[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3659116B2 - Epoxy resin molding material for sealing and electronic component device - Google Patents

Epoxy resin molding material for sealing and electronic component device Download PDF

Info

Publication number
JP3659116B2
JP3659116B2 JP2000050490A JP2000050490A JP3659116B2 JP 3659116 B2 JP3659116 B2 JP 3659116B2 JP 2000050490 A JP2000050490 A JP 2000050490A JP 2000050490 A JP2000050490 A JP 2000050490A JP 3659116 B2 JP3659116 B2 JP 3659116B2
Authority
JP
Japan
Prior art keywords
epoxy resin
sealing
molding material
group
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000050490A
Other languages
Japanese (ja)
Other versions
JP2001233937A (en
Inventor
良一 池沢
伸介 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2000050490A priority Critical patent/JP3659116B2/en
Publication of JP2001233937A publication Critical patent/JP2001233937A/en
Application granted granted Critical
Publication of JP3659116B2 publication Critical patent/JP3659116B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐リフロー性、耐湿性、高温放置特性等の厳しい信頼性を要求されるVLSIの封止用に特に好適な封止用エポキシ樹脂成形材料、及びこの成形材料で封止した素子を備えた電子部品装置に関する。
【0002】
【従来の技術】
従来から、トランジスタ、IC等の電子部品装置の素子封止の分野では生産性、コスト等の面から樹脂封止が主流となり、エポキシ樹脂成形材料が広く用いられている。この理由は、エポキシ樹脂が作業性、成形性、電気特性、耐湿性、耐熱性、機械特性、インサート品との接着性等の諸特性にバランスがとれているためである。特に、オルソクレゾールノボラック型エポキシ樹脂とフェノールノボラック硬化剤の組み合わせはこれらのバランスに優れており、IC封止用成形材料のベース樹脂として主流になっている。
【0003】
近年、電子部品のプリント配線板への高密度実装化が進んでいる。これに伴い、電子部品装置は従来のピン挿入型のパッケージから、表面実装型のパッケージが主流になっている。表面実装型のIC、LSIなどは、実装密度を高くし実装高さを低くするために、薄型、小型のパッケージになっており、素子のパッケージに対する占有体積が大きくなり、パッケージの肉厚は非常に薄くなってきた。さらに、これらのパッケージは従来のピン挿入型のものと実装方法が異なっている。即ち、ピン挿入型パッケージはピンを配線板に挿入した後、配線板裏面からはんだ付けを行うため、パッケージが直接高温にさらされることがなかった。しかし、表面実装型ICは配線板表面に仮止めを行い、はんだバスやリフロー装置などで処理されるため、直接はんだ付け温度にさらされる。この結果、ICパッケージが吸湿した場合、はんだ付け時に吸湿水分が急激に膨張し、パッケージをクラックさせてしまう。現在、この現象が表面実装型ICに係わる大きな問題となっている。
【0004】
【発明が解決しようとする課題】
現行のベース樹脂組成で封止したICパッケージでは、上記の問題が避けられないため、ICを防湿梱包して出荷したり、配線板へ実装する前に予めICを十分乾燥して使用するなどの方法がとられている。しかし、これらの方法は手間がかかり、コストも高くなる。
【0005】
本発明はかかる状況に鑑みなされたもので、配線板等への実装の際、特定の前処理をすることなく、はんだ付けを行うことができ、実装後も耐リフロー性、耐湿性、高温放置特性等の信頼性が良好な封止用エポキシ樹脂成形材料を提供しようとするものである。
【0006】
【課題を解決するための手段】
発明者らは上記の課題を解決するために鋭意検討を重ねた結果、260℃における曲げ強度及び充填剤量を規定した、特定の封止用エポキシ樹脂成形材料により上記の目的を達成しうることを見い出し、本発明を完成するに至った。
【0007】
すなわち、本発明は、
(1)(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤、及び(D)無機充填剤を必須成分とし、260℃における曲げ強度が0.8kg/mm2以上で、かつ(D)無機充填剤の配合量が75重量%以上である封止用エポキシ樹脂成形材料、
(2)(D)無機充填剤の配合量が80〜95重量%である上記(1)記載の封止用エポキシ樹脂成形材料、
(3)260℃における曲げ強度が1.0〜2.0kg/mm2である上記(1)又は(2)記載の封止用エポキシ樹脂成形材料、
(4)260℃における曲げ弾性率が20〜60kg/mm2である上記(1)〜(3)のいずれかに記載の封止用エポキシ樹脂成形材料、
(5)(A)エポキシ樹脂が下記一般式(I)で示されるビフェニル型エポキシ樹脂及び/又は下記一般式(II)で示されるビスフェノールF型エポキシ樹脂を含有してなる上記(1)〜(4)のいずれかに記載の封止用エポキシ樹脂成形材料、
【化5】

Figure 0003659116
(ここで、R1〜R4は水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、全てが同一でも異なっていてもよい。nは0〜3の整数を示す。)
【化6】
Figure 0003659116
(ここで、R1〜R8は水素原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシル基、炭素数6〜10のアリール基、及び炭素数6〜10のアラルキル基から選ばれ、全てが同一でも異なっていてもよい。nは0〜3の整数を示す。)
(6)(B)硬化剤が下記一般式(III)で示されるフェノール・アラルキル樹脂及び/又は下記一般式(IV)で示されるビフェニル型フェノール樹脂を含有してなる上記(1)〜(5)のいずれかに記載の封止用エポキシ樹脂成形材料、及び
【化7】
Figure 0003659116
(ここで、Rは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、nは0〜10の整数を示す。)
【化8】
Figure 0003659116
(ここで、R1〜R9は水素原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシル基、炭素数6〜10のアリール基、及び炭素数6〜10のアラルキル基から選ばれ、全てが同一でも異なっていてもよい。nは0〜10の整数を示す。)
(7)(C)硬化促進剤が有機ホスフィンとキノン化合物との付加物である上記(1)〜(6)のいずれかに記載の封止用エポキシ樹脂成形材料、並びに
(8)上記(1)〜(5)記載のいずれかの封止用エポキシ樹脂成形材料により封止された素子を備えた電子部品装置、
に関する。
【0008】
【発明の実施の形態】
本発明において用いられる(A)エポキシ樹脂は、封止用エポキシ樹脂成形材料に一般に使用されているもので特に制限はないが、例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換又は非置換のビフェノール等のジグリシジルエーテルなどのグリシジルエーテル型エポキシ樹脂、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、フタル酸、ダイマー酸等の多塩基酸とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、ジシクロペンタジエンとフェノ−ル類及び/又はナフトール類との共縮合樹脂のエポキシ化物、ナフタレン環を有するエポキシ樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂のエポキシ化物、トリメチロールプロパン型エポキシ樹脂、テルペン変性エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、及び脂環族エポキシ樹脂などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
【0009】
中でも耐リフロー性の観点からは、下記一般式(I)で示されるビフェニル型エポキシ樹脂が好ましい。
【化9】
Figure 0003659116
(ここで、R1〜R4は水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、全てが同一でも異なっていてもよい。nは0〜3の整数を示す。)
上記一般式(I)で示されるビフェニル型エポキシ樹脂としては、例えば、4,4’−ビス(2,3−エポキシプロポキシ)ビフェニル又は4,4’−ビス(2,3−エポキシプロポキシ)−3,3’,5,5’−テトラメチルビフェニルを主成分とするエポキシ樹脂、エピクロルヒドリンと4,4’−ビフェノール又は4,4’−(3,3’,5,5’−テトラメチル)ビフェノールとを反応させて得られるエポキシ樹脂等が挙げられる。中でも4,4’−ビス(2,3−エポキシプロポキシ)−3,3’,5,5’−テトラメチルビフェニルを主成分とするエポキシ樹脂が好ましい。このビフェニル型エポキシ樹脂を使用する場合、その配合量は、その性能を発揮するためにエポキシ樹脂全量に対して30重量%以上とすることが好ましく、50重量%以上がより好ましく、60重量%以上がさらに好ましい。
【0010】
また、難燃性、流動性の観点からは下記一般式(II)で示されるビスフェノールF型エポキシ樹脂が好ましい。
【化10】
Figure 0003659116
上記式(II)中のR1〜R8は全てが同一でも異なっていてもよく、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基等の炭素数1〜10のアルキル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素数1〜10のアルコキシル基、フェニル基、トリル基、キシリル基等の炭素数6〜10のアリール基、及び、ベンジル基、フェネチル基等の炭素数6〜10のアラルキル基から選ばれ、中でも水素原子及びメチル基が好ましい。nは0〜3の整数を示す。
上記一般式(II)で示されるビスフェノールF型エポキシ樹脂としては、例えば、R1、R3、R6及びR8がメチル基で、R2、R4、R5及びR7が水素原子であり、n=0を主成分とするESLV−80XY(新日鉄化学株式会社製商品名)が市販品として入手可能である。このビスフェノールF型エポキシ樹脂を使用する場合、その配合量は、その性能を発揮するためにエポキシ樹脂全量に対して30重量%以上とすることが好ましく、50重量%以上がより好ましい。
【0011】
上記一般式(I)で示されるビフェニル型エポキシ樹脂と上記一般式(II)で示されるビスフェノールF型エポキシ樹脂とは併用してもよい。両者を併用する場合には、それらの配合量はエポキシ樹脂全量に対して合わせて60重量%以上とすることが好ましく、80重量%以上がより好ましい。
【0012】
本発明において用いられる(B)硬化剤は、封止用エポキシ樹脂成形材料に一般に使用されているもので特に制限はないが、例えば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られる樹脂、フェノール類及び/又はナフトール類とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルから合成されるフェノール・アラルキル樹脂、ナフトール・アラルキル樹脂等のアラルキル型フェノール樹脂などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
【0013】
中でも耐リフロー性の観点からは、下記一般式(III)で示されるフェノール・アラルキル樹脂が好ましく、Rが水素原子で、nの平均値が0〜8であるフェノール・アラルキル樹脂がより好ましく、具体例としては、p−キシリレン型ザイロック、m−キシリレン型ザイロック等が挙げられる。このフェノール・アラルキル樹脂を用いる場合、その配合量は、その性能を発揮するために硬化剤全量に対して30重量%以上とすることが好ましく、50重量%以上がより好ましく、60重量%以上がさらに好ましい。
【化11】
Figure 0003659116
(ここで、Rは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、nは0〜10の整数を示す。)
【0014】
難燃性の観点からは下記一般式(IV)で示されるビフェニル型フェノール樹脂が好ましい。
【化12】
Figure 0003659116
上記式(IV)中のR1〜R9は全てが同一でも異なっていてもよく、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基等の炭素数1〜10のアルキル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素数1〜10のアルコキシル基、フェニル基、トリル基、キシリル基等の炭素数6〜10のアリール基、及び、ベンジル基、フェネチル基等の炭素数6〜10のアラルキル基から選ばれ、中でも水素原子とメチル基が好ましい。nは0〜10の整数を示す。
上記一般式(IV)で表されるビフェニル型フェノール樹脂としては、例えばR1〜R9が全て水素原子である化合物等が挙げられ、中でも溶融粘度の観点から、nが1以上の縮合体を50重量%以上含む縮合体の混合物が好ましい。このような化合物としては、MEH−7851(明和化成株式会社製商品名)が市販品として入手可能である。このビフェニル型フェノール樹脂を使用する場合、その配合量は、その性能を発揮するために硬化剤全量に対して30重量%以上とすることが好ましく、50重量%以上がより好ましい。
【0015】
上記一般式(III)で示されるフェノール・アラルキル樹脂と上記一般式(IV)で示されるビフェニル型フェノール樹脂とは併用してもよい。両者を併用する場合には、それらの配合量は硬化剤全量に対して合わせて60重量%以上とすることが好ましく、80重量%以上がより好ましい。
【0016】
(A)エポキシ樹脂と(B)硬化剤との当量比、すなわち、エポキシ樹脂中のエポキシ基数/硬化剤中の水酸基数の比は、特に制限はないが、それぞれの未反応分を少なく抑えるために0.5〜2の範囲に設定されることが好ましく、0.6〜1.3がより好ましい。成形性、耐リフロー性に優れる封止用エポキシ樹脂成形材料を得るためには0.8〜1.2の範囲に設定されることがさらに好ましい。
【0017】
本発明において用いられる(C)硬化促進剤は、封止用エポキシ樹脂成形材料に一般に使用されているもので特に制限はないが、例えば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、1,5−ジアザ−ビシクロ(4,3,0)ノネン、5、6−ジブチルアミノ−1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等のシクロアミジン化合物及びこれらの化合物に無水マレイン酸、1,4−ベンゾキノン、2,5−トルキノン、1,4−ナフトキノン、2,3−ジメチルベンゾキノン、2,6−ジメチルベンゾキノン、2,3−ジメトキシ−5−メチル−1,4−ベンゾキノン、2,3−ジメトキシ−1,4−ベンゾキノン、フェニル−1,4−ベンゾキノン等のキノン化合物、ジアゾフェニルメタン、フェノール樹脂などのπ結合をもつ化合物を付加してなる分子内分極を有する化合物、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン類及びこれらの誘導体、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール等のイミダゾール類及びこれらの誘導体、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4−メチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン類及びこれらのホスフィン類に無水マレイン酸、上記キノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有するリン化合物、テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、2−エチル−4−メチルイミダゾールテトラフェニルボレート、N−メチルモルホリンテトラフェニルボレート等のテトラフェニルボロン塩及びこれらの誘導体などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。中でも成形性、耐リフロー性の観点からは有機ホスフィンとキノン化合物との付加物が好ましい。
【0018】
(C)硬化促進剤の配合量は、硬化促進効果が達成される量であれば特に制限されるものではないが、封止用エポキシ樹脂成形材料に対して0.005〜2重量%が好ましく、より好ましくは0.01〜0.5重量%である。0.005重量%未満では短時間での硬化性に劣る傾向があり、2重量%を超えると硬化速度が速すぎて良好な成形品を得ることが困難になる傾向がある。
【0019】
本発明において用いられる(D)無機充填剤は、吸湿性、線膨張係数低減、熱伝導性向上及び強度向上のために成形材料に配合されるものであり、例えば、溶融シリカ、結晶シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体、又はこれらを球形化したビーズ、ガラス繊維などが挙げられる。さらに、難燃効果のある無機充填剤としては水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛等が挙げられる。これらの無機充填剤は単独で用いても2種以上を組み合わせて用いてもよい。中でも、線膨張係数の低減の観点からは溶融シリカが、高熱伝導性の観点からはアルミナが好ましく、無機充填剤の形状は成形時の流動性及び金型摩耗性の点から球形が好ましい。(D)無機充填剤の配合量は、封止用エポキシ樹脂成形材料に対して75重量%以上に設定されることが必要で、耐リフロー性、流動性、成形性、及び強度向上の観点から、80〜95重量%の範囲が好ましく、88〜92重量%がより好ましい。75重量%未満では耐リフロー性が低下する傾向がある。
【0020】
本発明の封止用エポキシ樹脂成形材料は、耐リフロー性の観点から260℃における曲げ強度が0.8kg/mm2以上であることが必要で、1.0〜2.0kg/mm2が好ましい。
本発明においては、(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤、(D)無機充填剤及びその他の添加剤として用いる成分の組み合わせ及び配合量を調整することによって、260℃における曲げ強度が0.8kg/mm2以上である封止用エポキシ樹脂成形材料を得ることができる。(A)エポキシ樹脂及び(B)硬化剤の選定が特に重要である。
また、本発明の封止用エポキシ樹脂成形材料の260℃における曲げ弾性率は、耐リフロー性の観点から20〜60kg/mm2であることが好ましい。260℃における曲げ弾性率が20〜60kg/mm2である封止用エポキシ樹脂成形材料は、曲げ強度が0.8kg/mm2以上である封止用エポキシ樹脂成形材料を得る場合と同様に、各種配合成分の組み合わせ及び配合量を調整することによって得ることができる。
ここで、曲げ強度、曲げ弾性率とは、JIS−K6911に準拠した3点支持型曲げ試験により測定される値である。
【0021】
本発明の封止用エポキシ樹脂成形材料には、樹脂成分と無機充填剤との接着性を高めるために、必要に応じて、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物等の公知のカップリング剤を添加することができる。これらを例示すると、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、ビニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-アニリノプロピルメチルジメトキシシラン、γ−[ビス(β−ヒドロキシエチル)]アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−(β−アミノエチル)アミノプロピルジメトキシメチルシラン、N−(トリメトキシシリルプロピル)エチレンジアミン、N−(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン等のシラン系カップリング剤、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N−アミノエチル−アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等のチタネート系カップリング剤などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
【0022】
上記カップリング剤の配合量は、(D)無機充填剤に対して0.05〜5重量%であることが好ましく、0.1〜2.5重量%がより好ましい。0.05重量%未満ではフレームとの接着性が低下する傾向があり、5重量%を超えるとパッケージの成形性が低下する傾向がある。
【0023】
本発明の封止用エポキシ樹脂成形材料には、ブロム化エポキシ樹脂、三酸化アンチモン、リン酸エステル、赤リン等の燐化合物、メラミン、メラミンシアヌレート、メラミン変性フェノール樹脂、グアナミン変性フェノール樹脂等の含窒素化合物、シクロホスファゼン等の燐/窒素含有化合物、酸化亜鉛、酸化鉄、酸化モリブデン、フェロセン等の金属化合物などの従来公知の難燃剤を必要に応じて添加することができる。
【0024】
また、本発明の封止用エポキシ樹脂成形材料には、IC等の半導体素子の耐湿性、高温放置特性を向上させる観点から陰イオン交換体を添加することもできる。陰イオン交換体としては特に制限はなく、従来公知のものを用いることができるが、例えば、ハイドロタルサイト類や、マグネシウム、アルミニウム、チタン、ジルコニウム、ビスマスから選ばれる元素の含水酸化物等が挙げられ、これらを単独又は2種以上を組み合わせて用いることができる。中でも、下記一般式(V)で示されるハイドロタルサイトが好ましい。
【化13】
Mg1-XAlX(OH)2(CO3X/2・mH2O ……(V)
(0<X≦0.5、mは正の整数)
【0025】
さらに、本発明の封止用エポキシ樹脂成形材料には、その他の添加剤として、高級脂肪酸、高級脂肪酸金属塩、エステル系ワックス、ポリオレフィン系ワックス、ポリエチレン、酸化ポリエチレン等の離型剤、カーボンブラック等の着色剤、シリコーンオイルやシリコーンゴム粉末等の応力緩和剤などを必要に応じて配合することができる。
【0026】
本発明の封止用エポキシ樹脂成形材料は、各種原材料を均一に分散混合できるのであれば、いかなる手法を用いても調製できるが、一般的な手法として、所定の配合量の原材料をミキサー等によって十分混合した後、ミキシングロール、押出機等によって溶融混練した後、冷却、粉砕する方法を挙げることができる。成形条件に合うような寸法及び重量でタブレット化すると使いやすい。
【0027】
本発明で得られる封止用エポキシ樹脂成形材料により素子を封止して得られる電子部品装置としては、リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウエハ等の支持部材に、半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、コイル等の受動素子等の素子を搭載し、必要な部分を本発明の封止用エポキシ樹脂成形材料で封止し、電子部品装置などが挙げられる。このような電子部品装置としては、例えば、リードフレーム上に半導体素子を固定し、ボンディングパッド等の素子の端子部とリード部をワイヤボンディングやバンプで接続した後、本発明の封止用エポキシ樹脂成形材料を用いてトランスファ成形などにより封止してなる、DIP(Dual Inline Package)、PLCC(Plastic Leaded Chip Carrier)、QFP(Quad Flat Package)、SOP(Small Outline Package)、SOJ(Small Outline J-lead package)、TSOP(Thin Small Outline Package)、TQFP(Thin Quad Flat Package)等の一般的な樹脂封止型IC、テープキャリアにバンプで接続した半導体チップを、本発明の封止用エポキシ樹脂成形材料で封止したTCP(Tape Carrier Package)、配線板やガラス上に形成した配線に、ワイヤーボンディング、フリップチップボンディング、はんだ等で接続した半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子及び/又はコンデンサ、抵抗体、コイル等の受動素子を、本発明の封止用エポキシ樹脂成形材料で封止したCOB(Chip On Board)モジュール、ハイブリッドIC、マルチチップモジュール、裏面に配線板接続用の端子を形成した有機基板の表面に素子を搭載し、バンプまたはワイヤボンディングにより素子と有機基板に形成された配線を接続した後、本発明の封止用エポキシ樹脂成形材料で素子を封止したBGA(Ball Grid Array)、CSP(Chip Size Package)などが挙げられる。また、プリント回路板にも本発明の封止用エポキシ樹脂成形材料は有効に使用できる。
【0028】
本発明の封止用エポキシ樹脂成形材料を用いて素子を封止する方法としては、低圧トランスファ成形法が最も一般的であるが、インジェクション成形法、圧縮成形法等を用いてもよい。
【0029】
【実施例】
次に実施例により本発明を説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
【0030】
実施例1〜8、比較例1〜3
エポキシ樹脂としてエポキシ当量196、融点106℃のビフェニル型エポキシ樹脂(油化シェルエポキシ株式会社製商品名エピコートYX−4000H)、エポキシ当量186、融点75℃のビスフェノールF型エポキシ樹脂(新日鉄化学株式会社製商品名ESLV−80XY)、エポキシ当量195、軟化点65℃のo−クレゾールノボラック型エポキシ樹脂(住友化学工業株式会社製商品名ESCN−190)及びエポキシ当量375、軟化点80℃、臭素含量48重量%のビスフェノールA型ブロム化エポキシ樹脂(住友化学工業株式会社製商品名ESB−400T)、硬化剤として軟化点70℃のフェノール・アラルキル樹脂(三井化学株式会社製商品名ミレックスXL−225)、水酸基当量199、軟化点80℃のビフェニル型フェノール樹脂(明和化成株式会社製商品名MEH−7851)、硬化促進剤としてトリフェニルホスフィンとp−ベンゾキノンとの付加物、無機充填剤として平均粒径17.5μm、比表面積3.8m2/gの球状溶融シリカ、カップリング剤としてγ−グリシドキシプロピルトリメトキシシラン(エポキシシラン)、その他の添加剤として三酸化アンチモン、カルナバワックス(株式会社セラリカNODA製)、カーボンブラック(三菱化学株式会社製商品名MA−100)をそれぞれ表1に示す重量部で配合し、混練温度80℃、混練時間10分の条件でロール混練を行い、実施例1〜8及び比較例1〜3の封止用エポキシ樹脂成形材料を作製した。
【0031】
【表1】
Figure 0003659116
【0032】
作製した合計11種類の実施例及び比較例の封止用エポキシ樹脂成形材料を、次の各試験により評価した。なお、封止用エポキシ樹脂成形材料は、トランスファ成形機により、金型温度180℃、成形圧力6.9MPa、硬化時間90秒の条件で成形した。また、後硬化は175℃で5時間行った。
(1)曲げ強度、曲げ弾性率
JIS−K6911に準拠した3点支持型曲げ試験を行って測定した。なお、試験片は封止用エポキシ樹脂成形材料を上記の条件で幅5mm×長さ60mm×厚さ3mmの寸法に成形し、上記の条件で後硬化を行って作製した。
(2)スパイラルフロー(流動性の指標)
EMMI−1−66に準じたスパイラルフロー測定用金型を用いて封止用エポキシ樹脂成形材料を上記の条件で成形し、流動距離(cm)を求めた。
(3)熱時硬度
封止用エポキシ樹脂成形材料を上記の条件で直径50mm×厚さ3mmの円板に成形し、成形後直ちにショアD型硬度計を用いて測定した。
(4)耐リフロー性
封止用エポキシ樹脂成形材料を上記の条件で成形、後硬化して、8mm×10mmのシリコーンチップを搭載した外形寸法20mm×14mm×2mmの80ピンフラットパッケージを作製し、85℃/85%RHの条件で加湿して所定時間毎に240℃/10秒の条件でリフロー処理を行い、クラックの有無を観察し、不良パッケージ数(クラックの発生)/測定パッケージ数で評価した。
(5)耐湿性
封止用エポキシ樹脂成形材料を上記条件で成形、後硬化して、線幅10μm、厚さ1μmのアルミ配線を施した6mm×6mm×0.4mmのテスト用シリコーンチップを搭載した外形寸法19mm×14mm×2.7mmの80ピンフラットパッケージを作製し、前処理を行った後、加湿して所定時間毎にアルミ配線腐食による断線不良を調べ、不良パッケージ数(断線あり)/測定パッケージ数で評価した。
なお、前処理は85℃、85%RH、72時間の条件でフラットパッケージを加湿し、215℃、90秒間ベーパーフェーズリフロー処理を行った。その後、加湿試験を0.2MPa、121℃の条件で行った。
(6)高温放置特性
外形サイズ5mm×9mmで5μmの酸化膜を有するシリコンサブストレート上にライン/スペースが10μmのアルミ配線を形成したテスト素子を、部分銀メッキを施した42アロイのリードフレームに銀ペーストで接続し、サーモニック型ワイヤボンダにより、200℃で素子のボンディングパッドとインナリードをAu線にて接続した。その後、封止用エポキシ樹脂成形材料を上記条件で成形、後硬化して、16ピン型DIP(Dual Inline Package)を作製し、得られた試験用ICを200℃の高温槽に保管し、所定時間毎に取り出して導通試験を行い、導通不良のパッケージ数を調べ、測定パッケージ数に占める割合で評価した。
評価結果を表2に示す。
【0033】
【表2】
Figure 0003659116
【0034】
無機充填剤の配合量が本発明の規定範囲外の比較例1は、耐リフロー性及び高温放置特性に劣り、260℃における曲げ強度が本発明の規定範囲外の比較例2、3は、耐リフロー性に劣っている。
これに対して、本発明の(A)〜(D)成分を全て含み、260℃における曲げ強度が0.8kg/mm2以上で、無機充填剤の配合量が75重量%以上である実施例1〜8は流動性、熱時硬度、耐リフロー性、耐湿性及び高温放置特性のいずれも良好である。特に、260℃における曲げ強度が1.0〜2.0kg/mm2、曲げ弾性率が20〜60kg/mm2で、無機充填剤の配合量が80〜95重量%の範囲内である実施例5〜7は耐リフロー性が良好で、中でも無機充填剤が88〜92重量%の範囲内である実施例6、7は耐リフロー性及び高温放置特性に著しく優れることが示される。
【0035】
【発明の効果】
本発明になる封止用エポキシ樹脂成形材料を用いてIC、LSI等の電子部品を封止すれば、実施例で示したように耐リフロー性が良好で、信頼性に優れる電子部品装置を得ることができるので、その工業的価値は大である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin molding material for sealing particularly suitable for sealing VLSI that requires strict reliability such as reflow resistance, moisture resistance, and high-temperature storage characteristics, and an element sealed with this molding material. The present invention relates to an electronic component device provided.
[0002]
[Prior art]
Conventionally, in the field of element sealing of electronic component devices such as transistors and ICs, resin sealing has been the mainstream in terms of productivity and cost, and epoxy resin molding materials have been widely used. This is because the epoxy resin is balanced in various properties such as workability, moldability, electrical properties, moisture resistance, heat resistance, mechanical properties, and adhesiveness with inserts. In particular, the combination of an ortho-cresol novolac type epoxy resin and a phenol novolac curing agent has an excellent balance between these, and has become the mainstream as a base resin for molding materials for IC sealing.
[0003]
In recent years, high-density mounting of electronic components on printed wiring boards has been progressing. Along with this, surface mount type packages have become the mainstream of conventional pin insertion type packages. Surface-mount ICs, LSIs, etc. are thin and small packages in order to increase the mounting density and reduce the mounting height, and the volume occupied by the device package increases, resulting in a very thick package. It has become thinner. Further, these packages are different in mounting method from the conventional pin insertion type. That is, since the pin insertion type package is soldered from the back side of the wiring board after the pins are inserted into the wiring board, the package is not directly exposed to high temperature. However, surface mount ICs are temporarily attached to the surface of a wiring board and processed by a solder bath, a reflow device, or the like, so that they are directly exposed to a soldering temperature. As a result, when the IC package absorbs moisture, the moisture absorption moisture rapidly expands during soldering, causing the package to crack. Currently, this phenomenon is a big problem related to surface mount ICs.
[0004]
[Problems to be solved by the invention]
The above-mentioned problems are unavoidable in the IC package sealed with the current base resin composition, so that the IC is shipped in a moisture-proof package, or the IC is sufficiently dried before being mounted on the wiring board, etc. The method is taken. However, these methods are laborious and costly.
[0005]
The present invention has been made in view of such circumstances, and can be soldered without performing a specific pretreatment when mounted on a wiring board or the like, and can be reflow-resistant, moisture-proof, and left at high temperature even after mounting. An object of the present invention is to provide an epoxy resin molding material for sealing having good reliability such as characteristics.
[0006]
[Means for Solving the Problems]
As a result of intensive studies in order to solve the above problems, the inventors can achieve the above object by using a specific sealing epoxy resin molding material that defines the bending strength and the amount of filler at 260 ° C. As a result, the present invention has been completed.
[0007]
That is, the present invention
(1) (A) epoxy resin, (B) curing agent, (C) curing accelerator, and (D) inorganic filler are essential components, and the bending strength at 260 ° C. is 0.8 kg / mm. 2 And (D) the epoxy resin molding material for sealing whose blending amount of the inorganic filler is 75% by weight or more,
(2) (D) The epoxy resin molding material for sealing according to the above (1), wherein the blending amount of the inorganic filler is 80 to 95% by weight,
(3) Bending strength at 260 ° C. is 1.0 to 2.0 kg / mm 2 An epoxy resin molding material for sealing according to the above (1) or (2),
(4) Flexural modulus at 260 ° C. is 20 to 60 kg / mm 2 The sealing epoxy resin molding material according to any one of (1) to (3),
(5) The above (1) to (A), wherein the (A) epoxy resin contains a biphenyl type epoxy resin represented by the following general formula (I) and / or a bisphenol F type epoxy resin represented by the following general formula (II): 4) The epoxy resin molding material for sealing according to any one of
[Chemical formula 5]
Figure 0003659116
(Where R 1 ~ R Four Are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, all of which may be the same or different. n represents an integer of 0 to 3. )
[Chemical 6]
Figure 0003659116
(Where R 1 ~ R 8 Is selected from a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, and an aralkyl group having 6 to 10 carbon atoms, all of which are the same or different. May be. n represents an integer of 0 to 3. )
(6) The above (1) to (5), wherein the (B) curing agent contains a phenol-aralkyl resin represented by the following general formula (III) and / or a biphenyl type phenol resin represented by the following general formula (IV). ) Epoxy resin molding material for sealing according to any one of
[Chemical 7]
Figure 0003659116
(Here, R is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 0 to 10.)
[Chemical 8]
Figure 0003659116
(Where R 1 ~ R 9 Is selected from a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, and an aralkyl group having 6 to 10 carbon atoms, all of which are the same or different. May be. n represents an integer of 0 to 10. )
(7) (C) The epoxy resin molding material for sealing according to any one of the above (1) to (6), wherein the curing accelerator is an adduct of an organic phosphine and a quinone compound, and
(8) An electronic component device including an element sealed with the sealing epoxy resin molding material according to any one of (1) to (5) above,
About.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The (A) epoxy resin used in the present invention is generally used for an epoxy resin molding material for sealing and is not particularly limited. For example, a phenol novolac type epoxy resin, an orthocresol novolak type epoxy resin, and the like can be used. Phenols such as phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F and / or naphthols such as α-naphthol, β-naphthol, dihydroxynaphthalene and formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, salicylaldehyde, etc. Epoxidized novolak resin obtained by condensation or cocondensation of a compound having an aldehyde group with an acidic catalyst, bisphenol A, bisphenol F, bisphenol S, Glycidyl ester type obtained by reaction of polychlorobasic acid such as glycidyl ether type epoxy resin such as diglycidyl ether such as alkyl-substituted or unsubstituted biphenol, stilbene type epoxy resin, hydroquinone type epoxy resin, phthalic acid, dimer acid and epichlorohydrin Epoxy resin, diaminodiphenylmethane, isocyanuric acid and other polyamines obtained by the reaction of epichlorohydrin and glycidylamine type epoxy resins, epoxidized products of co-condensation resins of dicyclopentadiene with phenols and / or naphthols, and naphthalene rings Epoxidized products of aralkyl type phenol resins such as epoxy resin, phenol aralkyl resin, naphthol aralkyl resin, trimethylolpropane type epoxy resin, terpene modified epoxy resin Examples include linear aliphatic epoxy resins obtained by oxidizing olefinic bonds with peracids such as peracetic acid, and alicyclic epoxy resins. These may be used alone or in combination of two or more. .
[0009]
Among these, from the viewpoint of reflow resistance, a biphenyl type epoxy resin represented by the following general formula (I) is preferable.
[Chemical 9]
Figure 0003659116
(Where R 1 ~ R Four Are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, all of which may be the same or different. n represents an integer of 0 to 3. )
Examples of the biphenyl type epoxy resin represented by the general formula (I) include 4,4′-bis (2,3-epoxypropoxy) biphenyl or 4,4′-bis (2,3-epoxypropoxy) -3. , 3 ′, 5,5′-tetramethylbiphenyl as the main component, epichlorohydrin and 4,4′-biphenol or 4,4 ′-(3,3 ′, 5,5′-tetramethyl) biphenol An epoxy resin obtained by reacting is used. Among them, an epoxy resin mainly composed of 4,4′-bis (2,3-epoxypropoxy) -3,3 ′, 5,5′-tetramethylbiphenyl is preferable. When this biphenyl type epoxy resin is used, its blending amount is preferably 30% by weight or more, more preferably 50% by weight or more, more preferably 60% by weight or more based on the total amount of the epoxy resin in order to exhibit its performance. Is more preferable.
[0010]
Moreover, the bisphenol F type epoxy resin shown by the following general formula (II) is preferable from a viewpoint of a flame retardance and fluidity | liquidity.
[Chemical Formula 10]
Figure 0003659116
R in the above formula (II) 1 ~ R 8 All may be the same or different, alkyl group having 1 to 10 carbon atoms such as hydrogen atom, methyl group, ethyl group, propyl group, butyl group, isopropyl group, isobutyl group, methoxy group, ethoxy group, propoxy group , An alkoxyl group having 1 to 10 carbon atoms such as butoxy group, an aryl group having 6 to 10 carbon atoms such as phenyl group, tolyl group and xylyl group, and an aralkyl group having 6 to 10 carbon atoms such as benzyl group and phenethyl group Among them, a hydrogen atom and a methyl group are preferable. n represents an integer of 0 to 3.
Examples of the bisphenol F type epoxy resin represented by the general formula (II) include R 1 , R Three , R 6 And R 8 Is a methyl group and R 2 , R Four , R Five And R 7 Is a hydrogen atom, and ESLV-80XY (trade name, manufactured by Nippon Steel Chemical Co., Ltd.) having n = 0 as a main component is commercially available. When this bisphenol F type epoxy resin is used, its blending amount is preferably 30% by weight or more, more preferably 50% by weight or more, based on the total amount of the epoxy resin in order to exhibit its performance.
[0011]
The biphenyl type epoxy resin represented by the general formula (I) and the bisphenol F type epoxy resin represented by the general formula (II) may be used in combination. When using both together, it is preferable that those compounding quantities shall be 60 weight% or more in total with respect to the epoxy resin whole quantity, and 80 weight% or more is more preferable.
[0012]
The (B) curing agent used in the present invention is generally used in sealing epoxy resin molding materials and is not particularly limited. For example, phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenyl Resins obtained by condensation or cocondensation of phenols such as phenol and aminophenol and / or naphthols such as α-naphthol, β-naphthol and dihydroxynaphthalene and compounds having an aldehyde group such as formaldehyde under an acidic catalyst, Examples include phenol / aralkyl resins synthesized from phenols and / or naphthols and dimethoxyparaxylene or bis (methoxymethyl) biphenyl, and aralkyl-type phenol resins such as naphthol / aralkyl resins. seed A combination of the above may also be used.
[0013]
Among them, from the viewpoint of reflow resistance, a phenol / aralkyl resin represented by the following general formula (III) is preferable, and a phenol / aralkyl resin in which R is a hydrogen atom and an average value of n is 0 to 8 is more preferable. Examples include p-xylylene type zylock, m-xylylene type zylock, and the like. When this phenol-aralkyl resin is used, its blending amount is preferably 30% by weight or more, more preferably 50% by weight or more, and more preferably 60% by weight or more based on the total amount of the curing agent in order to exhibit its performance. Further preferred.
Embedded image
Figure 0003659116
(Here, R is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 0 to 10.)
[0014]
From the viewpoint of flame retardancy, a biphenyl type phenol resin represented by the following general formula (IV) is preferable.
Embedded image
Figure 0003659116
R in the above formula (IV) 1 ~ R 9 All may be the same or different, alkyl group having 1 to 10 carbon atoms such as hydrogen atom, methyl group, ethyl group, propyl group, butyl group, isopropyl group, isobutyl group, methoxy group, ethoxy group, propoxy group , An alkoxyl group having 1 to 10 carbon atoms such as butoxy group, an aryl group having 6 to 10 carbon atoms such as phenyl group, tolyl group and xylyl group, and an aralkyl group having 6 to 10 carbon atoms such as benzyl group and phenethyl group Among them, a hydrogen atom and a methyl group are preferable. n represents an integer of 0 to 10.
Examples of the biphenyl type phenol resin represented by the general formula (IV) include R 1 ~ R 9 In particular, from the viewpoint of melt viscosity, a mixture of condensates containing 50% by weight or more of a condensate having n of 1 or more is preferable. As such a compound, MEH-7851 (trade name, manufactured by Meiwa Kasei Co., Ltd.) is commercially available. When this biphenyl type phenol resin is used, its blending amount is preferably 30% by weight or more, more preferably 50% by weight or more, based on the total amount of the curing agent in order to exhibit its performance.
[0015]
The phenol-aralkyl resin represented by the general formula (III) and the biphenyl type phenol resin represented by the general formula (IV) may be used in combination. When both are used in combination, their blending amount is preferably 60% by weight or more, more preferably 80% by weight or more, based on the total amount of the curing agent.
[0016]
The equivalent ratio of (A) epoxy resin to (B) curing agent, that is, the ratio of the number of epoxy groups in the epoxy resin / the number of hydroxyl groups in the curing agent is not particularly limited, but to suppress each unreacted component to a small amount. Is preferably set in the range of 0.5 to 2, more preferably 0.6 to 1.3. In order to obtain a sealing epoxy resin molding material excellent in moldability and reflow resistance, it is more preferably set in the range of 0.8 to 1.2.
[0017]
The (C) curing accelerator used in the present invention is generally used in sealing epoxy resin molding materials and is not particularly limited. For example, 1,8-diaza-bicyclo (5,4,0) Cycloamidine compounds such as undecene-7,1,5-diaza-bicyclo (4,3,0) nonene, 5,6-dibutylamino-1,8-diaza-bicyclo (5,4,0) undecene-7, and These compounds include maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl- Quinone compounds such as 1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone, diazophenylmethane, phenol resin, etc. A compound having an intramolecular polarization formed by adding a compound having a π bond, tertiary amines such as benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, and derivatives thereof, 2- Imidazoles such as methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole and their derivatives, tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, diphenylphosphine, phenylphosphine Organic phosphines such as, and phosphorus compounds having intramolecular polarization formed by adding a compound having a π bond such as maleic anhydride, the above quinone compound, diazophenylmethane, and phenol resin to these phosphines Examples include tetraphenylboron salts such as tetraphenylphosphonium tetraphenylborate, triphenylphosphine tetraphenylborate, 2-ethyl-4-methylimidazole tetraphenylborate, N-methylmorpholine tetraphenylborate, and derivatives thereof. It may be used alone or in combination of two or more. Among these, an adduct of an organic phosphine and a quinone compound is preferable from the viewpoint of moldability and reflow resistance.
[0018]
(C) Although the compounding quantity of a hardening accelerator will not be restrict | limited especially if the hardening acceleration effect is achieved, 0.005-2 weight% is preferable with respect to the epoxy resin molding material for sealing. More preferably, it is 0.01 to 0.5% by weight. If it is less than 0.005% by weight, the curability in a short time tends to be inferior, and if it exceeds 2% by weight, the curing rate tends to be too high and it tends to be difficult to obtain a good molded product.
[0019]
The (D) inorganic filler used in the present invention is blended in a molding material for hygroscopicity, linear expansion coefficient reduction, thermal conductivity improvement and strength improvement, for example, fused silica, crystalline silica, alumina , Zircon, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, mullite, titania, etc. Examples include spherical beads and glass fibers. Furthermore, examples of the inorganic filler having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, zinc borate, and zinc molybdate. These inorganic fillers may be used alone or in combination of two or more. Of these, fused silica is preferable from the viewpoint of reducing the linear expansion coefficient, and alumina is preferable from the viewpoint of high thermal conductivity, and the shape of the inorganic filler is preferably spherical from the viewpoint of fluidity and mold wear during molding. (D) The blending amount of the inorganic filler needs to be set to 75% by weight or more with respect to the sealing epoxy resin molding material, from the viewpoint of reflow resistance, fluidity, moldability, and strength improvement. 80 to 95% by weight is preferable, and 88 to 92% by weight is more preferable. If it is less than 75% by weight, the reflow resistance tends to decrease.
[0020]
The sealing epoxy resin molding material of the present invention has a bending strength at 260 ° C. of 0.8 kg / mm from the viewpoint of reflow resistance. 2 It is necessary to be above, 1.0-2.0kg / mm 2 Is preferred.
In the present invention, 260 (A) epoxy resin, (B) curing agent, (C) curing accelerator, (D) inorganic filler, and other additives used as additives are adjusted to adjust the combination and amount. Bending strength at 0.8 ° C is 0.8kg / mm 2 The epoxy resin molding material for sealing which is the above can be obtained. The selection of (A) epoxy resin and (B) curing agent is particularly important.
Moreover, the bending elastic modulus at 260 ° C. of the epoxy resin molding material for sealing of the present invention is 20 to 60 kg / mm from the viewpoint of reflow resistance. 2 It is preferable that Flexural modulus at 260 ° C. is 20-60 kg / mm 2 The sealing epoxy resin molding material has a bending strength of 0.8 kg / mm. 2 It can obtain by adjusting the combination and the compounding quantity of various compounding components similarly to the case where the epoxy resin molding material for sealing which is the above is obtained.
Here, the bending strength and the flexural modulus are values measured by a three-point support bending test in accordance with JIS-K6911.
[0021]
In the epoxy resin molding material for sealing of the present invention, epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, vinyl silane, etc. are used as necessary to enhance the adhesion between the resin component and the inorganic filler. Various known coupling agents such as various silane compounds, titanium compounds, aluminum chelates, and aluminum / zirconium compounds can be added. Examples of these are vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycol. Sidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-anilinopropyltrimethoxysilane, γ-ani Linopropylmethyldimethoxysilane, γ- [bis (β-hydroxyethyl)] aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, γ- (β-aminoethyl) aminopropi Dimethoxymethylsilane, N- (trimethoxysilylpropyl) ethylenediamine, N- (dimethoxymethylsilylisopropyl) ethylenediamine, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, N-β- (N-vinylbenzylaminoethyl) Silane coupling agents such as γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, hexamethyldisilane, vinyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, isopropyltriisostearoyl titanate, isopropyltris ( Dioctyl pyrophosphate) titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, tetraoctyl bis (ditridecyl phosphite) Titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, isopropyl Titanate coupling agents such as dimethacrylisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tri (dioctyl phosphate) titanate, isopropyl tricumyl phenyl titanate, tetraisopropyl bis (dioctyl phosphite) titanate Even if these are used alone, two or more are combined. It can have.
[0022]
The blending amount of the coupling agent is preferably 0.05 to 5% by weight, more preferably 0.1 to 2.5% by weight with respect to (D) the inorganic filler. If it is less than 0.05% by weight, the adhesion to the frame tends to be lowered, and if it exceeds 5% by weight, the moldability of the package tends to be lowered.
[0023]
The sealing epoxy resin molding material of the present invention includes brominated epoxy resins, antimony trioxide, phosphoric acid esters, red phosphorus and other phosphorus compounds, melamine, melamine cyanurate, melamine-modified phenolic resin, guanamine-modified phenolic resin, etc. Conventionally known flame retardants such as nitrogen-containing compounds, phosphorus / nitrogen-containing compounds such as cyclophosphazene, and metal compounds such as zinc oxide, iron oxide, molybdenum oxide, and ferrocene can be added as necessary.
[0024]
In addition, an anion exchanger can be added to the sealing epoxy resin molding material of the present invention from the viewpoint of improving the moisture resistance and high temperature storage characteristics of a semiconductor element such as an IC. The anion exchanger is not particularly limited, and conventionally known anion exchangers can be used. Examples thereof include hydrotalcites and hydrous oxides of elements selected from magnesium, aluminum, titanium, zirconium, and bismuth. These can be used alone or in combination of two or more. Especially, the hydrotalcite shown by the following general formula (V) is preferable.
Embedded image
Mg 1-X Al X (OH) 2 (CO Three ) X / 2 ・ MH 2 O ...... (V)
(0 <X ≦ 0.5, m is a positive integer)
[0025]
Furthermore, the epoxy resin molding material for sealing of the present invention includes, as other additives, higher fatty acids, higher fatty acid metal salts, ester waxes, polyolefin waxes, polyethylene, release agents such as polyethylene oxide, carbon black, etc. If necessary, a color relaxation agent such as silicone oil or silicone rubber powder can be added.
[0026]
The epoxy resin molding material for sealing of the present invention can be prepared by any method as long as various raw materials can be uniformly dispersed and mixed. However, as a general method, a raw material having a predetermined blending amount is mixed with a mixer or the like. A method of cooling and pulverizing after mixing sufficiently, melt-kneading with a mixing roll, an extruder or the like can be mentioned. It is easy to use if it is tableted with dimensions and weight that match the molding conditions.
[0027]
As an electronic component device obtained by sealing an element with the sealing epoxy resin molding material obtained in the present invention, a lead frame, a wired tape carrier, a wiring board, glass, a silicon wafer, a support member such as a semiconductor Mount active elements such as chips, transistors, diodes, and thyristors, passive elements such as capacitors, resistors, and coils, and seal the necessary parts with the epoxy resin molding material for sealing of the present invention. The And electronic component devices. As such an electronic component device, for example, a semiconductor element is fixed on a lead frame, and a terminal portion and a lead portion of an element such as a bonding pad are connected by wire bonding or bump, and then the epoxy resin for sealing of the present invention is used. DIP (Dual Inline Package), PLCC (Plastic Leaded Chip Carrier), QFP (Quad Flat Package), SOP (Small Outline Package), SOJ (Small Outline J-) General resin-encapsulated ICs such as lead package (TSP), TSOP (Thin Small Outline Package), and TQFP (Thin Quad Flat Package), and semiconductor chips connected to the tape carrier by bumps are molded with epoxy resin for sealing. TCP (Tape Carrier Package) sealed with materials, wiring bonding, flip chip bonding to wiring formed on wiring boards and glass COB (Chip) in which active elements such as semiconductor chips, transistors, diodes, thyristors, etc. and / or passive elements such as capacitors, resistors, coils, etc., sealed with solder, etc. are sealed with the epoxy resin molding material for sealing of the present invention On Board) Modules, hybrid ICs, multichip modules, elements mounted on the surface of the organic substrate with wiring board connection terminals formed on the back, and the elements and wiring formed on the organic substrate were connected by bump or wire bonding Thereafter, BGA (Ball Grid Array), CSP (Chip Size Package), etc., in which the element is sealed with the sealing epoxy resin molding material of the present invention, may be mentioned. Moreover, the epoxy resin molding material for sealing of the present invention can also be used effectively for printed circuit boards.
[0028]
As a method for sealing an element using the epoxy resin molding material for sealing of the present invention, a low-pressure transfer molding method is the most common, but an injection molding method, a compression molding method, or the like may be used.
[0029]
【Example】
EXAMPLES Next, although an Example demonstrates this invention, the scope of the present invention is not limited to these Examples.
[0030]
Examples 1-8, Comparative Examples 1-3
As an epoxy resin, an epoxy equivalent of 196, a biphenyl type epoxy resin having a melting point of 106 ° C. (trade name Epicoat YX-4000H manufactured by Yuka Shell Epoxy Co., Ltd.), a bisphenol F type epoxy resin having an epoxy equivalent of 186 and a melting point of 75 ° C. (Trade name ESLV-80XY), epoxy equivalent 195, o-cresol novolac type epoxy resin having a softening point of 65 ° C. (trade name ESCN-190 manufactured by Sumitomo Chemical Co., Ltd.) and epoxy equivalent 375, softening point 80 ° C., bromine content 48 weight. % Bisphenol A-type brominated epoxy resin (trade name ESB-400T manufactured by Sumitomo Chemical Co., Ltd.), phenol aralkyl resin having a softening point of 70 ° C. as a curing agent (trade name Millex XL-225 manufactured by Mitsui Chemicals), hydroxyl group Biphenyl with an equivalent weight of 199 and a softening point of 80 ° C Phenol resin (Meiwa Kasei Co., Ltd. trade name MEH-7851), adduct of triphenylphosphine and p- benzoquinone as a curing accelerator, an average particle diameter 17.5μm as an inorganic filler, a specific surface area 3.8m 2 / G spherical fused silica, γ-glycidoxypropyltrimethoxysilane (epoxysilane) as coupling agent, antimony trioxide, carnauba wax (manufactured by Celerica NODA), carbon black (Mitsubishi Chemical Corporation) Company product name MA-100) is blended in parts by weight shown in Table 1, and roll kneading is performed under conditions of a kneading temperature of 80 ° C. and a kneading time of 10 minutes. An epoxy resin molding material for stopping was prepared.
[0031]
[Table 1]
Figure 0003659116
[0032]
A total of 11 types of produced epoxy resin molding materials for sealing of Examples and Comparative Examples were evaluated by the following tests. The epoxy resin molding material for sealing was molded by a transfer molding machine under conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds. Further, post-curing was performed at 175 ° C. for 5 hours.
(1) Bending strength, flexural modulus
The measurement was performed by performing a three-point support bending test in accordance with JIS-K6911. The test piece was produced by molding an epoxy resin molding material for sealing into a dimension of 5 mm width × 60 mm length × 3 mm thickness under the above conditions and post-curing under the above conditions.
(2) Spiral flow (index of fluidity)
An epoxy resin molding material for sealing was molded under the above conditions using a spiral flow measurement mold according to EMMI-1-66, and the flow distance (cm) was determined.
(3) Heat hardness
The epoxy resin molding material for sealing was molded into a disc having a diameter of 50 mm and a thickness of 3 mm under the above conditions, and was measured immediately after molding using a Shore D type hardness meter.
(4) Reflow resistance
An epoxy resin molding material for sealing is molded and post-cured under the above conditions to produce an 80-pin flat package having an outer dimension of 20 mm × 14 mm × 2 mm mounted with an 8 mm × 10 mm silicone chip, and 85 ° C./85% RH The sample was humidified under the above conditions and subjected to reflow treatment at a predetermined time of 240 ° C./10 seconds. The presence or absence of cracks was observed, and the number of defective packages (occurrence of cracks) / number of measured packages was evaluated.
(5) Moisture resistance
The sealing epoxy resin molding material is molded and post-cured under the above conditions, and an external dimension of 19 mm × mounted with a 6 mm × 6 mm × 0.4 mm test silicone chip provided with aluminum wiring having a line width of 10 μm and a thickness of 1 μm. A 14mm x 2.7mm 80-pin flat package was prepared, pre-treated, then humidified and examined for disconnection failure due to aluminum wiring corrosion every predetermined time, and evaluated by the number of defective packages (with disconnection) / number of measurement packages did.
In the pretreatment, the flat package was humidified under conditions of 85 ° C. and 85% RH for 72 hours, and a vapor phase reflow treatment was performed at 215 ° C. for 90 seconds. Thereafter, a humidification test was performed under the conditions of 0.2 MPa and 121 ° C.
(6) High temperature storage characteristics
A test element in which an aluminum wiring having a line / space of 10 μm is formed on a silicon substrate having an outer size of 5 mm × 9 mm and having an oxide film of 5 μm is connected to a 42 alloy lead frame subjected to partial silver plating with a silver paste, The bonding pads of the element and the inner leads were connected by Au wires at 200 ° C. using a thermonic wire bonder. Thereafter, the sealing epoxy resin molding material is molded and post-cured under the above conditions to produce a 16-pin DIP (Dual Inline Package), and the obtained test IC is stored in a high-temperature bath at 200 ° C. The continuity test was carried out by taking out every time, and the number of packages with poor continuity was examined and evaluated as a percentage of the number of measurement packages.
The evaluation results are shown in Table 2.
[0033]
[Table 2]
Figure 0003659116
[0034]
Comparative Example 1 in which the blending amount of the inorganic filler is outside the specified range of the present invention is inferior in reflow resistance and high-temperature standing characteristics, and Comparative Examples 2 and 3 whose bending strength at 260 ° C. is outside the specified range of the present invention. Inferior to reflowability.
On the other hand, all the components (A) to (D) of the present invention are included, and the bending strength at 260 ° C. is 0.8 kg / mm. 2 As described above, Examples 1 to 8 in which the blending amount of the inorganic filler is 75% by weight or more have good fluidity, heat hardness, reflow resistance, moisture resistance and high temperature storage characteristics. In particular, the bending strength at 260 ° C. is 1.0 to 2.0 kg / mm. 2 The flexural modulus is 20-60kg / mm 2 In Examples 5 to 7, in which the blending amount of the inorganic filler is in the range of 80 to 95% by weight, the reflow resistance is good, and in particular, the inorganic filler is in the range of 88 to 92% by weight. , 7 is remarkably excellent in reflow resistance and high temperature storage characteristics.
[0035]
【The invention's effect】
If an electronic component such as an IC or LSI is sealed using the epoxy resin molding material for sealing according to the present invention, an electronic component device having excellent reflow resistance and excellent reliability as shown in the examples is obtained. Its industrial value is great.

Claims (3)

(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤、及び(D)無機充填剤を必須成分とし、
(A)エポキシ樹脂は下記一般式(I)で示されるビフェニル型エポキシ樹脂及び/又は下記一般式(II)で示されるビスフェノールF型エポキシ樹脂を含有し、
Figure 0003659116
(ここで、R〜Rは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、全てが同一でも異なっていてもよい。nは0〜3の整数を示す。)
Figure 0003659116
(ここで、R〜Rは水素原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシル基、炭素数6〜10のアリール基、及び炭素数6〜10のアラルキル基から選ばれ、全てが同一でも異なっていてもよい。nは0〜3の整数を示す。)
(B)硬化剤は下記一般式(III)で示されるフェノール・アラルキル樹脂を含有し、
Figure 0003659116
(ここで、Rは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、nは0〜10の整数を示す。)
(D)無機充填剤の配合量が88〜95重量%であって、
硬化後の260℃における曲げ強度が1.0〜2.0kg/mmであり、硬化後の260℃における曲げ弾性率が20〜60kg/mmである封止用エポキシ樹脂成形材料。
(A) epoxy resin, (B) curing agent, (C) curing accelerator, and (D) inorganic filler as essential components,
(A) The epoxy resin contains a biphenyl type epoxy resin represented by the following general formula (I) and / or a bisphenol F type epoxy resin represented by the following general formula (II),
Figure 0003659116
(Here, R 1 to R 4 are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, all of which may be the same or different. N is 0 to 3). Indicates an integer.)
Figure 0003659116
(Here, R 1 to R 8 are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, and an aralkyl group having 6 to 10 carbon atoms. All may be the same or different, and n represents an integer of 0 to 3.)
(B) The curing agent contains a phenol / aralkyl resin represented by the following general formula (III):
Figure 0003659116
(Here, R is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 0 to 10.)
(D) The amount of the inorganic filler is 88 to 95% by weight,
Flexural strength at 260 ° C. after curing is 1.0~2.0kg / mm 2, an epoxy resin molding material for sealing an 20~60kg / mm 2 is flexural modulus at 260 ° C. after curing.
(C)硬化促進剤が有機ホスフィンとキノン化合物との付加物である請求項1に記載の封止用エポキシ樹脂成形材料。  The epoxy resin molding material for sealing according to claim 1, wherein (C) the curing accelerator is an adduct of an organic phosphine and a quinone compound. 請求項1または請求項2に記載の封止用エポキシ樹脂成形材料により封止された素子を備えた電子部品装置。  The electronic component apparatus provided with the element sealed with the epoxy resin molding material for sealing of Claim 1 or Claim 2.
JP2000050490A 2000-02-22 2000-02-22 Epoxy resin molding material for sealing and electronic component device Expired - Lifetime JP3659116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000050490A JP3659116B2 (en) 2000-02-22 2000-02-22 Epoxy resin molding material for sealing and electronic component device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000050490A JP3659116B2 (en) 2000-02-22 2000-02-22 Epoxy resin molding material for sealing and electronic component device

Publications (2)

Publication Number Publication Date
JP2001233937A JP2001233937A (en) 2001-08-28
JP3659116B2 true JP3659116B2 (en) 2005-06-15

Family

ID=18572269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000050490A Expired - Lifetime JP3659116B2 (en) 2000-02-22 2000-02-22 Epoxy resin molding material for sealing and electronic component device

Country Status (1)

Country Link
JP (1) JP3659116B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105288A (en) * 2000-09-29 2002-04-10 Toray Ind Inc Epoxy resin composition and semiconductor device
JP2002284961A (en) * 2001-03-22 2002-10-03 Toray Ind Inc Epoxy-based resin composition and semiconductor device using the same
JP5061415B2 (en) * 2001-09-28 2012-10-31 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
JP2003105066A (en) * 2001-09-28 2003-04-09 Toray Ind Inc Epoxy resin composition and semiconductor device
JP2003105068A (en) * 2001-09-28 2003-04-09 Toray Ind Inc Epoxy resin composition and semiconductor device
KR100650080B1 (en) * 2001-10-30 2006-11-27 히다치 가세고교 가부시끼가이샤 Sealing Material Tablet, Method of Manufacturing the Tablet, and Electronic Component Device
JP4569076B2 (en) * 2002-06-05 2010-10-27 住友ベークライト株式会社 Curing accelerator, epoxy resin composition, and semiconductor device
JP2005041928A (en) * 2003-07-23 2005-02-17 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP4543638B2 (en) * 2003-08-29 2010-09-15 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
JP4496739B2 (en) * 2003-09-09 2010-07-07 住友ベークライト株式会社 Curing accelerator, epoxy resin composition, and semiconductor device
JP4759994B2 (en) * 2004-11-24 2011-08-31 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
JP2006233016A (en) * 2005-02-24 2006-09-07 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Also Published As

Publication number Publication date
JP2001233937A (en) 2001-08-28

Similar Documents

Publication Publication Date Title
JP3659116B2 (en) Epoxy resin molding material for sealing and electronic component device
JP7343978B2 (en) Epoxy resin composition and electronic component equipment
JP2001151867A (en) Epoxy resin molding compound for sealing use and electronic part device
JP2001151866A (en) Epoxy resin molding compound for sealing use and electronic part device
JP4265187B2 (en) Electronic component apparatus provided with epoxy resin molding material and element for sealing
JP3969101B2 (en) Epoxy resin molding material for sealing and electronic component device
JP6372967B2 (en) Epoxy resin molding material for sealing and electronic component device
JP2001207023A (en) Epoxy resin molding material for sealing and electronic part device
JP4849290B2 (en) Epoxy resin molding material for sealing and electronic component device
JP2012107209A (en) Epoxy resin composition for sealing and electronic part device
JP2014129485A (en) Epoxy resin composition and electronic component device
JP4000838B2 (en) Epoxy resin molding material for sealing and electronic component device
JP2001011290A (en) Epoxy resin molding material for sealing and electronic component apparatus
JP2001207025A (en) Epoxy resin molding material for sealing and electronic part device
JP3982325B2 (en) Epoxy resin molding material for sealing and electronic component device
JP2003321533A (en) Epoxy resin molding material for sealing and electronic part apparatus
JP2002212392A (en) Epoxy resin molding material for sealing and electronic part device
JP3659150B2 (en) Epoxy resin molding material for sealing and electronic component device
JP6583312B2 (en) Epoxy resin molding material for sealing and electronic component device
JP3736408B2 (en) Epoxy resin composition for sealing and electronic component device
JP2003292583A (en) Epoxy resin molding material and electronic part device
JP2004143465A (en) Epoxy resin molding material for sealing and electronic component device
JP2008115364A (en) Epoxy resin composition and electronic component device
JP2007092083A (en) Epoxy resin molding material for sealing and semiconductor device
JP2003012772A (en) Epoxy resin molding material for sealing and electronic part device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050307

R151 Written notification of patent or utility model registration

Ref document number: 3659116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term