[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3689828B2 - Method and apparatus for manufacturing metal-ceramic composite substrate - Google Patents

Method and apparatus for manufacturing metal-ceramic composite substrate Download PDF

Info

Publication number
JP3689828B2
JP3689828B2 JP27686496A JP27686496A JP3689828B2 JP 3689828 B2 JP3689828 B2 JP 3689828B2 JP 27686496 A JP27686496 A JP 27686496A JP 27686496 A JP27686496 A JP 27686496A JP 3689828 B2 JP3689828 B2 JP 3689828B2
Authority
JP
Japan
Prior art keywords
metal
ceramic
ceramic member
molten metal
composite substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27686496A
Other languages
Japanese (ja)
Other versions
JPH10101448A (en
Inventor
暁山 寧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP27686496A priority Critical patent/JP3689828B2/en
Publication of JPH10101448A publication Critical patent/JPH10101448A/en
Application granted granted Critical
Publication of JP3689828B2 publication Critical patent/JP3689828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属−セラミックス複合基板の製造方法及びその製造装置に関するものであり、特に自動車部品や電車部品等に好適なパワーモジュール用半導体基板に用いる金属−セラミックス複合基板の製造方法及びその製造装置に関するものである。
【0002】
【従来の技術】
セラミックスの化学安定性、高融点、絶縁性、高硬度、比較的に高い熱伝導性等の特性と、金属の高強度高靱性、易加工性、導電性等の特性を生かした金属−セラミックス複合部材は、自動車、電子装置等に広く用いられ、その代表的な例として、自動車ターボチャージー用のローター、大電力電子素子実装用の金属−セラミックス複合基板及びパッケージが挙げられる。
【0003】
上記金属−セラミックス複合部材の主な製造方法としては、接着、メッキ、メタライズ、溶射、鋳ぐるみ、ろう接合、DBC法が公知であるが、金属−セラミックス複合基板に関しては近年はコスト上の問題からアルミナ基板を用いるDBC法や窒化アルミニウム基板を用いるろう接により大部分の金属−セラミックス複合基板が製造されている。
【0004】
然しながら、従来法においては、金属をアルミナ基板に直接接合する方法としては、銅板を直接接合するDBC法が公知であるが、アルミニウムを直接接合する方法は今まで知られていなかった。
【0005】
本出願人は先にセラミックス部材に金属材としてのアルミニウムを直接に接合する装置として、特開平8−198629号「金属−セラミックス複合部材の製造装置」を提案した。
【0006】
この装置は、セラミックス部材を連続的に供給するための搬送手段と、搬送されたセラミックス部材を予熱する予熱部と、予熱されたセラミックス部材を坩堝内の金属溶湯中を通過させてセラミックス部材の周囲面の少なくとも一部分に金属を接合する接合部と、該接合されたセラミックス部材を徐冷して金属を凝固させ金属−セラミックス複合部材となす冷却部とを主要部と成すものである。
【0007】
【発明が解決しようとする課題】
上記装置により大量の金属−セラミックス複合部材を得る事が可能となり相当の効果を得ているが、金属を所定の形状に凝固させるためにダイスを使用した場合、若干ダイス離れの点で問題があった。
【0008】
本発明は、上述のように本出願人が先に出願した装置の改良を目的として、特に坩堝内で金属に接合されたセラミックス部材を徐冷する際に、金属がダイスに焼付けるという問題点を解決できる方法とその製造装置を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明者等は斯かる課題を解決するために鋭意研究したところ、坩堝内で溶湯金属を接合したセラミックス部材に、更に回路等を形成するアルミニウム板を接触させながら徐冷させると、接合強度の高い金属−セラミックス複合基板を製造出来る事を見いだし、本発明方法及び装置を提供することが出来た。
【0010】
即ち本発明の金属−セラミックス複合基板の製造方法は、セラミックス部材を上方から下方に連続的に供給し、坩堝内において金属溶湯中を通過させることによって金属とセラミックスとの界面から金属の酸化物を完全に除去した状態でセラミックス表面に金属溶湯を接着させ、加熱部内で暫時移動せしめた後、アルミニウム板を該金属溶湯と接触せしめながら暫時移動させて左右の冷却体表面で金属溶湯を凝固温度以下に冷却してセラミックス部材とアルミニウム板を接合せしめる。
【0011】
上記金属は、アルミニウムまたはアルミニウムを主成分とする合金である。
【0012】
上記セラミックス部材は、アルミニウム、珪素の酸化物、窒化物、炭化物の少なくとも一種である。
【0013】
本発明の金属−セラミックス複合基板の製造装置は、セラミックス部材の両面に金属が接着された金属−セラミックス複合基板の製造装置において、セラミックス部材を上方から下方に連続的に供給するための搬送手段と、セラミックス部材の周囲面の少なくとも一部分に金属溶湯を接着せしめるため、搬送されたセラミックス部材を通過せしめる金属溶湯を保持する坩堝と、金属溶湯が接着したセラミックス部材を金属の融点以上の温度に保持するための加熱部と、セラミックス部材の両面に接着した金属溶湯にアルミニウム板を接触させた後、これらを冷却するための冷却体とを主要構成部とする。
【0014】
上記冷却体は、セラミックス部材に接着した金属溶湯とアルミニウム板とを溶着せしめる時に、該アルミニウム板を融点以下の温度に保持する。
【0015】
なお、本発明装置においては、金属−セラミックス複合基板を連続的に製造するために、金属溶湯を連続的に供給し、且つ溶湯の温度を一定に保たねばならない。この場合、金属溶湯の供給方法としては、別の溶解炉で溶解した金属溶湯を本発明装置内の坩堝に供給し、必要に応じて所定の接合温度に加熱・保持する方法や、あるいは金属原料を安定に本発明装置内の坩堝に供給し、該坩堝内で溶かし、一定の温度に加熱・保持する方法とがあるが、これらには何れにしても金属を溶湯状態で保持するための坩堝と加熱ヒーターとが必要である。
【0016】
室温状態のセラミックス部材を直接金属溶湯に挿入すると、熱衝撃でセラミックス部材が割れる可能性があり、これを防止するためにセラミックス部材を予熱する必要がある。この場合、セラミックス部材を別途加熱装置によって予熱し、予熱された部材を本発明装置の搬送手段を用いて供給することも可能であるが、加熱された部材を運ぶ時の安全上の不便さ、運搬時の熱衝撃の問題もあることから、本発明の場合、一体型ダイスを使用し金属溶湯を加熱するためのヒーターの余熱を利用するとともに一体型ダイスにヒーターを設けてセラミックス部材が一体型ダイスを通過する際これを予熱する。
【0017】
本発明装置の特徴の一つは、如何にして金属とセラミックスとの接合界面から金属の酸化物等の汚れ層の影響を除去し、セラミックス部材と清浄な金属溶湯とを接触させるかということにあり、本発明においては、セラミックス部材を金属溶湯の内部に挿入し、且つ、金属溶湯の内部に入る時にセラミックス部材の表面に付着した汚れ、或いは吸着する酸素、水蒸気と金属との反応で形成された金属の酸化物などを取るためにセラミックス部材を金属溶湯の中で移動させる方法を採用した。
【0018】
この金属溶湯中を移動させる手段は色々と考えられるが、本発明では後述の実施例に示されるように一体型ダイス内のガイドに沿ってセラミックス部材を金属溶湯の中に挿入しながら移動させる。
【0019】
本発明で使用する金属と一体型ダイスの高温酸化を防ぐためには必要に応じて装置の内部をある特定の雰囲気にする必要がある。後述する実施例においては窒素ガス雰囲気において実施したが、同じような効果はアルゴン、水素ガス等のような不活性ガス、あるいは還元性のガス、またはこれらのガスの混合物を使っても得られる。
【0020】
なお、本発明で使用する金属は、アルミニウム、またはアルミニウムを主成分とする合金であり、一方、セラミックス部材としてはアルミニウム、珪素等の酸化物、窒化物、炭化物である。
【0021】
【発明の実施の形態】
以下図面によって本発明の実施例を説明する。
【0022】
図1は本発明装置の概略図である。図1に示すように本発明装置は、筒状の一体型ダイス1が坩堝2を貫通して上方から下方に延び、坩堝2内に位置するダイス1の部分には孔3が形成され、坩堝2内の金属溶湯4が該ダイス1内に入る構造となっている。セラミックス部材5は一体型ダイス1の上部入口からダイス1内にピンチローラー(図示せず)を用いた搬送手段によって一個一個連続的に供給する。坩堝2上に設けた予熱ヒーター(図示せず)であらかじめセラミックス部材5を予熱し、坩堝2内の金属を溶湯ヒーター6で加熱して溶湯4とし、その溶湯4中をセラミックス部材5が通過する際セラミックス部材5の表面及び裏面に金属溶湯4を接触させ、得られた金属溶湯が接着したセラミックス部材5を坩堝2の底部に連接する接合ヒーター7で徐冷しながら下方に移動させ、該金属溶湯にアルミニウム板9を接触させる。次いでこれらを内部に温度制御構造を有する冷却体8の間を通過せしめて金属の凝固温度以下にして、金属溶湯4を凝固させて所望の金属−セラミックス複合基板10を得る。なお、この他セラミックス部材5を徐冷する冷却手段(図示せず)と、後工程として得られた金属−セラミックス複合基板10をセラミックス部材5のつなぎ部分で切断するカッターを有する切断部(図示せず)とを設ける。
【0023】
(実施例1)
【0024】
上記装置を用い、まず36mm×112mm×0.635mmのアルミナセラミックス部材5を連続的にピンチローラーを用いて坩堝2の上部の予熱部に供給した。なおこの場合、予熱部は予熱ヒーターによりダイス1全体に熱が伝わる事から、該ダイス1の入口に水冷ジャケットを設けて温度を100℃以下に保つのが好ましい。
【0025】
また、金属としてのアルミニウムを坩堝2の中にセットし、セラミックス部材5をその内径がセラミックス部材5を通す大きさである一体型ダイス1の入口から入れて、その先端が冷却体8の表面のアルミニウム板9に到達するようにセットしてから、窒素雰囲気において坩堝2を加熱し、アルミニウムを融解する。アルミニウム溶湯4は坩堝2の底部の接合部から流出するようになるが、ダイス1とアルミニウム板9との間の隙間を0.1mm以下にすることによって溶湯4の流出を防ぐようになる。
【0026】
アルミニウム溶湯4が750℃に加熱された後、ダイス1の入口側から予熱されたセラミックス部材5を連続的に供給したところセラミックス部材5は順番に該溶湯4中に入り、溶湯4に濡れてから坩堝2の底部の接合部に入り、その内部寸法がセラミックス部材5の厚さより広い出口から連続的に押し出された。
【0027】
次いで、セラミックス基板の両面に溶融アルミニウムが接合したまま下降し、接合部先端で回路面と放熱面とを構成するアルミニウム板(厚さ0.5mm)を該溶融アルミニウムと接触させて、冷却体8の間を通過しながらセラミックス部材5に接合した溶融アルミニウムを再溶融点660℃以下に冷却するため、セラミックス部材5の表面及び裏面のアルミニウム板と完全に接合し、アルミニウム−セラミックス複合基板を得ることが出来た。
【0028】
(実施例2)
【0029】
予めセラミックス部材5として36×26×0.635mmのAlN製基板を複数個用意して実施例1と同様な手段でアルミニウム溶湯4中を通過させてアルミニウム−AlN部材からなる金属−セラミックス複合部材10を得た。
【0030】
冷却体8を通過して得た金属−セラミックス複合基板10を切断部に導き、カッターでセラミックス部材5のつなぎ目のアルミニウム板9を切断し、所定形状の複合基板を得た。
【0031】
【発明の効果】
上述の本発明方法及び装置を用いる事によって、種々のセラミックス部材にアルミニウム板を連続的に接合できるようになり、所定の金属−セラミックス複合基板を安価に、且つ大量に製造できる等種々の利益がある。
【図面の簡単な説明】
【図1】本発明の金属−セラミックス複合基板の製造装置の主要部の概略断面図である。
【符号の説明】
1 一体型ダイス
2 坩堝
3 孔
4 金属溶湯
5 セラミックス部材
6 溶湯ヒーター
7 接合ヒーター
8 冷却体
9 アルミニウム板
10 金属−セラミックス複合基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a metal-ceramic composite substrate and an apparatus for manufacturing the same, and in particular, a method for manufacturing a metal-ceramic composite substrate used for a power module semiconductor substrate suitable for automobile parts, train parts and the like, and an apparatus for manufacturing the same. It is about.
[0002]
[Prior art]
Metal-ceramic composites that take advantage of the properties of ceramics such as chemical stability, high melting point, insulation, high hardness, and relatively high thermal conductivity, and high strength, high toughness, easy processability, and conductivity of metals. The member is widely used in automobiles, electronic devices, and the like, and typical examples thereof include a rotor for automobile turbocharging, a metal-ceramic composite substrate for mounting high-power electronic elements, and a package.
[0003]
Adhesion, plating, metallization, thermal spraying, cast-in, brazing, and DBC methods are known as the main manufacturing methods for the metal-ceramic composite member. Most metal-ceramic composite substrates are manufactured by the DBC method using an alumina substrate or brazing using an aluminum nitride substrate.
[0004]
However, in the conventional method, as a method for directly bonding a metal to an alumina substrate, a DBC method for directly bonding a copper plate is known, but a method for directly bonding aluminum has not been known so far.
[0005]
The present applicant previously proposed Japanese Patent Laid-Open No. Hei 8-198629 “Manufacturing apparatus for metal-ceramic composite member” as an apparatus for directly joining aluminum as a metal material to a ceramic member.
[0006]
This apparatus includes a conveying means for continuously supplying a ceramic member, a preheating portion for preheating the conveyed ceramic member, and passing the preheated ceramic member through a molten metal in a crucible to surround the ceramic member. The main part is a joining part that joins metal to at least a part of the surface and a cooling part that gradually cools the joined ceramic member to solidify the metal to form a metal-ceramic composite member.
[0007]
[Problems to be solved by the invention]
Although a large amount of metal-ceramic composite member can be obtained with the above-mentioned apparatus, a considerable effect is obtained. However, when a die is used to solidify the metal into a predetermined shape, there is a problem in that the die is slightly separated. It was.
[0008]
The present invention has the problem that the metal is baked into the die when the ceramic member bonded to the metal in the crucible is slowly cooled, for the purpose of improving the apparatus previously filed by the applicant as described above. It is an object of the present invention to provide a method capable of solving the problem and a manufacturing apparatus thereof.
[0009]
[Means for Solving the Problems]
The inventors of the present invention have intensively studied to solve such a problem. When the aluminum plate forming the circuit or the like is further brought into contact with the ceramic member joined with the molten metal in the crucible and gradually cooled, the bonding strength is improved. It has been found that a high metal-ceramic composite substrate can be produced, and the method and apparatus of the present invention can be provided.
[0010]
That is, in the method for producing a metal-ceramic composite substrate of the present invention, a ceramic member is continuously supplied from the upper side to the lower side, and the metal oxide is removed from the interface between the metal and the ceramic by passing it through the molten metal in the crucible. After the metal melt is adhered to the ceramic surface in a completely removed state and moved in the heating section for a while, the aluminum plate is moved for a while while being in contact with the metal melt to bring the metal melt below the solidification temperature on the left and right cooling body surfaces. Then, the ceramic member and the aluminum plate are joined.
[0011]
The metal is aluminum or an alloy containing aluminum as a main component.
[0012]
The ceramic member is at least one of aluminum, silicon oxide, nitride, and carbide.
[0013]
The metal-ceramic composite substrate manufacturing apparatus of the present invention is a metal-ceramic composite substrate manufacturing apparatus in which metal is bonded to both surfaces of a ceramic member, and conveying means for continuously supplying the ceramic member downward from above. In order to adhere the molten metal to at least a part of the peripheral surface of the ceramic member, the crucible for holding the molten metal that allows the conveyed ceramic member to pass through and the ceramic member to which the molten metal is bonded are maintained at a temperature equal to or higher than the melting point of the metal. A heating part for cooling and a cooling body for cooling these after making an aluminum plate contact the molten metal adhere | attached on both surfaces of the ceramic member are made into a main structural part.
[0014]
The said cooling body hold | maintains this aluminum plate at the temperature below melting | fusing point, when welding the molten metal and the aluminum plate which adhered to the ceramic member.
[0015]
In the apparatus of the present invention, in order to continuously produce the metal-ceramic composite substrate, the molten metal must be continuously supplied and the temperature of the molten metal must be kept constant. In this case, as a method of supplying the molten metal, a method of supplying the molten metal melted in another melting furnace to the crucible in the apparatus of the present invention and heating and holding it at a predetermined joining temperature as required, or a metal raw material Is stably supplied to the crucible in the apparatus of the present invention, melted in the crucible, and heated and held at a constant temperature, but in any case, the crucible for holding the metal in the molten state in any case And a heater.
[0016]
If the ceramic member at room temperature is directly inserted into the molten metal, the ceramic member may break due to thermal shock, and it is necessary to preheat the ceramic member to prevent this. In this case, it is possible to preheat the ceramic member separately by a heating device and supply the preheated member using the conveying means of the device of the present invention, but safety inconvenience when carrying the heated member, Since there is a problem of thermal shock during transportation, in the case of the present invention, the integrated die is used, the residual heat of the heater for heating the molten metal is used, and the heater is provided in the integrated die so that the ceramic member is integrated. Preheat it as it passes through the die.
[0017]
One of the features of the apparatus of the present invention is how to remove the influence of a dirt layer such as a metal oxide from the joining interface between the metal and the ceramic and bring the ceramic member into contact with a clean molten metal. In the present invention, the ceramic member is inserted into the molten metal and formed by the reaction between the metal adhering to the surface of the ceramic member when entering the molten metal, or the reaction between adsorbed oxygen, water vapor and the metal. In order to remove the metal oxide, etc., a method of moving the ceramic member in the molten metal was adopted.
[0018]
There are various means for moving the molten metal. In the present invention, the ceramic member is moved while being inserted into the molten metal along a guide in the integrated die as shown in the embodiments described later.
[0019]
In order to prevent high temperature oxidation of the metal and integrated die used in the present invention, it is necessary to make the inside of the apparatus have a specific atmosphere as required. In the examples described later, the process was performed in a nitrogen gas atmosphere, but the same effect can be obtained by using an inert gas such as argon or hydrogen gas, a reducing gas, or a mixture of these gases.
[0020]
The metal used in the present invention is aluminum or an alloy containing aluminum as a main component, and the ceramic member is an oxide such as aluminum or silicon, a nitride, or a carbide.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0022]
FIG. 1 is a schematic view of the apparatus of the present invention. As shown in FIG. 1, the apparatus of the present invention has a cylindrical integrated die 1 that penetrates a crucible 2 and extends downward from above, and a hole 3 is formed in a portion of the die 1 located in the crucible 2. The molten metal 4 in 2 enters into the die 1. The ceramic members 5 are continuously supplied one by one from the upper entrance of the integrated die 1 into the die 1 by a conveying means using a pinch roller (not shown). The ceramic member 5 is preheated in advance with a preheating heater (not shown) provided on the crucible 2, the metal in the crucible 2 is heated with the molten metal heater 6 to form the molten metal 4, and the ceramic member 5 passes through the molten metal 4. The molten metal 4 is brought into contact with the front and back surfaces of the ceramic member 5, and the ceramic member 5 to which the obtained molten metal is bonded is moved downward while being slowly cooled by the joining heater 7 connected to the bottom of the crucible 2. The aluminum plate 9 is brought into contact with the molten metal. Next, these are passed through a cooling body 8 having a temperature control structure to make it below the solidification temperature of the metal to solidify the molten metal 4 to obtain a desired metal-ceramic composite substrate 10. In addition, a cooling unit (not shown) that gradually cools the ceramic member 5 and a cutting part (not shown) having a cutter that cuts the metal-ceramic composite substrate 10 obtained as a post-process at a connecting portion of the ceramic member 5. )).
[0023]
(Example 1)
[0024]
Using the above apparatus, first, the alumina ceramic member 5 having a size of 36 mm × 112 mm × 0.635 mm was continuously supplied to the preheating portion at the upper part of the crucible 2 using a pinch roller. In this case, since the heat is transmitted to the entire die 1 by the preheating heater in the preheating part, it is preferable to provide a water cooling jacket at the inlet of the die 1 to keep the temperature at 100 ° C. or less.
[0025]
Also, aluminum as a metal is set in the crucible 2, and the ceramic member 5 is inserted from the inlet of the integrated die 1 whose inside diameter is large enough to pass the ceramic member 5, and the tip is on the surface of the cooling body 8. After setting to reach the aluminum plate 9, the crucible 2 is heated in a nitrogen atmosphere to melt the aluminum. The molten aluminum 4 flows out from the joint portion at the bottom of the crucible 2, but the molten metal 4 is prevented from flowing out by making the gap between the die 1 and the aluminum plate 9 0.1 mm or less.
[0026]
After the molten aluminum 4 is heated to 750 ° C., the ceramic member 5 preheated from the inlet side of the die 1 is continuously supplied, and the ceramic member 5 enters the molten metal 4 in order and gets wet with the molten metal 4. It entered into the joint part at the bottom of the crucible 2 and was continuously extruded from an outlet whose internal dimensions were wider than the thickness of the ceramic member 5.
[0027]
Next, the molten aluminum is lowered with both surfaces of the ceramic substrate joined, and an aluminum plate (thickness 0.5 mm) constituting a circuit surface and a heat radiating surface is brought into contact with the molten aluminum at the joint tip, and the cooling body 8 In order to cool the molten aluminum bonded to the ceramic member 5 while passing between the layers to a remelting point of 660 ° C. or lower, the aluminum plate on the front and back surfaces of the ceramic member 5 is completely bonded to obtain an aluminum-ceramic composite substrate. Was made.
[0028]
(Example 2)
[0029]
A plurality of 36 × 26 × 0.635 mm AlN substrates are prepared in advance as the ceramic member 5, and are passed through the molten aluminum 4 by the same means as in the first embodiment to be a metal-ceramic composite member 10 made of an aluminum-AlN member. Got.
[0030]
The metal-ceramic composite substrate 10 obtained by passing through the cooling body 8 was guided to a cutting portion, and the aluminum plate 9 at the joint of the ceramic member 5 was cut with a cutter to obtain a composite substrate having a predetermined shape.
[0031]
【The invention's effect】
By using the above-described method and apparatus of the present invention, it becomes possible to continuously join an aluminum plate to various ceramic members, and various advantages such as the ability to manufacture a predetermined metal-ceramic composite substrate at low cost and in large quantities. is there.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of the main part of an apparatus for producing a metal / ceramic composite substrate of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Integrated die 2 Crucible 3 Hole 4 Molten metal 5 Ceramic member 6 Molten metal heater 7 Joining heater 8 Cooling body 9 Aluminum plate 10 Metal-ceramic composite substrate

Claims (5)

セラミックス部材を上方から下方に連続的に供給し、坩堝内において金属溶湯中を通過させることによって金属とセラミックスとの界面から金属の酸化物を完全に除去した状態でセラミックス表面に金属溶湯を接着させ、加熱部内で暫時移動せしめた後、アルミニウム板を該金属溶湯と接触せしめながら暫時移動させて左右の冷却体表面で金属溶湯を凝固温度以下に冷却してセラミックス部材とアルミニウム板を接合せしめることを特徴とする金属−セラミックス複合基板の製造方法。The ceramic member is continuously supplied from above to below, and the molten metal is adhered to the surface of the ceramic in a state where the metal oxide is completely removed from the interface between the metal and the ceramic by passing it through the molten metal in the crucible. After moving for a while in the heating section, the aluminum plate is moved for a while while being in contact with the molten metal, and the molten metal is cooled below the solidification temperature on the left and right cooling body surfaces to join the ceramic member and the aluminum plate. A method for producing a metal-ceramic composite substrate. 上記金属は、アルミニウムまたはアルミニウムを主成分とする合金であることを特徴とする請求項1記載の金属−セラミックス複合基板の製造方法。2. The method for producing a metal / ceramic composite substrate according to claim 1, wherein the metal is aluminum or an alloy containing aluminum as a main component. 上記セラミックス部材は、アルミニウム、珪素の酸化物、窒化物、炭化物の少なくとも一種である請求項1記載の金属−セラミックス複合基板の製造方法。2. The method for producing a metal-ceramic composite substrate according to claim 1, wherein the ceramic member is at least one of aluminum, silicon oxide, nitride, and carbide. セラミックス部材の両面に金属が接着された金属−セラミックス複合基板の製造装置において、セラミックス部材を上方から下方に連続的に供給するための搬送手段と、セラミックス部材の周囲面の少なくとも一部分に金属溶湯を接着せしめるため、搬送されたセラミックス部材を通過せしめる金属溶湯を保持する坩堝と、金属溶湯が接着したセラミックス部材を金属の融点以上の温度に保持するための加熱部と、セラミックス部材の両面に接着した金属溶湯にアルミニウム板を接触させた後、これらを冷却するための冷却体とを主要構成部とすることを特徴とする金属−セラミックス複合基板の製造装置。In a metal-ceramic composite substrate manufacturing apparatus in which metal is bonded to both surfaces of a ceramic member, a conveying means for continuously supplying the ceramic member from above to below, and a molten metal on at least a part of the peripheral surface of the ceramic member Bonded to both sides of the ceramic member, a crucible for holding the molten metal that allows the conveyed ceramic member to pass through, a heating unit for holding the ceramic member to which the molten metal is bonded, at a temperature above the melting point of the metal, An apparatus for producing a metal / ceramic composite substrate, wherein an aluminum plate is brought into contact with a molten metal, and a cooling body for cooling the aluminum plate is used as a main component. 上記冷却体は、セラミックス部材に接着した金属溶湯とアルミニウム板とを溶着せしめる時に、該アルミニウム板を融点以下の温度に保持することを特徴とする請求項4記載の金属−セラミックス複合基板の製造装置。5. The apparatus for producing a metal / ceramic composite substrate according to claim 4, wherein the cooling body holds the aluminum plate at a temperature equal to or lower than the melting point when welding the molten metal adhered to the ceramic member and the aluminum plate. .
JP27686496A 1996-09-30 1996-09-30 Method and apparatus for manufacturing metal-ceramic composite substrate Expired - Fee Related JP3689828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27686496A JP3689828B2 (en) 1996-09-30 1996-09-30 Method and apparatus for manufacturing metal-ceramic composite substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27686496A JP3689828B2 (en) 1996-09-30 1996-09-30 Method and apparatus for manufacturing metal-ceramic composite substrate

Publications (2)

Publication Number Publication Date
JPH10101448A JPH10101448A (en) 1998-04-21
JP3689828B2 true JP3689828B2 (en) 2005-08-31

Family

ID=17575486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27686496A Expired - Fee Related JP3689828B2 (en) 1996-09-30 1996-09-30 Method and apparatus for manufacturing metal-ceramic composite substrate

Country Status (1)

Country Link
JP (1) JP3689828B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5848239B2 (en) * 2009-04-30 2016-01-27 ツィンファ ユニバーシティ Method of metal coating on ceramic surface and method of joining ceramic and aluminum

Also Published As

Publication number Publication date
JPH10101448A (en) 1998-04-21

Similar Documents

Publication Publication Date Title
US4483810A (en) Method for directly joining metal pieces to oxide-ceramic substrates
JP2918191B2 (en) Manufacturing method of metal-ceramic composite member
KR101200578B1 (en) Material composite
JP3689828B2 (en) Method and apparatus for manufacturing metal-ceramic composite substrate
JP4108505B2 (en) Bonding method of carbon-based copper composite and ceramics or copper
JP3814044B2 (en) Method and apparatus for manufacturing metal-ceramic composite member
JP3700151B2 (en) Metal-ceramic composite material manufacturing equipment
JP4237284B2 (en) Metal-ceramic composite member manufacturing method, manufacturing apparatus, and manufacturing mold
JP4965314B2 (en) Metal-ceramic bonding substrate manufacturing equipment
US1181741A (en) Method of joining metals.
JPH09110562A (en) Apparatus for producing metal-ceramic composite member
JP3185010B2 (en) Equipment for manufacturing metal-ceramic composite members
JP4446093B2 (en) Metal-ceramic composite member production mold and production apparatus
JP4328891B2 (en) Metal-ceramic composite member mold and manufacturing method
JP3314272B2 (en) Equipment for manufacturing metal-ceramic composite members
JP3890540B2 (en) Metal-ceramic composite substrate and manufacturing method thereof
JPH04295069A (en) Method for metallizing ceramics and production of ceramics-metal combined body by utilizing this method
JPH10180433A (en) Mold for manufacturing metal-ceramic complex substrate
JP4895638B2 (en) Manufacturing method of ceramic circuit board
JPH093662A (en) Etching treatment and etching liquid for aluminum-ceramic composite substrate
JP3859280B2 (en) Method for manufacturing aluminum-ceramic composite substrate
JPH05270813A (en) Production of polycrystalline silicon substrate
JPH11263676A (en) Production of aluminum-ceramic composite member
JP2812094B2 (en) Solder TAB structure, solder TAB ILB apparatus and ILB method
JPH0533291B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees