[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4108505B2 - Bonding method of carbon-based copper composite and ceramics or copper - Google Patents

Bonding method of carbon-based copper composite and ceramics or copper Download PDF

Info

Publication number
JP4108505B2
JP4108505B2 JP2003049030A JP2003049030A JP4108505B2 JP 4108505 B2 JP4108505 B2 JP 4108505B2 JP 2003049030 A JP2003049030 A JP 2003049030A JP 2003049030 A JP2003049030 A JP 2003049030A JP 4108505 B2 JP4108505 B2 JP 4108505B2
Authority
JP
Japan
Prior art keywords
carbon
copper
composite material
copper composite
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003049030A
Other languages
Japanese (ja)
Other versions
JP2004255416A (en
Inventor
有利 菅谷
次男 増田
崇 加藤
弘幸 山岸
正巳 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003049030A priority Critical patent/JP4108505B2/en
Publication of JP2004255416A publication Critical patent/JP2004255416A/en
Application granted granted Critical
Publication of JP4108505B2 publication Critical patent/JP4108505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は炭素基銅複合材とセラミックスとの接合方法又は炭素基銅複合材と銅との接合方法の改良に関する。
【0002】
【従来の技術】
ある種のパワーモジュール(特にそれのヒートシンク)に、炭素部材とセラミックス又は金属を接合して一体化した構造のものが実用化されている。このときの接合、一体化が異種材料同士の場合に問題となる。
【0003】
例えば、ボルトで一体化した場合には、ボルトから離れた部位に隙間が発生しやすく、高い密着性が得られない。
ろう付けや半田付けで一体化しようとすると、ろうや半田が炭素部材やセラミックス又は金属から剥がれやすい。すなわち、炭素部材はろう材や半田と濡れ性が悪く、接合性が悪い。また、セラミックス又は金属の表面に薄い酸化物膜が存在し、この酸化物膜がろうや半田との濡れ性が悪く、接合を阻害する。
【0004】
以上のボルト締めやろう付け法によらぬ接合方法が各種提案されてきた。
すなわち、ろう材を使用せずにTiにより接合する技術が提案されている(例えば、特許文献1。)。
また、ろう材を使用せずにTi及び水素ガスの使用により接合する技術が提案されている(例えば、特許文献2。)。
【0005】
【特許文献1】
特開平9−208335号公報(請求項9)
【特許文献2】
特開昭59−137373公報(特許請求の範囲第9項、第11項)
【0006】
特許文献1の請求項9に「炭素部材の表面に予めTi膜を形成する工程と、次に前記Ti膜の表面にCuとMn又はCuとPを主成分とする組成物を配置する工程と、次にこれを非酸化性雰囲気中で前記組成物の融点以上に加熱する工程によって前記炭素部材の表面に金属化膜を形成することを特徴とする炭素部材の複合化方法。」との記載がある。
【0007】
特許文献2の特許請求の範囲第9項に「接合するときの加熱雰囲気は、Hガス中・・・以下省略」との記載がある。
また、特許文献2の特許請求の範囲第11項に「接合するときの加熱雰囲気は、Nガス中・・・以下省略」との記載がある。
【0008】
【発明が解決しようとする課題】
特許文献1に記載されたTiは、炭素部材のCと反応してTiCになり、良好な接合性を発揮することが知られている。
しかし、本発明者らの研究では、Tiの表面に薄い酸化物膜が存在する。この酸化物膜はCとTiとの接触を妨害する。その為に、C+Tiの反応が不活発になり、接合不良を引き起こすことが分かった。
【0009】
この点、特許文献2に記載のHガスは還元性に富み、酸化物膜を破壊して、C+Tiの反応を促す作用をなす。
しかし、Hガスは高価であり、また、爆発しやすいガスであるため、その管理コストが嵩む。
【0010】
また、本発明者らの研究では特許文献2に記載のNガスはTiと反応してTiNを生成し、このTiNがCとTiとの接触を妨害し、接合不良を引き起こすことが分かった。
【0011】
そこで、本発明の目的は低コストで且つ接着性を高めることのできる炭素基銅複合材とセラミックスとの接合方法又は炭素基銅複合材と銅との接合方法を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するために請求項1は、炭素基銅複合材とセラミックスとの接合方法又は炭素基銅複合材と銅との接合方法において、炭素基銅複合材とセラミックスとの間又は炭素基銅複合材と銅との間に、CuTi合金箔及びこのCuTi合金箔の両面に沿わせたMg粉末からなる接合材を介在させ、この多層体を窒素ガス雰囲気下で前記接合材の融点以上の温度に加熱し、生成したMgで炭素基銅複合材の銅表面やセラミックス又は銅表面の酸化物膜を還元し、Tiと炭素との結合を促して炭素基銅複合材とセラミックス又は銅を接合することを特徴とする。
【0013】
接合材にTiのみならずMgを加えたことを特徴とする。Mg(固体)は加熱すると昇華してMg(ガス)になり、雰囲気の窒素と結合してMgになる。このMgは、標準生成エネルギーの観点からTiNより安定する。この結果、TiNの生成を抑えることができる。
【0014】
加えて、Mgは強い還元作用を発揮し、炭素基銅複合材の銅表面やセラミックス又は銅表面の酸化物膜を還元し、除去する。酸化物膜が除去されて濡れ性の増したセラミックス又は銅に、TiN化しないTiが良好に浸透し、TiCなどが生成できるため、接着性を格段に高めることができる。
【0015】
加熱雰囲気は、窒素であり、窒素は安価であり、爆発の危険もない。従って、本発明によれば、接合に要するコストを大幅に下げることができる。
【0016】
請求項2では、炭素基銅複合材とセラミックスとの接合方法又は炭素基銅複合材と銅との接合方法において、炭素基銅複合材とセラミックスとの間又は炭素基銅複合材と銅との間に、Cu粉末とTi粉末とMg粉末との金属粉末混合物又はCuTiMg合金箔からなる接合材を介在させ、この多層体を窒素ガス雰囲気下で前記接合材の融点以上の温度に加熱し、生成したMgで炭素基銅複合材の銅表面やセラミックス又は銅表面の酸化物膜を還元し、Tiと炭素との結合を促して炭素基銅複合材とセラミックス又は銅を接合することを特徴とする。
CuTiMg合金箔は取扱いの点で最良である。
【0017】
請求項3では、融点以上の温度は、885℃〜1083℃であることを特徴とする。
Cu組成が80%を超えるTi系銅合金の融点は885℃であるので、加熱温度が885℃未満では接合材の溶融が不十分となり接着不良が起こる。また、加熱温度が1083℃を超えると、炭素基銅複合材から銅が流れ出し、製品品質が低下する。
接着不良を回避すると共に製品品質を良好に保つために、加熱温度は885℃〜1083℃の範囲に留める。
【0018】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。
図1(a)〜(d)は本発明での材料準備からるつぼ充填までの作用説明図(第1実施例)である。
(a)において、セラミックスとしてのSi板11と、接合材を構成するためのMg粉末12と、接合材を構成するためのCuTi合金箔13と、炭素基銅複合材14とからなる出発材料を準備する。炭素基銅複合材14は、図面ではC/Cuと表記する。
【0019】
CuTi合金箔13は、例えば80μmの板を用いる。CuTi合金箔13は厚すぎると熱伝導が悪くなり、ヒートシンク等の接合としては好ましくない。従って、厚さは製造が可能であれば、より薄くすることが望ましい。
CuTi合金箔13は、例えばTiが3質量%で残りがCuの合金を用いる。
【0020】
(b)において、るつぼ15に、先ずSi板11を置き、このSi板11に10mg/cmの割合でMg粉末12を載せる。10mg/cmは、5〜20mg/cmの範囲から選択することができる。5mg/cm未満では還元作用が弱くなり、20mg/cmを超えるとMgの溶融が多くなりすぎる。
【0021】
(c)において、CuTi合金箔13を載せ、このCuTi合金箔13に10mg/cmの割合でMg粉末12を載せる。
【0022】
(d)において、炭素基銅複合材14を載せる。これで、るつぼ15への充填が完了する。さらには、炭素基銅複合材14に別のセラミックス製ウエイト(図示せず。)を載せ、1kg/cm程度の押し圧を付与することが望ましい。接合をより確実にすることができるからである。
【0023】
図2は本発明での加熱要領図(第1実施例)であり、加熱手段21や窒素ガス吹込み手段22やガス抜き手段23を備えた加熱炉20に、るつぼ15を装入する。そして、炉内の空気を窒素ガスに置換して、窒素ガス雰囲気にする。次に、加熱手段21にて炉内を900℃まで加熱し、900℃に保持する。
【0024】
900℃は、885〜1083℃の範囲で変更することが可能である。Cu組成が80%を超えるTi系銅合金の融点は885℃であるので、加熱温度が885℃未満では接合材の溶融が不十分となり接着不良が起こる。また、加熱温度が1083℃を超えると、炭素基銅複合材から銅が流れ出し、製品品質が低下する。
上記加熱により加熱炉20内及びるつぼ15内で次の反応が起こる。
【0025】
【化1】

Figure 0004108505
【0026】
▲1▼式に示すとおりに、Mg粉末12が、昇華してMg(ガス)となる。すると、▲2▼式に示すとおりに、Mgが雰囲気のNと反応してMgが生成する。このMgは強い還元作用を発揮する。
【0027】
CuTi合金箔13に含まれるTiが雰囲気のNと反応するか否かを検討する。前記Mgは、標準生成エネルギーの観点からTiNより安定する。不安定なTiNは仮に生成したとしてもその形で存在することはない。そのため安定したMgが主として生成し、不安定なTiNは実質的に生成しない。Tiの形で存在すれば、Tiは濡れ性促進剤としての役割を果たす。
【0028】
ところで、図1(a)において、セラミックスとしてのSi板11には表面に酸化物膜としてのSiOが存在する。
CuTi合金箔13には、表面に酸化物膜としてのTiO及び/又はCuO(酸化第2銅)が存在する。
炭素基銅複合材14の銅表面には、CuO(酸化第2銅)が存在すると、考えられる。
【0029】
以上の酸化物膜SiO、TiO、CuOは次の反応(Mgによる還元反応)により、Si、Ti、Cuに変化し、実質的に酸化物膜が除去される。
【0030】
【化2】
Figure 0004108505
【0031】
すなわち、▲3▼式により酸化物膜SiOが除去され、▲4▼式により酸化物膜TiOが除去され、▲5▼式により酸化物膜CuOが除去される。これで、Si板11及び炭素基銅複合材14は溶融金属(溶融接合材)との濡れ性が高まる。
【0032】
900℃の加熱により、溶融金属(溶融接合材)はSi板11及び炭素基銅複合材14に浸透し、良好な接着が行える。特に接着が困難な炭素基銅複合材14においては、TiCの生成により結合力を高めることができる。
【0033】
図3は本発明方法で製造した接合体の断面図(第1実施例)であり、接合体25は、Si板11と、CuTi合金箔13と、炭素基銅複合材14とからなるが、炭素基銅複合材14はCuTi合金箔13を介してSi板11に強固に接合できた接合物である。
【0034】
図1において、セラミックスとしてのSi板11は、SiN、SiOや、AlN、AlやTiCであってもよい。その理由は次の通りである。Si、SiOでの酸化物膜はSiOであり、上記▲3▼式により還元できる。AlN、Alでの酸化物膜はAlであり、同様にMgでの還元が可能である。TiCでの酸化物膜はTiOであり、上記▲4▼式により還元できる。
すなわち、セラミックスは酸化物、窒化物、炭化物、硼化物など何れでもよい。
【0035】
以上に説明した第1実施例の別実施例を次に説明する。別実施例としての第2実施例は、前記第1実施例と重複する部分が多いが、正確を期すために詳しく説明する。
図4(a)〜(d)は本発明での材料準備からるつぼ充填までの作用説明図(第2実施例)である。
(a)において、銅板26と、接合材を構成するためのMg粉末12及びCuTi合金箔13と、炭素基銅複合材14とからなる出発材料を準備する。
【0036】
CuTi合金箔13は、例えば80μmの板を用いる。
CuTi合金箔13は、例えばTi3質量%で残りがCuの合金を用いる。
【0037】
(b)において、るつぼ15に、先ず銅板26を置き、この銅板26に10mg/cmの割合でMg粉末12を載せる。
(c)において、CuTi合金箔13を載せ、このCuTi合金箔13に10mg/cmの割合でMg粉末12を載せる。
(d)において、炭素基銅複合材14を載せる。これで、るつぼ15への充填が完了する。
【0038】
図5は本発明での加熱要領図(第2実施例)であり、加熱手段21や窒素ガス吹込み手段22やガス抜き手段23を備えた加熱炉20に、るつぼ15を装入する。そして、炉内の空気を窒素ガスに置換して、窒素ガス雰囲気にする。次に、加熱手段21にて炉内を900℃まで加熱し、900℃に保持する。
【0039】
上記加熱により加熱炉20内及びるつぼ15内で次の反応が起こる。
【0040】
【化3】
Figure 0004108505
【0041】
▲6▼式に示すとおりに、Mg粉末12が、昇華してMg(ガス)となる。すると、▲7▼式に示すとおりに、Mgが雰囲気のNと反応してMgが生成する。このMgは強い還元作用を発揮する。
【0042】
ところで、図4(a)において、銅板26には表面に酸化物膜としてのCuOが存在する。
CuTi合金箔13には、表面に酸化物膜としてのTiO及び/又はCuOが存在する。
炭素基銅複合材14の銅表面には、CuOが存在すると、考えられる。
【0043】
以上の酸化物膜TiO、CuOは次の反応(Mgによる還元反応)により、Ti、Cuに変化し、実質的に酸化物膜が除去される。
【0044】
【化4】
Figure 0004108505
【0045】
すなわち、▲8▼式により酸化物膜TiOが除去され、▲9▼式により酸化物膜CuOが除去される。これで、銅板26及び炭素基銅複合材14は溶融金属との濡れ性が高まる。
【0046】
900℃での加熱により、溶融金属(溶融接合材)はSi板11及び炭素基銅複合材14に浸透し、良好な接着が行える。特に接着が困難な炭素基銅複合材14においては、TiCの生成により結合力を高めることができる。
【0047】
図6は本発明方法で製造した接合体の断面図(第2実施例)であり、接合体27は、銅板26と、炭素基銅複合材14とからなる。図5に示したCuTi合金箔13は銅板26と一体化するために実質的に2層になった。炭素基銅複合材14は一体化したCuTi合金箔13を介して銅板26に強固に接合できた接合物である。
【0048】
尚、実施例では、接合材としてCuTi合金箔にMg粉末を組合わせが接合材はCuTiMg合金箔であってもよい。又は接合材はCu粉末+Ti粉末+Mg粉末からなる金属粉末混合物に置換えることもできる。
CuTiMg合金箔は取扱いの点で最良である。CuTi合金箔にMg粉末を組合わせたものは、Mg粉末が入手容易である点からコストダウンに好適である。
【0049】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
請求項1は、接合材にTiのみならずMgを加えたことを特徴とする。Mg(固体)は加熱すると昇華してMg(ガス)になり、雰囲気の窒素と結合してMgになる。このMgは、標準生成エネルギーの観点からTiNより安定する。この結果、TiNの生成を抑えることができる。
【0050】
加えて、Mgは強い還元作用を発揮し、炭素基銅複合材の銅表面やセラミックス又は銅表面の酸化物膜を還元し、除去する。酸化物膜が除去されて濡れ性の増したセラミックス又は銅に、TiN化しないTiが良好に浸透し、TiCなどが生成できるため、接着性を格段に高めることができる。
【0051】
加熱雰囲気は、窒素であり、窒素は安価であり、爆発の危険もない。従って、本発明によれば、接合に要するコストを大幅に下げることができる。
従って、請求項1によれば、低コストで且つ接着性を高めることのできる炭素基銅複合材とセラミックスとの接合方法又は炭素基銅複合材と銅との接合方法を提供することができる。
【0052】
請求項2では、接合材は、Tiを含む銅合金箔と、この箔の両面に配置したMg又はMg合金と、からなることを特徴とする。Tiを含む銅合金箔は、入手容易であり且つ粉末に比較して取扱いが容易である。従って、請求項2によれば、接合に要するコストを更に下げることができる。
【0053】
請求項3では、融点以上の温度は、885℃〜1083℃であることを特徴とする。加熱温度が885℃未満では接合材の溶融が不十分となり接着不良が起こる。また、加熱温度が1083℃を超えると、炭素基銅複合材から銅が流れ出し、製品品質が低下する。
接着不良を回避すると共に製品品質を良好に保つために、加熱温度は885℃〜1083℃の範囲に留める。
【図面の簡単な説明】
【図1】本発明での材料準備からるつぼ充填までの作用説明図(第1実施例)
【図2】本発明での加熱要領図(第1実施例)
【図3】本発明方法で製造した接合体の断面図(第1実施例)
【図4】本発明での材料準備からるつぼ充填までの作用説明図(第2実施例)
【図5】本発明での加熱要領図(第2実施例)
【図6】本発明方法で製造した接合体の断面図(第2実施例)
【符号の説明】
11…セラミックスとしてのSi板、12…接合材を構成するためのMg粉末、13…接合材を構成するためのCuTi合金箔、14…炭素基銅複合材、20…加熱炉、21…加熱手段、22…窒素ガス吹込み手段、25、27…接合体、26…銅板。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a method for joining a carbon-based copper composite material and ceramics or a method for joining a carbon-based copper composite material and copper.
[0002]
[Prior art]
A structure in which a carbon member and ceramics or metal are joined and integrated with a certain type of power module (especially a heat sink thereof) has been put into practical use. When joining and integration at this time are different materials, there is a problem.
[0003]
For example, when integrated with a bolt, a gap is likely to occur at a site away from the bolt, and high adhesion cannot be obtained.
If integration is performed by brazing or soldering, the brazing or solder is easily peeled off from the carbon member, ceramics or metal. That is, the carbon member has poor wettability with the brazing material and solder, and the bondability is poor. In addition, a thin oxide film exists on the surface of ceramics or metal, and this oxide film has poor wettability with solder and solder, thereby inhibiting bonding.
[0004]
Various joining methods not based on the above bolting and brazing methods have been proposed.
That is, a technique for joining by Ti without using a brazing material has been proposed (for example, Patent Document 1).
Further, a technique for joining by using Ti and hydrogen gas without using a brazing material has been proposed (for example, Patent Document 2).
[0005]
[Patent Document 1]
JP-A-9-208335 (Claim 9)
[Patent Document 2]
JP 59-137373 A (Claims 9 and 11)
[0006]
Claim 9 of Patent Document 1 states that “a step of forming a Ti film in advance on the surface of the carbon member, and a step of arranging a composition containing Cu and Mn or Cu and P as main components on the surface of the Ti film. Next, a method of combining carbon members, wherein a metallized film is formed on the surface of the carbon member by a step of heating it to the melting point of the composition or higher in a non-oxidizing atmosphere. There is.
[0007]
Section 9 claims of Patent Document 2 "heating atmosphere when joined, H 2 gas ... omitted hereinafter" there is a description of the.
Further, in claim 11 of Patent Document 2, there is a description that “the heating atmosphere when bonding is in N 2 gas...
[0008]
[Problems to be solved by the invention]
It is known that Ti described in Patent Document 1 reacts with C of the carbon member to become TiC and exhibits good bonding properties.
However, in our study, a thin oxide film exists on the surface of Ti. This oxide film obstructs the contact between C and Ti. For this reason, it has been found that the reaction of C + Ti becomes inactive and causes bonding failure.
[0009]
In this regard, H 2 gas described in Patent Document 2 is rich in reducing, an action which destroys the oxide film, promote the reaction of C + Ti.
However, since H 2 gas is expensive and easily explodes, its management cost increases.
[0010]
In addition, in the study by the present inventors, it was found that the N 2 gas described in Patent Document 2 reacts with Ti to generate TiN, and this TiN obstructs the contact between C and Ti and causes poor bonding. .
[0011]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for joining a carbon-based copper composite material and ceramics or a method for joining a carbon-based copper composite material and copper, which can increase adhesion at low cost.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, claim 1 is a method for joining a carbon-based copper composite material and ceramics or a method for joining a carbon-based copper composite material and copper. between the copper composite material and copper, is interposed junction material made of Mg powder along a side of CuTi alloy foil and the CuTi alloy foil, the bonding material above the melting point of the multilayer body in an atmosphere of nitrogen gas The copper surface and ceramics of the carbon-based copper composite material or the oxide film on the copper surface is reduced with the generated Mg 3 N 2 to promote bonding between Ti and carbon, and the carbon-based copper composite material and ceramic material Alternatively, copper is bonded.
[0013]
In addition to Ti, Mg is added to the bonding material. When Mg (solid) is heated, it sublimes to become Mg (gas), and combines with nitrogen in the atmosphere to become Mg 3 N 2 . This Mg 3 N 2 is more stable than TiN from the viewpoint of standard generation energy. As a result, the generation of TiN can be suppressed.
[0014]
In addition, Mg 3 N 2 exhibits a strong reducing action, and reduces and removes the copper surface of the carbon-based copper composite material, the ceramics, or the oxide film on the copper surface. Ti that does not become TiN penetrates well into ceramics or copper having improved wettability after the oxide film is removed, and TiC and the like can be generated, so that the adhesion can be remarkably improved.
[0015]
The heating atmosphere is nitrogen, which is inexpensive and has no danger of explosion. Therefore, according to the present invention, the cost required for joining can be significantly reduced.
[0016]
In Claim 2, in the joining method of a carbon base copper composite material and ceramics, or the joining method of a carbon base copper composite material and copper, between a carbon base copper composite material and ceramics, or between a carbon base copper composite material and copper. A metal powder mixture of Cu powder, Ti powder, and Mg powder or a bonding material made of CuTiMg alloy foil is interposed therebetween, and this multilayer body is heated to a temperature equal to or higher than the melting point of the bonding material in a nitrogen gas atmosphere. and oxide film reduction of the Mg 3 N 2 at the copper surface and a ceramic or copper surface of the carbon Motodo composite encourage a bond between Ti and carbon joining the carbon Motodo composite material and the ceramic or copper Features.
CuTiMg alloy foil is best in terms of handling.
[0017]
According to a third aspect of the present invention, the temperature above the melting point is 885 ° C to 1083 ° C.
Since the melting point of the Ti-based copper alloy having a Cu composition exceeding 80% is 885 ° C., if the heating temperature is less than 885 ° C., the bonding material is insufficiently melted and adhesion failure occurs. Moreover, when heating temperature exceeds 1083 degreeC, copper will flow out from a carbon-based copper composite material, and product quality will fall.
The heating temperature is kept in the range of 885 ° C. to 1083 ° C. in order to avoid poor adhesion and keep the product quality good.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIGS. 1A to 1D are explanatory views of operation from the material preparation to the crucible filling in the present invention (first embodiment).
(A), the the Si 3 N 4 plate 11 as ceramics, and Mg powder 12 for forming the bonding material, a CuTi alloy foil 13 for forming the bonding material, made of carbon Motodo composite material 14. Prepare starting materials. The carbon-based copper composite material 14 is expressed as C / Cu in the drawings.
[0019]
For the CuTi alloy foil 13, for example, an 80 μm plate is used. If the CuTi alloy foil 13 is too thick, the heat conduction deteriorates, which is not preferable for joining a heat sink or the like. Therefore, it is desirable to make the thickness thinner if manufacturing is possible.
For the CuTi alloy foil 13, for example, an alloy of 3 mass% Ti and the remainder Cu is used.
[0020]
(B), the crucible 15 is first placed a Si 3 N 4 plate 11, placing the Mg powder 12 in the Si 3 N 4 plate 11 at a rate of 10 mg / cm 2. 10 mg / cm 2 may be selected from the range of 5 to 20 mg / cm 2. If it is less than 5 mg / cm 2 , the reducing action becomes weak, and if it exceeds 20 mg / cm 2 , the Mg melts too much.
[0021]
In (c), the CuTi alloy foil 13 is placed, and the Mg powder 12 is placed on the CuTi alloy foil 13 at a rate of 10 mg / cm 2 .
[0022]
In (d), the carbon-based copper composite material 14 is placed. This completes the filling of the crucible 15. Furthermore, it is desirable to place another ceramic weight (not shown) on the carbon-based copper composite material 14 and apply a pressing pressure of about 1 kg / cm 2 . It is because joining can be made more reliable.
[0023]
FIG. 2 is a heating procedure diagram according to the present invention (first embodiment). A crucible 15 is charged into a heating furnace 20 provided with a heating means 21, a nitrogen gas blowing means 22 and a degassing means 23. And the air in a furnace is substituted by nitrogen gas, and it is set as nitrogen gas atmosphere. Next, the inside of the furnace is heated to 900 ° C. by the heating means 21 and maintained at 900 ° C.
[0024]
900 ° C. can be changed within a range of 885 to 1083 ° C. Since the melting point of the Ti-based copper alloy having a Cu composition exceeding 80% is 885 ° C., if the heating temperature is less than 885 ° C., the bonding material is insufficiently melted and adhesion failure occurs. Moreover, when heating temperature exceeds 1083 degreeC, copper will flow out from a carbon-based copper composite material, and product quality will fall.
The following reaction occurs in the heating furnace 20 and the crucible 15 by the heating.
[0025]
[Chemical 1]
Figure 0004108505
[0026]
As shown in the formula (1), the Mg powder 12 is sublimated to become Mg (gas). Then, as shown in the formula (2), Mg reacts with N 2 in the atmosphere to produce Mg 3 N 2 . This Mg 3 N 2 exhibits a strong reducing action.
[0027]
It will be examined whether Ti contained in the CuTi alloy foil 13 reacts with N 2 in the atmosphere. The Mg 3 N 2 is more stable than TiN in terms of standard formation energy. Even if unstable TiN is produced, it does not exist in that form. Therefore, stable Mg 3 N 2 is mainly generated, and unstable TiN is not substantially generated. If present in the form of Ti, Ti serves as a wettability promoter.
[0028]
Incidentally, in FIG. 1 (a), the SiO 2 as an oxide film on the surface is present in Si 3 N 4 plate 11 as ceramics.
The CuTi alloy foil 13 has TiO 2 and / or CuO (cupric oxide) as an oxide film on the surface.
It is considered that CuO (cupric oxide) is present on the copper surface of the carbon-based copper composite material 14.
[0029]
The oxide films SiO 2 , TiO 2 , and CuO are changed to Si, Ti, and Cu by the next reaction (reduction reaction by Mg 3 N 2 ), and the oxide film is substantially removed.
[0030]
[Chemical 2]
Figure 0004108505
[0031]
That is, the oxide film SiO 2 is removed by the expression (3), the oxide film TiO 2 is removed by the expression (4), and the oxide film CuO is removed by the expression (5). Thus, the wettability of the Si 3 N 4 plate 11 and the carbon-based copper composite material 14 with the molten metal (molten bonding material) is increased.
[0032]
By heating at 900 ° C., the molten metal (molten bonding material) penetrates into the Si 3 N 4 plate 11 and the carbon-based copper composite material 14, and good bonding can be performed. In particular, in the carbon-based copper composite material 14 that is difficult to bond, the bonding force can be increased by the generation of TiC.
[0033]
FIG. 3 is a cross-sectional view (first embodiment) of the joined body manufactured by the method of the present invention. The joined body 25 is composed of the Si 3 N 4 plate 11, the CuTi alloy foil 13, and the carbon-based copper composite material 14. However, the carbon-based copper composite material 14 is a bonded product that can be firmly bonded to the Si 3 N 4 plate 11 via the CuTi alloy foil 13.
[0034]
In Figure 1, Si 3 N 4 plate 11 as ceramics, SiN, SiO 2 or, AlN, may be as Al 2 O 3 and TiC. The reason is as follows. The oxide film of Si 3 N 4 and SiO 2 is SiO 2 and can be reduced by the above formula (3). AlN, oxides films with Al 2 O 3 is is Al 2 O 3, it is possible to reduction with similarly Mg 3 N 2. The oxide film of TiC is TiO 2 and can be reduced by the above formula (4).
That is, the ceramic may be any oxide, nitride, carbide, boride and the like.
[0035]
Another embodiment of the first embodiment described above will be described next. The second embodiment as another embodiment has many portions overlapping with the first embodiment, but will be described in detail for the sake of accuracy.
FIGS. 4A to 4D are operation explanatory views (second embodiment) from material preparation to crucible filling in the present invention.
In (a), the starting material which consists of the copper plate 26, Mg powder 12 and CuTi alloy foil 13 for comprising a joining material, and the carbon-based copper composite material 14 is prepared.
[0036]
For the CuTi alloy foil 13, for example, an 80 μm plate is used.
For the CuTi alloy foil 13, for example, an alloy of 3 mass% Ti and the remainder Cu is used.
[0037]
In (b), the copper plate 26 is first placed in the crucible 15, and the Mg powder 12 is placed on the copper plate 26 at a rate of 10 mg / cm 2 .
In (c), the CuTi alloy foil 13 is placed, and the Mg powder 12 is placed on the CuTi alloy foil 13 at a rate of 10 mg / cm 2 .
In (d), the carbon-based copper composite material 14 is placed. This completes the filling of the crucible 15.
[0038]
FIG. 5 is a heating procedure diagram according to the present invention (second embodiment). A crucible 15 is charged into a heating furnace 20 provided with a heating means 21, a nitrogen gas blowing means 22 and a degassing means 23. And the air in a furnace is substituted by nitrogen gas, and it is set as nitrogen gas atmosphere. Next, the inside of the furnace is heated to 900 ° C. by the heating means 21 and maintained at 900 ° C.
[0039]
The following reaction occurs in the heating furnace 20 and the crucible 15 by the heating.
[0040]
[Chemical 3]
Figure 0004108505
[0041]
As shown in the formula (6), the Mg powder 12 is sublimated to become Mg (gas). Then, as shown in the formula (7), Mg reacts with N 2 in the atmosphere to produce Mg 3 N 2 . This Mg 3 N 2 exhibits a strong reducing action.
[0042]
Incidentally, in FIG. 4A, CuO as an oxide film exists on the surface of the copper plate 26.
The CuTi alloy foil 13 has TiO 2 and / or CuO as an oxide film on the surface.
It is considered that CuO exists on the copper surface of the carbon-based copper composite material 14.
[0043]
The oxide films TiO 2 and CuO are changed to Ti and Cu by the next reaction (reduction reaction by Mg 3 N 2 ), and the oxide film is substantially removed.
[0044]
[Formula 4]
Figure 0004108505
[0045]
That, ▲ 8 ▼ oxide film TiO 2 is removed by the equation, the oxide film CuO is removed by ▲ 9 ▼ expression. Thereby, the wettability with the molten metal of the copper plate 26 and the carbon-based copper composite material 14 is increased.
[0046]
By heating at 900 ° C., the molten metal (melt bonding material) penetrates into the Si 3 N 4 plate 11 and the carbon-based copper composite material 14 and can be bonded well. In particular, in the carbon-based copper composite material 14 that is difficult to bond, the bonding force can be increased by the generation of TiC.
[0047]
FIG. 6 is a cross-sectional view (second embodiment) of the joined body manufactured by the method of the present invention. The joined body 27 includes a copper plate 26 and a carbon-based copper composite material 14. The CuTi alloy foil 13 shown in FIG. 5 has substantially two layers in order to be integrated with the copper plate 26. The carbon-based copper composite material 14 is a bonded product that can be firmly bonded to the copper plate 26 via the integrated CuTi alloy foil 13.
[0048]
In the embodiment, although a combination of Mg powder CuTi alloy foil bonding material as the bonding material may be CuTiMg alloy foil. Alternatively, the bonding material can be replaced with a metal powder mixture made of Cu powder + Ti powder + Mg powder.
CuTiMg alloy foil is best in terms of handling. A combination of Mg powder and CuTi alloy foil is suitable for cost reduction because Mg powder is easily available.
[0049]
【The invention's effect】
The present invention exhibits the following effects by the above configuration.
The first aspect is characterized in that not only Ti but also Mg is added to the bonding material. When Mg (solid) is heated, it sublimes to become Mg (gas), and combines with nitrogen in the atmosphere to become Mg 3 N 2 . This Mg 3 N 2 is more stable than TiN from the viewpoint of standard generation energy. As a result, the generation of TiN can be suppressed.
[0050]
In addition, Mg 3 N 2 exhibits a strong reducing action, and reduces and removes the copper surface of the carbon-based copper composite material, the ceramics, or the oxide film on the copper surface. Ti that does not become TiN penetrates well into ceramics or copper having improved wettability after the oxide film is removed, and TiC and the like can be generated, so that the adhesion can be remarkably improved.
[0051]
The heating atmosphere is nitrogen, which is inexpensive and has no danger of explosion. Therefore, according to the present invention, the cost required for joining can be significantly reduced.
Therefore, according to the first aspect, it is possible to provide a method for joining a carbon-based copper composite material and ceramics or a method for joining a carbon-based copper composite material and copper that can increase the adhesiveness at low cost.
[0052]
According to a second aspect of the present invention, the bonding material is composed of a copper alloy foil containing Ti and Mg or Mg alloy disposed on both surfaces of the foil. The copper alloy foil containing Ti is easy to obtain and easy to handle as compared to powder. Therefore, according to claim 2, the cost required for joining can be further reduced.
[0053]
According to a third aspect of the present invention, the temperature above the melting point is 885 ° C to 1083 ° C. When the heating temperature is less than 885 ° C., the bonding material is insufficiently melted and adhesion failure occurs. Moreover, when heating temperature exceeds 1083 degreeC, copper will flow out from a carbon-based copper composite material, and product quality will fall.
The heating temperature is kept in the range of 885 ° C. to 1083 ° C. in order to avoid poor adhesion and keep the product quality good.
[Brief description of the drawings]
FIG. 1 is an operation explanatory diagram from the material preparation to the crucible filling in the present invention (first embodiment).
FIG. 2 is a heating procedure in the present invention (first embodiment).
FIG. 3 is a sectional view of a joined body manufactured by the method of the present invention (first embodiment).
FIG. 4 is a diagram for explaining the operation from material preparation to crucible filling in the present invention (second embodiment).
FIG. 5 is a heating procedure diagram according to the present invention (second embodiment).
FIG. 6 is a sectional view of a joined body manufactured by the method of the present invention (second embodiment).
[Explanation of symbols]
11 ... Si 3 N 4 plate as ceramic, 12 ... Mg powder for constituting the bonding material, CuTi alloy foils for constructing the 13 ... bonding material, 14 ... carbon Motodo composite, 20 ... heating furnace, 21 ... heating means, 22 ... nitrogen gas blowing means, 25, 27 ... joined body, 26 ... copper plate.

Claims (3)

炭素基銅複合材とセラミックスとの接合方法又は炭素基銅複合材と銅との接合方法において、炭素基銅複合材とセラミックスとの間又は炭素基銅複合材と銅との間に、CuTi合金箔及びこのCuTi合金箔の両面に沿わせたMg粉末からなる接合材を介在させ、この多層体を窒素ガス雰囲気下で前記接合材の融点以上の温度に加熱し、生成したMgで炭素基銅複合材の銅表面やセラミックス又は銅表面の酸化物膜を還元し、Tiと炭素との結合を促して炭素基銅複合材とセラミックス又は銅を接合することを特徴とする炭素基銅複合材とセラミックス又は銅との接合方法。In the joining method of the carbon-based copper composite material and the ceramic or the joining method of the carbon-based copper composite material and the copper, between the carbon-based copper composite material and the ceramic or between the carbon-based copper composite material and the copper, a CuTi alloy foil and is interposed junction material made of Mg powder along a side of the CuTi alloy foil, the multilayer body is heated to a temperature above the melting point of the bonding material in a nitrogen gas atmosphere, the resulting Mg 3 N 2 The carbon substrate is characterized in that the copper surface of the carbon-based copper composite material or the ceramic film or the oxide film on the copper surface is reduced, and the bonding between Ti and carbon is promoted to bond the carbon-based copper composite material to the ceramic material or copper. A method of joining a copper composite material to ceramics or copper. 炭素基銅複合材とセラミックスとの接合方法又は炭素基銅複合材と銅との接合方法において、炭素基銅複合材とセラミックスとの間又は炭素基銅複合材と銅との間に、Cu粉末とTi粉末とMg粉末との金属粉末混合物又はCuTiMg合金箔からなる接合材を介在させ、この多層体を窒素ガス雰囲気下で前記接合材の融点以上の温度に加熱し、生成したMg で炭素基銅複合材の銅表面やセラミックス又は銅表面の酸化物膜を還元し、Tiと炭素との結合を促して炭素基銅複合材とセラミックス又は銅を接合することを特徴とする炭素基銅複合材とセラミックス又は銅との接合方法。 In the bonding method between a carbon-based copper composite material and ceramics, or the bonding method between a carbon-based copper composite material and copper, between the carbon-based copper composite material and ceramics or between the carbon-based copper composite material and copper, Cu powder Mg 3 N 2 formed by interposing a metal powder mixture of Ti, Ti powder and Mg powder or a bonding material made of CuTiMg alloy foil and heating the multilayer body to a temperature equal to or higher than the melting point of the bonding material in a nitrogen gas atmosphere. in reducing the oxide film of the copper surface and a ceramic or copper surface of the carbon Motodo composite, characterized by joining the carbon Motodo composite material and the ceramic or copper encourages bond between Ti and carbon charcoal A bonding method between a base copper composite and ceramics or copper. 前記融点以上の温度は、885℃〜1083℃であることを特徴とする請求項1又は請求項2記載の炭素基銅複合材とセラミックス又は銅との接合方法。  The method of joining carbon-based copper composite material and ceramics or copper according to claim 1 or 2, wherein the temperature above the melting point is 885 to 1083 ° C.
JP2003049030A 2003-02-26 2003-02-26 Bonding method of carbon-based copper composite and ceramics or copper Expired - Fee Related JP4108505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049030A JP4108505B2 (en) 2003-02-26 2003-02-26 Bonding method of carbon-based copper composite and ceramics or copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049030A JP4108505B2 (en) 2003-02-26 2003-02-26 Bonding method of carbon-based copper composite and ceramics or copper

Publications (2)

Publication Number Publication Date
JP2004255416A JP2004255416A (en) 2004-09-16
JP4108505B2 true JP4108505B2 (en) 2008-06-25

Family

ID=33114834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049030A Expired - Fee Related JP4108505B2 (en) 2003-02-26 2003-02-26 Bonding method of carbon-based copper composite and ceramics or copper

Country Status (1)

Country Link
JP (1) JP4108505B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044593A1 (en) * 2018-08-28 2020-03-05 三菱マテリアル株式会社 Copper/ceramic bonded body, insulation circuit board, method for producing copper/ceramic bonded body, and method for manufacturing insulation circuit board
WO2020044594A1 (en) * 2018-08-28 2020-03-05 三菱マテリアル株式会社 Copper/ceramic bonded body, insulation circuit board, method for producing copper/ceramic bonded body, and method for manufacturing insulation circuit board
EP3992170A4 (en) * 2019-06-26 2023-07-26 Mitsubishi Materials Corporation JOINTED COPPER/CERAMIC BODY, INSULATION CIRCUIT BOARD, METHOD OF MAKING A JOINED COPPER/CERAMIC BODY AND INSULATION CIRCUIT BOARD MANUFACTURING METHOD
WO2021033622A1 (en) * 2019-08-21 2021-02-25 三菱マテリアル株式会社 Copper/ceramic joined body, insulating circuit substrate, copper/ceramic joined body production method, and insulating circuit substrate production method
JP6850984B2 (en) * 2019-08-21 2021-03-31 三菱マテリアル株式会社 Copper / Ceramics Joint, Insulated Circuit Board, Copper / Ceramics Joint Manufacturing Method, Insulated Circuit Board Manufacturing Method
CN114728857B (en) 2019-12-02 2023-03-17 三菱综合材料株式会社 Copper-ceramic joined body, insulated circuit board, method for producing copper-ceramic joined body, and method for producing insulated circuit board
JP7512863B2 (en) 2019-12-06 2024-07-09 三菱マテリアル株式会社 Copper/ceramic bonded body, insulated circuit board, and method for manufacturing copper/ceramic bonded body and insulated circuit board
WO2021112046A1 (en) * 2019-12-06 2021-06-10 三菱マテリアル株式会社 Copper/ceramic assembly, insulated circuit board, method for producing copper/ceramic assembly, and method for producing insulated circuit board
CN114230359B (en) * 2020-09-09 2023-03-14 比亚迪股份有限公司 Ceramic copper-clad plate and preparation method thereof

Also Published As

Publication number Publication date
JP2004255416A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
JP4375730B2 (en) Brazing material for joining copper and ceramics or carbon-based copper composite material and joining method therefor
JP5757359B2 (en) Cu / ceramic bonded body, Cu / ceramic bonded body manufacturing method, and power module substrate
EP1404883B1 (en) Thermal interface material and heat sink configuration
US7187083B2 (en) Thermal interface material and solder preforms
JP4108505B2 (en) Bonding method of carbon-based copper composite and ceramics or copper
JP2017183716A (en) Manufacturing method of insulation circuit board with heat sink, and insulation circuit board with heat sink
JP5504842B2 (en) Power module substrate, power module substrate with heat sink, power module, and method for manufacturing power module substrate
JP5708961B2 (en) Manufacturing method of semiconductor device
JP2023506558A (en) Methods of producing metal-ceramic substrates and metal-ceramic substrates produced by such methods
JP7052374B2 (en) Manufacturing method of ceramics / aluminum joint, manufacturing method of insulated circuit board
JP6558272B2 (en) Manufacturing method of joined body, manufacturing method of power module substrate with heat sink, joined body and power module substrate with heat sink
JP7243793B2 (en) Ceramic/aluminum joints, insulated circuit boards, LED modules, ceramic members
KR101200578B1 (en) Material composite
WO2006016479A1 (en) Heat sink member and method for manufacture thereof
WO2013129229A1 (en) Method for manufacturing semiconductor device
JP6561886B2 (en) Manufacturing method of power module substrate with heat sink
JP6156693B2 (en) Manufacturing method of semiconductor device
CN114823586A (en) Bonding material for bonding overlapping components of power electronics
JPH06263553A (en) Joined body of carbonaceous material to metal
JPH10194860A (en) Brazing filler metal
CN100362655C (en) Thermal interface materials, and compositions comprising indium and zinc
JP5640570B2 (en) Power module substrate manufacturing method
JP6680144B2 (en) Method for manufacturing ceramic / Al-SiC composite material joined body and method for manufacturing power module substrate with heat sink
JPH0649620B2 (en) Method for joining ceramic member and metal member
JP2020100527A (en) Method for producing joint, and method for manufacturing insulated circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees