1組をTFT(薄膜トラジスター)方式の液晶表示装置に実装した結果、良好な視野角およびコントラストを達成することができた。また、サンプル2(実施例6)のフイルムから作成した光学補償フイルムについても同じ実験を行なったところ、良好な視野角およびコントラストが達成された。
【0113】
[反射防止フイルムの作製]
コア部を60μm、両外層を10μmとして乾燥後の厚さを80μmとした以外は、実施例5と同じ条件で製膜を行いサンプル4を得た。また、コア部を60μm、両外層を10μmとして乾燥後の厚さを80μmとした以外は、実施例6と同じ条件で製膜を行いサンプル5を得た。これらサンプル4及びサンプル5を使って塗工による反射防止膜を下記の手順により作製した。
【0114】
(防眩層用塗布液Aの調製)
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)125g、ビス(4−メタクリロイルチオフェニル)スルフィド(MPSMA、住友精化(株)製)125gを、439gのメチルエチルケトン/シクロヘキサノン=50/50重量%の混合溶媒に溶解した。得られた溶液に、光重合開始剤(イルガキュア907、チバガイギー社製)5.0gおよび光増感剤(カヤキュアーDETX、日本化薬(株)製)3.0gを49gのメチルエチルケトンに溶解した溶液を加えた。この溶液を塗布、紫外線硬化して得られた塗布層の屈折率は1.60であった。さらに、この溶液に平均粒径2μmの架橋ポリスチレン粒子(商品名:SX−200H、綜研化学(株)製)10gを添加して、高速ディスパにて5000rpmで1時間攪拌、分散した後、孔径30μmのポリプロピレン製フィルタでろ過して防眩層の塗布液Aを調製した。
【0115】
(防眩層用塗布液Bの調製)
シクロヘキサノン104.1g、メチルエチルケトン61.3gの混合溶媒に、エアディスパで攪拌しながら酸化ジルコニウム分散物含有ハードコート塗布液(デソライトKZ−7886A、JSR(株)製)217.0gを添加した。この溶液を塗布、紫外線硬化して得られた塗布層の屈折率は1.61であった。さらに、この溶液に平均粒径2μmの架橋ポリスチレン粒子(商品名:SX−200H、綜研化学(株)製)5gを添加して、高速ディスパにて5000rpmで1時間攪拌、分散した後、孔径30μmのポリプロピレン製フィルタでろ過して防眩層の塗布液Bを調製した。
【0116】
(防眩層用塗布液Cの調製)
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートとの混合物(DPHA、日本化薬(株)製)91g、酸化ジルコニウム分散物含有ハードコート塗布液(デソライトKZ−7115、JSR(株)製)199g、および酸化ジルコニウム分散物含有ハードコート塗布液(デソライトKZ−7161、JSR(株)製)19gを、52gのメチルエチルケトン/シクロヘキサノン=54/46重量%の混合溶媒に溶解した。得られた溶液に、光重合開始剤(イルガキュア907、チバガイギー社製)10gを加えた。この溶液を塗布、紫外線硬化して得られた塗布層の屈折率は1.61であった。さらに、この溶液に平均粒径2μmの架橋ポリスチレン粒子(商品名:SX−200H、綜研化学(株)製)20gを80gのメチルエチルケトン/シクロヘキサノン=54/46重量%の混合溶媒に高速ディスパにて5000rpmで1時間攪拌分散した分散液29gを添加、攪拌した後に孔径30μmのポリプロピレン製フィルターでろ過して防眩層の塗布液Cを調製した。
【0117】
(ハードコート層用塗布液Dの調製)
紫外線硬化性ハードコート組成物(デソライトKZ−7689、72重量%、JSR(株)製)250gを62gのメチルエチルケトンおよび88gのシクロヘキサノンに溶解した溶液を加えた。この溶液を塗布、紫外線硬化して得られた塗布層の屈折率は1.53であった。さらに、この溶液を孔径30μmのポリプロピレン製フィルタでろ過してハードコート層用の塗布液Dを調製した。
【0118】
(低屈折率層用塗布液の調製)
屈折率1.42の熱架橋性含フッ素ポリマー(TN−049、JSR(株)製)20093gにMEK−ST(平均粒径10〜20nm、固形分濃度30重量%のSiO2 ゾルのMEK(メチルエチルケトン)分散物、日産化学(株)製)8g、およびメチルエチルケトン100gを添加、攪拌の後に径1μmのポリプロピレン製フィルタでろ過して、低屈折率層用塗布液を調製した。
【0119】
厚さ80μmのサンプル4(実施例5)のフイルム上に前記ハードコート層用塗布液Dをバーコーターを用いて塗布し、120℃で乾燥の後に160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2 、照射量300mJ/cm2 の紫外線を照射して塗布層を硬化させ、厚さ2.5μmのハードコート層を形成した。その上に、前記防眩層用塗布液Aをバーコーターを用いて塗布し、上記ハードコート層と同条件にて乾燥した後に紫外線硬化して、厚さ約1.5μmの防眩層Aを形成した。さらに、その上に前記低屈折率層用塗布液をバーコーターを用いて塗布し、80℃で乾燥の後に120℃で10分間熱架橋し、厚さ0.096μmの低屈折率層を形成した。
【0120】
次にサンプル4のフイルムを用いて、防眩層用塗布液Aを防眩層用塗布液Bに代え、その他の条件は同じにした反射防止フイルムを作成した。さらに、防眩層用塗布液Aを防眩層用塗布液Cに代え、その他の条件は同じにした反射防止フイルムも作成した。さらに、サンプル5(実施例6)のフイルムからも、防眩層用塗布液A,B,Cを1つずつ用いて前述した反射防止フイルムの作成条件を同じにしてそれぞれの反射防止フイルムを作成した。
【0121】
[反射防止フイルムの評価]
前述した作成方法で、サンプル4のフイルム(防眩層A,B,C)、サンプル5のフイルム(防眩層A,B,C)から形成された6種類の反射防止フイルムについて以下の項目の評価を行った。以下の評価方法から得られた結果については後に表1にまとめて示す。
【0122】
(1)鏡面反射率及び色味
分光光度計V−550(日本分光(株)製)にアダプターARV−474を装着して、380〜780nmの波長領域において、入射角5°における出射角−5°の鏡面反射率を測定し、450〜650nmの平均反射率を算出し、反射防止性を評価した。さらに、測定された反射スペクトルから、CIE標準光源D65の5°入射光に対する正反射光の色味を表わすCIE1976L*a*b*色空間のL*値、a*値、b*値を算出し、反射光の色味を評価した。
【0123】
(2)積分反射率
分光光度計V−550(日本分光(株)製)にアダプターILV−471を装着して、380〜780nmの波長領域において、入射角5°における積分反射率を測定し、450〜650nmの平均反射率を算出した。
【0124】
(3)ヘイズ
得られた反射防止フイルムのヘイズをヘイズメーターMODEL 1001DP(日本電色工業(株)製)を用いて測定した。
【0125】
(4)鉛筆硬度評価
耐傷性の指標としてJIS K 5400に記載の鉛筆硬度評価を行った。反射防止フイルムを温度25℃、湿度60%RHで2時間調湿した後、JIS S
6006に規定する3Hの試験用鉛筆を用いて、1kgの荷重にて、
n=5の評価において傷が全く認められない(○)、
n=5の評価において傷が1または2つ(△)、
n=5の評価において傷が3つ以上(×)、
の基準で評価をして表1中に示した。
【0126】
(5)接触角測定
表面の耐汚染性の指標として、反射防止フイルムを温度25℃、湿度60%RHで2時間調湿した後、水に対する接触角を測定し、指紋付着性の指標とした。
【0127】
(6)動摩擦係数測定
反射防止フイルムの表面滑り性の指標として動摩擦係数にて評価した。動摩擦係数は試料を25℃、相対湿度60%で2時間調湿した後、HEIDON−14動摩擦測定機により5mmφステンレス鋼球、荷重100g、速度60cm/minにて測定した値を表1中に示した。
【0128】
(7)防眩性評価
反射防止フイルムをルーバーなしのむき出し蛍光灯(8000cd/m2 )に映し、その反射像のボケの程度を、
蛍光灯の輪郭が全くわからない(◎)、
蛍光灯の輪郭がわずかにわかる(○)、
蛍光灯はぼけているが、輪郭は識別できる(△)、
蛍光灯がほとんどぼけない(×)、
の4段階の基準で評価して表1中に示した。
【0129】
【表1】
Figure 0004022450
【0130】
実施例5及び実施例6の製膜方法により得られたサンプル4及びサンプル5のフイルムから形成された反射防止フイルム(防眩性反射防止フイルム)は、いずれも防眩性、反射防止性に優れ、且つ色味が弱く、また、鉛筆硬度、指紋付着性、動摩擦係数のような膜物性を反映する評価の結果も良好であった。また、サンプル3のフイルムを用いて形成された反射防止フイルムを最表層に配置した液晶表示装置を作成したところ、外光の映り込みがないために優れたコントラストが得られ、防眩性により反射像が目立たず優れた視認性を有し、指紋付も良好であった。
【0131】
【発明の効果】
以上のように、本発明のポリマー溶液の製造方法によれば、ポリマーと溶媒とを含むポリマー溶液の製造方法において、前記ポリマー溶液の組成を連続的に変化させる第1工程を少なくとも1つ有し、その第1工程の前または後の少なくとも一方で、前記ポリマー溶液を濾過する第2工程を有するから、容易にポリマー溶液を濃縮することが可能となる。
【0132】
本発明のポリマー溶液の製造方法によれば、ポリマーと溶媒とを含むポリマー溶液を、容器内で前記溶媒を蒸発させ濃縮し、濃縮したポリマー溶液を製造するポリマー溶液製造方法において、
(1)前記濃縮ポリマー溶液のポリマー濃度を検出し、
(2)前記蒸発した溶媒の回収流量を検出し、
(3)前記容器内のポリマー溶液の気液界面の位置を検出して、それら各数値を基準変動幅内で一定に保つように、
(1)前記ポリマー溶液を前記容器に送液する送液流量と、
(2)前記ポリマー溶液を濃縮する際の温度と、
(3)前記蒸発した溶媒の回収流量と、
(4)前記蒸発した溶媒の凝縮温度と、
のうち少なくとも1つを制御するから、連続してにポリマー溶液を濃縮することが可能となる。
【0133】
本発明のポリマー溶液製造方法によれば、フラッシュ法を用いて、容器内の前記ポリマー溶液を濃縮し、蒸発した溶媒を凝縮面を用いた凝縮法により回収する場合に、
(1)フラッシュ温度の制御精度を±10℃以内とし、
(2)凝縮温度との制御精度を±10℃以内とし、
(3)フラッシュ圧力の制御精度を±0.05MPa以内とし、
(3)前記ポリマー溶液の送液流量の制御精度を±10%以内とするから、安定的かつ連続して低濃度ポリマー溶液を濃縮して高濃度ポリマー溶液とすることが可能となる。
【0134】
本発明のポリマー溶液製造方法を行う際に、前記容器内のポリマー溶液の気液界面の面積S1と、前記凝縮面の面積S2との比(S1/S2)が、0.01≦(S1/S2)≦1とすると、気化した溶媒を効率良く凝縮させ液化でき、その液化溶媒を前記容器外に排出して回収できるため、効率良くポリマー溶液を濃縮できる。また、回収された溶媒を調整して前記ポリマー溶液の原料溶媒として用いることが可能となる。
【0135】
本発明の溶液製膜方法によれば、前述したポリマー溶液の製造方法を用いて濃縮することが可能となるため、始めに低濃度ポリマー溶液を調製した後に、その低濃度ポリマー溶液を濃縮して高濃度ポリマー溶液を得ることが可能である。この高濃度ポリマー溶液を用いて溶液製膜方法を行うと、略均一の組成に調製されているため、製膜されるフイルムの面状,膜厚などが略均一なものを得ることが可能となる。特に、ポリマー溶液の調製,濃縮,フイルム製膜をオンラインで行う際に特にその効果が顕著に現れる。また、低濃度ポリマー溶液の製造は容易であり、その低濃度ポリマー溶液を濃縮した高濃度ポリマー溶液を流延してゲル膜を形成と、ポリマー濃度が高いため、自己支持性を有するフイルムが形成される時間の短縮が可能となるため、フイルムを製膜する時間の短縮化を図ることができる。
【0136】
本発明のフイルムは、前記濃縮ポリマー溶液を製造する際に、前記第1工程(濃縮工程)での異物の発生が抑制され、前記第2工程(濾過工程)によりポリマー溶液を濾過して、異物を排除しているため、光学異方性が無く透過率が良好な光学特性に優れたフイルムを製膜することが可能となる。そして、そのフイルムを用いて構成された偏光板保護膜、偏光板、光学機能性膜などは、光学特性に優れている。
【図面の簡単な説明】
【図1】本発明のポリマー溶液製造方法に用いられる製造ラインの概略図である。
【図2】本発明のポリマー溶液製造方法に用いられる濃縮装置の概略断面図である。
【図3】本発明のポリマー溶液製造方法に用いられる他の実施形態の製造ラインの概略図である。
【図4】本発明の溶液製膜方法に用いられる製膜ラインの概略図である。
【図5】本発明の溶液製膜方法に用いられる製膜ラインの要部概略断面図である。
【図6】本発明の溶液製膜方法に用いられる製膜ラインの他の実施形態の要部概略断面図である。
【図7】本発明の溶液製膜方法に用いられる製膜ラインの他の実施形態の要部概略断面図である。
【図8】本発明の溶液製膜方法に用いられる製膜ラインの他の実施形態の要部概略図である。
【符号の説明】
10,80 ドープ製造ライン
10a,80a 調整ライン
26 ドープ供給ポンプ
28 分析計
29 加熱装置
30,81 低濃度ドープ
31,73 濾過装置
32,42 温度計
33 切替バルブ
34,41,60 圧力計
43 圧力調節バルブ
45 溶液濃縮装置
46 フラッシュノズル
50 溶液濃縮装置本体
54 フラッシュ部
55 凝縮部
55a 凝縮面
56a 気化溶媒
56b 凝縮溶媒
57 媒体調整機構
59 濃縮中ドープ
59a 液面
68 液面検出センサ
70,101 高濃度ドープ
100 フイルム製膜ライン
112 フイルム
S1 気液界面面積
S2 凝縮面面積
C1 ノズル断面積

Claims (21)

  1. ポリマーと溶媒とを含むポリマー溶液をフラッシュ濃縮部により濃縮し、その際に蒸発した溶媒を凝縮部により回収するポリマー溶液製造方法において、
    容器内の下部に前記フラッシュ濃縮部を、前記容器内の上部に前記凝縮部の凝縮面を配置し、同一容器内で濃縮と濃縮により蒸発した溶媒の凝縮を行い、
    前記濃縮ポリマー溶液のポリマー濃度を検出して、その濃度を基準変動幅内で一定に保つように、
    前記ポリマー溶液を前記容器に送液する送液流量と、
    前記ポリマー溶液を濃縮する際の温度と、
    前記蒸発した溶媒の回収流量と、のうち少なくとも1つを制御し、
    前記容器を、水平面を境界として鉛直方向で区分される第1〜第3のジャケットにより下から順に覆い、
    前記第1のジャケットにより前記容器内に貯留されるポリマー溶液が接触する部分を該容器の外側から覆って該第1のジャケットに加熱媒体を通し前記ポリマー溶液が気化しやすい温度に保持し、
    前記第3のジャケットにより前記凝縮部を覆って該第3のジャケットに冷却媒体を通し気化溶媒の凝縮回収しやすい温度に保持し、
    前記第1のジャケットの上側に設けられる第2のジャケットにより、前記容器内に貯留されるポリマー溶液が接触しない部分を該容器の外側から覆って該第2のジャケットに加熱媒体を通し前記ポリマー溶液中の溶媒が気液平衡に達しない温度に保持し
    前記第1のジャケットへの加熱媒体の温度を20℃〜60℃の範囲内とし、前記第2のジャケットへの加熱媒体の温度を40℃〜100℃の範囲内とし、前記第3のジャケットへの冷却媒体の温度を−20℃〜20℃の範囲内とすることを特徴とするポリマー溶液製造方法。
  2. ポリマーと溶媒とを含むポリマー溶液をフラッシュ濃縮部により濃縮し、その際に蒸発した溶媒を凝縮部により回収するポリマー溶液製造方法において、
    容器内の下部に前記フラッシュ濃縮部を、前記容器内の上部に前記凝縮部の凝縮面を配置し、同一容器内で濃縮と濃縮により蒸発した溶媒の凝縮を行い、
    前記蒸発した溶媒の回収流量を検出して、その回収流量を基準変動幅内で一定に保つように、
    前記ポリマー溶液を濃縮する際の温度と、
    前記ポリマー溶液を前記容器に送液する送液流量と、
    前記蒸発した溶媒の凝縮温度と、のうち少なくとも1つを制御し、
    前記容器を、水平面を境界として鉛直方向で区分される第1〜第3のジャケットにより下から順に覆い、
    前記第1のジャケットにより前記容器内に貯留されるポリマー溶液が接触する部分を該容器の外側から覆って該第1のジャケットに加熱媒体を通し前記ポリマー溶液が気化しやすい温度に保持し、
    前記第3のジャケットにより前記凝縮部を覆って該第3のジャケットに冷却媒体を通し気化溶媒の凝縮回収しやすい温度に保持し、
    前記第1のジャケットの上側に設けられる第2のジャケットにより、前記容器内に貯留されるポリマー溶液が接触しない部分を該容器の外側から覆って該第2のジャケットに加熱媒体を通し前記ポリマー溶液中の溶媒が気液平衡に達しない温度に保持し
    前記第1のジャケットへの加熱媒体の温度を20℃〜60℃の範囲内とし、前記第2のジャケットへの加熱媒体の温度を40℃〜100℃の範囲内とし、前記第3のジャケットへの冷却媒体の温度を−20℃〜20℃の範囲内とすることを特徴とするポリマー溶液製造方法。
  3. ポリマーと溶媒とを含むポリマー溶液をフラッシュ濃縮部により濃縮し、その際に蒸発した溶媒を凝縮部により回収するポリマー溶液製造方法において、
    容器内の下部に前記フラッシュ濃縮部を、前記容器内の上部に前記凝縮部の凝縮面を配置し、同一容器内で濃縮と濃縮により蒸発した溶媒の凝縮を行い、
    前記容器内のポリマー溶液の気液界面の位置を検出して、その位置を基準変動幅内で一定に保つように、
    前記ポリマー溶液を前記容器に送液する送液流量と、
    前記ポリマー溶液を濃縮する際の温度と、
    前記蒸発した溶媒の回収流量と、のうち少なくとも1つを制御し、
    前記容器を、水平面を境界として鉛直方向で区分される第1〜第3のジャケットにより下から順に覆い、
    前記第1のジャケットにより前記容器内に貯留されるポリマー溶液が接触する部分を該容器の外側から覆って該第1のジャケットに加熱媒体を通し前記ポリマー溶液が気化しやすい温度に保持し、
    前記第3のジャケットにより前記凝縮部を覆って該第3のジャケットに冷却媒体を通し気化溶媒の凝縮回収しやすい温度に保持し、
    前記第1のジャケットの上側に設けられる第2のジャケットにより、前記容器内に貯留されるポリマー溶液が接触しない部分を該容器の外側から覆って該第2のジャケットに加熱媒体を通し前記ポリマー溶液中の溶媒が気液平衡に達しない温度に保持し
    前記第1のジャケットへの加熱媒体の温度を20℃〜60℃の範囲内とし、前記第2のジャケットへの加熱媒体の温度を40℃〜100℃の範囲内とし、前記第3のジャケットへの冷却媒体の温度を−20℃〜20℃の範囲内とすることを特徴とするポリマー溶液製造方法。
  4. 前記フラッシュ濃縮部のフラッシュ温度と、前記凝縮部の凝縮温度との制御精度を±10℃以内とし、
    前記フラッシュ濃縮部のフラッシュ圧力の制御精度を±0.05MPa以内とし、
    前記ポリマー溶液の送液流量の制御精度を±10%以内とすることを特徴とする請求項1ないし3いずれか1つ記載のポリマー溶液製造方法。
  5. 前記ポリマー溶液を構成する溶媒の大気圧下での沸点以上の温度に加熱したポリマー溶液を、その加熱温度における前記溶媒の蒸気圧よりも少なくとも0.1MPa以上高い圧力に加圧しつつ、
    流路の断面積が10cm2 以下の単一または複数のフラッシュ手段を用いて、大気圧以下に保持した前記容器内に前記ポリマー溶液をフラッシュさせることを特徴とする請求項4記載のポリマー溶液製造方法。
  6. 前記フラッシュ手段を用いて前記容器に前記ポリマー溶液をフラッシュさせている際に、
    前記容器内の絶対圧力を1.5MPa以下に制御することを特徴とする請求項4または5記載のポリマー溶液製造方法。
  7. 前記凝縮面の温度を、
    前記ポリマー溶液を構成する溶媒の大気圧下での沸点よりも少なくとも2℃以上低く、
    かつ前記凝縮面の温度分布が20℃以下とすることを特徴とする請求項4ないし6いずれか1つ記載のポリマー溶液製造方法。
  8. 前記凝縮面の総括伝熱係数が、50W/(m2 ・K)以上であることを特徴とする請求項7記載のポリマー溶液製造方法。
  9. 前記フラッシュ法により前記ポリマー溶液を濃縮する前に、前記ポリマー溶液を加熱するための加熱面を有する加熱手段を用い、
    前記加熱面の総括伝熱係数が、50W/(m2・K)以上であることを特徴とする請求項1ないし8いずれか1つ記載のポリマー溶液製造方法。
  10. 前記容器内のポリマー溶液の液面を液面検出センサにより検出し、該ポリマー溶液を前記容器外に送るポンプを制御し、前記ポリマー溶液の液面を一定に保持することを特徴とする請求項1ないし9いずれか1つ記載のポリマー溶液製造方法。
  11. 前記容器内のポリマー溶液の気液界面の面積S1と、
    前記凝縮法に用いられる凝縮面の面積S2との比(S1/S2)が、
    0.01≦(S1/S2)≦5であることを特徴とする請求項1ないし10いずれか1つ記載のポリマー溶液製造方法。
  12. 前記濃縮されたポリマー溶液を前記容器から連続的に移送するための移送手段を用い、
    前記移送手段の吸入側のヘッド圧を1000Pa以上とすることを特徴とする請求項1ないし11いずれか1つ記載のポリマー溶液製造方法。
  13. 前記蒸発した溶媒を前記凝縮面で凝縮液化させ、
    連続的に前記容器外に移送する際に、重力、表面張力または液体移送手段のうち少なくとも1つを用い、
    前記容器内の圧力を基準変動幅以下に保つように移送することを特徴とする請求項1ないし12いずれか1つ記載のポリマー溶液製造方法。
  14. 前記フラッシュ濃縮を行う前に、
    前記ポリマー溶液を所定の圧力、温度まで加圧、加熱するための手段が設けられた調整ラインを用いて、
    前記ポリマー溶液が、前記所定の圧力、温度に達したのちに経路切り替えにより、
    前記フラッシュ濃縮を開始することを特徴とする請求項1ないし13いずれか1つ記載のポリマー溶液製造方法。
  15. 前記調整ラインが、循環経路であることを特徴とする請求項14記載のポリマー溶液製造方法。
  16. 前記溶媒が、ジクロロメタン、酢酸メチル、蟻酸メチル、アセトン、シクロペンタノン、シクロヘキサノン、ジオキソランのうち少なくとも1つを含むものを用いることを特徴とする請求項1ないし15いずれか1つ記載のポリマー溶液製造方法。
  17. 前記ポリマー溶液または前記溶媒と接触する部分の表面粗さRaが10μm以下である部材を用いることを特徴とする請求項1ないし16いずれか1つ記載のポリマー溶液製造方法。
  18. 前記凝縮面に対する前記凝縮した溶媒の接触角が60度未満となる凝縮面を用いることを特徴とする請求項1ないし17いずれか1つ記載のポリマー溶液製造方法。
  19. 前記ポリマーに、セルロースアシレート、ポリカーボネート、アラミド系ポリマー、ポリスルホン、シクロオレフィン系ポリマーのうち少なくとも1つを含むものを用いることを特徴とする請求項1ないし18いずれか1つ記載のポリマー溶液製造方法。
  20. ポリマーと溶媒とを含むポリマー溶液をフラッシュ濃縮法により濃縮し、その際に蒸発した溶媒を凝縮して回収するポリマー溶液製造装置において、
    前記ポリマー溶液が貯留される容器と、
    前記容器内に貯留された前記ポリマー溶液中に前記ポリマー溶液を送ってフラッシュ濃縮するためのフラッシュノズルと、
    前記容器の上部に設けられ、前記フラッシュ濃縮による蒸発した前記溶媒を冷却された凝縮面で凝縮して回収する凝縮部と、
    前記容器内に貯留されるポリマー溶液が接触する部分を該容器の外側から覆って前記ポリマー溶液が気化しやすい温度に保持するための加熱媒体が通される第1のジャケットと、
    前記第1のジャケットの上側に設けられ、前記容器内に貯留されるポリマー溶液が接触しない部分を該容器の外側から覆って前記ポリマー溶液中の溶媒が気液平衡に達しない温度に保持するための加熱媒体が通される第2のジャケットと、
    前記凝縮部を前記容器の外側から覆って前記気化溶媒の凝縮回収しやすい温度に保持するための冷却媒体が通される第3のジャケットとを備え、
    前記第1のジャケットへの加熱媒体の温度を20℃〜60℃の範囲内とし、前記第2のジャケットへの加熱媒体の温度を40℃〜100℃の範囲内とし、前記第3のジャケットへの冷却媒体の温度を−20℃〜20℃の範囲内とすることを特徴とするポリマー溶液製造装置。
  21. 前記容器内のポリマー溶液の液面を液面検出センサにより検出し、該ポリマー溶液を前記容器外に送るポンプを制御し、前記ポリマー溶液の液面を一定に保持することを特徴とする請求項20記載のポリマー溶液製造装置。
JP2002230363A 2002-08-07 2002-08-07 ポリマー溶液製造方法及び装置 Expired - Fee Related JP4022450B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002230363A JP4022450B2 (ja) 2002-08-07 2002-08-07 ポリマー溶液製造方法及び装置
US10/634,846 US7291660B2 (en) 2002-08-07 2003-08-06 Method of producing high concentration polymer solution
CNB031274544A CN100339429C (zh) 2002-08-07 2003-08-07 聚合物溶液的制备方法及溶液制膜方法以及制品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002230363A JP4022450B2 (ja) 2002-08-07 2002-08-07 ポリマー溶液製造方法及び装置

Publications (2)

Publication Number Publication Date
JP2004067907A JP2004067907A (ja) 2004-03-04
JP4022450B2 true JP4022450B2 (ja) 2007-12-19

Family

ID=31492327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230363A Expired - Fee Related JP4022450B2 (ja) 2002-08-07 2002-08-07 ポリマー溶液製造方法及び装置

Country Status (3)

Country Link
US (1) US7291660B2 (ja)
JP (1) JP4022450B2 (ja)
CN (1) CN100339429C (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304040B2 (en) * 2004-01-26 2012-11-06 Fujifilm Corporation Polymer film and preparation method of polymer solution
JP2005262762A (ja) * 2004-03-19 2005-09-29 Fuji Photo Film Co Ltd 溶液製膜方法
JP2005263296A (ja) * 2004-03-19 2005-09-29 Fuji Photo Film Co Ltd 溶液貯蔵タンク及び溶液貯蔵方法
JP4695410B2 (ja) * 2004-03-22 2011-06-08 富士フイルム株式会社 ドープの調製方法及びポリマーフィルムの製造方法
CN101010179A (zh) * 2004-08-05 2007-08-01 富士胶片株式会社 用于制造涂料的设备
JP4753553B2 (ja) * 2004-08-05 2011-08-24 富士フイルム株式会社 移送方法及び溶液製膜方法
CN100405133C (zh) * 2004-09-27 2008-07-23 无锡阿尔梅感光化学公司 镜用复合薄膜
US20070179216A1 (en) * 2005-05-02 2007-08-02 Degussa Ag Method for producing aqueous polyurethane dispersions by means of flash evaporation
US20070085235A1 (en) * 2005-10-18 2007-04-19 Boyle Timothy J Method and apparatus for continuously preparing crosslinked, solution-cast polymer film
JP2007268452A (ja) * 2006-03-31 2007-10-18 Fujifilm Corp 溶液濃縮装置及び方法
JP2009083219A (ja) * 2007-09-28 2009-04-23 Fujifilm Corp ポリマー溶液の脱溶媒方法
KR101697403B1 (ko) * 2013-09-30 2017-01-17 주식회사 엘지화학 편광판 및 이를 포함하는 화상표시장치
JP5982412B2 (ja) * 2014-02-12 2016-08-31 富士フイルム株式会社 繊維製造方法及び不織布製造方法並びに繊維製造設備及び不織布製造設備
JP6175460B2 (ja) * 2014-03-31 2017-08-02 富士フイルム株式会社 溶剤回収調製方法、及び溶液製膜方法
JP6053045B2 (ja) * 2014-09-19 2016-12-27 富士フイルム株式会社 溶液製膜方法
CN104385643A (zh) * 2014-09-28 2015-03-04 大连理工大学 一种调厚液体自流膜形成装置
CN104536364B (zh) * 2014-12-03 2017-05-10 武汉旭日华科技发展有限公司 带进气控制的有机溶剂回收系统及控制方法
CN111148801B (zh) * 2017-09-29 2021-12-28 汉阳大学校产学协力团 用于静电喷雾沉积的浆料和使用该浆料形成涂膜的方法
CN110888242B (zh) * 2019-10-21 2021-05-18 湖南波比生物科技有限公司 一种黑色素的应用方法及黑色素镜片的制备方法
CN112358782A (zh) * 2020-11-13 2021-02-12 江苏冠军科技集团股份有限公司 一种高闪点丙烯酸防腐面漆及其制备方法
CN115364735A (zh) * 2022-06-20 2022-11-22 岳阳耀宁新能源科技有限公司 一种无桨搅拌系统及负极浆料无桨搅拌方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406750A (en) * 1981-09-29 1983-09-27 Phillips Petroleum Company Solvent removal from polymer solution utilizing flashed vapor as a heat source
JP2835783B2 (ja) 1991-02-14 1998-12-14 コニカ株式会社 高濃度セルローストリアセテート溶液の製造方法とその装置
JP2002103357A (ja) 2000-07-24 2002-04-09 Fuji Photo Film Co Ltd 溶液製膜方法及び偏光板等

Also Published As

Publication number Publication date
US20040030006A1 (en) 2004-02-12
JP2004067907A (ja) 2004-03-04
CN100339429C (zh) 2007-09-26
CN1483758A (zh) 2004-03-24
US7291660B2 (en) 2007-11-06

Similar Documents

Publication Publication Date Title
JP4022450B2 (ja) ポリマー溶液製造方法及び装置
JP4208517B2 (ja) ポリマー溶液濃縮方法及び装置
US20050112299A1 (en) Cellulose ester film, its manufacturing method, polarizing plate, and liquid crystal display
TWI406060B (zh) 透明聚合物薄膜及其製法、光學補償膜、積層膜及液晶顯示裝置
TWI411513B (zh) 聚合物薄膜及其製法
JP2006297914A (ja) ポリマーフィルム
TWI414545B (zh) 光學薄膜
JP4860254B2 (ja) セルロースアシレートフィルムの製造方法
JP5571300B2 (ja) 溶液製膜方法及び溶液製膜設備
JP2006306052A (ja) 溶液製膜方法
JP2008265167A (ja) 熱可塑性フイルム及びその製造方法、並びに、偏光板、液晶表示板用光学補償フイルム、反射防止フイルム及び液晶表示装置
JP5001088B2 (ja) 流延ダイ、溶液製膜設備及び溶液製膜方法
KR101171174B1 (ko) 용액 탱크 및 용액 저장법
JP2002363341A (ja) セルロースエステルフィルム、光学フィルム及びその製造方法
JP2007268452A (ja) 溶液濃縮装置及び方法
JP4730503B2 (ja) セルロースエステルフィルムの製造方法
JP2008260271A (ja) 溶液製膜設備及び溶液製膜方法
JP4957282B2 (ja) 光学用フィルムの製造方法、光学用フィルム、偏光板及び液晶表示装置
JP2002103357A (ja) 溶液製膜方法及び偏光板等
JP2006188052A (ja) 溶液製膜方法
JP4753827B2 (ja) 溶液製膜設備及び方法
JP2005017328A (ja) 光学補償フィルムの製造方法、光学補償フィルム、光学補償偏光板及び液晶表示装置
JP4300857B2 (ja) 光学フィルムの製造方法
JP2008194928A (ja) 光学用フィルムの製造方法、光学用フィルム、偏光板及び液晶表示装置
JP4753553B2 (ja) 移送方法及び溶液製膜方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees