JP3617657B2 - 位置ずれ補正方法 - Google Patents
位置ずれ補正方法 Download PDFInfo
- Publication number
- JP3617657B2 JP3617657B2 JP31854795A JP31854795A JP3617657B2 JP 3617657 B2 JP3617657 B2 JP 3617657B2 JP 31854795 A JP31854795 A JP 31854795A JP 31854795 A JP31854795 A JP 31854795A JP 3617657 B2 JP3617657 B2 JP 3617657B2
- Authority
- JP
- Japan
- Prior art keywords
- projection optical
- optical system
- substrate
- mask
- positional deviation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
【発明の属する技術分野】
本発明は、位置ずれ補正方法に係り、更に詳しくは、照明光学系からの光束によってマスク上のパターン領域の異なる部分領域をそれぞれ照明し、前記各部分領域の像を複数の投影光学系のそれぞれを介して基板上の被露光領域に投影する走査型露光装置に用いられる、各部分領域の像の位置ずれ補正方法に関する。
【0002】
【従来の技術】
従来より、半導体素子や液晶表示基板の製造のためのフォトリソグラフィ工程においては、マスクに形成されたパターンを投影光学系を介して感光基板に露光転写する投影露光装置が用いられている。これには、いわゆるステップ・アンド・リピート方式やミラープロジェクション方式の露光装置がある。
【0003】
また、最近では液晶表示基板の大面積化が要求されており、それに伴って投影露光装置においても露光領域の拡大が望まれている。この露光領域の拡大の手段として複数の投影光学系を備えた走査型露光装置が開発されている。すなわち、この走査型露光装置においては、光源から射出した光束をフライアイレンズ等を含む光学系を介して光量を均一化した後、視野絞りによって所望の形状に整形してマスクのパターン面を照明する。このような構成の照明光学系を複数配置し、複数の照明光学系のそれぞれから射出された光束でマスク上の異なる部分領域(照明領域)をそれぞれ照明する。マスクを透過した光束は、それぞれ異なる投影光学系を介してガラス基板上の異なる投影領域にマスクのパターン像を結像する。そして、マスクとガラス基板とを同期させて投影光学系に対して走査することによって、マスク上のパターン領域の全面をガラス基板上に転写する。
【0004】
【発明が解決しようとする課題】
一般的に、投影露光装置では、1枚のガラス基板に対して所定のプロセス処理を施しながら何層にも渡って原画パターンの露光を繰り返す。このプロセス処理(特に加熱)によってガラス基板が伸縮し、初期の状態から変形することになる。従来のステップ・アンド・リピート方式露光装置では投影光学系は1つのみであり、この投影光学系の投影倍率を変更すると共に、ステッピング時のステージの停止位置を変更して隣接する転写像同士の間隔を変更することにより、ガラス基板の伸縮を補正(倍率補正)すれば良い。また、ミラープロジェクション方式の露光装置では、投影光学系に対する原板と感光基板との相対位置を走査露光中に連続的に変化させることにより走査方向の倍率を補正し、投影光学系の倍率を変更することにより走査方向に直交する方向の倍率を補正すればよい。
【0005】
しかしながら、上記の如き複数の投影光学系を備えた走査型露光装置では、複数の投影光学系でマスクの連続したパターンを分割してガラス基板上に、分割した像がすき間無く、あるいは所定量だけオーバーラップするように投影させるために、各投影光学系の結像特性の差が大きい場合は勿論のこと、投影光学系相互間の位置関係が所期の関係にないと、分割された像がガラス基板上に連続して形成されないため、基板の伸縮に対して従来と同様の手法では対処できない。
【0006】
かかる問題点に対処し得るものとして、本願出願人は、特願平7−183212号として、基板とマスクとのアライメント手段、各投影光学系の結像特性の調整手段とともに投影光学系相互のキャリブレーション手段を備えた上記走査型露光装置を先に提案した。
【0007】
かかる走査型露光装置によれば、基板とマスクとの間のX方向(走査方向)位置ずれ、Y方向(走査方向に直交する方向)位置ずれ、ローテーション(XY平面に直交するZ軸回りの回転)、基板のX方向の伸縮については、マスクステージ、基板ステージの位置変位をモニタするレーザ干渉計等の位置センサにて全て管理しながらステージを移動したり、ステージの移動速度制御と共に投影光学系の倍率を変更したりして、正確に補正することが可能である。
【0008】
しかしながら、基板のY方向の伸縮及び直交度誤差の補正については、レーザ干渉計の管理下で行なうことができず、このため、必ずしも正確に補正できないという不都合があった。
【0009】
本発明は、かかる事情の下になされたもので、その目的は、基板の変形に起因する各投影像の位置ずれを正確に補正することができる位置ずれ補正方法を提供することにある。
【0010】
【課題を解決するための手段】
請求項1に記載の発明は、照明光学系からの光束によってマスク上のパターン領域の異なる部分領域をそれぞれ照明し、前記各部分領域の像を当該各部分領域に対応して設けられた複数の投影光学系のそれぞれを介して基板上の被露光領域に投影するとともに、前記マスクと前記基板とを前記投影光学系の投影倍率に応じた速度比で所定の走査方向に前記投影光学系に対して移動することによって前記マスク上のパターン領域の全面を前記基板上に露光する走査型露光装置に用いられる、前記基板上の前記各部分領域の像の位置ずれ補正方法であって、前記マスク上のアライメントマークと前記基板上のアライメントマークの位置関係に基づいて前記基板の変形量の内少なくとも前記走査方向に直交する方向の伸縮量を検出する第1工程と;前記第1工程の検出結果に基づいて前記各投影光学系の倍率補正と、前記各投影光学系により前記基板上に投影される像のシフトとを実行する第2工程と;しかる後、前記マスクの側に設けられた基準マークを、前記各投影光学系を介して前記基板の側に設けられた光検出器を用いて計測することにより、相互に隣接する前記部分領域の像同士の位置ずれ及びオーバーラップ量が所定の許容範囲内にあるか否かを確認する第3工程と;許容範囲内にない場合に、前記位置ずれ及びオーバーラップ量がともに許容範囲内となるように前記各投影光学系の倍率補正及び前記各投影光学系により前記基板上に投影される像のシフトの少なくとも一方を再実行する第4工程とを含む。
【0011】
これによれば、第1工程、第2工程の処理により基板の少なくとも走査方向に直交する方向の伸縮に起因する部分領域の像の位置ずれが補正され、第3工程の処理によりこの位置ずれ補正の結果の位置ずれ量をマスクの側に設けられた基準マークを、各投影光学系を介して基板の側に設けられた光検出器を用いて計測することにより、位置ずれ補正が十分に行なわれているか否かを確認することができ、この確認の結果、補正が不十分な場合には第4工程においてこの位置ずれ量が十分小さくなるように各投影光学系の倍率補正及び各投影光学系により基板上に投影される像のシフトの少なくとも一方が再実行される。従って、少なくとも基板の走査方向に直交する方向の伸縮に起因する部分領域の像の位置ずれを正確に補正することが可能となる。
【0012】
請求項2に記載の発明は、照明光学系からの光束によってマスク上のパターン領域の異なる部分領域をそれぞれ照明し、前記各部分領域の像を当該各部分領域に対応して設けられた複数の投影光学系のそれぞれを介して基板上の被露光領域に投影するとともに、前記マスクと前記基板とを前記投影光学系の投影倍率に応じた速度比で所定の走査方向に前記投影光学系に対して移動することによって前記マスク上のパターン領域の全面を前記基板上に露光する走査型露光装置に用いられる、前記各部分領域の像の位置ずれ補正方法であって、前記マスク上のアライメントマークと前記基板上のアライメントマークの位置関係に基づいて前記基板の変形量の内少なくとも前記走査方向に直交する方向の伸縮量と直交度誤差とを検出する第1工程と;前記第1工程の検出結果に基づいて前記各投影光学系の倍率補正と、前記各投影光学系により前記基板上に投影される像のシフト及び回転とを実行する第2工程と;しかる後、前記マスクの側に設けられた基準マークと前記各投影光学系を介して前記基板の側に設けられた基準マークとを光検出器を用いて計測することにより、相互に隣接する前記部分領域の像同士の位置ずれ及びオーバーラップ量が所定の許容範囲内にあるか否かを確認する第3工程と;許容範囲内にない場合に、前記位置ずれ及びオーバーラップ量がともに許容範囲内となるように前記各投影光学系の倍率補正と前記各投影光学系により前記基板上に投影される像のシフト及び回転の少なくともいずれか1つを再実行する第4工程とを含む。
【0013】
これによれば、第1工程、第2工程の処理により基板の少なくとも走査方向に直交する方向の伸縮と直交度誤差とに起因する部分領域の像の位置ずれが補正され、第3工程の処理によりこの位置ずれ補正の結果の位置ずれ量をマスクの側に設けられた基準マークと各投影光学系を介して基板の側に設けられた基準マークとを光検出器を用いて計測することにより、位置ずれ補正が十分に行なわれているか否かを確認することができ、この確認の結果、補正が不十分な場合には第4工程においてこの位置ずれ量が十分小さくなるように各投影光学系の倍率補正及び各投影光学系により基板上に投影される像のシフト及び回転の少なくともいずれか1つが再実行される。従って、少なくとも基板の走査方向に直交する方向の伸縮及び直交度誤差に起因する部分領域の像の位置ずれを正確に補正することが可能となる。
上記請求項1及び2に記載の各位置ずれ補正方法において、請求項3に記載の位置ずれ補正方法の如く、前記光検出器が複数設けられており、前記第3工程では、前記複数の光検出器に対応した前記各投影光学系を介して投影された前記基準マークの像を検出することとすることができる。かかる場合には、各々の投影光学系を介して投影された基準マークを正確に計測することが可能となり、各投影像の位置ずれを正確に補正することができる。
上記請求項1〜3に記載の各位置ずれ補正方法において、請求項4に記載の位置ずれ補正方法の如く、前記第1工程の処理は、処理する前記基板を複数含むロットの1枚目もしくは決められた枚数の基板について実施し、前記第2工程では、前記第1工程の検出結果である前記変形量として、前記1枚目もしくは前記決められた枚数の基板の平均値を用いることとすることができる。かかる場合には、アライメント計測が著しく簡略化されるとともにスループットの向上をさせた上で、基板の変形に起因する各投影像の位置ずれを正確に補正することができる。
上記請求項1及び2に記載の各位置ずれ補正方法において、請求項5に記載の位置ずれ補正方法の如く、前記複数の投影光学系は、第1列と第2列とに分かれ、前記第3工程は、前記第1列の投影光学系を介して投影された前記基準マークの像を検出した後に、前記第2列の投影光学系を介して投影された前記基準マークの像を検出することとすることができる。かかる場合には、各々の投影光学系を介して投影された基準マークを正確に計測することが可能となり、各投影像の位置ずれを正確に補正することができる。
上記請求項1及び2に記載の各位置ずれ補正方法において、請求項6に記載の位置ずれ補正方法の如く、前記第3工程は、前記マスクの側に設けられた基準マークとさらに前記基板の側に設けられた基準マークとの重なり具合を前記光検出器で検出することにより、相互に隣接する前記部分領域の像同士の位置ずれ及びオーバーラップ量を求めることとすることができる。かかる場合には、各々の投影光学系を介して投影された基準マークを正確に計測することが可能となり、各投影像の位置ずれを正確に補正することができる。
【0014】
【実施例】
以下、本発明の一実施例を図1ないし図11に基づいて説明する。
【0015】
図1には、本発明に係る位置ずれ補正方法を実施するための一実施例に係る投影露光装置1の全体構成が概略的に示されている。この投影露光装置1は、正立正像で等倍の走査型露光装置である。
【0016】
この投影露光装置1は、図示しない視野絞りにより所定形状に整形された照明光束によりマスク上の異なる部分領域M1〜M5をそれぞれ照明する複数(ここでは5つ)の照明光学系3a〜3eと、これらの照明光学系3a〜3eに対応して設けられ、マスク2上のパターンを感光基板4上に投影する複数(ここでは5つ)の投影光学系5〜9とを備えている。照明光学系3a〜3e及び投影光学系5〜9に対して、マスク2及び感光基板4が搭載された断面コ字状のキャリッジ22をその長手方向であるX軸方向(以下、適宜「走査方向」という)に走査することにより、マスク2上のパターン領域の全面を感光基板4上に転写し得るようになされている。また、この投影露光装置1では投影光学系5〜9を通じて感光基板4上に投影されたパターンを計測するため、キャリッジ22下方のそれぞれ対応する位置に図示しない5つの光電検出器13〜17(図1では図示せず、図2参照)が配置されている。
【0017】
投影光学系5〜9は、倍率制御装置30(図1では図示せず、図2参照)に接続されており、各投影光学系の光学素子間の気体の圧力を調整する等によって投影倍率を変更する構成となっている。また、各投影光学系5〜9と感光基板4との間の光路中には平行平板ガラス12a〜12eがそれぞれ配置され、この平行平板ガラス12a〜12eの光軸AX1〜AX5に対する角度をそれぞれ変更することによって各投影光学系の光軸をシフトさせ、感光基板4上での部分領域M1〜M5の像(投影領域)P1〜P5の投影位置を変更するようになっている(これについては、後に詳述する)。さらに、本実施例では、投影光学系5〜9の内部に、当該各投影光学系により感光基板4上に投影される像P1〜P5を感光基板4の面上で回転させる像回転手段18a〜18e(図1では図示せず、図2参照)、例えばDoveプリズムが内蔵されている。このDoveプリズムを入射光軸と出射光軸を投影光学系の光軸AXに一致させて、当該光軸を中心として回転させれば、プリズムの回転角度の2倍の角度分像は感光基板4の面上で回転し、これにより直交度の誤差が補正されるようになっている。すなわち、本実施例では、投影倍率と感光基板5上での像の投影位置を変更し、及び像を回転させることにより、前記5つの光電検出器13〜17で計測された各像のずれ量をそれぞれ調整できるようになっている。
【0018】
図2には、露光装置1の各像のずれ量の調整に関連する制御系の構成が示されている。この制御系は、主制御装置31を中心として構成され、この主制御装置31の入力側には、後述するレーザ干渉計I1 ,I2 ,I3 ,I4 と、5つの光電検出器13〜17とが接続されている。また、主制御装置31の出力側には、駆動装置32、倍率制御装置30、回転駆動装置33が接続されている。駆動装置32は、平行平板ガラス12a〜12eの光軸AX1〜AX5に対する角度を各別に変更する機能を有し、倍率制御装置30は、投影光学系5〜9の投影倍率を前記の如くして調整する。また、回転駆動装置33は、像回転手段18a〜18eを独立に回転駆動する。
【0019】
図1に戻り、投影光学系5〜9は、投影光学系5、6、7と投影光学系8、9の2列に配列され、かつ隣接するパターンの露光像が所定量オーバーラップするように千鳥状に配置される。このためマスク2上のパターンは投影光学系5〜9によつて分割されて感光基板4上に1:1で結像される。
【0020】
マスク2は、前記キャリッジ22の上板部22A上に搭載されたマスクステージ2A上に水平に保持されている。マスクステージ2Aには、キャリッジ22上で後述する感光基板ホルダ4Aに対してX、Y、θ方向(例えば水平面内で走査方向をX方向、これに直交する方向をY方向、XY平面に直交するZ軸回りの回転方向をθ方向とする)に移動できるようモータ等の駆動装置23、24、25が取り付けられ、またX、Y、θ方向の移動位置を計測できるようにレーザ干渉計I1 、I2 、I3 (測長ビームのみ図示)が走査方向(X方向)に1箇所、Y方向はY方向シフト及びθ成分を計測するため2箇所設けられている。
【0021】
また、感光基板4は、キャリッジ22の底板部22B上に固定された感光基板ホルダ4A上に水平に保持されている。この感光基板ホルダ4Aの走査方向の位置、即ちキャリッジ22の走査方向の位置がレーザ干渉計I4 (測長ビームのみ図示)によって計測できるようになっている。
【0022】
マスクステージ2Aの走査方向の一端には、マスク側可動マーク板10Bがほぼ走査直交方向に延設されており、このマスク側可動マーク板10Bはマスク2とほぼ同一面上に配されている。
【0023】
前記キャリッジ22の上板部22AのX方向一端部はその上面が一段高い段部とされており、この段部の上面にはY方向に延びるマスク側固定マーク板10Aがマスク2及びマスク側可動マーク板10Bとほぼ同一面上に配されている。
【0024】
キャリッジ22の底板部22BのX方向一端部はその上面が一段高い段部とされており、この段部の上面には、マスク側固定マーク板10Aとマスク側可動マーク板10Bとが配置された位置に対向する位置に感光基板側基準マーク板11が感光基板4とほぼ同一面上に配されている。
【0025】
この露光装置1では、マスク側固定マーク板10A,マスク側可動マーク板10B及び感光基板側基準マーク板11を用いて、投影光学系5〜9の結像特性(例えばディストーション)を計測し得るようになっている。
【0026】
また、走査方向に直交する方向の最も外側の投影光学系5、7の真上でマスク2の上方には、投影光学系5、7によつてマスク2上に結像された感光基板4上のアライメントマーク(これについては後述する)と、マスク2上のアライメントマーク(これについては後述する)のずれ量を計測するアライメント顕微鏡26、27が設置されている。このアライメント顕微鏡26、27は比較的広い視野に設定され、マスク側基準マーク板10及び感光基板側基準マーク板11の校正の際の観察系を兼ねる。
【0027】
図3には、マスク側基準マーク板10、すなわち、マスク側固定マーク板10A及びマスク側可動マーク板10Bと、感光基板側基準マーク板11の一例が示されている。マスク側基準マーク板10(図3(A))のうち、キャリッジ22に固定されたマスク側固定マーク板10Aは最も外側の投影光学系5、7の露光領域毎に、少なくとも1つ以上の計測マークa、bが含まれるように形成されている。またマスク側可動マーク板10Bは、各投影光学系5〜9の露光領域に少なくとも2つ以上の計測マークc〜hが含まれるように形成されている。一方これらのマスク側基準マーク板10と対になる感光基板側基準マーク板11は、マスク側固定マーク板10Aとマスク側可動マーク板10Bの両方の計測マークa〜hにそれぞれ対応するように1体の計測マークa′〜h′が精度良く形成されている。
【0028】
次に、上述のように構成された露光装置1における投影光学系5〜9のアライメント方法について説明する。
【0029】
まず、感光基板側基準マーク板11とマスク側固定マーク板10Aにより外側にある投影光学系5、7の校正を行なう。すなわち、図4に示されるように、マスク側固定マーク板10Aの計測マークaと感光基板側基準マーク板11の計測マークa′が共役な位置になるまで、キャリッジ22を投影光学系5、7に対して移動し、計測マークa′を投影光学系5(図4では、当該投影光学系5によって感光基板4上に投影される像が符号5’にて示される)により計測マークa上に投影し、図5(A)に示されるように、アライメント顕微鏡26により投影像と計測マークaのズレ量Δx1 、Δy1 を計測する。そしてずれ量Δx1 、Δy1 が、図5(B)に示されるように、0となるように平行平板12aの光軸AXに対する傾きを変更して像シフトさせて計測マークa′の像を移動する。同様にアライメント顕微鏡27と計測マークb、b′により投影光学系7(図4では、当該投影光学系7によって感光基板4上に投影される像が符号7’にて示される)の調整を行なう。
【0030】
次に、図6ないし図7に示されるようにして、マスク側可動マーク板10Bのキャリブレーシヨンを行なう。すなわちキャリッジ22を投影光学系5に対し、マスク側可動マーク板10Bの計測マークcと感光基板側基準マーク板11の計測マークc′が共役になる位置に移動する。このとき投影光学系7に対しマスク側可動マーク板10Bの計測マークhと、感光基板側基準マーク板11の計測マークh′が共役になるようキャリッジ22を移動する。なお、このとき投影光学系5に対し、計測マークaと計測マークcは図3のY方向の位置が同じ位置かほぼ近い位置が良い。また計測マークbと計測マークhも同様である。
【0031】
そして計測マークc′をすでに計測マークaで調整した投影光学系5により、計測マークc上に投影し、アライメント顕微鏡23により投影像と計測マークcのずれ量Δx2 、Δy2 を計測する。同様に計測マークhとh′のずれ量Δx3 、Δy3 を計測し、ずれ量Δx2 、Δy2 、Δx3 、Δy3 がそれぞれ最小になるよう駆動装置23〜25を用いてマスクステージ2Aを、X、Y及びθ方向に移動する。
【0032】
これまでに説明したずれ量の測定は、例えば十字型のマークをアライメントマークとして用いた画像処理の手法を用いて行われ、CCDカメラ(図示省略)の画素ピッチと光学系の倍率から容易にマーク間の距離を計算することができる。
【0033】
このようにしてマスクステージ2Aを移動することにより、図7(A)に示されるように、計測マークc、c′及びh、h′間のずれ量が無くなる。しかしマスク側固定マーク板10Aと感光基板側基準マーク板11のキャリッジ22への取り付けに設計値に対する誤差がある場合、その誤差がそのままマスク側可動マーク板10Bの位置に含まれてしまう。このため誤差がある場合マスク側固定マーク板10Aに対する感光基板側基準マーク板11の誤差量αx及びαyを予め計測しておき、マスクステージ2Aの移動の際、図7(B)に示されるように、当該誤差量αx及びαyを移動量にオフセットとして加算し、上記誤差を補正する。
【0034】
このようにして基準となるマスク側可動マーク板10Bの校正を終了し、次に図8(A)及び図8(B)に示されるように、投影光学系5〜9(図8(A)、(B)において、投影光学系5〜9によって感光基板4上に投影される像が符号5’〜9’にて示される)の校正を行なう。このとき投影光学系6、8、9はもちろんのこと外側の投影光学系5、7についても、校正されたマスク側可動マーク板10Bの各計測マークc〜hと、感光基板側基準マーク板11の各計測マークc′〜h′との間のずれ量を計測する。
【0035】
この計測は、まず、図8(A)に示されるように、照明光学系3a〜3cからの光束がマスク側可動マーク板10B上の各計測マークc〜h及び投影光学系5〜7を透過し、さらに感光基板側基準マーク板11上の各計測マークc’〜h’を透過し光電検出器13〜15に達する系内で、マスクステージ2Aをスキャンしその位置に応じた光電検出器13〜15が受光する透過光量の変化を基にずれ量を計測し、投影光学系5〜7で投影される像の連続性が最適となるよう補正する。
【0036】
すなわち、レーザ干渉計I1 ,I2 ,I3 によってマスクステージ2Aの位置をモニタしつつ、光電検出器13〜15にて透過光量をモニタし、両マーク(マスク側可動マーク板10B上の各計測マークと感光基板側基準マーク板11上の各計測マーク)の重なりによる信号変化からしかるべき信号処理を行うことにより、各投影光学系を通した両マーク位置の重なり中心を求めることによりずれ量を干渉計基準で求め、平行平板12a〜12cを用いて光軸AX1 〜AX3 をシフトさせることによりずれ量を補正する。
【0037】
次に、図8(B)に示されるように、照明系3d、3eからの光束がマスク側可動マーク板10B上の各計測マークd〜g及び投影光学系8〜9を透過し、さらに感光基板側基準マーク板11上の各計測マークd’〜g’を透過し光検出器16、17に達する系内で、マスクステージ2Aをスキャンしその位置に応じた光検出器16、17が受光する透過光量の変化を基にずれ量を計測し、投影光学系8〜9で投影される像の連続性が最適となるよう補正する。
【0038】
次に、マスク2と感光基板4とのアライメント方法について説明する。
【0039】
図1に示されるように、感光基板4及びマスク2にはアライメントマークMM11、MM21、MM12、MM22及びPM11、PM21、PM12、PM22が設けられており、アライメント顕微鏡26、27にてMM11とPM11、MM21とPM21、MM12とPM12、MM22とPM22の差分を検出できる。なお、本装置構成では走査方向であれば、例えばMM13、MM23、PM13、PM23のようにアライメントマークをより多く設けることも容易である。
【0040】
まず、はじめにキャリッジ22をアライメントマークMM11とPM11、MM21とPM21との差分が検出できる位置へ移動し、X、Y方向の計測を行う。マークMM11とPM11のX,Y方向の差分をそれぞれΔD11X、ΔD11Y、マークMM21とPM21との差分をそれぞれΔD21X、ΔD21Yと定義する。
【0041】
次に、キャリッジ22をマークMM12とPM12、MM22とPM22の差分が検出できる位置へ移動し、X、Y方向の計測を行う。マークMM12とPM12のX,Y方向の差分をそれぞれΔD12X、ΔD12Y、マークMM22とPM22との差分をそれぞれΔD22X、ΔD22Yと定義する。
【0042】
ここで、マスク感光基板2AにおけるXシフト、Yシフト、ローテーション、X方向の倍率(伸縮率)、Y方向の倍率(伸縮率)及び直交度は前記結果のX成分(ΔD11X,ΔD21X,ΔD12X,ΔD22X等)、Y成分(ΔD11Y,ΔD21Y,ΔD12Y,ΔD22Y等)が各々3点以上あれば、例えば、いわゆる最小二乗近似等により演算で算出することができる。かかる手法を採用するものとして、いわゆるEGA計測(エンハンスト・グローバル・アライメント)が知られている。
【0043】
そして、求められた各誤差分について、Xシフト、Yシフト、ローテーションについては、この誤差分が補正されるように、レーザ干渉計I1 ,I2 ,I3 の情報をモニタしつつ駆動装置23、24、25を駆動してマスク2と感光基板4との位置決めを行なう。
【0044】
また、求められたY方向倍率をM1 、X方向倍率をM2 とすると、投影光学系5〜9の倍率をM1 だけ変更し、M1 とM2 との差については、実際の露光時にマスク2と感光基板4との移動速度の差として例えばマスクステージ2Aの移動速度を加速又は減速することにより、Y方向にM1 、X方向にM2 の倍率変更を行なうことが可能である。すなわち、X方向の伸縮率の補正は露光走査中にマスクステージ2Aをレーザ干渉計の位置情報にてX方向にシフトすることで可能であり、Y方向の伸縮率の補正は投影光学系の倍率及び光軸を変化させることで可能である。また、求められた直交度については、個々の投影光学系により投影される像を物体面上で回転させるとともに光軸を変化させることで可能である。
【0045】
ここで、Y方向の伸縮率の補正のため、投影光学系の倍率及び光軸を変化させるのは、倍率の変更によって投影像(投影領域)P1〜P5の重複部分(図1に破線で示される部分)の位置関係が変化し、感光基板4に対する露光量が不均一になるため、投影領域の位置関係を初期の状態に戻すためである。
【0046】
次に、投影光学系の倍率を変更したときの複数の投影領域の位置関係の変化について図9、10、を参照して説明する。
【0047】
図9において、二点鎖線で示される領域は投影光学系3a〜3eの投影倍率が初期の状態での投影領域P1〜P5を表し、実線で示される領域は投影光学系の投影倍率を変更した状態での投影領域を表す。なお、説明を簡単にするため、投影領域の形状は図1とは事なり、矩形状のものとする。初期の倍率の時は、各投影領域のY方向の長さはL、X方向の長さはWであり、各投影領域の中心同士(例えばP1とP2)のY方向の間隔はP、X方向の間隔はBである。この状態ではY方向の不要なオーバーラップηは無く、同様にX方向の投影領域の位置関係も所定の状態に設定されている。このため、図10(a)に示されるように格子状のパターンが正確に転写される。
【0048】
一方、投影光学系の投影倍率を初期の倍率のM倍に変更すると、各投影領域のY方向の長さはL×M、X方向の長さはW×Mとなるが、各投影領域の中心同士の間隔はP、Bのままである。すると、各投影領域同士の位置関係が変化し(例えば辺の間隔が”b”から”Mb−κ”、または”b−(M−1)W”になる)、Y、Xの各方向に次式
【0049】
【数1】
η=M×L−L=(M−1)×L
【0050】
【数2】
κ=M×B−B=(M−1)×B
【0051】
で表されるオーバラップη、ずれκが生じる。このため、図10(a)に示される格子状のパターンは、図9(b)に示されるように、オーバーラップηとずれκを含んだ像として転写されることになる。
【0052】
そこで、このオーバラップとずれを補正するため、投影光学系の倍率の変更に応じて各投影領域の間隔も変更するのである。なお、この補正は基本的に、投影領域の大きさ、間隔が補正前と補正後とで相似となるようにする。
【0053】
図11には、本実施例による感光基板の伸縮に応じた光軸の補正の状態が示されている。平行平板ガラス12a〜12eは、いずれもほぼ同一の板厚を有しており、同一の回転角における光軸AX1〜AX5のシフト量は同一である。また、平行平板ガラスの回転角が0°の場合に、感光基板4上で光軸AX1〜AX5が投影される位置をα、γ、ε、β、δとする。この位置α、γ、ε、β、δは、感光基板4が伸縮する前のパターンの形成された位置と考えることができる。
【0054】
今、例えば感光基板4がY方向に均一にΔp(ppm)伸びている場合を考える。つまり、感光基板4が伸縮する前の予め形成されたパターンの位置α、β、γ、δ、εは、感光基板の延びによってそれぞれ位置α’、β、γ’、δ’、ε’に変位しているものとする。本実施例では、感光基板の伸縮に応じて投影光学系の倍率を変更するとともに、倍率の変化量に応じて光軸をシフトする。感光基板4は均一に伸びているため、各位置の変位量は感光基板の中心からの距離に比例し、従って光軸をシフトさせる量も感光基板の中心からの距離に比例する。即ち位置α、β、γ、δ、εそれぞれの間隔をlとすると、各位置の変位量|α’−α|、|β’−β|、|γ’−γ|、|δ−δ’|、|ε−ε’|は、それぞれ2Δl、Δl、0、Δl、2Δlとなる。また、Δl=l×Δp×10−6となる。
【0055】
さて、伸びた感光基板4上に更にパターンを重ねて形成する場合、投影光学系5〜9の投影倍率をそれぞれΔp(ppm)拡大する。これによって必要となる光軸のシフト量は、光軸AX1、AX3が次式
【0056】
【数3】
2Δl=2l×Δp×10−6
【0057】
また光軸AX4、AX5が次式
【0058】
【数4】
Δl=l×Δp×10−6
【0059】
である。ここで、平行平板ガラスの回転による光軸のシフト量Δl(mm)は、平行平板ガラスの回転角(微小角)をθ(rad)、板厚をt(mm)、屈折率をnとしたとき、次式
【0060】
【数5】
Δl=(l−l/n)tθ
【0061】
で近似できる。このため、θを次式
【0062】
【数6】
θ≒l・Δp・n/(n−1)/t×10−6
【0063】
で近似して、平行平板ガラス12a、12d、12b、12e、12cをそれぞれ回転角2θ、θ、0、−θ、−2θ(反時計回りの方向を正とする)だけ回転することによって光軸AX1、AX4、AX2、AX5、AX3の投影位置を位置α’、β’、γ’、δ’、ε’に一致させる。以上によって、感光基板のY方向の伸びに応じた投影像の補正(結像位置の補正)ができる。
【0064】
本実施例では、上記のようにして各投影光学系の結像特性を補正し(倍率を補正し、光軸をシフト(像の投影位置をシフト)し、像を回転させた)後、その後に前述した投影光学系5〜9のキャリブレーションの所で説明したように、キャリッジ22を移動し、感光基板側基準マーク板11の計測マークc’〜h’が投影光学系1列の継ぎ部を観察できるようにして照明光学系3a〜3cにて光を照射する。そしてマスク側移動マーク板10Bの計測マークc〜hが計測マークc’〜h’を通過するようX、Y方向にマスクステージ2Aをスキャンする。スキャンした光を感光基板側基準マーク板11の下方に設けられた光電検出器13〜15にてモニタし、両マークの重なりによる信号変化からしかるべき信号処理を行うことにより、各投影光学系を通した両マーク位置の重なり中心を求める。同様にしてもう1列の投影光学系についても計測を行う。
【0065】
これにより、各投影光学系を通した両マーク位置の重なり中心を求めることによりずれ量を干渉計基準で求めることができ、各投影光学系の両端の座標を干渉計基準として得られるため、各投影光学系の倍率及び光軸中心の位置及びローテーションを把握することができる。従って、前記倍率補正、光軸位置の制御、像回転後の誤差、すなわち、相互に隣接する前記部分領域M1〜M5の像同士(P1とP4、P4とP2、P2とP5、P5とP3)の位置ずれ及びオーバーラップ量が所定の許容範囲内にあるか否かを確認することができる。
【0066】
そして、上記の確認の結果、相互に隣接する前記部分領域の像同士の位置ずれ及びオーバーラップ量が所定の許容範囲内にない場合は、規定の許容値内になるように、前記倍率補正、光軸位置の制御、像回転の少なくともいずれか1つを再実行する。
【0067】
上記の確認において、制御上残ったものが全体の投影光学系共通のシフト成分のみとなった場合は、本計測情報がマスクステージ2Aを干渉計にて管理しつつスキャンして得られた情報であることから、前記投影光学系の結像特性の補正を行わず、前記アライメントの結果のシフト成分にオフセットとして載せることで補正することができる。
【0068】
以上説明したように、本実施例によると、位置ずれ補正の結果の位置ずれ量を投影光学系相互のキャリブレーション手段を用いて正確に検出することにより、位置ずれ補正が十分に行なわれているか否かを確認することができ、この確認の結果、補正が不十分な場合にはこの位置ずれ量が十分小さくなるように各投影光学系の倍率補正及び各投影光学系により基板上に投影される像のシフト(光軸のシフト)及び像回転の少なくともいずれか1つが再実行され、これにより少なくとも基板の走査方向に直交する方向の伸縮及び直交度誤差に起因する部分領域の像の位置ずれを正確に補正することが可能となる。また、本実施例では、各投影光学系の倍率補正の確認を、新たに別の測定手段を設けることなく、投影光学系のキャリブレーション手段により行なうことができるという利点もある。
【0069】
なお、上記実施例で説明した倍率の変化は主として感光基板4の伸縮に起因するものであり、装置使用上同一ロット内では変化量が安定していることが考えられる。従って、これまでに述べた倍率及び直交度の計測(演算)はロット1枚目もしくは、決められた枚数のみ実施し、その後の感光基板については2次元平面内の位置ずれ(X、Y、θ)のみを計測し、この計測された2次元平面内の位置ずれ補正と共に倍率及び直交度として1枚目もしくは決められた枚数の平均値を用いてこれを補正するようにしても良い。このようにすれば、アライメント計測が著しく簡略化されるとともにスループットの向上が期待できる。
【0070】
また、倍率に許容値を持ち、許容値を越えた場合のみ、倍率を補正する手法も考えられる。
【0071】
【発明の効果】
以上説明したように、本発明によれば、基板の変形に起因する各投影像の位置ずれを正確に補正することができるという従来にない優れた効果がある。
【図面の簡単な説明】
【図1】一実施例に係る投影露光装置の概略構成を示す斜視図である。
【図2】図1の装置の各投影像の位置ずれに関連する制御系の概略構成を示すブロック図である。
【図3】基準マーク板の一例を示す図であって、(A)はマスク側基準マーク板上の計測マークの配置の一例を示す図、(B)は感光基板側基準マーク板上の計測マークの配置の一例を示す図である。
【図4】外側にあるレンズの校正方法を説明するための図である。
【図5】外側にあるレンズの校正方法を説明するための図であって、(A)は投影像と計測マークのずれ量が補正される前の状態を示す図、(B)は投影像と計測マークのずれ量が補正された状態を示す図である。
【図6】マスク側可動マーク板のキャリブレーション方法を説明するための図である。
【図7】マスク側可動マーク板のキャリブレーション方法を説明するための図であって、(A )はマスク側と感光基板側の計測マークのずれ量が零になった状態を示す図、(B)はマスク側固定マーク板に対する感光基板側基準マーク板の取り付け誤差を示す図である。
【図8】投影レンズの調整方法を説明するための図であって、(A)は一列目の投影光学系の調整方法を示す図、(B)は二列目の投影光学系の調整方法を示す図である。
【図9】倍率の変更と像の位置の変更との関係を説明するための図である。
【図10】倍率変更による格子状のパターンの像のずれを説明するための図であって、(A)は倍率変更前の状態を示す図、(B)は倍率変更後の状態を示す図である。
【図11】感光基板の伸縮に応じた光軸の補正の状態を示す図である。
【符号の説明】
1 投影露光装置(走査型露光装置)
2 マスク
3a〜3e 照明光学系
5〜9 投影光学系
4 感光基板(基板)
12a〜12e 平行平板ガラス
18a〜18e 像回転手段
30 倍率制御装置
31 主制御装置
32 駆動装置
33 回転駆動装置
13〜17 光電検出器
I1 〜I4 レーザ干渉計
a〜h マスク側の計測マーク
a’〜h’ 感光基板側の計測マーク
M1〜M5
P1〜P5 部分領域の像
Claims (6)
- 照明光学系からの光束によってマスク上のパターン領域の異なる部分領域をそれぞれ照明し、前記各部分領域の像を当該各部分領域に対応して設けられた複数の投影光学系のそれぞれを介して基板上の被露光領域に投影するとともに、前記マスクと前記基板とを前記投影光学系の投影倍率に応じた速度比で所定の走査方向に前記投影光学系に対して移動することによって前記マスク上のパターン領域の全面を前記基板上に露光する走査型露光装置に用いられる、前記基板上の前記各部分領域の像の位置ずれ補正方法であって、
前記マスク上のアライメントマークと前記基板上のアライメントマークの位置関係に基づいて前記基板の変形量の内少なくとも前記走査方向に直交する方向の伸縮量を検出する第1工程と;
前記第1工程の検出結果に基づいて前記各投影光学系の倍率補正と、前記各投影光学系により前記基板上に投影される像のシフトとを実行する第2工程と;
しかる後、前記マスクの側に設けられた基準マークを、前記各投影光学系を介して前記基板の側に設けられた光検出器を用いて計測することにより、相互に隣接する前記部分領域の像同士の位置ずれ及びオーバーラップ量が所定の許容範囲内にあるか否かを確認する第3工程と;
前記第3工程において前記位置ずれ及びオーバーラップ量が前記所定の許容範囲内にない場合に、前記位置ずれ及びオーバーラップ量がともに許容範囲内となるように前記各投影光学系の倍率補正及び前記各投影光学系により前記基板上に投影される像のシフトの少なくとも一方を再実行する第4工程とを含む位置ずれ補正方法。 - 照明光学系からの光束によってマスク上のパターン領域の異なる部分領域をそれぞれ照明し、前記各部分領域の像を当該各部分領域に対応して設けられた複数の投影光学系のそれぞれを介して基板上の被露光領域に投影するとともに、前記マスクと前記基板とを前記投影光学系の投影倍率に応じた速度比で所定の走査方向に前記投影光学系に対して移動することによって前記マスク上のパターン領域の全面を前記基板上に露光する走査型露光装置に用いられる、前記各部分領域の像の位置ずれ補正方法であって、
前記マスク上のアライメントマークと前記基板上のアライメントマークの位置関係に基づいて前記基板の変形量の内少なくとも前記走査方向に直交する方向の伸縮量と直交度誤差とを検出する第1工程と;
前記第1工程の検出結果に基づいて前記各投影光学系の倍率補正と、前記各投影光学系により前記基板上に投影される像のシフト及び回転とを実行する第2工程と;
しかる後、前記マスクの側に設けられた基準マークと前記各投影光学系を介して前記基板の側に設けられた基準マークとを光検出器を用いて計測することにより、相互に隣接する前記部分領域の像同士の位置ずれ及びオーバーラップ量が所定の許容範囲内にあるか否かを確認する第3工程と;
前記第3工程において前記位置ずれ及びオーバーラップ量が前記所定の許容範囲内にない場合に、前記位置ずれ及びオーバーラップ量がともに許容範囲内となるように前記各投影光学系の倍率補正と前記各投影光学系により前記基板上に投影される像のシフト及び回転の少なくともいずれか1つを再実行する第4工程とを含む位置ずれ補正方法。 - 前記光検出器が複数設けられており、前記第3工程では、前記複数の光検出器に対応した前記各投影光学系を介して投影された前記基準マークの像を検出することを特徴とする請求項1又は2に記載の位置ずれ補正方法。
- 前記第1工程の処理は、処理する前記基板を複数含むロットの1枚目もしくは決められた枚数の基板について実施し、前記第2工程では、前記第1工程の検出結果である前記変形量として、前記1枚目もしくは前記決められた枚数の基板の平均値を用いることを特徴とする請求項1〜3のいずれか一項に記載の位置ずれ補正方法。
- 前記複数の投影光学系は、第1列と第2列とに分かれ、前記第3工程は、前記第1列の投影光学系を介して投影された前記基準マークの像を検出した後に、前記第2列の投影光学系を介して投影された前記基準マークの像を検出することを特徴とす る請求項1又は2に記載の位置ずれ補正方法。
- 前記第3工程は、前記マスクの側に設けられた基準マークとさらに前記基板の側に設けられた基準マークとの重なり具合を前記光検出器で検出することにより、相互に隣接する前記部分領域の像同士の位置ずれ及びオーバーラップ量を求めることを特徴とする請求項1又は2に記載の位置ずれ補正方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31854795A JP3617657B2 (ja) | 1995-11-13 | 1995-11-13 | 位置ずれ補正方法 |
US08/743,096 US5999244A (en) | 1995-11-07 | 1996-11-04 | Projection exposure apparatus, method for correcting positional discrepancy of projected image, and method for determining image formation characteristic of projection optical system |
KR1019960053198A KR970028831A (ko) | 1995-11-07 | 1996-11-06 | 투영 노광 장치. 투영상의 위치 어긋남 보정방법 및 투영 광학계의 결상 특성을 구하는 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31854795A JP3617657B2 (ja) | 1995-11-13 | 1995-11-13 | 位置ずれ補正方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09139340A JPH09139340A (ja) | 1997-05-27 |
JP3617657B2 true JP3617657B2 (ja) | 2005-02-09 |
Family
ID=18100355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31854795A Expired - Lifetime JP3617657B2 (ja) | 1995-11-07 | 1995-11-13 | 位置ずれ補正方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3617657B2 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW396395B (en) * | 1998-01-07 | 2000-07-01 | Nikon Corp | Exposure method and scanning-type aligner |
JP2000047390A (ja) * | 1998-05-22 | 2000-02-18 | Nikon Corp | 露光装置およびその製造方法 |
JP2001215718A (ja) * | 1999-11-26 | 2001-08-10 | Nikon Corp | 露光装置及び露光方法 |
EP1107064A3 (en) * | 1999-12-06 | 2004-12-29 | Olympus Optical Co., Ltd. | Exposure apparatus |
JP4201178B2 (ja) * | 2002-05-30 | 2008-12-24 | 大日本スクリーン製造株式会社 | 画像記録装置 |
US7242456B2 (en) * | 2004-05-26 | 2007-07-10 | Asml Holdings N.V. | System and method utilizing a lithography tool having modular illumination, pattern generator, and projection optics portions |
US7758799B2 (en) * | 2005-04-01 | 2010-07-20 | 3D Systems, Inc. | Edge smoothness with low resolution projected images for use in solid imaging |
JP2006309022A (ja) * | 2005-04-28 | 2006-11-09 | Fuji Photo Film Co Ltd | 描画装置および描画方法 |
JP4739819B2 (ja) * | 2005-05-31 | 2011-08-03 | リコー光学株式会社 | 光束配列密度変換方法および光束配列密度変換部材および光源装置 |
CN106292188B (zh) * | 2015-05-24 | 2019-01-18 | 上海微电子装备(集团)股份有限公司 | 曝光装置 |
JP2019117403A (ja) * | 2019-03-22 | 2019-07-18 | 株式会社ニコン | 露光装置、並びにディスプレイ及びデバイスの製造方法 |
-
1995
- 1995-11-13 JP JP31854795A patent/JP3617657B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH09139340A (ja) | 1997-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3477838B2 (ja) | 走査型露光装置及び露光方法 | |
KR100330069B1 (ko) | 주사형노광장치및그의노광방법 | |
US5999244A (en) | Projection exposure apparatus, method for correcting positional discrepancy of projected image, and method for determining image formation characteristic of projection optical system | |
JP5507875B2 (ja) | 露光装置、露光方法およびデバイス製造方法 | |
US11009799B2 (en) | Exposure apparatus, manufacturing method of flat-panel display, device manufacturing method, and exposure method | |
WO2008126925A1 (en) | Exposure apparatus, exposure method, and electronic device manufacturing method | |
JP3617657B2 (ja) | 位置ずれ補正方法 | |
US11392042B2 (en) | Exposure apparatus and exposure method, and flat panel display manufacturing method | |
KR102357577B1 (ko) | 투영 노광 장치, 투영 노광 방법, 투영 노광 장치용 포토마스크, 및 기판의 제조 방법 | |
JPH10223528A (ja) | 投影露光装置及び位置合わせ方法 | |
JP3303386B2 (ja) | 投影露光装置及び方法 | |
JP5534549B2 (ja) | 転写装置、転写方法、及びデバイス製造方法 | |
JP7369529B2 (ja) | 露光装置およびアライメント方法 | |
JP4396032B2 (ja) | 露光方法および走査型露光装置 | |
JP4029130B2 (ja) | 露光装置及び露光方法 | |
JP6061507B2 (ja) | 露光方法及び物品の製造方法 | |
JPH0574684A (ja) | 位置合わせ装置 | |
JP7520785B2 (ja) | 露光装置、露光方法、及び物品の製造方法 | |
JPH09306811A (ja) | 露光方法 | |
JP3507205B2 (ja) | 走査型露光装置及び該装置を用いてデバイスを製造する方法 | |
JPH11307436A (ja) | 投影露光装置及びレチクル及びレチクルの位置決め方法 | |
JPH1187228A (ja) | 露光装置及び露光方法 | |
JP3530716B2 (ja) | 走査投影露光装置 | |
JP2020177149A (ja) | 露光装置および物品の製造方法 | |
JPH1027738A (ja) | 走査型露光方法および該方法を用いたデバイス製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040513 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040526 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041021 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041103 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071119 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101119 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131119 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131119 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131119 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131119 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |