[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3664794B2 - Cooling and heating equipment for semiconductor processing liquid - Google Patents

Cooling and heating equipment for semiconductor processing liquid Download PDF

Info

Publication number
JP3664794B2
JP3664794B2 JP03205996A JP3205996A JP3664794B2 JP 3664794 B2 JP3664794 B2 JP 3664794B2 JP 03205996 A JP03205996 A JP 03205996A JP 3205996 A JP3205996 A JP 3205996A JP 3664794 B2 JP3664794 B2 JP 3664794B2
Authority
JP
Japan
Prior art keywords
cooling
semiconductor processing
processing liquid
heat exchange
amorphous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03205996A
Other languages
Japanese (ja)
Other versions
JPH09229587A (en
Inventor
勇鋼 森
諦四 木村
Original Assignee
小松エレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小松エレクトロニクス株式会社 filed Critical 小松エレクトロニクス株式会社
Priority to JP03205996A priority Critical patent/JP3664794B2/en
Publication of JPH09229587A publication Critical patent/JPH09229587A/en
Application granted granted Critical
Publication of JP3664794B2 publication Critical patent/JP3664794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Weting (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、半導体処理液用冷却加熱装置に係り、特に、腐食性薬液等の温度制御に用いられる恒温装置の冷却加熱部の構造に関する。
【0002】
【従来の技術】
半導体処理液に用いられる冷却加熱装置は、熱交換基板に処理液を接触せしめ、この熱交換基板を介して処理液を冷却または加熱するように構成されている。
【0003】
半導体処理液のような強腐食性薬液を用いる場合は、液温によって反応速度が大幅に変化するのみならず、微細な素子形成に用いられるため、わずかな不純物の混入も、素子特性に大きな影響を与えることになる。このため、常に、液温の制御には綿密な注意を払う必要があり、熱交換基板材料としては半導体処理液に対する耐性の高い高純度の材料を用いる必要がある。
【0004】
従来、このような半導体処理液の冷却加熱装置としては処理液接触面にフッ素樹脂被覆を施したステンレス鋼製の板を使用していたが、上記被覆には微細な孔が存在し、かつ樹脂自体が気体を透過させる性質をもつため、わずかではあるが上記被覆を介して処理液およびそのガスが浸透し、その結果次に示すようないろいろな不都合が生じていた。
【0005】
すなわち、ステンレス鋼に到達した処理液およびそのガスがステンレス鋼と反応して新たにガスを発生し、この反応によって生じたガスがフッ素樹脂被膜を押し上げることによって空間が形成される。この空間が加熱冷却効率を低下させ、さらにはガス圧によって被膜に亀裂が生じ、このため処理液がステンレス鋼に直接接触し、処理液とステンレス鋼との反応によって発生した多量の金属イオンが処理液中に混入するという問題があった。
【0006】
そこで本発明者は、熱交換基板の、少なくとも半導体処理液接触面側を高純度炭化硅素セラミックスで構成した半導体処理液の冷却加熱装置を提案している(実公平1−32362号公報)。
【0007】
この炭化硅素セラミックスは半導体処理液等の薬品に対して優れた耐性を持ち、万一、僅かに反応したとしても、炭化硅素の成分がシリコンと炭素であることからそれらが半導体にとって有害なイオンとなることはない。
【0008】
しかしながら、セラミックスには成形時にバインダーが用いられているため、僅かながらバインダー中の一部の成分が不純物として含まれることはやむを得ない。そのため、ごく微量ではあるが、これが半導体処理液中に溶出するという心配は避けられない。
【0009】
さらにまた、冷却加熱部の少なくとも処理液接触面側をCVD法(化学的蒸着法)で形成した炭化硅素膜、すなわちCVD炭化硅素膜で被覆するようにした冷却加熱装置も提案している(特願平3−33128号)。
【0010】
また、スパッタリング法などのPVD法で形成した炭化硅素膜で被覆するものも提案している(特願平5−79759号)。
【0011】
これらの炭化硅素膜で被覆する構造によれば、基板材質として使用できる材料が、炭化硅素セラミックに限定されることなく、従って加工性が容易となるという利点がある。また、CVD炭化硅素膜は不純物の原因となるバインダーも使用しておらず、高純度であって極めて耐性が高く、特に、CVD炭化硅素膜は、半導体処理液で有害なアルカリ金属・重金属不純物含有率を5ppm以下にすることができる。
【0012】
【発明が解決しようとする課題】
しかしながら、前記CVD法を用いた場合、ピンホールのないCVD炭化硅素膜を形成しようとすると、膜厚を大きくしなければならず、形成に多大な時間を要することになる。また、形成時間を短縮しようとすると基板温度を上げるなどの方法をとることになり、膜の表面が粗くなるなど、膜質が低下するという問題がある。この膜表面の粗さは、Oリングを用いて気密シールを行うため、粗いと気密性が低下し、液もれが生じるなど、大きな問題となる。そこで従来は、CVD炭化硅素膜を形成した後、鏡面加工を行うという方法がとられているが、これはコストアップの一因になるとともに加工による表面の汚染を免れ得ないという問題があった。
【0013】
本発明は、前記実情に鑑みてなされたもので、安価で、有害不純物成分を含まず加工性が容易でパーティクルを生じず、信頼性の高い半導体処理液用冷却加熱装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
そこで本発明の第1の特徴は、熱交換基板に半導体処理液を接触せしめて冷却または加熱するように構成された半導体処理液用冷却加熱装置において、前記熱交換基板が、少なくとも処理液接触面側がアモルファスカーボン層で被覆されたグラファイト基材で構成されていることにある。
【0015】
望ましくは、このアモルファスカーボン層は、グラファイト基板表面に熱処理を施すことによって形成してもよいし、また、グラファイト基板表面に樹脂膜をコーティングし、これを熱処理することによりアモルファスカーボン層を形成するようにしてもよい。さらにまたCVD法によりアモルファスカーボン層を形成してもよい。
【0016】
また、本発明の第2の特徴は、前記熱交換基板が、アモルファスカーボンで構成されていることにある。望ましくは、前記熱交換基板を補強する補強板を設けるようにしても良い。
【0017】
【作用】
上記構成によれば、加工性の容易なグラファイト基板を用いることにより、凹凸部の形成なども容易に達成できる。また成形されたグラファイト基板表面に熱処理を施すことによって、アモルファスカーボン層を形成し、これにより、ピンホールがなく緻密で、良好な鏡面を得ることができ、薬液やその蒸気を透過することのない、信頼性の高いものとなる。また、極めて耐薬品性が高く、パーティクルを生じないものとなる。なお、このグラファイト基板表面のアモルファスカーボン層は、熱エネルギー等を加えることにより得られるが、樹脂膜で被覆した状態で熱処理をおこなえば、より平滑で信頼性の高いアモルファスカーボン膜を得ることができる。また、基材表面に気相成長層等により形成してもよい。
【0018】
いずれにしても、基材が金属ではなくグラファイトまたはアモルファスカーボンで構成されているため、化学薬品による湿式洗浄の他、気相洗浄法によって、いわゆる高純度化処理を施すことができ、極めて高度の不純物除去を達成することができる。
【0019】
また、特にこのようにして不純物除去のなされた基材を使用して形成されたアモルファスカーボン被膜は、不純物を含まない処理材や炭素基材を使用すれば、半導体処理液で有害なアルカリ金属・重金属不純物含有率が5ppm以下となるようにすることができ、極めて高純度にすることができる。
【0020】
【実施例】
以下、本発明の実施例について図面を参照しつつ詳細に説明する。
本発明実施例の冷却加熱装置は図1および図2に示すように、熱交換基板1,2は、グラファイト基板からなり、半導体処理薬液との反応を防ぐため表面をアモルファスカーボンで被覆したことを特徴とする。
【0021】
すなわちこの冷却加熱装置は、グラファイト基板20からなり、表面をアモルファスカーボン21で被覆した熱交換基板1,2が、弗素樹脂からなる側部壁体3を介して対向配置せしめられて冷却加熱室4を形成し、この冷却加熱室において、処理容器からパイプ等で導出されてくる例えば半導体処理薬液に対し温度制御を行うように構成されている。
【0022】
さらにこの装置では、サーモモジュール5,6によって各々冷却又は加熱せしめられるように構成され、サーモモジュール5,6の放熱側は夫々、冷却パイプ7,8を介して導入される冷却水によって冷却される放熱ブロック9,10に接触せしめられている。そして、第1の配管11を介して半導体処理薬液を上記冷却加熱室内に導入すると、冷却加熱室4内で冷却または加熱された後第2の配管12を介して処理容器に戻される。さらに冷却加熱部の周囲は接液表面が弗素樹脂からなるOリングOによって気密にシールされている。
【0023】
なお、この熱交換基板の形成に際しては、アルカリ金属・重金属含有率が5ppm以下の高純度のグラファイト基板を所望の形状に加工したのち、表面を弗化水素ガスと反応させ、金属元素などの不純物(汚染物)を弗化物として気化させることにより、高純度化し、樹脂等を塗布した後、所望の温度に加熱した反応装置内に設置し、熱処理により樹脂中のカーボンをアモルファス化し、アモルファスカーボン層を形成する。このように樹脂膜を形成した状態で熱処理するようにすれば、基材表面の凹凸に樹脂が含浸せしめられ平滑となった状態でアモルファス化がなされ、より平滑な表面状態を得ることができる。
【0024】
このようにして形成された熱交換基板を用いた装置では、熱交換基板が処理薬液と接触して不純物を混入させるようなことも、パーティクルを生じることもなく、長期間にわたって良好に半導体処理薬液の温度制御を行うことが可能である。なお、この装置では、半導体処理液として多用される弗酸、硝酸、リン酸、硫酸、塩酸など多くの酸に対しても十分な耐性を発揮する。
【0025】
この熱交換基板は、表面が鏡面に近い状態となっているため、OリングOによって、気密性が極めて良好となるようにシールされ、液もれが皆無となる。
【0026】
さらに基材として用いるグラファイトには、できる限り気孔の少ない高密度なものが望ましく、特に、表面を緻密化処理したものを用いれば、加工性が良好で、鏡面加工も容易であり、アモルファスカーボン層は、5乃至10μm程度の膜厚でかつ、表面反応によって形成されるため、この鏡面を良好に維持することができ、温度変化等に起因する剥離のおそれもない。
【0027】
なお、前記実施例では、グラファイト基板表面に、樹脂を塗布し、熱処理によるトリートメントを施し、アモルファスカーボン層を形成したが、熱処理によりグラファイト基板そのものをアモルファス化し、アモルファスカーボン層を形成してもよいし、気相成長によりグラファイト基板表面に、アモルファスカーボン層を形成しても良い。
【0028】
更にまた、前記実施例ではグラファイト基板表面にアモルファスカーボン層を形成したが、これに換えて、基材をアモルファスカーボンで形成してもよい。例えば図3に示すように、熱交換基板1、2を板厚1mm乃至3mmのアモルファスカーボン30で構成してもよい。この場合は、補強板として熱伝導性の良好な金属板を併用するようにすればよい。
【0029】
また、側部壁体も、表面に同様のアモルファスカーボン層を形成したグラファイト基板を用いてもよく、その形状についても適宜変形可能である。
【0030】
さらにまた、前記実施例では、処理液を冷却または加熱する手段として、サーモモジュールを用いるようにしたが、サーモモジュールに換えて他の冷却および加熱手段を用いるようにしてもよいことはいうまでもない。
【0031】
【発明の効果】
以上説明してきたように、本発明の半導体処理液用冷却加熱装置によれば、熱交換基板をグラファイト基材を所望の形状に加工して形成するとともに、必要な表面に、アモルファスカーボン層を形成しているため、加工性が良好で製造が極めて容易である。また、研磨加工も容易に可能であるため、平滑な平面を容易に得ることができ高いものとなる。また、緻密な表面を得ることができ、気体の透過がなく極めて耐薬品性が高く、さらには極めて高い平坦性を得ることができ、極めて鏡面に近い状態を得ることができ、Oリングによって気密性が極めて良好となるようにシールされ、液もれが皆無となる。さらに、高純度にでき、パーティクルの発生が無い上、極めて安価である。
【図面の簡単な説明】
【図1】本発明実施例の半導体処理液用冷却加熱装置を示す図。
【図2】同熱交換基板の要部断面図。
【図3】本発明の第2の実施例の熱交換基板の要部断面図。
【符号の説明】
1 熱交換基板
2 熱交換基板
3 側部壁体
4 冷却加熱室
5 サーモモジュール
6 サーモモジュール
7 冷却パイプ
8 冷却パイプ
9 放熱ブロック
10 放熱ブロック
11 第1の配管
12 第2の配管
O Oリング
20 グラファイト基板
21 アモルファスカーボン層
30 アモルファスカーボン基材
31 金属補強板
[0001]
[Industrial application fields]
The present invention relates to a cooling / heating device for a semiconductor processing liquid, and more particularly to the structure of a cooling / heating unit of a thermostatic device used for temperature control of a corrosive chemical solution or the like.
[0002]
[Prior art]
The cooling and heating device used for the semiconductor processing liquid is configured to bring the processing liquid into contact with the heat exchange substrate and to cool or heat the processing liquid through the heat exchange substrate.
[0003]
When using highly corrosive chemicals such as semiconductor processing solutions, the reaction rate varies not only greatly depending on the temperature of the solution, but it is also used to form fine elements, so even a slight amount of impurities can have a significant effect on device characteristics. Will give. For this reason, it is always necessary to pay close attention to the control of the liquid temperature, and it is necessary to use a high-purity material having high resistance to the semiconductor processing liquid as the heat exchange substrate material.
[0004]
Conventionally, as a cooling and heating device for such a semiconductor processing liquid, a stainless steel plate having a fluororesin coating applied to the processing liquid contact surface has been used. Since the gas itself permeates, the treatment liquid and the gas permeate through the coating, though slightly, and as a result, various inconveniences as shown below occur.
[0005]
That is, the treatment liquid and its gas that have reached the stainless steel react with the stainless steel to newly generate a gas, and the gas generated by this reaction pushes up the fluororesin coating to form a space. This space reduces the heating / cooling efficiency, and the gas pressure causes cracks in the coating, so that the treatment liquid comes into direct contact with the stainless steel, and a large amount of metal ions generated by the reaction between the treatment liquid and the stainless steel are treated. There was a problem of mixing in the liquid.
[0006]
In view of this, the present inventor has proposed a semiconductor processing liquid cooling and heating device in which at least the semiconductor processing liquid contact surface side of the heat exchange substrate is made of high-purity silicon carbide ceramics (Japanese Utility Model Publication No. 1-332362).
[0007]
This silicon carbide ceramic has excellent resistance to chemicals such as semiconductor processing liquids, and even if it reacts slightly, the silicon carbide components are silicon and carbon, so they are harmful ions for semiconductors. Never become.
[0008]
However, since a binder is used at the time of molding in ceramics, it is inevitable that some components in the binder are included as impurities. For this reason, although it is a very small amount, there is an unavoidable concern that this will elute in the semiconductor processing solution.
[0009]
Furthermore, a cooling and heating apparatus is also proposed in which at least the treatment liquid contact surface side of the cooling and heating unit is coated with a silicon carbide film formed by a CVD method (chemical vapor deposition method), that is, a CVD silicon carbide film. Application No. 3-33128).
[0010]
In addition, a coating with a silicon carbide film formed by a PVD method such as a sputtering method has been proposed (Japanese Patent Application No. 5-79759).
[0011]
According to the structure covered with these silicon carbide films, the material that can be used as the substrate material is not limited to the silicon carbide ceramic, and therefore there is an advantage that the workability becomes easy. In addition, CVD silicon carbide films do not use binders that cause impurities, and are highly pure and extremely resistant. In particular, CVD silicon carbide films contain alkali metal and heavy metal impurities that are harmful in semiconductor processing solutions. The rate can be 5 ppm or less.
[0012]
[Problems to be solved by the invention]
However, when the CVD method is used, if an attempt is made to form a CVD silicon carbide film having no pinholes, the film thickness must be increased, and a great deal of time is required for the formation. Further, if the formation time is to be shortened, a method such as raising the substrate temperature is taken, and there is a problem that the film quality is deteriorated, for example, the film surface becomes rough. Since the film surface is hermetically sealed using an O-ring, if it is rough, the hermeticity is lowered, and liquid leakage occurs. Therefore, conventionally, a method of performing mirror processing after forming a CVD silicon carbide film has been taken, but this has a problem that it causes an increase in cost and cannot avoid contamination of the surface by processing. .
[0013]
The present invention has been made in view of the above circumstances, and an object thereof is to provide a semiconductor processing liquid cooling and heating apparatus that is inexpensive, does not contain harmful impurity components, is easy to process, does not generate particles, and has high reliability. And
[0014]
[Means for Solving the Problems]
Accordingly, a first feature of the present invention is that in the cooling / heating apparatus for semiconductor processing liquid configured to bring the semiconductor processing liquid into contact with the heat exchange substrate to cool or heat, the heat exchange substrate has at least a processing liquid contact surface. The side is composed of a graphite substrate coated with an amorphous carbon layer.
[0015]
Desirably, the amorphous carbon layer may be formed by heat-treating the surface of the graphite substrate, or a resin film is coated on the surface of the graphite substrate, and the amorphous carbon layer is formed by heat-treating the resin film. It may be. Furthermore, an amorphous carbon layer may be formed by a CVD method.
[0016]
A second feature of the present invention is that the heat exchange substrate is made of amorphous carbon. Desirably, a reinforcing plate for reinforcing the heat exchange substrate may be provided.
[0017]
[Action]
According to the said structure, formation of an uneven | corrugated | grooved part etc. can be easily achieved by using a graphite substrate with easy workability. In addition, an amorphous carbon layer is formed by heat-treating the surface of the molded graphite substrate, thereby making it possible to obtain a precise and good mirror surface without pinholes and not to transmit chemicals and vapors thereof. , Become reliable. In addition, it has extremely high chemical resistance and does not generate particles. The amorphous carbon layer on the surface of the graphite substrate can be obtained by applying heat energy or the like. However, if a heat treatment is performed in a state of being covered with a resin film, a smoother and more reliable amorphous carbon film can be obtained. . Moreover, you may form in a base-material surface by a vapor phase growth layer etc.
[0018]
In any case, since the base material is made of graphite or amorphous carbon instead of metal, so-called high-purity treatment can be performed by a vapor phase cleaning method in addition to wet cleaning with chemicals. Impurity removal can be achieved.
[0019]
In addition, the amorphous carbon film formed using the base material from which impurities have been removed in this way is particularly useful in the case of using a processing material or a carbon base material that does not contain impurities. The heavy metal impurity content can be 5 ppm or less, and the purity can be extremely high.
[0020]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIGS. 1 and 2, the cooling and heating device of the embodiment of the present invention is that the heat exchange substrates 1 and 2 are made of a graphite substrate, and the surface is coated with amorphous carbon to prevent reaction with the semiconductor processing chemical solution. Features.
[0021]
In other words, this cooling and heating apparatus is composed of a graphite substrate 20 and heat exchange substrates 1 and 2 whose surfaces are covered with amorphous carbon 21 are arranged to face each other via a side wall 3 made of a fluororesin. In this cooling and heating chamber, temperature control is performed on, for example, a semiconductor processing chemical solution led out from the processing container through a pipe or the like.
[0022]
Further, this apparatus is configured to be cooled or heated by the thermo modules 5 and 6, respectively, and the heat radiation side of the thermo modules 5 and 6 is cooled by cooling water introduced through the cooling pipes 7 and 8, respectively. The heat dissipating blocks 9 and 10 are brought into contact with each other. When the semiconductor processing chemical is introduced into the cooling and heating chamber through the first pipe 11, the semiconductor processing chemical is cooled or heated in the cooling and heating chamber 4 and then returned to the processing container through the second pipe 12. Furthermore, the periphery of the cooling and heating unit is hermetically sealed with an O-ring O made of a fluorine resin on the liquid contact surface.
[0023]
In forming this heat exchange substrate, after processing a high purity graphite substrate having an alkali metal / heavy metal content of 5 ppm or less into a desired shape, the surface is reacted with hydrogen fluoride gas to cause impurities such as metal elements. By evaporating (contaminants) as fluoride, it is highly purified, and after application of resin, etc., it is placed in a reactor heated to a desired temperature, and the carbon in the resin is amorphized by heat treatment, and an amorphous carbon layer Form. If heat treatment is performed in the state where the resin film is formed in this way, the resin is impregnated on the unevenness of the surface of the base material so that the resin is amorphized in a smooth state, and a smoother surface state can be obtained.
[0024]
In the apparatus using the heat exchange substrate formed in this way, the heat exchange substrate does not come into contact with the treatment chemical solution to mix impurities, and no particles are generated. Temperature control can be performed. This apparatus exhibits sufficient resistance against many acids such as hydrofluoric acid, nitric acid, phosphoric acid, sulfuric acid, and hydrochloric acid that are frequently used as semiconductor processing solutions.
[0025]
Since the surface of the heat exchange substrate is close to a mirror surface, the heat exchange substrate is sealed by the O-ring O so as to have extremely good airtightness, and there is no liquid leakage.
[0026]
Further, the graphite used as the base material is preferably a high-density graphite with as few pores as possible. Particularly, when the one having a densified surface is used, the workability is good and the mirror finish is easy, and the amorphous carbon layer Since it is formed by surface reaction with a film thickness of about 5 to 10 μm, this mirror surface can be maintained well, and there is no fear of peeling due to temperature change or the like.
[0027]
In the above embodiment, a resin is applied to the surface of the graphite substrate and a treatment by heat treatment is performed to form an amorphous carbon layer. However, the graphite substrate itself may be made amorphous by heat treatment to form an amorphous carbon layer. Alternatively, an amorphous carbon layer may be formed on the surface of the graphite substrate by vapor phase growth.
[0028]
Furthermore, in the above embodiment, the amorphous carbon layer is formed on the surface of the graphite substrate. Alternatively, the base material may be formed of amorphous carbon. For example, as shown in FIG. 3, the heat exchange substrates 1 and 2 may be made of amorphous carbon 30 having a thickness of 1 mm to 3 mm. In this case, a metal plate with good thermal conductivity may be used in combination as the reinforcing plate.
[0029]
Moreover, the side wall body may use a graphite substrate having a similar amorphous carbon layer formed on the surface, and the shape thereof can be appropriately modified.
[0030]
Furthermore, in the above embodiment, the thermo module is used as the means for cooling or heating the processing liquid, but it goes without saying that other cooling and heating means may be used instead of the thermo module. Absent.
[0031]
【The invention's effect】
As described above, according to the cooling and heating apparatus for semiconductor processing liquid of the present invention, a heat exchange substrate is formed by processing a graphite base material into a desired shape, and an amorphous carbon layer is formed on a necessary surface. Therefore, processability is good and manufacturing is extremely easy. In addition, since the polishing process can be easily performed, a smooth flat surface can be easily obtained, which is high. In addition, a dense surface can be obtained, there is no gas permeation, and the chemical resistance is extremely high. Further, extremely high flatness can be obtained, and a state close to a mirror surface can be obtained. Sealed so as to be extremely good, and no liquid leaks. Furthermore, it can be highly purified, does not generate particles, and is extremely inexpensive.
[Brief description of the drawings]
FIG. 1 is a diagram showing a cooling and heating apparatus for a semiconductor processing liquid according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a main part of the heat exchange substrate.
FIG. 3 is a cross-sectional view of a main part of a heat exchange substrate according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heat exchange board 2 Heat exchange board 3 Side wall body 4 Cooling heating chamber 5 Thermo module 6 Thermo module 7 Cooling pipe 8 Cooling pipe 9 Heat radiation block 10 Heat radiation block 11 1st piping 12 2nd piping OO ring 20 Graphite Substrate 21 Amorphous carbon layer 30 Amorphous carbon substrate 31 Metal reinforcing plate

Claims (3)

熱交換基板に半導体処理液を接触せしめて冷却または加熱するように構成された半導体処理液用冷却加熱装置において、
前記熱交換基板が、少なくとも処理液接触面側をアモルファスカーボン層で被覆してなるグラファイト基材で構成されている
ことを特徴とする半導体処理液用冷却加熱装置。
In a cooling / heating apparatus for a semiconductor processing liquid configured to bring a semiconductor processing liquid into contact with a heat exchange substrate to cool or heat,
A cooling / heating apparatus for semiconductor processing liquid, wherein the heat exchange substrate is made of a graphite base material formed by coating at least the processing liquid contact surface side with an amorphous carbon layer.
熱交換基板に半導体処理液を接触せしめて冷却または加熱するように構成された半導体処理液用冷却加熱装置において、
前記熱交換基板が、アモルファスカーボンで構成されている
ことを特徴とする半導体処理液用冷却加熱装置。
In a cooling / heating apparatus for a semiconductor processing liquid configured to bring a semiconductor processing liquid into contact with a heat exchange substrate to cool or heat,
The cooling and heating apparatus for semiconductor processing liquid, wherein the heat exchange substrate is made of amorphous carbon.
前記熱交換基板を補強する補強板を具備する
ことを特徴とする請求項2記載の半導体処理液用冷却加熱装置。
The cooling / heating apparatus for semiconductor processing liquid according to claim 2, further comprising a reinforcing plate that reinforces the heat exchange substrate.
JP03205996A 1996-02-20 1996-02-20 Cooling and heating equipment for semiconductor processing liquid Expired - Lifetime JP3664794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03205996A JP3664794B2 (en) 1996-02-20 1996-02-20 Cooling and heating equipment for semiconductor processing liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03205996A JP3664794B2 (en) 1996-02-20 1996-02-20 Cooling and heating equipment for semiconductor processing liquid

Publications (2)

Publication Number Publication Date
JPH09229587A JPH09229587A (en) 1997-09-05
JP3664794B2 true JP3664794B2 (en) 2005-06-29

Family

ID=12348315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03205996A Expired - Lifetime JP3664794B2 (en) 1996-02-20 1996-02-20 Cooling and heating equipment for semiconductor processing liquid

Country Status (1)

Country Link
JP (1) JP3664794B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3968610B2 (en) * 1998-05-27 2007-08-29 Smc株式会社 Cooling and heating equipment for semiconductor processing liquid
JP2006336941A (en) * 2005-06-02 2006-12-14 Toyota Motor Corp Humidifier and separator
JP4820721B2 (en) * 2006-09-07 2011-11-24 オリオン機械株式会社 Chemical heat exchanger
JP5164140B2 (en) * 2007-08-10 2013-03-13 オリオン機械株式会社 Heat exchanger for chemicals
JP5390324B2 (en) * 2009-09-29 2014-01-15 大日本スクリーン製造株式会社 Substrate processing equipment
US20150159958A1 (en) * 2012-05-28 2015-06-11 Shikoku Instrumentation Co., Ltd. High-efficiency heat exchanger and high-efficiency heat exchange method

Also Published As

Publication number Publication date
JPH09229587A (en) 1997-09-05

Similar Documents

Publication Publication Date Title
CN1906026B (en) Yttria-coated ceramic components of semiconductor material processing apparatuses and methods of manufacturing the components
KR101063788B1 (en) Production method for vacuum component
US5119541A (en) Wafer succeptor apparatus
EP1216109A1 (en) METHOD AND SYSTEM FOR i IN SITU /i CLEANING OF SEMICONDUCTOR MANUFACTURING EQUIPMENT USING COMBINATION CHEMISTRIES
JP3664794B2 (en) Cooling and heating equipment for semiconductor processing liquid
WO2007111058A1 (en) Structural member for plasma treatment system and method for manufacture thereof
JP5028755B2 (en) Surface treatment method for semiconductor processing equipment
GB2337812A (en) Cooling/heating apparatus for a semiconductor processing liquid
JP5534979B2 (en) Substrate processing apparatus and substrate processing apparatus cleaning method
TW585930B (en) Corrosion-resistant member and a producing process thereof
JPH1167717A (en) Cooling/heating apparatus for semiconductor processing solution
JPH09199472A (en) Device for cooling and heating semiconductor processing solution
JPH04356695A (en) Heat exchanger for semiconductor treatment fluid
US6200516B1 (en) Production of corrosion-resistant ceramic members
JP3779348B2 (en) High purity furnace for graphite members
JP4570372B2 (en) Materials for plasma-resistant semiconductor manufacturing equipment
JPH1067584A (en) Reaction vessel
JPH06291104A (en) Heat-exchanger for semiconductor treating liquid
KR20120046007A (en) A corrosion-resistant article coated with aluminum nitride and method for producing the same
JPH09313926A (en) Heat-exchange apparatus for semiconductor treating liquid
EP1357098B1 (en) Joining methode for high-purity ceramic parts
US12129550B1 (en) Thermal reactor for generating reactive species for chemical vapor deposition of thin films
JPH0465376A (en) Si impregnated sic product coated by cvd and production thereof
JP2000355754A (en) Production of member having fluorinated film, member to be treated used therefor, and corrosion resistant sealing member having fluorinated film
KR100917118B1 (en) Gas injector and apparatus of manufacturing a semiconductor device having the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term