[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4092854B2 - LIQUID CRYSTAL DISPLAY ELEMENT AND METHOD FOR DISTRIBUTION OF INTER-PIXEL ORIENTATION OF VERTICALLY ORIENTED LIQUID CRYSTAL - Google Patents

LIQUID CRYSTAL DISPLAY ELEMENT AND METHOD FOR DISTRIBUTION OF INTER-PIXEL ORIENTATION OF VERTICALLY ORIENTED LIQUID CRYSTAL Download PDF

Info

Publication number
JP4092854B2
JP4092854B2 JP2000144712A JP2000144712A JP4092854B2 JP 4092854 B2 JP4092854 B2 JP 4092854B2 JP 2000144712 A JP2000144712 A JP 2000144712A JP 2000144712 A JP2000144712 A JP 2000144712A JP 4092854 B2 JP4092854 B2 JP 4092854B2
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
pixel
alignment
pixel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000144712A
Other languages
Japanese (ja)
Other versions
JP2001324715A5 (en
JP2001324715A (en
Inventor
英将 山口
誠 地崎
容子 福永
哲夫 占部
真太郎 森田
泰 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2000144712A priority Critical patent/JP4092854B2/en
Publication of JP2001324715A publication Critical patent/JP2001324715A/en
Publication of JP2001324715A5 publication Critical patent/JP2001324715A5/ja
Application granted granted Critical
Publication of JP4092854B2 publication Critical patent/JP4092854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Filters (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a homeotropic allignment type liquid crystal display element to perform no inter-pixel alignment division but to perform an intra-pixel allignment division. SOLUTION: In the liquid crystal display element, which is composed of at least a pixel electrode substrate 2 pixel electrodes 1 are arranged, a counter substrate 3 arranged oppositely to the substrate 2 and a liquid crystal LC held between them and in which the liquid crystal LC is alligned perpendicularly to the pair of the substrates in the case of applying no electric field, the alignment direction of the liquid crystal is divided into different directions at intervals of one or more pixels in the case of applying electric field.

Description

【0001】
【発明の属する技術分野】
本発明は、基板に対し電界を印加しない状態で液晶が垂直配向している液晶表示素子に関する。
【0002】
【従来の技術】
液晶ディスプレイの広視野角化の1つの技術として、非電界印加時に、基板に対して液晶の長軸方向を垂直に配向させる技術(垂直配向技術)が提案されている。
【0003】
ところで、十分な広視野角特性を得ようとする場合、画素を複数の異なる配向方向を有するように分割する必要がある。その分割方法には電極にスリット部を設ける方法や基板表面上に突起物(リブ)を設ける方法等が提案されている(特許第29473505号明細書等)。
【0004】
ここで、電極にスリット部を設ける場合、図8(a)に示すように、オフ時(非電界印加時)には電極Eに挟まれたスリット部S近傍の液晶LCは垂直配向しているが、図8(b)に示すように、オン時(電界印加時)には電気力線ELの方向が斜め方向に向き、液晶LCは電気力線ELに沿って矢印の方向(図8(a))へ倒れる。従って、電界印加時、スリット部Sでは、液晶配向が分割されドメインが形成される。更に、周囲の液晶もスリット部Sの液晶に沿って倒れていくため、結果的に電界印加時に図8(b)の点線を境界として分割配向しドメインが形成される。ここで、隣接する画素電極の間の間隙がスリット部として機能する。なお、図8(a)における点線は、電界印加した場合の電気力線の方向を示している。
【0005】
また、基板表面の電極E上に突起物(リブ)RIBを設けた場合、図8(c)に示すように、オフ時には液晶LCが突起物RIBの傾斜に沿って斜めに配向し、図8(d)に示すように、オン時に電気力線ELの方向が斜め方向に向き、全体の液晶LCが電気力線ELに沿って矢印の方向(図8(c))に倒れる。また、一般に、突起物RIBの誘電率は液晶LCの誘電率より低いため、電気力線が傾き、スリットと同じ効果で電界印加時に液晶の配向が分割される。結果的に電界印加時に図8(d)の点線を境界として分割配向したドメインが形成される。なお、図8(c)における点線は、電界印加した場合の電気力線の方向を示している。
【0006】
【発明が解決しようとする課題】
しかし、これらの方法では一つの画素内を分割するため、光の透過率が低下し、また光が透過しない配向ドメインの境界が表示領域に発生して実効開口率が低下するという問題あった。例えば、画素電極基板の画素電極間隙は、前述の電極のスリット部として機能するので、電界印加時には図8(b)のように一つの画素内で液晶LCが両端から内側に向かって倒れるので、画素内にドメインの境界が生じてしまう。
【0007】
本発明は、以上の従来の技術を解決しようとするものであり、垂直配向の液晶表示素子について、画素内分割ではなく画素間配向分割できるようにすることを目的とする。
【0008】
【課題を解決する手段】
本発明者らは、電界印加時に1画素おき又は複数画素おきに液晶の配向を異なる方向に分割することにより、好ましくは垂直配向型の液晶表示素子の画素電極基板と対向基板の一方の基板又は双方の基板に、電界印加時に1画素おき又は複数画素おきに液晶の配向を異なる方向に分割する配向分割手段を設けることにより上述の目的を達成できることを見出し、本発明を完成させるに至った。
【0009】
即ち、本発明は、画素電極が設けられた画素電極基板とそれに対向するように配置される対向基板と、それらの間に挟持される液晶とから少なくとも構成され、液晶が非電界印加時に該一対の両基板に対して垂直に配向する液晶表示素子において、電界印加時に1画素おき又は複数画素おきに液晶の配向異なる方向に分割させる配向分割手段が設けられ、対向基板の配向分割手段が設けられている位置に対応する画素電極基板の画素電極間隙の幅が、配向分割手段が設けられていない位置に対応する画素電極間隙の幅よりも狭くされて成ることを特徴とする液晶表示素子を提供する
【0010】
また、本発明は、画素電極が設けられた画素電極基板とそれに対向するように配置される対向基板と、それらの間に挟持される液晶とから少なくとも構成され、液晶が非電界印加時に該一対の両基板に対して垂直に配向する液晶表示素子に対し、この液晶表示素子の片方の基板もしくは両方の基板に、電界印加時に1画素おき又は複数画素おきに液晶の配向を異なる方向に分割する配向分割手段を設け、対向基板の配向分割手段が設けられている位置に対応する画素電極基板の画素電極間隙の幅を、配向分割手段が設けられていない位置に対応する画素電極間隙の幅よりも狭くすることを特徴とする垂直配向液晶の画素間配向分割方法を提供する。
【0011】
【発明の実施の形態】
以下、本発明をTFTLCDを例に挙げて説明を行うが、本発明はTFTLCDに限定されるものではなく単純マトリックス駆動LCD等にも適用可能である。
【0012】
本発明の液晶表示素子においては、電界印加時に1画素おき又は複数画素おきに液晶の配向を異なる方向に分割させる。具体的には、電界印加時に1画素おき又は複数画素おきに液晶の配向を異なる方向に分割させる配向分割手段を片方の基板もしくは両方の基板に設ける。この場合、配向分割手段の配向分割規制力が、画素電極の電界による配向分割規制力より強くなるようにすることが好ましい。この結果、1画素おきに配向分割手段を設けた場合には画素毎に配向方向が相違することになり、そして配向ドメインの境界が画素内でなく、隣接する画素電極間隙に位置することとなる。画素電極間隙は、通常データライン、ゲートライン等が配置されており、開口部ではなく透過率に影響を及ぼさない領域である。従って、透過率(実効的開口率)低下につながるドメインの境界を画素間にのみ配置する事が可能となる。
【0013】
本発明において、画素間の配向分割手段の好ましい例の一つとしては、図1(a)に示すように、RGB各色毎にITO等の画素電極1が設けられ、ガラス基板2aとデータライン2bと平坦化膜2cなどからなる画素電極基板2に対向する対向基板3に、一画素おきに設けられる突起物RIBが挙げられる。図中、非電界印加時の液晶LCの配向は、図1(a)に示したとおりであるが、電界印加時には図1(b)に示すように画素毎に液晶LCの配向を分割することができる。ここで、点線は、ドメインの境界線を示している。
【0014】
ここで、より効率的に配向分割を行うためには、突起物RIBの配向分割規制力を画素電極間隙1Sの配向分割規制力より強くすること好ましい。具体的には、図1(a)に示すように、突起物RIBの幅d及び高さhと、突起物RIBに対向する位置にある画素電極間隙1Sの幅w1が次式
【0015】
【数3】
d≧w1
h>0.05×d
を満足することが好ましい。
【0016】
また、強い分割規制力を得るためには突起物RIBの断面が三角形に近いものが好ましい。また、突起物RIBの誘電率が液晶に比べ小さい方がより傾斜した電界を形成できるので好ましく、4以下が好ましい。
【0017】
また、突起物RIBの電気特性が、液晶材料の時定数をτLC(30Hz)とし、突起物RIBの時定数をτRIB(30Hz)としたときに、次式
【0018】
【数4】
0.1×τLC<τRIB<10×τLC
を満足することがより好ましい。これは、液晶材料と突起物RIBとの時定数が大きく異なると、突起物RIB上に電荷が蓄積して、焼き付きやフリッカが生じて表示品位を著しく低下させるおそれがある。
【0019】
また、配向分割手段としての突起物RIBの別の態様としては、図2(a)に示すように、扁平なくさび型の突起物RIBを設けてもよく、図2(b)に示すように、ノコギリ歯型の突起物RIBを設けてもよい。また、図2(c)に示すように、突起物の逆の形態、即ちくさび型溝Qを設けてもよい。この場合、対向基板3には、配向分割手段を設けなくてもよい。
【0020】
本発明において、上述した突起物以外の配向分割手段としては、図3に示すように、対向基板3の共通電極(対向電極)4に一画素おきに設けるスリット部3S(対向電極スリット)が挙げられる。この場合、スリット部3Sの配向分割規制力は、画素電極間隙1Sの配向分割規制力よりも強くする必要がある。具体的には、スリット部3Sの幅w2を画素電極間隙1Sの幅w1よりも大きくする。
【0021】
また、図1〜図3の態様において、図4に示すように配向分割手段(突起物RIB)の位置に対応しない画素電極間隙1S′(幅w3)は、積極的に配向分割手段として機能させる必要があり、また、配向分割手段(突起物RIB)の位置に対応する画素電極間隙1S(幅w1)は、配向分割手段(突起物RIB)の配向分割規制力よりも弱い規制力でなければならない。従って、画素電極間隙1S′の配向分割規制力が画素電極間隙1Sの配向分割規制力より強くなるように、画素電極間隙1S′の幅w3を画素電極間隙1Sの幅w1よりも広くすることが好ましい。
【0022】
以上説明した突起物やスリット以外の配向分割手段としては、特に二画素おき以上の配向分割を意図する場合には、マスクラビング法や光配向膜法などにより形成される配向膜を挙げることができる。
【0023】
なお、1画素のサイズが大きすぎる場合には、斜めから液晶表示素子を観察した際に少なくとも1画素おきに視野角特性が異なるため、表示特性が劣化することが考えられる。また、画素ピッチが長すぎると良好な配向制御ができないことも予想される。従って、少なくとも1辺の画素ピッチが60μm以下であることが好ましい(図5)。
【0024】
各色がストライプ上に形成されている場合、配向分割の形態は図6(a)又は(b)に示すものが考えられる。ここで、矢印は液晶が倒れる方向(配向方向)を示し、ハッチング部は突起物の位置を示している。
【0025】
図6(a)及び(b)の態様のうち、液晶表示装置を斜めから観察したときに良好な表示特性が得られるのは、図6(b)に示すような画素の液晶の配向方向が市松模様状に配列している態様である。
【0026】
ところで、以上説明した垂直配向型の液晶表示素子の電界複屈折モードは、その透過率が光の波長に大きく依存し、ある波長に対してλ/2になるように設定するとその他の波長の光の透過率が低くなってしまい白表示での色付きとなってしまう。これをカラーフィルターで補償しようとすると結果として透過率が低くなってしまう。
【0027】
また、この色付きの現象は正面より斜めから見た場合のほうが顕著であり、例えば視感度を考慮にいれた透過率が最大となるように白表示時の液晶のリタデーションを設定すると(波長550nmの光に対するリタデーションが275nm)斜めから観察したとき黄色に見えてしまうため、リタデーション透過率最大条件より小さい値に設定する必要がある。RGB各画素でセルギャップを最適値すなわち白表示時に液晶層リタデーションを各色の主透過波長のおよそλ/2になるようにすればこの問題は解決される。
【0028】
具体的には、少なくとも一方の基板に色分解フィルタが形成されている場合に、各色の主波長λと白表示のときの液晶層のリタデーションΔndが0.85×λ/2〜1.15×λ/2の範囲になるように各色で液晶層の厚さdを異ならせればよい。また、色分解フィルター層の厚さを各色間で変えることにより、各色の液晶層の厚さdを制御してもよい。
【0029】
本発明は、別の観点からみると、画素電極が設けられた画素電極基板とそれに対向するように配置される対向基板と、それらの間に挟持される液晶とから少なくとも構成され、液晶が非電界印加時に該一対の両基板に対して垂直に配向している液晶表示素子の片方の基板もしくは両方の基板に、電界印加時の液晶の配向を1画素おき又は複数画素おきに分割する配向分割手段を設けることを特徴とする垂直配向液晶の画素間配向分割方法としてとらえることができる。従って、この画素間配向分割方法も本発明の一部となる。
【0030】
【実施例】
実施例1
本発明の液晶表示素子の一実施態様の概略断面図を図7に示す。この液晶表示素子は、ガラス基板101にデータライン102、平坦化膜103、画素電極104及び配向膜105が形成されたTFT基板と、ガラス基板120の片面に画素に対応して形成されたRGBの各色のカラーフィルタ121、共通電極122及び一画素おきに設けられた突起物RIB、及び配向膜123からなるCF基板との間に、垂直配向した液晶層130が挟持された構造を有する。液晶表示素子の両面にはそれぞれ偏光板131及び132が形成されており、CF基板と偏光板131との間には位相差板133が形成された構造を有する。
【0031】
この構造の液晶表示素子は、以下に説明するように製造された。
【0032】
即ち、ガラス基板120のカラーフィルタ121上に、100nm厚のITOからなる共通電極122を形成し、その上に、図6(a)のように画素の間にそつてストライプ状に突起物RIBを配置した。この突起物RIBは、感光性樹脂によりパターニング形成したものであり、より好ましい形状をえるため120〜180℃で5分間べーク後、200℃以上の高い温度で本焼成を行った。その誘電率は3.5であり、形状は幅10μm、高さ1.5μmの断面がかまぼこ型であった。
【0033】
次に突起物RIBが形成された側のCF基板の面に配向膜123を形成した。この配向膜123は、印刷されたポリイミド系垂直配向膜であり、180℃で1時間焼成することにより形成した。配向膜123の膜厚は50〜100nmであった。この配向膜についてラビング処理を施さなかった。
【0034】
TFT基板側には、図7に省略されているが、アクティブ駆動するためのTFT素子及び配線等が形成されている。平坦化膜103の厚さは3μmであり、感光性樹脂からパターニング形成したものである。画素電極104は厚さ100nmのITOから形成され、各画素の大きさは、横40μmで、縦120μmであった。画素電極間隙1Sの幅w1及び画素電極間隙1S′の幅w3はいずれも7μmとした(図4)。その上にはCF基板側と同様な配向膜105を形成した。
【0035】
これらの基板の間に3.5μm径のアクリル系スペーサを散布し、重ね合わせ、その後、液晶を真空中で基板間に注入した。液晶はΔε=−4、Δn=0.1の材料を使用した。
【0036】
得られた液晶表示素子に偏光板131(TACフィルム)及び132を、クロスニコルの方向に配置した。視野角特性を考慮にいれ、偏光板131とガラス基板120の間には厚み方向(Z軸)にのみ位相差をもつ位相差板133((nx−nz)d=100(nx=面内方向の屈折率、nz=厚み方向の屈折率、d=厚さ))を配置した。なお、偏光板131として用いたTACフィルムもz軸方向に位相差をもっており同様の効果をもっている。
【0037】
また、比較例1として画素内の配向を2分割するように、全ての画素の真中に突起物を配置した液晶表示素子も同様に作製した。
【0038】
得られた実施例1及び比較例1の液晶表示素子をIH反転駆動させ、比較したところ、実施例1の液晶表示素子の方が、白表示時(画素に4.5V印加時)の透過率が15%高い値であった。また、全方位から反転等のない良好な視野角特性が得られた。
【0039】
実施例2
実施例1の突起物に代えて、CF基板の共通電極に幅10μmのスリット部を形成した。得られた液晶表示素子は、画素毎に配向分割し、実施例1の場合と同様に良好な視野角特性がえられた。
【0040】
実施例3
実施例1の画素電極間隙1Sの幅w1を4μmとし、w3を10μmとした。実施例1より残像が少ない表示特性が得られた。
【0041】
実施例4
実施例1のカラーフィルタ層の厚みを、R(1.0μm)、G(1.2μm)、B(1.5μm)とし、散布したスペーサの径を4.0μmとした。実施例1より白表示時が明るく、視野角方向において色付きが少ない特性が得られた。
【0042】
実施例5
実施例1における突起物の配置を図6(b)のように配置した。視野角方向から観察した際、実施例1では、縦方向にストライプ状の多少のムラが観察されたが、本実施例では視野角方向においても均一な画質であった。
【0043】
【発明の効果】
本発明の垂直配向の液晶表示素子は、画素内分割ではなく画素間配向分割されているために、透過率(実効的開口率)低下につながるドメインの境界を画素間にのみ配置することが可能である。
【図面の簡単な説明】
【図1】本発明の液晶表示素子の配向分割手段の説明図である。
【図2】本発明の液晶表示素子の配向分割手段の説明図である。
【図3】本発明の液晶表示素子の配向分割手段の説明図である。
【図4】本発明の液晶表示素子の配向分割手段の説明図である。
【図5】本発明による配向分割の形態と画素ピッチの説明図である。
【図6】本発明による配向分割の形態の説明図である。
【図7】本発明の液晶表示素子の概略断面図である。
【図8】従来の配向分割の手法の説明図である。
【符号の説明】
1 画素電極、1S,1S′ 画素電極間隙、2 画素電極基板、3 対向基板、4 共通電極、RIB 突起物、3S スリット、LC 液晶
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal display element in which liquid crystals are vertically aligned without applying an electric field to a substrate.
[0002]
[Prior art]
As one technique for widening the viewing angle of a liquid crystal display, a technique (vertical alignment technique) for aligning the major axis direction of the liquid crystal perpendicular to the substrate when a non-electric field is applied has been proposed.
[0003]
By the way, in order to obtain a sufficient wide viewing angle characteristic, it is necessary to divide a pixel so as to have a plurality of different orientation directions. As the dividing method, a method of providing a slit portion on an electrode, a method of providing a projection (rib) on the substrate surface, and the like have been proposed (Japanese Patent No. 29473505).
[0004]
Here, when the slit portion is provided in the electrode, as shown in FIG. 8A, the liquid crystal LC in the vicinity of the slit portion S sandwiched between the electrodes E is vertically aligned when off (when no electric field is applied). However, as shown in FIG. 8B, the direction of the electric lines of force EL is directed obliquely when turned on (when an electric field is applied), and the liquid crystal LC is in the direction of the arrow along the electric lines of force (FIG. 8 ( fall to a)). Accordingly, when an electric field is applied, the liquid crystal alignment is divided and a domain is formed in the slit portion S. Furthermore, since the surrounding liquid crystal also falls along the liquid crystal of the slit part S, as a result, when an electric field is applied, a domain is formed by dividing and aligning with the dotted line in FIG. 8B as a boundary. Here, a gap between adjacent pixel electrodes functions as a slit portion. In addition, the dotted line in Fig.8 (a) has shown the direction of the electric force line at the time of applying an electric field.
[0005]
When the protrusion (rib) RIB is provided on the electrode E on the substrate surface, as shown in FIG. 8C, the liquid crystal LC is obliquely aligned along the inclination of the protrusion RIB when turned off. As shown in FIG. 8D, the direction of the electric lines of force EL is directed obliquely when turned on, and the entire liquid crystal LC falls in the direction of the arrow (FIG. 8C) along the electric lines of force EL. In general, since the dielectric constant of the protrusion RIB is lower than the dielectric constant of the liquid crystal LC, the lines of electric force are inclined, and the alignment of the liquid crystal is divided when an electric field is applied by the same effect as the slit. As a result, when the electric field is applied, domains that are divided and oriented with the dotted line in FIG. 8D as a boundary are formed. In addition, the dotted line in FIG.8 (c) has shown the direction of the electric force line at the time of applying an electric field.
[0006]
[Problems to be solved by the invention]
However, in these methods, since one pixel is divided, there is a problem in that the light transmittance is reduced, and the boundary of alignment domains where light is not transmitted is generated in the display region, thereby reducing the effective aperture ratio. For example, since the pixel electrode gap of the pixel electrode substrate functions as the slit portion of the electrode described above, when an electric field is applied, the liquid crystal LC falls down from both ends inward in one pixel as shown in FIG. Domain boundaries occur in the pixels.
[0007]
An object of the present invention is to solve the above-described conventional technique, and it is an object of the present invention to enable vertical alignment liquid crystal display elements to be divided into inter-pixel alignments instead of intra-pixel divisions.
[0008]
[Means for solving the problems]
The inventors divide the orientation of the liquid crystal in different directions every other pixel or every other pixel when an electric field is applied, so that one of the pixel electrode substrate and the counter substrate of the vertical alignment type liquid crystal display element or It has been found that the above-mentioned object can be achieved by providing alignment dividing means for dividing the alignment of liquid crystal in different directions every other pixel or every other pixel when an electric field is applied to both substrates, and the present invention has been completed.
[0009]
That is, the present invention includes at least a pixel electrode substrate provided with a pixel electrode, a counter substrate disposed so as to be opposed to the pixel electrode substrate, and a liquid crystal sandwiched between them. In the liquid crystal display element that is aligned perpendicular to both the substrates, an alignment dividing means for dividing the liquid crystal alignment in different directions is provided for every other pixel or every other pixel when an electric field is applied, and an alignment dividing means for the counter substrate is provided. A liquid crystal display element, characterized in that the width of the pixel electrode gap of the pixel electrode substrate corresponding to the provided position is narrower than the width of the pixel electrode gap corresponding to the position where the alignment dividing means is not provided. To provide .
[0010]
In addition, the present invention includes at least a pixel electrode substrate provided with a pixel electrode, a counter substrate disposed so as to face the pixel electrode substrate, and a liquid crystal sandwiched therebetween, and the pair of liquid crystals is applied when no electric field is applied. With respect to a liquid crystal display element that is aligned perpendicularly to both of the substrates, the liquid crystal alignment is divided into different directions every other pixel or every other pixel when applying an electric field to one or both substrates of the liquid crystal display element. An alignment division unit is provided , and the width of the pixel electrode gap of the pixel electrode substrate corresponding to the position where the alignment division unit of the counter substrate is provided is greater than the width of the pixel electrode gap corresponding to the position where the alignment division unit is not provided. And a method for dividing the alignment between pixels of a vertically aligned liquid crystal, characterized in that it is also narrowed .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described by taking a TFT LCD as an example. However, the present invention is not limited to a TFT LCD but can be applied to a simple matrix drive LCD or the like.
[0012]
In the liquid crystal display element of the present invention, the orientation of the liquid crystal is divided in different directions every other pixel or every plurality of pixels when an electric field is applied. Specifically, alignment dividing means for dividing the alignment of liquid crystal in different directions every other pixel or every plurality of pixels when an electric field is applied is provided on one or both substrates. In this case, it is preferable that the alignment division regulating force of the alignment dividing means is stronger than the alignment division regulating force due to the electric field of the pixel electrode. As a result, when the alignment dividing means is provided every other pixel, the alignment direction is different for each pixel, and the boundary of the alignment domain is located not in the pixel but in the adjacent pixel electrode gap. . The pixel electrode gap is usually an area where data lines, gate lines, and the like are arranged, and is not an opening but an area that does not affect the transmittance. Therefore, it is possible to arrange domain boundaries that lead to a decrease in transmittance (effective aperture ratio) only between pixels.
[0013]
In the present invention, as a preferred example of the alignment dividing means between pixels, as shown in FIG. 1A, a pixel electrode 1 such as ITO is provided for each RGB color, and a glass substrate 2a and a data line 2b are provided. And protrusions RIB provided on every other pixel on the counter substrate 3 facing the pixel electrode substrate 2 made of the planarizing film 2c and the like. In the figure, the alignment of the liquid crystal LC when a non-electric field is applied is as shown in FIG. 1A, but when the electric field is applied, the alignment of the liquid crystal LC is divided for each pixel as shown in FIG. Can do. Here, the dotted line indicates the boundary line of the domain.
[0014]
Here, in order to perform the alignment division more efficiently, it is preferable to make the alignment division regulating force of the projection RIB stronger than the alignment division regulating force of the pixel electrode gap 1S. Specifically, as shown in FIG. 1A, the width d and height h of the protrusion RIB and the width w1 of the pixel electrode gap 1S at the position facing the protrusion RIB are expressed by the following equation.
[Equation 3]
d ≧ w1
h> 0.05 × d
Is preferably satisfied.
[0016]
Further, in order to obtain a strong division restricting force, it is preferable that the protrusion RIB has a cross section close to a triangle. Further, it is preferable that the protrusion RIB has a smaller dielectric constant than the liquid crystal because an inclined electric field can be formed.
[0017]
Further, the electrical characteristics of the protrusion RIB are as follows when the time constant of the liquid crystal material is τ LC (30 Hz) and the time constant of the protrusion RIB is τ RIB (30 Hz):
[Expression 4]
0.1 × τ LCRIB <10 × τ LC
Is more preferable. This is because, if the time constants of the liquid crystal material and the protrusion RIB are greatly different from each other, electric charges accumulate on the protrusion RIB, and burn-in and flicker may occur, thereby significantly reducing the display quality.
[0019]
Further, as another aspect of the protrusion RIB as the orientation dividing means, a flat wedge-shaped protrusion RIB may be provided as shown in FIG. 2A, and as shown in FIG. A sawtooth-shaped protrusion RIB may be provided. Further, as shown in FIG. 2 (c), a reverse shape of the protrusion, that is, a wedge-shaped groove Q may be provided. In this case, the counter substrate 3 does not have to be provided with the alignment dividing means.
[0020]
In the present invention, as the orientation dividing means other than the protrusions described above, as shown in FIG. 3, slit portions 3S (counter electrode slits) provided every other pixel on the common electrode (counter electrode) 4 of the counter substrate 3 are listed. It is done. In this case, the alignment division regulating force of the slit portion 3S needs to be stronger than the alignment division regulating force of the pixel electrode gap 1S. Specifically, the width w2 of the slit portion 3S is made larger than the width w1 of the pixel electrode gap 1S.
[0021]
1 to 3, the pixel electrode gap 1S ′ (width w3) that does not correspond to the position of the alignment dividing means (projection RIB) as shown in FIG. 4 is positively made to function as the alignment dividing means. In addition, the pixel electrode gap 1S (width w1) corresponding to the position of the alignment dividing means (projection RIB) is not a restriction force weaker than the alignment division restriction force of the alignment division means (projection RIB). Don't be. Therefore, the width w3 of the pixel electrode gap 1S ′ is made wider than the width w1 of the pixel electrode gap 1S so that the alignment division regulating force of the pixel electrode gap 1S ′ is stronger than the alignment division regulating force of the pixel electrode gap 1S. preferable.
[0022]
As the alignment dividing means other than the protrusions and slits described above, an alignment film formed by a mask rubbing method, a photo-alignment film method, or the like can be cited, particularly when alignment division every two or more pixels is intended. .
[0023]
In addition, when the size of one pixel is too large, when viewing the liquid crystal display element from an oblique direction, the viewing angle characteristic is different at least every other pixel. It is also expected that good alignment control cannot be achieved if the pixel pitch is too long. Therefore, it is preferable that the pixel pitch of at least one side is 60 μm or less (FIG. 5).
[0024]
In the case where each color is formed on a stripe, the form of orientation division may be as shown in FIG. 6 (a) or (b). Here, the arrow indicates the direction in which the liquid crystal falls (alignment direction), and the hatched portion indicates the position of the protrusion.
[0025]
6A and 6B, when the liquid crystal display device is observed obliquely, good display characteristics are obtained because the alignment direction of the liquid crystal of the pixel as shown in FIG. It is the aspect which is arranged in a checkered pattern.
[0026]
By the way, the electric field birefringence mode of the above-described vertical alignment type liquid crystal display element greatly depends on the wavelength of light, and if it is set to be λ / 2 with respect to a certain wavelength, the light of other wavelengths As a result, the transmissivity of the display becomes low and the white display becomes colored. Attempting to compensate for this with a color filter results in a low transmittance.
[0027]
Further, this colored phenomenon is more prominent when viewed obliquely from the front. For example, when the retardation of the liquid crystal at the time of white display is set so that the transmittance considering the visibility is maximized (with a wavelength of 550 nm). When the retardation with respect to light is 275 nm), it looks yellow when observed obliquely, so it is necessary to set a value smaller than the maximum retardation transmittance. This problem can be solved if the cell gap is set to an optimum value for each RGB pixel, that is, the liquid crystal layer retardation is set to approximately λ / 2 of the main transmission wavelength of each color during white display.
[0028]
Specifically, when a color separation filter is formed on at least one substrate, the main wavelength λ of each color and the retardation Δnd of the liquid crystal layer when displaying white are 0.85 × λ / 2 to 1.15 ×. The thickness d of the liquid crystal layer may be different for each color so as to be in the range of λ / 2. Further, the thickness d of the liquid crystal layer of each color may be controlled by changing the thickness of the color separation filter layer between the colors.
[0029]
From another viewpoint, the present invention includes at least a pixel electrode substrate provided with a pixel electrode, a counter substrate disposed so as to oppose the pixel electrode substrate, and a liquid crystal sandwiched between them. Alignment division that divides the orientation of the liquid crystal when an electric field is applied to every other pixel or every other pixel on one or both substrates of the liquid crystal display element that is oriented perpendicular to the pair of both substrates when an electric field is applied It can be regarded as a method for dividing the alignment of the vertically aligned liquid crystal between the pixels, characterized by providing means. Therefore, this inter-pixel alignment division method is also a part of the present invention.
[0030]
【Example】
Example 1
FIG. 7 shows a schematic cross-sectional view of one embodiment of the liquid crystal display element of the present invention. The liquid crystal display element includes a TFT substrate in which a data line 102, a planarizing film 103, a pixel electrode 104, and an alignment film 105 are formed on a glass substrate 101, and an RGB RGB formed on one side of the glass substrate 120 corresponding to the pixels. A vertically aligned liquid crystal layer 130 is sandwiched between a color filter 121 of each color, a common electrode 122, a protrusion RIB provided every other pixel, and a CF substrate formed of an alignment film 123. Polarizing plates 131 and 132 are formed on both surfaces of the liquid crystal display element, respectively, and a retardation plate 133 is formed between the CF substrate and the polarizing plate 131.
[0031]
The liquid crystal display element having this structure was manufactured as described below.
[0032]
That is, a common electrode 122 made of ITO having a thickness of 100 nm is formed on the color filter 121 of the glass substrate 120, and the protrusions RIB are formed in stripes between the pixels as shown in FIG. Arranged. This protrusion RIB was formed by patterning with a photosensitive resin, and was baked at a high temperature of 200 ° C. or higher after baking at 120 to 180 ° C. for 5 minutes in order to obtain a more preferable shape. Its dielectric constant was 3.5, the shape was 10 μm wide and 1.5 μm high in cross section.
[0033]
Next, an alignment film 123 was formed on the surface of the CF substrate on which the protrusions RIB were formed. This alignment film 123 is a printed polyimide vertical alignment film, and was formed by baking at 180 ° C. for 1 hour. The film thickness of the alignment film 123 was 50 to 100 nm. The alignment film was not rubbed.
[0034]
Although not shown in FIG. 7, TFT elements and wirings for active driving are formed on the TFT substrate side. The planarizing film 103 has a thickness of 3 μm and is formed by patterning from a photosensitive resin. The pixel electrode 104 was formed of ITO having a thickness of 100 nm, and the size of each pixel was 40 μm wide and 120 μm long. The width w1 of the pixel electrode gap 1S and the width w3 of the pixel electrode gap 1S ′ are both 7 μm (FIG. 4). An alignment film 105 similar to that on the CF substrate side was formed thereon.
[0035]
An acrylic spacer having a diameter of 3.5 μm was dispersed between these substrates and superimposed, and then liquid crystal was injected between the substrates in a vacuum. The liquid crystal used was a material with Δε = −4 and Δn = 0.1.
[0036]
Polarizing plates 131 (TAC film) and 132 were arranged in the crossed Nicols direction on the obtained liquid crystal display element. In consideration of viewing angle characteristics, a retardation plate 133 ((nx−nz) d = 100 (nx = in-plane direction) having a retardation only in the thickness direction (Z axis) between the polarizing plate 131 and the glass substrate 120. Nz = refractive index in the thickness direction, d = thickness)). Note that the TAC film used as the polarizing plate 131 has a phase difference in the z-axis direction and has the same effect.
[0037]
Further, as Comparative Example 1, a liquid crystal display element in which a protrusion was arranged in the middle of all the pixels so as to divide the orientation in the pixel into two was similarly manufactured.
[0038]
When the obtained liquid crystal display elements of Example 1 and Comparative Example 1 were subjected to IH inversion driving and compared, the liquid crystal display element of Example 1 was more transparent at the time of white display (when 4.5 V was applied to the pixel). Was 15% higher. Also, good viewing angle characteristics without inversion and the like were obtained from all directions.
[0039]
Example 2
Instead of the protrusion of Example 1, a slit portion having a width of 10 μm was formed in the common electrode of the CF substrate. The obtained liquid crystal display element was divided in orientation for each pixel, and good viewing angle characteristics were obtained as in the case of Example 1.
[0040]
Example 3
The width w1 of the pixel electrode gap 1S in Example 1 was 4 μm, and w3 was 10 μm. Display characteristics with less afterimage than Example 1 were obtained.
[0041]
Example 4
The thickness of the color filter layer of Example 1 was R (1.0 μm), G (1.2 μm), and B (1.5 μm), and the dispersed spacer diameter was 4.0 μm. Compared with Example 1, the white display was brighter and the characteristic of less coloring in the viewing angle direction was obtained.
[0042]
Example 5
The arrangement of the protrusions in Example 1 was arranged as shown in FIG. When observed from the viewing angle direction, in Example 1, some uneven stripes were observed in the vertical direction, but in this example, the image quality was uniform in the viewing angle direction.
[0043]
【The invention's effect】
Since the vertically aligned liquid crystal display element of the present invention is not divided into pixels but divided between pixels, it is possible to arrange domain boundaries that lead to a decrease in transmittance (effective aperture ratio) only between pixels. It is.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of alignment dividing means of a liquid crystal display element of the present invention.
FIG. 2 is an explanatory diagram of alignment dividing means of the liquid crystal display element of the present invention.
FIG. 3 is an explanatory diagram of alignment dividing means of the liquid crystal display element of the present invention.
FIG. 4 is an explanatory diagram of alignment dividing means of the liquid crystal display element of the present invention.
FIG. 5 is an explanatory diagram of a form of alignment division and a pixel pitch according to the present invention.
FIG. 6 is an explanatory diagram of a form of orientation division according to the present invention.
FIG. 7 is a schematic cross-sectional view of a liquid crystal display element of the present invention.
FIG. 8 is an explanatory diagram of a conventional alignment division method.
[Explanation of symbols]
1 pixel electrode, 1S, 1S ′ pixel electrode gap, 2 pixel electrode substrate, 3 counter substrate, 4 common electrode, RIB protrusion, 3S slit, LC liquid crystal

Claims (14)

画素電極が設けられた画素電極基板とそれに対向するように配置される対向基板と、それらの間に挟持される液晶とから少なくとも構成され、液晶が非電界印加時に該一対の両基板に対して垂直に配向する液晶表示素子において、
電界印加時に1画素おき又は複数画素おきに液晶の配向異なる方向に分割させる配向分割手段が設けられ、
前記対向基板の前記配向分割手段が設けられている位置に対応する画素電極基板の画素電極間隙の幅が、前記配向分割手段が設けられていない位置に対応する画素電極間隙の幅よりも狭くされて成ることを特徴とする液晶表示素子。
It comprises at least a pixel electrode substrate provided with a pixel electrode, a counter substrate disposed so as to oppose the pixel electrode, and a liquid crystal sandwiched therebetween, and the liquid crystal is applied to the pair of substrates when no electric field is applied. In a vertically aligned liquid crystal display element,
An alignment dividing means for dividing the alignment of the liquid crystal in different directions every other pixel or every other pixel when an electric field is applied is provided,
The width of the pixel electrode gap of the pixel electrode substrate corresponding to the position where the alignment dividing means of the counter substrate is provided is made narrower than the width of the pixel electrode gap corresponding to the position where the alignment dividing means is not provided. A liquid crystal display element characterized by comprising:
前記配向分割手段が、1画素おき又は複数画素おきに片方の基板もしくは両方の基板に設けられている請求項1記載の液晶表示素子。 The Oriented dividing means, every other pixel or every other pixel in the liquid crystal display device according to claim 1 provided on one substrate or both substrates. 配向分割手段の配向分割規制力が、画素電極の電界による配向分割規制力より強く、1画素おき又は複数画素おきに液晶の配向方向が相違する請求項1又は2記載の液晶表示素子。Oriented alignment division regulating force dividing means, stronger alignment division regulating force by the electric field of the pixel electrode, the liquid crystal display device according to claim 1 or 2, wherein the alignment direction of the liquid crystal is different in every other pixel or every other pixel. 配向分割手段が、対向基板の画素間に形成された突起物である請求項1〜3のいずれかに記載の液晶表示素子。The liquid crystal display element according to claim 1, wherein the alignment dividing means is a protrusion formed between pixels of the counter substrate. 突起物の幅d及び高さhと、突起物に対向する位置にある画素電極間隙の幅w1が次式
Figure 0004092854
の関係にある請求項4記載の液晶表示素子。
The width d and height h of the protrusion and the width w1 of the pixel electrode gap at the position facing the protrusion are given by
Figure 0004092854
The liquid crystal display element according to claim 4, wherein
突起物の誘電率が4以下である請求項4又は5記載の液晶表示素子。  6. The liquid crystal display element according to claim 4, wherein the protrusion has a dielectric constant of 4 or less. 突起物の電気特性が、液晶材料の時定数をτLC(30Hz)とし、突起物の時定数をτRIB(30Hz)としたときに、次式
Figure 0004092854
を満足する請求項4〜6のいずれかに記載の液晶表示素子。
When the time constant of the liquid crystal material is τ LC (30 Hz) and the time constant of the protrusion is τ RIB (30 Hz),
Figure 0004092854
The liquid crystal display element in any one of Claims 4-6 satisfying these.
配向分割手段が、対向基板の画素間に形成された対向電極スリットである請求項1又は2記載の液晶表示素子。 3. The liquid crystal display element according to claim 1, wherein the orientation dividing means is a counter electrode slit formed between pixels of the counter substrate. 対向電極スリットの幅がそのスリット位置に対応した画素電極基板の画素電極間隙の幅より広い請求項記載の液晶表示素子。The liquid crystal display device having a width wider claim 1, wherein the pixel electrode gap of the pixel electrode substrate width of the counter electrode slits corresponding to the slit position. 少なくとも1辺の画素ピッチが60μm以下である請求項1〜のいずれかに記載の液晶表示素子。The liquid crystal display device according to any one of claims 1-9, at least one side of the pixel pitch is 60μm or less. 画素の配列がストライプ配列であり、且つ画素の液晶配向の方向が市松模様状に配列している請求項1〜1のいずれかに記載の液晶表示素子。Arrangement of pixels is a stripe array, and a liquid crystal display device according to any one of claims 1 to 1 0 the direction of the liquid crystal alignment of the pixels are arranged in a checkered pattern. 少なくとも一方の基板に色分解フィルタが形成されており、各色の主波長λと白表示のときの液晶層のリタデーションΔndが0.85×λ/2〜1.15×λ/2の範囲になるように各色で液晶層の厚さdが異なる請求項1〜11のいずれかに記載の液晶表示素子。  A color separation filter is formed on at least one substrate, and the main wavelength λ of each color and the retardation Δnd of the liquid crystal layer when displaying white are in the range of 0.85 × λ / 2 to 1.15 × λ / 2. The liquid crystal display element according to claim 1, wherein the thickness d of the liquid crystal layer is different for each color. 色分解フィルター層の厚さを各色で変えることにより、各色で液晶層の厚さdが異なる請求項1記載の液晶表示素子。By varying the thickness of the color separation filter layer for each color, the liquid crystal display device having a thickness of d is different according to claim 1 wherein the liquid crystal layer for each color. 画素電極が設けられた画素電極基板とそれに対向するように配置される対向基板と、それらの間に挟持される液晶とから少なくとも構成され、液晶が非電界印加時に該一対の両基板に対して垂直に配向する液晶表示素子に対し、
前記液晶表示素子の片方の基板もしくは両方の基板に、電界印加時に1画素おきに又は複数画素おきに液晶配向を異なる方向に分割する配向分割手段を設け、
前記対向基板の前記配向分割手段が設けられている位置に対応する画素電極基板の画素電極間隙の幅を、前記配向分割手段が設けられていない位置に対応する画素電極間隙の幅よりも狭くすることを特徴とする垂直配向液晶の画素間配向分割方法。
It comprises at least a pixel electrode substrate provided with a pixel electrode, a counter substrate disposed so as to oppose the pixel electrode, and a liquid crystal sandwiched therebetween, and the liquid crystal is applied to the pair of substrates when no electric field is applied. to the liquid crystal display element to be oriented vertically,
One or both substrates of the liquid crystal display element are provided with alignment dividing means for dividing the liquid crystal alignment in different directions every other pixel or every plurality of pixels when an electric field is applied,
The width of the pixel electrode gap of the pixel electrode substrate corresponding to the position where the alignment dividing means is provided on the counter substrate is made narrower than the width of the pixel electrode gap corresponding to the position where the alignment dividing means is not provided. An inter-pixel alignment division method for vertically aligned liquid crystals.
JP2000144712A 2000-05-17 2000-05-17 LIQUID CRYSTAL DISPLAY ELEMENT AND METHOD FOR DISTRIBUTION OF INTER-PIXEL ORIENTATION OF VERTICALLY ORIENTED LIQUID CRYSTAL Expired - Fee Related JP4092854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000144712A JP4092854B2 (en) 2000-05-17 2000-05-17 LIQUID CRYSTAL DISPLAY ELEMENT AND METHOD FOR DISTRIBUTION OF INTER-PIXEL ORIENTATION OF VERTICALLY ORIENTED LIQUID CRYSTAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000144712A JP4092854B2 (en) 2000-05-17 2000-05-17 LIQUID CRYSTAL DISPLAY ELEMENT AND METHOD FOR DISTRIBUTION OF INTER-PIXEL ORIENTATION OF VERTICALLY ORIENTED LIQUID CRYSTAL

Publications (3)

Publication Number Publication Date
JP2001324715A JP2001324715A (en) 2001-11-22
JP2001324715A5 JP2001324715A5 (en) 2006-12-28
JP4092854B2 true JP4092854B2 (en) 2008-05-28

Family

ID=18651327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000144712A Expired - Fee Related JP4092854B2 (en) 2000-05-17 2000-05-17 LIQUID CRYSTAL DISPLAY ELEMENT AND METHOD FOR DISTRIBUTION OF INTER-PIXEL ORIENTATION OF VERTICALLY ORIENTED LIQUID CRYSTAL

Country Status (1)

Country Link
JP (1) JP4092854B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101160825B1 (en) 2004-08-18 2012-06-29 삼성전자주식회사 Liquid crystal display
KR101380493B1 (en) * 2007-04-18 2014-04-01 엘지디스플레이 주식회사 Color filter substrate for liquid crystal display and manufacturing method thereof
JP4720862B2 (en) * 2008-07-16 2011-07-13 凸版印刷株式会社 Photosensitive material
JP4720863B2 (en) * 2008-07-17 2011-07-13 凸版印刷株式会社 Color filter
JP5449930B2 (en) * 2009-09-03 2014-03-19 株式会社ジャパンディスプレイ Liquid crystal display
WO2018116427A1 (en) * 2016-12-21 2018-06-28 堺ディスプレイプロダクト株式会社 Liquid crystal display panel and liquid crystal display device
US11131888B2 (en) 2017-05-22 2021-09-28 Sakai Display Products Corporation Display panel and display apparatus

Also Published As

Publication number Publication date
JP2001324715A (en) 2001-11-22

Similar Documents

Publication Publication Date Title
US6466290B2 (en) Fringe field switching mode LCD
US7982836B2 (en) Liquid crystal display device
JP5093714B2 (en) Liquid crystal display
JP3066255B2 (en) Liquid crystal display
KR20140042716A (en) Display device and electronic equipment
JPH11133408A (en) Horizontal electric field type liquid crystal display device
JPH10268309A (en) Liquid crystal display device
JP3019819B2 (en) Active matrix type liquid crystal display device and display method thereof
JP3267224B2 (en) Active matrix type liquid crystal display
JP3308154B2 (en) Liquid crystal panel and its driving method
JPH07318940A (en) Liquid crystal display device
JP2010097226A (en) Liquid crystal display element
JP4541129B2 (en) Liquid crystal display
JP4092854B2 (en) LIQUID CRYSTAL DISPLAY ELEMENT AND METHOD FOR DISTRIBUTION OF INTER-PIXEL ORIENTATION OF VERTICALLY ORIENTED LIQUID CRYSTAL
US6392731B1 (en) Liquid crystal display device
JP2002214613A (en) Liquid crystal display
JPH07318959A (en) Liquid crystal display device
JP2904182B2 (en) Active matrix type liquid crystal display
US20040252265A1 (en) Liquid crystal display
JP4499773B2 (en) Liquid crystal display element
KR101108387B1 (en) Twisted nematic mode liquid crystal display device and method for manufacturing lcd
JP6180125B2 (en) Liquid crystal display
JPH11344729A (en) Active matrix liquid crystal display device
JPH08262426A (en) Liquid crystal display element
JP6016585B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees