JP3308154B2 - Liquid crystal panel and its driving method - Google Patents
Liquid crystal panel and its driving methodInfo
- Publication number
- JP3308154B2 JP3308154B2 JP5654396A JP5654396A JP3308154B2 JP 3308154 B2 JP3308154 B2 JP 3308154B2 JP 5654396 A JP5654396 A JP 5654396A JP 5654396 A JP5654396 A JP 5654396A JP 3308154 B2 JP3308154 B2 JP 3308154B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- comb
- pair
- voltage
- crystal molecules
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133707—Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134381—Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates
Landscapes
- Physics & Mathematics (AREA)
- Liquid Crystal (AREA)
- Nonlinear Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、低コストで、明る
いカラー液晶表示素子、特に反射型カラー液晶表示素子
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-cost, bright color liquid crystal display device, and more particularly to a reflective color liquid crystal display device.
【0002】[0002]
【従来の技術】液晶表示素子は、薄く軽い特徴を生かし
携帯型の情報端末のディスプレイとして広く用いられて
いる。液晶は、自らは発光しない受光型素子であり、数
ボルトの低電圧で駆動できるので少ない消費電力での表
示が可能である。特に、背面に反射板を置いて外部光で
照らして表示を見る反射型の液晶表示素子は極めて低消
費電力である。2. Description of the Related Art Liquid crystal display elements have been widely used as displays for portable information terminals by making use of their thin and light characteristics. The liquid crystal is a light-receiving element that does not emit light by itself, and can be driven with a low voltage of several volts, so that display can be performed with low power consumption. In particular, a reflection type liquid crystal display element in which a display is illuminated with external light by placing a reflection plate on the back surface to view a display consumes extremely low power.
【0003】しかし、通常、反射型の液晶表示素子は白
黒表示であり、カラー表示にはバックライトを背後に置
いた透過型の液晶表示素子が用いられる。カラー表示
は、3つの画素に、赤、青、緑の三原色の微細なカラー
フィルターを被せて、それぞれの透過光が三原色になる
よう、白色入射光をカラーフィルターで吸収する方法が
採られている。赤、青、緑の3画素がすべて透過状態に
なったとき、白色表示となり、最も明るい状態になる。
従って、入射光はカラーフィルターで吸収されて透過率
が1/3以下になってしまう。しかも、液晶表示素子で
は通常、偏光板を用いるので、一方の偏光が吸収され
て、さらに透過率は半分以下になる。このため、カラー
フィルターを用いた液晶表示素子は消費電力の大きなバ
ックライトが必要となり、厚みや重量が増す上、低消費
電力という液晶表示素子の特徴が損なわれてしまう。ま
た、カラーフィルターは製造工程が複雑でコストが高
い。However, a reflection type liquid crystal display device is usually a black and white display, and a color type display uses a transmission type liquid crystal display device with a backlight placed behind. The color display employs a method in which three pixels are covered with fine color filters of three primary colors of red, blue and green, and white incident light is absorbed by the color filters so that each transmitted light becomes three primary colors. . When all three pixels of red, blue, and green are in the transmissive state, white display is performed and the state becomes the brightest.
Therefore, the incident light is absorbed by the color filter, and the transmittance becomes 1/3 or less. In addition, since a liquid crystal display element usually uses a polarizing plate, one polarized light is absorbed, and the transmittance is reduced to half or less. For this reason, a liquid crystal display device using a color filter requires a backlight that consumes a large amount of power, which increases the thickness and weight, and impairs the characteristics of the liquid crystal display device, that is, low power consumption. Further, the production process of the color filter is complicated and the cost is high.
【0004】一方、カラーフィルターを用いずに、複屈
折効果による発色を利用してカラー表示を行う液晶表示
素子が提案されている(例えば、松本正一、角田市良共
著「液晶の最新技術」、130頁〜132頁)。この方
式では、例えば、誘電率異方性が正のネマチック液晶を
水平配向させ、配向方向に角度θの方向の偏光軸を持つ
偏光板とこれに直交する偏光板との間に液晶層を挟む
と、複屈折による透過光強度Iは入射光強度I0に対し
て次式で表される。On the other hand, there has been proposed a liquid crystal display element which performs color display using color development by a birefringence effect without using a color filter (for example, Shoichi Matsumoto and Ryo Tsunoda, "Latest Technology of Liquid Crystal"). 130-132). In this method, for example, a nematic liquid crystal having a positive dielectric anisotropy is horizontally aligned, and a liquid crystal layer is sandwiched between a polarizing plate having a polarization axis having a direction of an angle θ in the alignment direction and a polarizing plate orthogonal thereto. And the transmitted light intensity I due to birefringence is expressed by the following equation with respect to the incident light intensity I 0 .
【0005】 I = I0sin2(2θ)sin2(πΔnd/λ) (1) ここで、λは入射光の波長、dは液晶層の厚み、Δnは
液晶の複屈折異方性である。角度θが45度のときに透
過光強度Iは最も強くなる(明るくなる)。I = I 0 sin 2 (2θ) sin 2 (πΔnd / λ) (1) where λ is the wavelength of the incident light, d is the thickness of the liquid crystal layer, and Δn is the birefringence anisotropy of the liquid crystal. . When the angle θ is 45 degrees, the transmitted light intensity I becomes the highest (brighter).
【0006】上式から分かるように、透過光強度には波
長依存性があり、液晶層の複屈折量(屈折率異方性Δn
と厚みdとの積)に応じた色を呈する。Δndは電圧印
加によって液晶分子が立ち上がるにつれて小さくなるの
で、印加電圧に応じて透過率の高い波長が変化し、表示
の色を制御することができる。反射型の場合は、入射光
は液晶パネルを往復して出射するので式(1)を二乗し
た強度分布になる。したがって、波長依存性が一層顕著
になり色純度が上がる。As can be seen from the above equation, the transmitted light intensity has a wavelength dependence, and the birefringence (refractive index anisotropy Δn) of the liquid crystal layer is
And the thickness d). Since Δnd becomes smaller as the liquid crystal molecules rise by applying a voltage, the wavelength of high transmittance changes according to the applied voltage, and the color of display can be controlled. In the case of the reflection type, the incident light is emitted back and forth through the liquid crystal panel, and therefore has an intensity distribution obtained by squaring Expression (1). Therefore, the wavelength dependency becomes more remarkable, and the color purity increases.
【0007】同様の複屈折効果で、超ねじれネマチック
(STN)液晶を用いた単純マトリクス駆動で4色程度
の色を表示する例も報告されている(例えば、特開平6
−301006号参照)。また、このSTN液晶セルを
TFTを使って駆動する液晶表示装置も提案されている
(特開平7−159752号公報参照)。TFT駆動し
た方が、表示したい色の電圧値を容易かつ正確に印加す
ることが可能となる。特開平7−159752号公報に
記載されている駆動方法及び駆動回路では、1つの画素
で表示できる赤、緑、青のようないくつかの複屈折色を
表示するときに、表示する複屈折色の数だけ駆動電圧値
を用意し、色信号に応じて印加する駆動電圧を切り替え
る。[0007] An example in which about four colors are displayed by a simple matrix drive using a super-twisted nematic (STN) liquid crystal with the same birefringence effect has been reported (for example, see Japanese Patent Application Laid-Open No. Hei 6 (1994) -106).
-301006). A liquid crystal display device that drives this STN liquid crystal cell using TFTs has also been proposed (see Japanese Patent Application Laid-Open No. 7-159752). When the TFT is driven, a voltage value of a color to be displayed can be easily and accurately applied. In the driving method and the driving circuit described in Japanese Patent Application Laid-Open No. 7-159752, when displaying several birefringent colors such as red, green, and blue that can be displayed by one pixel, the displayed birefringent colors are displayed. Are prepared, and the applied driving voltage is switched according to the color signal.
【0008】ところで、通常の液晶パネルでは対向する
基板に設けた電極間に液晶層を挟み液晶層の厚み方向に
電界を印加し、液晶分子を立たせることで表示行う。こ
のため、斜めから見たときに、液晶分子が立ち上がる方
位からは複屈折が小さく、その逆の方位からは複屈折が
大きくなるというように視野角依存性が大きい。これを
改善するために、櫛歯型の電極を用いて基板に対してほ
ぼ平行な方向に電界を印加する横電界方式が提案されて
いる(例えば、特開平6−160878号公報または特
公昭63−21907号公報参照)。この方式では、液
晶層のΔndを複屈折効果で無彩色表示が得られる0.
3程度に設定し、横電界で液晶分子を基板に平行な面内
で回転させることにより、式(1)のθを変えて明るさ
を変えている。In a normal liquid crystal panel, an electric field is applied in the thickness direction of a liquid crystal layer with a liquid crystal layer interposed between electrodes provided on opposing substrates, and display is performed by standing liquid crystal molecules. Therefore, when viewed obliquely, the birefringence is small from the direction in which the liquid crystal molecules rise, and the birefringence is large in the opposite direction. In order to improve this, a lateral electric field method in which an electric field is applied in a direction substantially parallel to the substrate using a comb-shaped electrode has been proposed (for example, Japanese Patent Application Laid-Open No. 6-160878 or Japanese Patent Publication No. Sho 63-16378). No. 21907). In this method, an achromatic display can be obtained by using the birefringence effect of Δnd of the liquid crystal layer.
By setting about 3 and rotating the liquid crystal molecules in a plane parallel to the substrate by a lateral electric field, the brightness is changed by changing θ in Expression (1).
【0009】[0009]
【発明が解決しようとする課題】カラーフィルターを用
いるカラー表示ではコストが高く、また、反射型では非
常に暗い表示しか得られない。一方、カラーフィルター
を用いずに複屈折効果を用いて色を可変とする方式で
は、電圧に応じて変わる色は、液晶パネルの構成によっ
て決まっており、色度図上の特定の色しか表示できな
い。また、電圧によって色は変わるが、階調表示、すな
わち、輝度調整をすることができない。これらの制約か
ら、複屈折効果による方式はカラーフィルターを用いた
透過型の液晶パネルに比べると、表示色数が極端に少な
く、限られた用途にしか利用できなかった。The cost is high in the color display using the color filter, and only a very dark display can be obtained in the reflection type. On the other hand, in the method in which the color is changed using the birefringence effect without using a color filter, the color that changes according to the voltage is determined by the configuration of the liquid crystal panel, and only a specific color on the chromaticity diagram can be displayed. . Although the color changes depending on the voltage, gradation display, that is, luminance adjustment cannot be performed. Due to these restrictions, the method based on the birefringence effect has an extremely small number of display colors as compared with a transmissive liquid crystal panel using a color filter, and can be used only for limited applications.
【0010】そこで、本発明は、上記のような従来の問
題点を改善し、複屈折効果による方式を用いて低コスト
で明るく、フルカラー表示が可能な液晶パネルとその駆
動方法を提供することを目的とする。It is an object of the present invention to provide a liquid crystal panel which can solve the above-mentioned problems in the prior art and which can perform a low-cost, bright, full-color display using a method based on the birefringence effect and a driving method thereof. Aim.
【0011】[0011]
【課題を解決するための手段】この目的を達成するため
に、本発明による液晶パネルは、2枚の基板間に液晶層
が狭持され、前記液晶層への光の入射側と出射側に偏光
板を備え、一方の基板の内面に互いに咬合するように配
置された一対の櫛形電極が形成され、他方の基板の内面
に対向電極が形成され、前記一対の櫛形電極間に印加す
る電圧を制御することによって液晶分子の(基板に平行
な面における)方位角が変化し、前記一対の櫛形電極の
平均電位と対向電極との電位差を制御することによって
前記液晶分子の(基板面に対する)傾きが変化し、前記
液晶分子の傾きにより出射光の色が変化し、前記液晶分
子の方位角により出射光の輝度が変化するように構成さ
れていることを特徴とする。 In order to achieve this object, a liquid crystal panel according to the present invention has a liquid crystal layer sandwiched between two substrates, and has a light incident side and a light exit side on the liquid crystal layer. A polarizing plate is provided, a pair of comb-shaped electrodes arranged so as to be engaged with each other is formed on the inner surface of one substrate, and a counter electrode is formed on the inner surface of the other substrate, and a voltage applied between the pair of comb-shaped electrodes is provided. The azimuth of the liquid crystal molecules (in a plane parallel to the substrate) is changed by controlling, and by controlling the potential difference between the average potential of the pair of comb electrodes and the counter electrode,
The tilt of the liquid crystal molecules (relative to the substrate surface) changes ,
The color of the emitted light changes due to the tilt of the liquid crystal molecules,
It characterized in that it is configured so that the luminance of the emitted light is changed by the azimuth angle of the child.
【0012】また、本発明による液晶パネルの駆動方法
は、一方の基板の内面に互いに咬合するように配置され
た一対の櫛形電極間に印加する電圧を画素の輝度に応じ
て制御し、他方の基板の内面に形成された対向電極の電
位と前記一対の櫛形電極の平均電位との電位差を画素の
色相に応じて制御することを特徴とする。Further, in the method of driving a liquid crystal panel according to the present invention, a voltage applied between a pair of comb-shaped electrodes arranged so as to engage with each other on the inner surface of one substrate is controlled in accordance with the luminance of the pixel, and the other is controlled. The potential difference between the potential of the counter electrode formed on the inner surface of the substrate and the average potential of the pair of comb electrodes is controlled according to the hue of the pixel.
【0013】上記のような液晶パネルとその駆動方法に
よれば、カラーフィルターなしで複屈折効果により色変
化を生じさせるとともに、輝度調整をも任意に設定でき
るため、低コストで明るい、フルカラー表示が可能とな
る。According to the liquid crystal panel and its driving method as described above, a color change is produced by a birefringence effect without a color filter, and the brightness can be arbitrarily set. It becomes possible.
【0014】[0014]
【発明の実施の形態】以下、本発明の実施形態を実施例
と図面を用いて説明する。 (実施例1)図1に断面図を示すように、液晶パネルを
構成する下基板1側にTFT素子10、11と櫛形電極
14、15とを設け、上基板2側にストライプ状の対向
共通電極21(酸化インジウム錫からなる透明電極)を
設ける。対向共通電極21は、下基板の櫛形電極14、
15の櫛歯の中間に相当する位置に配置する。上下基板
1、2は、ポリイミド配向膜3を塗布後、ラビング処理
し、球形スペーサーにより基板間隔4ミクロンを確保し
た状態で貼り合わせた。そして、基板間に複屈折率が
0.24のクロル系ポジ型ネマチック液晶を注入してホ
モジニアス配向させた。Embodiments of the present invention will be described below with reference to examples and drawings. Embodiment 1 As shown in the sectional view of FIG. 1, TFT elements 10 and 11 and comb-shaped electrodes 14 and 15 are provided on a lower substrate 1 side constituting a liquid crystal panel, and a stripe-shaped common electrode is provided on an upper substrate 2 side. An electrode 21 (a transparent electrode made of indium tin oxide) is provided. The opposing common electrode 21 is a comb-shaped electrode 14 on the lower substrate,
It is arranged at a position corresponding to the middle of the fifteen comb teeth. The upper and lower substrates 1 and 2 were rubbed after the application of the polyimide alignment film 3 and bonded together with a spherical spacer having a substrate spacing of 4 microns. Then, a chlor-based positive nematic liquid crystal having a birefringence of 0.24 was injected between the substrates to make a homogeneous alignment.
【0015】このパネルを偏光板4、5に挟み、背面に
反射板6を貼り付け、また、ポリカーボネートの位相差
フィルム7(位相差150nm)を、遅相軸をラビング
方向と直交する方向として、偏光板4と上基板2との間
に挿入した。This panel is sandwiched between polarizing plates 4 and 5, a reflecting plate 6 is adhered to the back surface, and a polycarbonate retardation film 7 (retardation 150 nm) is set with the slow axis set in a direction perpendicular to the rubbing direction. It was inserted between the polarizing plate 4 and the upper substrate 2.
【0016】TFT素子を設けた下基板1の平面図を図
2に示す。なお、図1は図2のA−A線における断面で
ある。クロム膜200nmをパターニングしてゲート線
12、13と同時に一方の櫛形電極14を形成してか
ら、二酸化珪素の絶縁膜16(500nm)を形成し、
絶縁膜16にはコンタクト孔17を開けた。それから、
アモルファスシリコン部18を形成後、アルミ膜200
nmからなるソース線19と他方の櫛形電極15とを形
成した。同時に、TFT素子10のドレインと櫛形電極
14とをコンタクト孔17を介して導通させる中継電極
20を形成し、TFT素子11のドレインに接続した。FIG. 2 shows a plan view of the lower substrate 1 provided with the TFT elements. FIG. 1 is a cross section taken along line AA of FIG. After patterning the chromium film 200 nm and forming one of the comb electrodes 14 at the same time as the gate lines 12 and 13, an insulating film 16 (500 nm) of silicon dioxide is formed.
A contact hole 17 was formed in the insulating film 16. then,
After forming the amorphous silicon portion 18, the aluminum film 200 is formed.
A source line 19 of nm and the other comb-shaped electrode 15 were formed. At the same time, a relay electrode 20 for conducting the drain of the TFT element 10 and the comb-shaped electrode 14 through the contact hole 17 was formed, and connected to the drain of the TFT element 11.
【0017】なお、櫛形電極14及び15を同時に形成
することもできるが、ショート不良を減らすために、絶
縁膜16を挟んで別の層とした。各々の櫛形電極の櫛歯
のピッチは40ミクロンで幅は5ミクロン、櫛形電極1
4と15の隣接する櫛歯の距離は20ミクロンである。Although the comb electrodes 14 and 15 can be formed at the same time, in order to reduce short-circuit defects, they are formed as separate layers with the insulating film 16 interposed therebetween. The pitch of the comb teeth of each comb electrode is 40 microns and the width is 5 microns.
The distance between adjacent comb teeth of 4 and 15 is 20 microns.
【0018】液晶分子21の初期配向は図2に矢印24
で示すように、櫛歯と20度の角度を成す方向にラビン
グした。そして、破線で示すストライプ状の対向電極2
1が櫛歯の中央に位置するように上下基板を貼り合わせ
た後、液晶を注入した。そして偏光板4、5の偏光軸は
矢印22、23で示すように直交させ、いずれかの偏光
軸は液晶分子の初期配向方向24と平行とし、液晶に電
圧を印加しないとき黒表示とした。初期配向で黒表示と
した方が、白表示と設定するよりも、黒表示の沈み込み
が低く、コントラストを高くできるからである。The initial alignment of the liquid crystal molecules 21 is indicated by an arrow 24 in FIG.
As shown by, rubbing was performed in a direction forming an angle of 20 degrees with the comb teeth. Then, a stripe-shaped counter electrode 2 indicated by a broken line
After bonding the upper and lower substrates so that 1 was located at the center of the comb teeth, liquid crystal was injected. The polarizing axes of the polarizing plates 4 and 5 were orthogonal as indicated by arrows 22 and 23, and one of the polarizing axes was parallel to the initial alignment direction 24 of the liquid crystal molecules, and black display was performed when no voltage was applied to the liquid crystal. This is because black display in the initial orientation can reduce the sinking of black display and increase contrast, as compared with setting white display.
【0019】図3(a)〜(d)に、TFT素子10、
11を介して櫛形電極14、15に電圧を印加したとき
の液晶パネルの断面図を示す。液晶層にかかる電界の概
略を破線の等電位線で描き、液晶分子25の傾きを楕円
で示している。対向基板の共通電極21は1.5ボルト
の電位としている。FIGS. 3A to 3D show TFT elements 10 and
FIG. 2 is a cross-sectional view of the liquid crystal panel when a voltage is applied to the comb-shaped electrodes 14 and 15 via 11. The outline of the electric field applied to the liquid crystal layer is drawn by a broken equipotential line, and the inclination of the liquid crystal molecules 25 is shown by an ellipse. The common electrode 21 of the opposing substrate has a potential of 1.5 volts.
【0020】図3(a)、(b)は、櫛形電極14と1
5の平均電位を、これらの櫛歯の中央に位置する対向共
通電極21の電位1.5ボルトと一致させた場合であ
り、櫛形電極14、15間の電圧を(a)では3ボル
ト、(b)では2ボルトとしている。これらの場合、対
向共通電極の電位と、その真下の下基板の櫛歯の中間部
の電位が等しいため、等電位線は基板に垂直になり、均
一な横電界が液晶層に印加されて、液晶分子は水平に回
転する。横電界強度の強い図3(a)では液晶分子は約
45度回転し、最も明るくなる。このときの色は緑色で
ある。図3(b)では横電界が弱まり、回転角が小さく
なるので、輝度が低下するが、液晶層のΔndは(a)
と同じなので色相は変化せず、暗い緑色になる。FIGS. 3A and 3B show the comb electrodes 14 and 1
5 is made equal to the potential of the common electrode 21 located at the center of these comb teeth at 1.5 volts, and the voltage between the comb electrodes 14 and 15 is 3 volts in FIG. In b), 2 volts is used. In these cases, the potential of the opposing common electrode is equal to the potential of the intermediate portion of the comb teeth of the lower substrate immediately below the common electrode, so that the equipotential lines are perpendicular to the substrate, and a uniform horizontal electric field is applied to the liquid crystal layer. Liquid crystal molecules rotate horizontally. In FIG. 3A where the horizontal electric field intensity is strong, the liquid crystal molecules rotate about 45 degrees and become the brightest. The color at this time is green. In FIG. 3B, since the horizontal electric field is weakened and the rotation angle is reduced, the luminance is reduced, but the Δnd of the liquid crystal layer is (a)
The hue does not change, so it becomes dark green.
【0021】図3(c)、(d)は、対向共通電極21
と櫛形電極14、15の平均電位とを一致させない場合
である。このとき、等電位線は図のように斜めに傾斜す
る。図3(c)、(d)では櫛歯の平均電位は3ボルト
であり、対向共通電極との間に1.5ボルトの電位差が
ある。櫛歯間の電圧は図3(c)では3ボルト、図3
(d)では2ボルトである。図3(c)では、液晶分子
は水平方向におよそ45度回転して最も明るくなり、表
示色は青色となった。図3(d)では、図3(c)に対
して色相が同じで輝度が約60%の青色表示が得られ
た。輝度から判断して水平方向の回転角は約20度であ
り、色相変化がないことから判断して垂直方向には図3
(c)と同程度の傾き角となっているはずである。FIGS. 3C and 3D show the counter common electrode 21.
And the average potential of the comb-shaped electrodes 14 and 15 does not match. At this time, the equipotential lines are obliquely inclined as shown in the figure. 3 (c) and 3 (d), the average potential of the comb teeth is 3 volts, and there is a potential difference of 1.5 volts between the comb electrodes. The voltage between the comb teeth is 3 volts in FIG.
In (d), it is 2 volts. In FIG. 3 (c), the liquid crystal molecules are rotated by approximately 45 degrees in the horizontal direction and become brightest, and the display color is blue. In FIG. 3D, a blue display having the same hue and a luminance of about 60% as in FIG. 3C was obtained. Judging from the luminance, the rotation angle in the horizontal direction is about 20 degrees.
The inclination angle should be substantially the same as that of FIG.
【0022】対向共通電極の電位Vcと櫛型電極の平均
電位Vmとの差の絶対値|Vc−Vm|=|Vs|により、
厚み方向の電界強度が変わり、液晶分子の立ち上がり角
度が変化して液晶層のΔndが変わるので、色相が変化
する。図4に、|Vs|に応じた色相の変化を描いたx
y色度図を示す。櫛歯間の電圧は3ボルトとなるよう設
定したが、他の電圧でもほぼ同様の色度図となる。|V
s|の変化による色変化の軌跡を曲線40で示してい
る。0ボルトで緑(点41)、1.8ボルトで青(点4
2)、3.0ボルトで赤(点43)、3.8ボルトで白
(点44)と変化している。The absolute value | Vc−Vm | = | Vs | of the difference between the potential Vc of the opposing common electrode and the average potential Vm of the comb electrode is given by
The electric field strength in the thickness direction changes, the rising angle of the liquid crystal molecules changes, and the Δnd of the liquid crystal layer changes, so that the hue changes. FIG. 4 illustrates the change in hue according to | Vs |
FIG. 4 shows a y chromaticity diagram. Although the voltage between the comb teeth is set to be 3 volts, almost the same chromaticity diagram is obtained with other voltages. | V
The locus of the color change due to the change of s | is shown by a curve 40. Green at 0 volts (point 41), Blue at 1.8 volts (point 4)
2) Red at 3.0 volts (point 43) and white at 3.8 volts (point 44).
【0023】櫛歯間の電圧に対する透過率(輝度)の関
係を示した特性図を図5に示す。|Vs|は3.0ボル
トに設定したが、他の電圧でもほぼ同様の特性図とな
る。図5では横軸に電圧、縦軸に相対輝度をとってい
る。曲線50で示すように、1.1ボルト付近から輝度
が増加し始め、3ボルト付近で最大輝度になり、さらに
電圧を上げると輝度は低下し始める。前出の式(1)か
ら分かるように、3ボルトで45度回転し、さらに電圧
を上げると45度以上回転するので輝度は逆に低下す
る。FIG. 5 is a characteristic diagram showing the relationship between the transmittance (luminance) and the voltage between the comb teeth. Although | Vs | is set to 3.0 volts, almost the same characteristics are obtained with other voltages. In FIG. 5, the horizontal axis represents voltage, and the vertical axis represents relative luminance. As shown by curve 50, the luminance starts increasing around 1.1 volts, reaches a maximum luminance around 3 volts, and starts decreasing when the voltage is further increased. As can be seen from the above equation (1), the rotation is 45 degrees at 3 volts, and when the voltage is further increased, the rotation is 45 degrees or more.
【0024】以上のように、本発明によれば、カラーフ
ィルターなしでカラー表示を行う複屈折型液晶パネルに
おいて、画素の色相と明度(輝度)の両方を制御するこ
とができる。As described above, according to the present invention, it is possible to control both the hue and brightness (luminance) of a pixel in a birefringent liquid crystal panel that performs color display without a color filter.
【0025】なお、本発明は液晶層のΔndを大きくし
て電圧印加により色変化を生じさせ、カラーフィルター
なしで明るい色表示を行うことを主目的とするが、Δn
dを0.3ミクロン程度にすれば白黒表示となる。この
ときは、液晶分子の方位角で輝度を制御し、傾き角を変
えることで視野角を制御できる。視野角制御により、例
えば、左右の目に視差画像を見せて疑似立体表示を行う
といった応用が可能である。It is to be noted that the main object of the present invention is to increase the .DELTA.nd of the liquid crystal layer to cause a color change by applying a voltage, and to perform bright color display without a color filter.
If d is about 0.3 microns, a black and white display is obtained. At this time, the viewing angle can be controlled by controlling the luminance by the azimuth angle of the liquid crystal molecules and changing the tilt angle. By the viewing angle control, for example, an application in which a parallax image is shown to the left and right eyes to perform pseudo three-dimensional display is possible.
【0026】また、液晶層として、上記の実施例では水
平配向で捻れのないホモジニアス配向としたが、誘電率
異方性が負のネマチック液晶(Nn液晶)を垂直配向さ
せてもよい。この場合、図1のポリイミド配向膜3とし
て、日産化学のポリイミド垂直配向膜SE1211を約
60nm厚で塗布し、ホモジニアスの場合と同じ方向に
ラビングする。そして、基板間隔が6.8ミクロンとな
るようスペーサを散布して空パネルを組立て、Δnが
0.14のNn液晶を注入すると、ラビング方向に数度
傾いた垂直配向が得られる。櫛形電極14、15間の電
圧を0ボルトとして、対向電極との電位差を大きくする
と、液晶分子はラビングした方向に倒れて色が付くが、
倒れる方位が偏光軸と平行なので非常に暗い。櫛形電極
間の電圧を上げて対向電極との間に電圧を加えると、液
晶分子が倒れる方位が回転する。櫛形電極間電圧が約
1.7ボルトで傾く方位は45度回転し、最も明るくな
る。輝度と色相の制御方法、及び色変化の順序もホモジ
ニアスの場合と同じであるが、厚み方向の電圧|Vs|
は、3.5ボルトで白色に到達する。垂直配向型の長所
として櫛形電極間の電圧を低くすることが可能である。
短所としては、Δnが大きな液晶材料が無いので、液晶
層の厚みが増して応答速度が遅くなる。いずれにせよ、
ホモジニアスの場合と同様に、カラーフィルターなしで
明るい色表示ができるという効果が得られる。In the above-described embodiment, the liquid crystal layer has a horizontal alignment and a homogeneous alignment having no twist. However, a nematic liquid crystal (Nn liquid crystal) having a negative dielectric anisotropy may be vertically aligned. In this case, as the polyimide alignment film 3 in FIG. 1, a polyimide vertical alignment film SE1211 manufactured by Nissan Chemical Co., Ltd. is applied with a thickness of about 60 nm, and rubbed in the same direction as in the case of homogeneous. When an empty panel is assembled by dispersing spacers so that the substrate interval becomes 6.8 μm, and Nn liquid crystal having Δn of 0.14 is injected, vertical alignment inclined several degrees in the rubbing direction is obtained. When the voltage between the comb electrodes 14 and 15 is set to 0 volt and the potential difference with the counter electrode is increased, the liquid crystal molecules fall in the rubbing direction and become colored.
It is very dark because the falling direction is parallel to the polarization axis. When the voltage between the comb electrodes is increased and a voltage is applied between the comb electrodes, the direction in which the liquid crystal molecules fall is rotated. The direction in which the inter-electrode voltage is inclined at about 1.7 volts rotates 45 degrees and becomes the brightest. The control method of luminance and hue and the order of color change are the same as in the case of homogeneous, but the voltage | Vs |
Reaches white at 3.5 volts. As an advantage of the vertical alignment type, it is possible to lower the voltage between the comb electrodes.
As a disadvantage, since there is no liquid crystal material having a large Δn, the thickness of the liquid crystal layer increases and the response speed decreases. In any case,
As in the case of the homogeneous type, an effect that a bright color display can be performed without a color filter can be obtained.
【0027】このような、互いに咬合する一対の櫛形電
極を1つの副画素として、2個または3個の副画素を単
位画素として表示を行えば、彩度の制御もできるので、
フルカラーの表示が可能である。2つの副画素からなる
場合には、一方の画素で色表示をし、他方の画素で無彩
色を表示すれば彩度を変えることができる。3つの副画
素からなる場合は、通常のカラーフィルターと同様に
赤、青、緑の三原色を独立に表示することで任意の色を
再現できるが、3色のうちいずれか2色を表示して色相
を選択し、残りの一つの画素で無彩色を表示して、彩度
を調整するという方法も採れる。If the display is performed by using a pair of interdigitated comb-shaped electrodes as one sub-pixel and two or three sub-pixels as a unit pixel, the saturation can be controlled.
Full color display is possible. In the case of two sub-pixels, the saturation can be changed by displaying a color with one pixel and displaying an achromatic color with the other pixel. In the case of three sub-pixels, any color can be reproduced by independently displaying the three primary colors of red, blue, and green, as in a normal color filter, but any two of the three colors can be displayed. A method of selecting a hue, displaying an achromatic color with the remaining one pixel, and adjusting the saturation can also be adopted.
【0028】図6に、本発明による液晶パネルの駆動方
法を具現化する駆動回路のブロック図を示す。赤、緑、
青の3つの輝度レベルからなる画像信号(Yr、Yg、
Yb)が成分分離部60に入力されると、ここで無彩色
成分が除去され色成分が分離される。具体的には、3成
分の最小値が無彩色成分であるので、例えば赤色成分の
輝度Yrが最小のときは、無彩色成分除去後の画像信号
は、(0、Yg−Yr、Yb−Yr)=(0、Yg’、
Yb’)となる。そして、残った2成分の緑と青の成分
比(Yg’/Yb’)が色相信号として成分分離部60
から電圧発生部61へ出力される。同時に、輝度信号と
してYg’+Yb’も出力される。FIG. 6 is a block diagram of a driving circuit that embodies a method of driving a liquid crystal panel according to the present invention. Red-green,
Image signals (Yr, Yg,
When Yb) is input to the component separation unit 60, the achromatic component is removed and the color component is separated. Specifically, since the minimum value of the three components is the achromatic component, for example, when the luminance Yr of the red component is the minimum, the image signal after removing the achromatic component is (0, Yg-Yr, Yb-Yr). ) = (0, Yg ′,
Yb ′). Then, the ratio of the remaining two green and blue components (Yg ′ / Yb ′) is used as a hue signal as a component
Is output to the voltage generator 61. At the same time, Yg ′ + Yb ′ is also output as a luminance signal.
【0029】電圧発生部61は、色相信号に対応する電
圧Vmと、輝度信号に対応する電圧Vaから、TFT素
子10、11へ印加する電圧V10=Vm+Va/2、及
び、V11=Vm−Va/2を算出する。これらの電圧
は、ストローブ信号発生部63からのゲート線12,1
3へのストローブ信号に同期して、サンプルホールド回
路62を介してソースドライバLSI64へ転送され、
ソースドライバLSI64とゲートドライバLSI65
とによりTFT素子、そして液晶パネルが駆動される。
副画素が2つの場合、一方の副画素で上記のように色を
表示し、残りの副画素に無彩色成分の輝度と色相が白に
なる電圧を上記と同様にして印加すればよい。The voltage generator 61 calculates the voltages V10 = Vm + Va / 2 and V11 = Vm-Va / applied to the TFT elements 10 and 11 from the voltage Vm corresponding to the hue signal and the voltage Va corresponding to the luminance signal. 2 is calculated. These voltages are applied to the gate lines 12, 1 from the strobe signal generator 63.
3 and transferred to the source driver LSI 64 via the sample and hold circuit 62 in synchronization with the strobe signal to
Source driver LSI 64 and gate driver LSI 65
Thus, the TFT element and the liquid crystal panel are driven.
When there are two sub-pixels, one sub-pixel may display a color as described above, and a voltage at which the luminance and hue of the achromatic component become white may be applied to the other sub-pixels in the same manner as described above.
【0030】[0030]
【発明の効果】以上のように本発明の液晶パネルとその
駆動方法によれば、液晶分子の基板面に対する傾きと基
板に平行な面における方位角とを電圧により制御できる
ので、複屈折効果によりカラーフィルターなしで画素の
色と輝度を制御することができる。これによって、反射
型の明るいフルカラー表示が可能となる。また、透過型
でも光利用効率の向上によってバックライトの消費電力
を小さくすることができると共に、カラーフィルターを
なくすことによる低コスト化を図ることができる。As described above, according to the liquid crystal panel and the method of driving the same according to the present invention, the inclination of the liquid crystal molecules with respect to the substrate surface and the azimuth angle in the plane parallel to the substrate can be controlled by the voltage. The color and brightness of a pixel can be controlled without a color filter. As a result, a bright full-color display of the reflection type can be realized. Further, even in the transmission type, the power consumption of the backlight can be reduced by improving the light use efficiency, and the cost can be reduced by eliminating the color filter.
【図1】本発明の実施例に係る液晶パネルの断面図FIG. 1 is a cross-sectional view of a liquid crystal panel according to an embodiment of the present invention.
【図2】図1の液晶パネルの下基板の平面図FIG. 2 is a plan view of a lower substrate of the liquid crystal panel of FIG. 1;
【図3】図1の液晶パネルにおける電界分布及び液晶分
子の傾きを示す断面図FIG. 3 is a sectional view showing an electric field distribution and tilt of liquid crystal molecules in the liquid crystal panel of FIG.
【図4】図1の液晶パネルにおける電圧変化による色変
化の例を示す色度図FIG. 4 is a chromaticity diagram showing an example of a color change due to a voltage change in the liquid crystal panel of FIG. 1;
【図5】図1の液晶パネルにおける櫛歯間の電圧と輝度
との関係を示す特性図FIG. 5 is a characteristic diagram showing a relationship between a voltage between comb teeth and luminance in the liquid crystal panel of FIG. 1;
【図6】本発明による液晶パネルの駆動方法を示すブロ
ック図FIG. 6 is a block diagram showing a method for driving a liquid crystal panel according to the present invention.
1 下基板 2 上基板 3 配向膜 4,5 偏光板 6 反射板 7 位相差フィルム 10,11 TFT素子 12,13 ゲート線 14,15 櫛形電極 16 絶縁膜 17 コンタクトホール 18 アモルファスシリコン部 19 ソース線 20 中継電極 21 対向電極 22,23 偏向軸方向 25 液晶分子 60 成分分離部 61 電圧発生部 DESCRIPTION OF SYMBOLS 1 Lower substrate 2 Upper substrate 3 Alignment film 4,5 Polarizer 6 Reflector 7 Phase difference film 10,11 TFT element 12,13 Gate line 14,15 Comb electrode 16 Insulating film 17 Contact hole 18 Amorphous silicon part 19 Source line 20 Relay electrode 21 Counter electrode 22, 23 Deflection axis direction 25 Liquid crystal molecule 60 Component separation unit 61 Voltage generation unit
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−273803(JP,A) 特開 平7−318959(JP,A) 特開 平6−301006(JP,A) 特開 平6−160878(JP,A) 特開 平6−130394(JP,A) 特開 昭59−9630(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02F 1/1343 G02F 1/137 G02F 1/1362 G09F 9/35 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-273803 (JP, A) JP-A-7-318959 (JP, A) JP-A-6-301006 (JP, A) JP-A-6-301006 160878 (JP, A) JP-A-6-130394 (JP, A) JP-A-59-9630 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02F 1/1343 G02F 1 / 137 G02F 1/1362 G09F 9/35
Claims (7)
液晶層への光の入射側と出射側に偏光板を備え、一方の
基板の内面に互いに咬合するように配置された一対の櫛
形電極が形成され、他方の基板の内面に対向電極が形成
され、前記一対の櫛形電極間に印加する電圧を制御する
ことによって液晶分子の方位角が変化し、前記一対の櫛
形電極の平均電位と対向電極との電位差を制御すること
によって前記液晶分子の傾きが変化し、 前記液晶分子の傾きにより出射光の色が変化し、前記液
晶分子の方位角により出射光の輝度が変化 するように構
成されている液晶パネル。1. A liquid crystal layer is sandwiched between two substrates, and a polarizing plate is provided on a light incident side and a light exit side of the liquid crystal layer, and is disposed so as to engage with an inner surface of one of the substrates. A pair of comb electrodes are formed, a counter electrode is formed on the inner surface of the other substrate, and the azimuth of the liquid crystal molecules is changed by controlling a voltage applied between the pair of comb electrodes. the inclination of the liquid crystal molecules is changed, the color of the emitted light is changed by the inclination of the liquid crystal molecules by controlling a potential difference between the average potential and the counter electrode, said liquid
A liquid crystal panel configured so that the luminance of emitted light changes depending on the azimuth angle of crystal molecules .
接する櫛歯のほぼ中間に位置し、かつ、前記櫛歯に平行
なストライプ状電極である請求項1記載の液晶パネル。Wherein said counter electrode is positioned approximately midway between adjacent comb teeth of the pair of comb-shaped electrodes, and liquid crystal panel according to claim 1, wherein the parallel stripe electrodes on the comb.
液晶分子が基板に水平で偏光板の偏光軸または吸収軸に
平行に配向し、一対の櫛形電極に電圧が印加されると前
記偏光軸と交差する方向に前記液晶分子が配向する請求
項1記載の液晶表示パネル。3. When no voltage is applied to the liquid crystal,
The liquid crystal molecules are oriented in a direction parallel to the polarization axis or absorption axis of the polarizer, and the liquid crystal molecules are oriented in a direction crossing the polarization axis when a voltage is applied to a pair of comb-shaped electrodes. LCD panel.
液晶分子が基板に垂直に配向し、対向電極と一対の櫛形
電極の平均電位との電位差が所定の閾値電圧を超えると
前記液晶分子が基板に垂直な方向から傾き、一対の櫛形
電極間の電圧の増加に伴って前記液晶分子の方位角が偏
光板の偏光軸または吸収軸方向から前記偏光軸と45度
を成す方向へ増大する請求項1記載の液晶表示パネル。4. When no voltage is applied to the liquid crystal,
When the liquid crystal molecules are oriented perpendicular to the substrate and the potential difference between the counter electrode and the average potential of the pair of comb electrodes exceeds a predetermined threshold voltage, the liquid crystal molecules tilt from a direction perpendicular to the substrate, and the voltage between the pair of comb electrodes 2. The liquid crystal display panel according to claim 1, wherein the azimuthal angle of the liquid crystal molecules increases from the direction of the polarization axis or the absorption axis of the polarizing plate to 45 degrees with respect to the polarization axis as the number of liquid crystal molecules increases.
は3個の副画素を1単位画素として色表示を行う請求項
1記載の液晶表示素子。5. The liquid crystal display device according to claim 1, wherein the pair of comb-shaped electrodes are used as sub-pixels, and two or three sub-pixels are used as one unit pixel to perform color display.
晶層への光の入射側と出射側に偏光板を備え、一方の基
板の内面に互いに咬合するように配置された一対の櫛形
電極が形成され、他方の基板の内面に対向電極が形成さ
れている液晶パネルの駆動方法であって、前記一対の櫛
形電極間に印加する電圧を画素の輝度に応じて制御し、
前記一対の櫛形電極の平均電位と対向電極との電位差を
画素の色相に応じて制御することを特徴とする液晶パネ
ルの駆動方法。6. A liquid crystal layer is sandwiched between two substrates, and a polarizing plate is provided on a light incident side and a light exit side of the liquid crystal layer, and is disposed so as to engage with an inner surface of one of the substrates. A method for driving a liquid crystal panel in which a pair of comb-shaped electrodes is formed and a counter electrode is formed on the inner surface of the other substrate, wherein a voltage applied between the pair of comb-shaped electrodes is controlled in accordance with pixel luminance,
A method for driving a liquid crystal panel, comprising: controlling a potential difference between an average potential of the pair of comb-shaped electrodes and a counter electrode in accordance with a hue of a pixel.
晶層への光の入射側と出射側に偏光板を有し、一方の基
板の内面に互いに咬合するように配置された一対の櫛形
電極が形成され、他方の基板の内面に対向電極が形成さ
れた液晶パネルと、 前記一対の櫛形電極間に印加する電圧を画素の輝度信号
に応じて制御し、前記一対の櫛形電極の平均電位と対向
電極との電位差を画素の色相信号に応じて制御する駆動
回路とを具備することを特徴とする液晶表示装置。7. A liquid crystal layer is sandwiched between two substrates, and a polarizing plate is provided on a light incident side and a light exit side of the liquid crystal layer, and is arranged on an inner surface of one of the substrates so as to be engaged with each other. A liquid crystal panel having a pair of comb-shaped electrodes formed thereon and a counter electrode formed on the inner surface of the other substrate; and controlling a voltage applied between the pair of comb-shaped electrodes in accordance with a luminance signal of a pixel. A liquid crystal display device comprising: a driving circuit that controls a potential difference between an average potential of an electrode and a counter electrode in accordance with a hue signal of a pixel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5654396A JP3308154B2 (en) | 1996-03-13 | 1996-03-13 | Liquid crystal panel and its driving method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5654396A JP3308154B2 (en) | 1996-03-13 | 1996-03-13 | Liquid crystal panel and its driving method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09244046A JPH09244046A (en) | 1997-09-19 |
JP3308154B2 true JP3308154B2 (en) | 2002-07-29 |
Family
ID=13030013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5654396A Expired - Fee Related JP3308154B2 (en) | 1996-03-13 | 1996-03-13 | Liquid crystal panel and its driving method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3308154B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7995181B2 (en) * | 2002-08-26 | 2011-08-09 | University Of Central Florida Research Foundation, Inc. | High speed and wide viewing angle liquid crystal displays |
KR100935667B1 (en) | 2003-03-06 | 2010-01-07 | 삼성전자주식회사 | Liquid crystal display |
JP2005316027A (en) * | 2004-04-28 | 2005-11-10 | Stanley Electric Co Ltd | Liquid crystal display element and its manufacturing method |
JP4143569B2 (en) * | 2004-05-14 | 2008-09-03 | キヤノン株式会社 | Color display device |
JP5017677B2 (en) * | 2005-05-20 | 2012-09-05 | カシオ計算機株式会社 | Liquid crystal display |
JP4639968B2 (en) * | 2005-05-31 | 2011-02-23 | カシオ計算機株式会社 | Liquid crystal display device |
JP4760538B2 (en) * | 2005-10-31 | 2011-08-31 | カシオ計算機株式会社 | Liquid crystal display device with controllable viewing angle range |
KR101247113B1 (en) * | 2005-11-22 | 2013-04-01 | 삼성디스플레이 주식회사 | Display apparatus |
KR101253273B1 (en) | 2005-12-16 | 2013-04-10 | 삼성디스플레이 주식회사 | Display apparatus and method for driving the same |
JP2007334177A (en) * | 2006-06-19 | 2007-12-27 | Epson Imaging Devices Corp | Liquid crystal device and electronic apparatus |
EP2051135A4 (en) | 2006-08-08 | 2010-06-16 | Sharp Kk | Tft substrate, liquid crystal display panel and liquid crystal display device having the substrate, and method of manufacturing tft substrate |
WO2011148706A1 (en) | 2010-05-27 | 2011-12-01 | 凸版印刷株式会社 | Substrate for liquid crystal display device, and liquid crystal display device |
JP5158133B2 (en) * | 2010-05-27 | 2013-03-06 | 凸版印刷株式会社 | Substrate for vertical alignment liquid crystal display device and vertical alignment liquid crystal display device |
JP2012093437A (en) * | 2010-10-25 | 2012-05-17 | Chi Mei Electronics Corp | Liquid crystal display device and electronic appliance including the same |
KR101822691B1 (en) * | 2010-12-10 | 2018-01-26 | 도판 인사츠 가부시키가이샤 | Liquid crystal display substrate and liquid crystal display device |
WO2012086666A1 (en) * | 2010-12-22 | 2012-06-28 | シャープ株式会社 | Liquid crystal panel and liquid crystal display device |
JP5578132B2 (en) * | 2011-04-12 | 2014-08-27 | 凸版印刷株式会社 | Liquid crystal display |
-
1996
- 1996-03-13 JP JP5654396A patent/JP3308154B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09244046A (en) | 1997-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3308154B2 (en) | Liquid crystal panel and its driving method | |
JPH11133408A (en) | Horizontal electric field type liquid crystal display device | |
JP2001013500A (en) | Reflection type liquid crystal display element | |
JP4041610B2 (en) | Liquid crystal display | |
JP2828073B2 (en) | Active matrix liquid crystal display | |
JP2856401B2 (en) | Liquid crystal display device | |
US6271905B1 (en) | Reflective liquid crystal display device | |
KR100385691B1 (en) | Reflection liquid crystal display element | |
JP3284169B2 (en) | Birefringence control type liquid crystal display | |
JP3683637B2 (en) | Liquid crystal display device | |
JP3172706B2 (en) | Reflective liquid crystal display | |
JP3990754B2 (en) | Reflective monochrome liquid crystal display | |
JP2005031265A (en) | Liquid crystal display | |
JP3628094B2 (en) | Liquid crystal display element and optical anisotropic element | |
JPH04289818A (en) | Liquid crystal display | |
JP3103223B2 (en) | Color liquid crystal display | |
JP2815870B2 (en) | Liquid crystal display device | |
JP3449829B2 (en) | Liquid crystal display device | |
JP3643439B2 (en) | Liquid crystal display element | |
JPH10170909A (en) | Liquid crystal display device | |
JP3896135B2 (en) | Liquid crystal display element and optical anisotropic element | |
JPH0990346A (en) | Liquid crystal display device | |
JP2908386B2 (en) | Liquid crystal display device | |
JP2860806B2 (en) | LCD color display | |
JPH07294910A (en) | Color liquid crystal display element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090517 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100517 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110517 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120517 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130517 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130517 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140517 Year of fee payment: 12 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |