[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3560097B2 - Manufacturing method of resin sheet using photocurable resin - Google Patents

Manufacturing method of resin sheet using photocurable resin Download PDF

Info

Publication number
JP3560097B2
JP3560097B2 JP9385296A JP9385296A JP3560097B2 JP 3560097 B2 JP3560097 B2 JP 3560097B2 JP 9385296 A JP9385296 A JP 9385296A JP 9385296 A JP9385296 A JP 9385296A JP 3560097 B2 JP3560097 B2 JP 3560097B2
Authority
JP
Japan
Prior art keywords
mold
resin
resin sheet
photocurable resin
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9385296A
Other languages
Japanese (ja)
Other versions
JPH09278809A (en
Inventor
哲哉 久保田
昭彦 坂井
誠一郎 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP9385296A priority Critical patent/JP3560097B2/en
Publication of JPH09278809A publication Critical patent/JPH09278809A/en
Application granted granted Critical
Publication of JP3560097B2 publication Critical patent/JP3560097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Polymerisation Methods In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光硬化性樹脂を用いて樹脂シートを製造する方法に関するものであり、特に成形型から樹脂シートを取外す際の破損を防止する方法に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
樹脂シートとしては、用途に応じて、ポリオレフィン、ポリアミド、ポリエステル、ポリイミドなど種々のものが用いられているが、一部の用途、例えば液晶ディスプレイ、タッチパネル、透明導電膜などには光硬化性樹脂から製造した樹脂シートを用いることが検討されている。光硬化性樹脂から樹脂シートを製造するには、最も簡単には、偏平なキャビティを有する成形型に光硬化性樹脂を注入し、成形型の外部から活性エネルギー線を照射して光硬化性樹脂を硬化させ、次いで成形型から硬化した樹脂シートを取外せばよい。しかし、この方法では、光硬化に際し樹脂シートが成形型に強固に付着してしまい、成形型から樹脂シートを取外す際に、樹脂シートが破損し易いという問題がある。
従って本発明は、光硬化性樹脂を用いて樹脂シートを製造するに際し、生成した樹脂シートを成形型から容易に取外すことのできる樹脂シートの製造法を提供しようとするものである。
【0003】
【課題を解決するための手段】
本発明によれば、少くとも受光面が活性エネルギー線が透過可能な材料で形成されている偏平なキャビティを有する成形型に、ビス(オキシメチル)トリシクロ[5,2,1,0 2,6 ]デカンジメタクリレートを含有する光硬化性樹脂を注入し、該受光面を通して活性エネルギー線を照射して光硬化性樹脂を硬化させる光硬化性樹脂を用いた樹脂シートの製造方法において、成形型のキャビティ面側にアルミニウム、珪素、およびこれらの酸化物からなる群から選ばれた少なくとも一種で構成される剥離し易い蒸着層を有する成形型を用いることにより、生成した樹脂シートを容易に成形型から取外すことができる。
【0004】
【発明の実施の形態】
本発明においては、成形型に光硬化性樹脂を注入し、次いでこれに活性エネルギー線を照射して樹脂を硬化させて樹脂シートを生成させること自体は、常法に従って行なえばよい。
光硬化性樹脂としては、一般的なラジカル重合開始剤の存在下に、活性エネルギー線により重合して硬化する任意のものを用いることができる。例えばラジカル反応性の(メタ)アクリレートモノマーにラジカル重合開始剤を配合した組成物、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート等のオリゴマーを、多官能(メタ)アクリレートモノマーに溶解したものにラジカル重合開始剤を配合した組成物などが用いられる。好ましくは、ラジカル重合開始剤に加えて、チオール基を有する化合物のような連鎖移動剤を含む組成物が用いられる。
【0005】
成形型の材料も光硬化性樹脂の成形に常用されているものを用いることができる。成形型のうち、少くとも活性エネルギー線の照射を受ける面は、活性エネルギー線に対して十分な透過性を有する材料で構成する必要がある。成形型はポリメチルメタクリレートのような透明性のよいプラスチックで構成することもできるが、通常は活性エネルギー線の照射を受けても劣化したり熱変形したりしないようにガラスで構成するのが好ましい。成形型のキャビティの深さ(=生成する樹脂シートの厚さ)は通常3mm以下、好ましくは0.1〜3mmである。0.1mmより薄い樹脂シートは機械的強度が小さく、本発明方法によっても製造が困難なことが多い。逆に3mmよりも厚い樹脂シートは、機械的強度が大きいので、本発明方法によらなくても製造が比較的容易である。本発明方法が特に有利に適用されるのは、0.1〜1mmの厚さの樹脂シートを製造する場合、すなわちキャビティの深さが0.1〜1mmの成形型を用いる場合である。
【0006】
本発明では、成形型のキャビティ面側にアルミニウム、珪素又はこれらの金属の酸化物などの1種又は数種からなる蒸着層を有する成形型を用いる。蒸着層は通常は1種類の金属又は金属化合物から構成されているが、所望ならば複数の金属ないしは複数の金属の複合酸化物や複合窒化物で構成することもできる。蒸着層の厚さは100Å以下で十分であり、通常10〜100Åである。蒸着層が厚すぎると活性エネルギー線の透過が阻害されるので好ましくない。

【0007】
蒸着層は、必ずしも成形型に強固に付着している必要は無い。すなわち、生成した樹脂シートを成形型から取外す際に、成形型と蒸着層又は蒸着層と生成した樹脂シートのいずれか一方の界面で容易に剥離が生ずるように、いずれかの界面の付着力が小さくなるように蒸着層が形成されていればよい。成形型と蒸着層との界面で剥離した場合には、蒸着層は生成した樹脂シートに付着して剥離される。
【0008】
蒸着層の形成は真空蒸着、イオンプレーティング、スパッタリング、CVDなど、公知の任意の方法で行なうことができるが、基体に強固に付着させる通常の蒸着の場合と異なり、基体の前処理などは通常は必要としない。すなわち蒸着層の形成は簡易な方法で行なうことができる。
本発明では、成形型のキャビティ面側に上述の蒸着層を有する成形型に光硬化性樹脂を注入し、これに活性エネルギー線を照射して樹脂を硬化させる。活性エネルギー線は、重合開始剤に応じて、紫外線、電子線などから適宜の波長のものを選択して用いる。また、その照射量は光硬化性樹脂を硬化させるに十分なものでなければならない。
【0009】
本発明の好ましい一態様では、活性エネルギー線を照射して樹脂を硬化させたのち、成形型がまた高温に保たれている間に、生成した樹脂シートを成形型から取外す。これにより、成形型を冷却する過程において、樹脂シートが成形型内において破損するのを防止することができる。好ましくは、硬化反応中に樹脂シートが到達した最高温度から成形型の温度が30℃低下するまでの間に、生成した樹脂シートを成形型から取外す。そのためには成形型を所定の温度に保温しつつ、成形型から樹脂シートを取外せばよい。成形型の保温は、所定の温度に維持されている雰囲気内に成形型を保持すればよく、また熱風、遠赤外線、電熱ヒーターなどで加温してもよい。
【0010】
光硬化させた樹脂が成形型内で破損するのは、成形型と光硬化した樹脂との熱膨張率が異なることに起因していると考えられる。
すなわち成形型は前述の如く一般にガラスで構成されているが、ガラスは光硬化した樹脂よりも一般に熱膨張率が小さい。また、光硬化性樹脂の組成にもよるが、光硬化した樹脂は三次元架橋していて固く、可撓性に乏しい。従って、成形型内の光硬化性樹脂に活性エネルギー線を照射して硬化させると、生成した樹脂シート及びこれが接触している成形型は、反応熱及び活性エネルギー線により昇温して最高温度に達したのち降温するが、この降温過程において樹脂シートとこれに接している成形型との熱膨張率の差により樹脂シートに歪みが生じ、ついには樹脂シートが破損するに至る。
【0011】
一般に硬化過程で樹脂シートの到達した最高温度での、成形型と樹脂シートとの熱膨張率の差が3×10−5/℃以上の場合には、可撓性の大きい樹脂シートでない限り、温度降下が30℃よりも大きくなると、膨張率の差により成形型と樹脂シートとの界面で生ずる歪みを吸収できずに、樹脂シートが成形型内で破損し易い。
以下に実施例により、本発明をさらに具体的に説明する。
【0012】
【実施例】
実施例1
2枚のガラス平板(300×400×5mm)に、真空蒸着法により純度99.9%のアルミニウムを蒸着し、厚さ50Åの蒸着膜を形成した。このガラス平板を蒸着膜が内面となるように対向させ、その周囲に幅5mm、厚さ1mmのシリコンゴムをスペーサーとして介在させて成形型を形成した。なお、成形型の長辺の中央部のスペーサーに設けた孔から温度計を挿入し、その先端をキャビティ内に10mm突出させた。
【0013】
この成形型に、下記(1)式で示されるビス(オキシメチル)トリシクロ〔5,2,1,02,6 〕デカンジメタクリレート94重量部、ペンタエリスリトールテトラキス(β−チオプロピオネート)6重量部、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシド(ルシリンTPO、BASF社製品)0.06重量部、ベンゾフェノン0.04重量部を混合して均一になるように攪拌したのち脱泡した光硬化性樹脂を注入した。
【0014】
成形型の上下に、ガラス面から400mm離して、出力80W/cmのメタルハライドランプを設置し、30分間紫外線を照射して光硬化性樹脂を硬化させた。このとき温度計は150℃に達した。
成形型を直ちに150℃に維持されているオーブンに収容し、この中で生成した樹脂シートをへらで成形型から剥がした。結果を表−1に示す。
【0015】
【化1】

Figure 0003560097
【0016】
比較例1
アルミニウムを蒸着しないガラス平板を用いた以外は、実施例1と同じ成形型を製作し、且つこれを用いて実施例1と全く同様にして樹脂シートを製造した。結果を表−1に示す。
【0017】
実施例2
実施例1と同じく厚さ50Åのアルミニウム蒸着膜を形成した2枚のガラス平板(300×400×5mm)と、幅5mm、厚さ0.3mmのシリコンゴムスペーサーとで成形型を構成した。
この成形型を用いた以外に、実施例1と全く同様にして樹脂シートを製造した。結果を表−1に示す。
【0018】
比較例2
アルミニウムを蒸着しないガラス平板を用いた以外は、実施例2と同じ成形型を製作し、且つこれを用いて実施例1と全く同様にして樹脂シートを製造した。結果を表−1に示す。
【0019】
実施例3
厚さ50Åのアルミニウム蒸着膜を形成した2枚のガラス平板(100×100×5mm)を用いた以外は実施例1と同じ成形型を製作し、且つこれを用いて実施例1と全く同様にして樹脂シートを製造した。結果を表−1に示す。
【0020】
比較例3
アルミニウムを蒸着しないガラス平板を用いた以外は、実施例3と同じ成形型を製作し、且つこれを用いて実施例1と全く同様にして樹脂シートを製造した。結果を表−1に示す。
【0021】
実施例4
実施例3と同じく厚さ50Åのアルミニウムを蒸着した2枚のガラス平板(100×100×5mm)と、幅5mm、厚さ0.3mmのシリコンゴムスペーサーとで成形型を製作した。
この成形型を用いた以外は、実施例1と全く同様にして樹脂シートを製造した。結果を表−1に示す。
【0022】
比較例4
アルミニウムを蒸着しないガラス平板を用いた以外は実施例4と同じ成形型を製作し、且つこれを用いて実施例1と全く同様にして樹脂シートを製造した。結果を表−1に示す。
【0023】
実施例5
2枚のガラス平板(300×400×5mm)に、真空蒸着法により純度99.9%の一酸化珪素を蒸着し、厚さ50Åの蒸着膜を形成した。
このガラス平板を用いた以外は実施例1と同様にして成形型を製作し、且つこれを用いて実施例1と全く同様にして樹脂シートを製造した。結果を表−1に示す。
【0024】
実施例6
実施例5と同じく厚さ50Åの一酸化珪素蒸着膜を形成した2枚のガラス平板(300×400×5mm)と、幅5mm、厚さ0.3mmのシリコンゴムスペーサーとで成形型を製作した。
この成形型を用いた以外は、実施例1と全く同様にして樹脂シートを製造した。結果を表−1に示す。
【0025】
【表1】
Figure 0003560097
【0026】
【発明の効果】
本発明によれば、光硬化性樹脂からシートを製造するに際し、シートの破損を回避して薄い大きなシートでも容易に製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a resin sheet using a photocurable resin, and more particularly to a method for preventing breakage when removing a resin sheet from a mold.
[0002]
Problems to be solved by the prior art and the invention
As the resin sheet, depending on the application, various materials such as polyolefin, polyamide, polyester, and polyimide are used, but for some applications, for example, a liquid crystal display, a touch panel, a transparent conductive film, etc., from a photocurable resin. Use of the manufactured resin sheet is being studied. The simplest way to manufacture a resin sheet from a photocurable resin is to inject the photocurable resin into a mold having a flat cavity and irradiate it with active energy rays from outside the mold. May be cured, and then the cured resin sheet may be removed from the mold. However, this method has a problem that the resin sheet adheres firmly to the mold during photocuring, and the resin sheet is easily damaged when the resin sheet is removed from the mold.
Accordingly, an object of the present invention is to provide a method for manufacturing a resin sheet that can easily remove a generated resin sheet from a mold when manufacturing a resin sheet using a photocurable resin.
[0003]
[Means for Solving the Problems]
According to the present invention, bis (oxymethyl) tricyclo [5,2,1,0 2,6 is added to a mold having a flat cavity whose at least light receiving surface is formed of a material through which active energy rays can pass. In a method of manufacturing a resin sheet using a photocurable resin in which a photocurable resin containing decane dimethacrylate is injected, and an active energy ray is irradiated through the light receiving surface to cure the photocurable resin, By using a mold having an easily exfoliated vapor deposition layer composed of at least one selected from the group consisting of aluminum, silicon, and oxides thereof on the cavity surface side, the formed resin sheet can be easily removed from the mold. Can be removed.
[0004]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, injecting a photocurable resin into a mold and then irradiating the mold with an active energy ray to cure the resin to form a resin sheet may be performed in a conventional manner.
As the photocurable resin, any resin that is polymerized and cured by an active energy ray in the presence of a general radical polymerization initiator can be used. For example, a composition in which a radical polymerization initiator is blended with a radical-reactive (meth) acrylate monomer, an oligomer such as urethane (meth) acrylate, polyester (meth) acrylate, polyether (meth) acrylate, and a polyfunctional (meth) acrylate A composition in which a radical polymerization initiator is blended with a monomer dissolved in a monomer is used. Preferably, a composition containing a chain transfer agent such as a compound having a thiol group in addition to the radical polymerization initiator is used.
[0005]
As the material of the molding die, those commonly used for molding a photocurable resin can be used. It is necessary that at least the surface of the mold to be irradiated with the active energy rays is made of a material having sufficient transparency to the active energy rays. The mold can be made of a plastic having good transparency such as polymethyl methacrylate, but it is usually preferable that the mold be made of glass so as not to be deteriorated or thermally deformed even when irradiated with active energy rays. . The depth of the cavity of the mold (= the thickness of the resulting resin sheet) is usually 3 mm or less, preferably 0.1 to 3 mm. Resin sheets thinner than 0.1 mm have low mechanical strength and are often difficult to manufacture by the method of the present invention. Conversely, a resin sheet having a thickness of more than 3 mm has a large mechanical strength, and is relatively easy to manufacture without using the method of the present invention. The method of the present invention is particularly advantageously applied when a resin sheet having a thickness of 0.1 to 1 mm is manufactured, that is, when a mold having a cavity depth of 0.1 to 1 mm is used.
[0006]
In the present invention, a mold having an evaporation layer made of one or more of aluminum, silicon, and oxides of these metals on the cavity surface side of the mold is used. The deposited layer is usually composed of one kind of metal or metal compound, but if desired, may be composed of a plurality of metals or a composite oxide or a composite nitride of a plurality of metals. The thickness of the vapor-deposited layer is sufficient to be 100 ° or less, usually 10 to 100 °. If the vapor deposition layer is too thick, the transmission of active energy rays is hindered, which is not preferable.

[0007]
The deposited layer does not necessarily need to be firmly attached to the mold. That is, when the formed resin sheet is removed from the molding die, the adhesive force at any one of the interfaces is such that the separation easily occurs at one of the interfaces between the molding die and the vapor deposition layer or the vapor deposition layer and the generated resin sheet. What is necessary is that the vapor deposition layer is formed so as to be small. When peeling off at the interface between the mold and the vapor deposition layer, the vapor deposition layer adheres to the generated resin sheet and peels off.
[0008]
The formation of the vapor deposition layer can be performed by any known method such as vacuum vapor deposition, ion plating, sputtering, and CVD, but unlike the case of normal vapor deposition in which the substrate is firmly adhered, pretreatment of the substrate is usually performed. Do not need. That is, the formation of the vapor deposition layer can be performed by a simple method.
In the present invention, a photocurable resin is injected into a mold having the above-described vapor deposition layer on the cavity surface side of the mold, and the resin is cured by irradiating the resin with an active energy ray. The active energy ray is selected from those having an appropriate wavelength from ultraviolet rays, electron beams, etc., depending on the polymerization initiator. Also, the irradiation amount must be sufficient to cure the photocurable resin.
[0009]
In a preferred embodiment of the present invention, after the resin is cured by irradiating with active energy rays, the formed resin sheet is removed from the mold while the mold is kept at a high temperature. Accordingly, it is possible to prevent the resin sheet from being damaged in the mold during the process of cooling the mold. Preferably, the generated resin sheet is removed from the mold during a period from the maximum temperature reached by the resin sheet during the curing reaction until the temperature of the mold decreases by 30 ° C. For this purpose, the resin sheet may be removed from the mold while keeping the mold at a predetermined temperature. The mold may be kept warm in an atmosphere maintained at a predetermined temperature, or may be heated by hot air, far infrared rays, an electric heater, or the like.
[0010]
It is considered that the reason why the photocured resin is broken in the molding die is that the thermal expansion coefficients of the molding die and the photocured resin are different.
That is, the molding die is generally made of glass as described above, but glass generally has a smaller coefficient of thermal expansion than photocured resin. Further, depending on the composition of the photo-curable resin, the photo-cured resin is three-dimensionally cross-linked, hard, and poor in flexibility. Therefore, when the photocurable resin in the mold is irradiated with active energy rays to be cured, the generated resin sheet and the mold in contact with the resin sheet are heated to the maximum temperature by the reaction heat and the active energy rays. After reaching the temperature, the temperature is decreased. In this temperature decreasing process, the resin sheet is distorted due to a difference in the coefficient of thermal expansion between the resin sheet and the mold in contact with the resin sheet, and eventually the resin sheet is damaged.
[0011]
In general, when the difference in the coefficient of thermal expansion between the mold and the resin sheet at the highest temperature reached by the resin sheet during the curing process is 3 × 10 −5 / ° C. or more, unless the resin sheet is highly flexible, If the temperature drop is higher than 30 ° C., the resin sheet is likely to be damaged in the molding die, because the distortion generated at the interface between the molding die and the resin sheet cannot be absorbed due to the difference in expansion coefficient.
Hereinafter, the present invention will be described more specifically with reference to examples.
[0012]
【Example】
Example 1
Aluminum having a purity of 99.9% was deposited on two glass flat plates (300 × 400 × 5 mm) by a vacuum deposition method to form a deposited film having a thickness of 50 °. The glass flat plate was opposed so that the vapor-deposited film faced the inner surface, and a 5 mm wide, 1 mm thick silicon rubber was interposed as a spacer around the flat plate to form a mold. A thermometer was inserted through a hole provided in a spacer at the center of the long side of the molding die, and the tip of the thermometer was projected into the cavity by 10 mm.
[0013]
Into this mold, 94 parts by weight of bis (oxymethyl) tricyclo [5,2,1,0 2,6 ] decane dimethacrylate represented by the following formula (1), pentaerythritol tetrakis (β-thiopropionate) 6 Parts by weight, 0.06 parts by weight of 2,4,6-trimethylbenzoyldiphenylphosphine oxide (luciline TPO, product of BASF) and 0.04 parts by weight of benzophenone were mixed, stirred to be uniform, and then defoamed. A curable resin was injected.
[0014]
A metal halide lamp having an output of 80 W / cm was installed above and below the mold at a distance of 400 mm from the glass surface, and irradiated with ultraviolet rays for 30 minutes to cure the photocurable resin. At this time, the thermometer reached 150 ° C.
The mold was immediately placed in an oven maintained at 150 ° C., and the resin sheet formed therein was peeled off from the mold with a spatula. The results are shown in Table 1.
[0015]
Embedded image
Figure 0003560097
[0016]
Comparative Example 1
Except that a glass flat plate on which aluminum was not deposited was used, the same mold as in Example 1 was manufactured, and a resin sheet was manufactured in exactly the same manner as in Example 1 using this mold. The results are shown in Table 1.
[0017]
Example 2
As in the case of Example 1, a molding die was composed of two glass flat plates (300 × 400 × 5 mm) on which an aluminum vapor-deposited film having a thickness of 50 ° was formed, and a silicon rubber spacer having a width of 5 mm and a thickness of 0.3 mm.
A resin sheet was manufactured in exactly the same manner as in Example 1 except that this mold was used. The results are shown in Table 1.
[0018]
Comparative Example 2
A molding die was produced in the same manner as in Example 2 except that a glass flat plate on which aluminum was not deposited was used, and a resin sheet was produced in exactly the same manner as in Example 1 using this mold. The results are shown in Table 1.
[0019]
Example 3
A mold was manufactured in the same manner as in Example 1 except that two glass flat plates (100 × 100 × 5 mm) on which an aluminum vapor-deposited film having a thickness of 50 ° was formed were used. To produce a resin sheet. The results are shown in Table 1.
[0020]
Comparative Example 3
A resin mold was manufactured in the same manner as in Example 1 except that a mold was manufactured in the same manner as in Example 3 except that a glass flat plate on which aluminum was not deposited was used. The results are shown in Table 1.
[0021]
Example 4
As in Example 3, a mold was manufactured using two glass flat plates (100 × 100 × 5 mm) on which aluminum having a thickness of 50 ° was deposited and a silicon rubber spacer having a width of 5 mm and a thickness of 0.3 mm.
A resin sheet was manufactured in exactly the same manner as in Example 1 except that this mold was used. The results are shown in Table 1.
[0022]
Comparative Example 4
A molding die was produced in the same manner as in Example 4 except that a glass flat plate on which aluminum was not deposited was used, and a resin sheet was produced in exactly the same manner as in Example 1 using this mold. The results are shown in Table 1.
[0023]
Example 5
Silicon monoxide having a purity of 99.9% was deposited on two glass flat plates (300 × 400 × 5 mm) by a vacuum deposition method to form a deposited film having a thickness of 50 °.
A molding die was produced in the same manner as in Example 1 except that this glass plate was used, and a resin sheet was produced using this in exactly the same manner as in Example 1. The results are shown in Table 1.
[0024]
Example 6
A mold was manufactured using two glass flat plates (300 × 400 × 5 mm) on which a silicon monoxide deposited film having a thickness of 50 ° was formed in the same manner as in Example 5, and a silicon rubber spacer having a width of 5 mm and a thickness of 0.3 mm. .
A resin sheet was manufactured in exactly the same manner as in Example 1 except that this mold was used. The results are shown in Table 1.
[0025]
[Table 1]
Figure 0003560097
[0026]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, when manufacturing a sheet | seat from a photocurable resin, even a thin large sheet can be easily manufactured by avoiding breakage of a sheet.

Claims (3)

少くとも受光面が活性エネルギー線が透過可能な材料で形成されている偏平なキャビティを有する成形型に、ビス(オキシメチル)トリシクロ[5,2,1,0 2,6 ]デカンジメタクリレートを含有する光硬化性樹脂を注入し、該受光面を通して活性エネルギー線を照射して光硬化性樹脂を硬化させる光硬化性樹脂を用いた樹脂シートの製造方法において、成形型のキャビティ面側にアルミニウム、珪素、およびこれらの酸化物からなる群から選ばれた少なくとも一種で構成される剥離し易い蒸着層を有する成形型を用いることを特徴とする方法。 Bis (oxymethyl) tricyclo [5,2,1,0 2,6 ] decanedimethacrylate is contained in a mold having a flat cavity whose at least light-receiving surface is formed of a material through which active energy rays can pass. the photocurable resin is injected, in the manufacturing method of the resin sheet using by irradiating an active energy ray through a light receiving surface photocurable resin to cure the photocurable resin, aluminum cavity surface of the mold, A method characterized by using a mold having an easily peelable vapor deposition layer composed of at least one selected from the group consisting of silicon and oxides thereof . シートの厚さが0.1〜3mmであることを特徴とする請求項に記載の方法。The method according to claim 1 , wherein the thickness of the sheet is 0.1 to 3 mm. 成形型が、硬化後の光硬化性樹脂と成形型との熱膨張率の差が3×10 -5 /℃以上となるものであって、成形型の温度が、硬化過程における樹脂の最高温度よりも30℃よりも大きく降下しない間に、成形型から生成した樹脂シートを取外すことを特徴とする請求項1または2に記載の方法。 The mold has a difference in thermal expansion coefficient between the cured photocurable resin and the mold of 3 × 10 −5 / ° C. or more, and the temperature of the mold is the maximum temperature of the resin in the curing process. The method according to claim 1 or 2 , wherein the resin sheet formed from the mold is removed while the temperature does not drop by more than 30 ° C.
JP9385296A 1996-04-16 1996-04-16 Manufacturing method of resin sheet using photocurable resin Expired - Fee Related JP3560097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9385296A JP3560097B2 (en) 1996-04-16 1996-04-16 Manufacturing method of resin sheet using photocurable resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9385296A JP3560097B2 (en) 1996-04-16 1996-04-16 Manufacturing method of resin sheet using photocurable resin

Publications (2)

Publication Number Publication Date
JPH09278809A JPH09278809A (en) 1997-10-28
JP3560097B2 true JP3560097B2 (en) 2004-09-02

Family

ID=14093954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9385296A Expired - Fee Related JP3560097B2 (en) 1996-04-16 1996-04-16 Manufacturing method of resin sheet using photocurable resin

Country Status (1)

Country Link
JP (1) JP3560097B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5492406B2 (en) * 2008-12-05 2014-05-14 株式会社ダイナ楽器 Resin molded product coating method and resin molded product

Also Published As

Publication number Publication date
JPH09278809A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
TW201139132A (en) Method for manufacturing hard translucent plate laminate and apparatus for bonding hard translucent plates
EP0408763B1 (en) Optical disk and method of manufacturing the same
JP6116651B2 (en) Photo-curable resin composition for imprint molding, imprint molding cured body, and production method thereof
KR20030025914A (en) Composition for antistatic coat, antistatic hard coat, process for producing the same, and multilayered film with antistatic hard coat
JP3560097B2 (en) Manufacturing method of resin sheet using photocurable resin
JPH1124081A (en) Optical element and laminated transfer sheet
EP0971270B1 (en) Process for the removal of resist material
JP2011000856A (en) Laminate formed by laminating base material, intermediate film and fine rugged structural film
JP2002052552A (en) Method for manufacturing photosetting resin sheet
JP3550527B2 (en) Adhesive tape for plastic lens production
JP2003103531A (en) Method for manufacturing sheet-like molding of photosetting resin
JP3560098B2 (en) Method for producing resin sheet using photocurable resin
JPWO2005022208A1 (en) Methacrylic resin cast plate having surface microstructure and manufacturing method thereof
JP2004001350A (en) Composite sheet and method for manufacturing molding using the same
JP4066283B2 (en) Method for producing hard coat film, hard coat film, polarizing plate and display device
JPH1058465A (en) Manufacture of resin sheet using photosetting resin
JP4053278B2 (en) Manufacturing method of resin sheet
JP3508395B2 (en) Molding method of photocurable resin sheet
JP2004145157A (en) Manufacturing method of non-glare processed object
JPH06100641A (en) Photoreactive composition and production of transparent laminate
JPH04151242A (en) Plastic component and optical component
JP2013061447A (en) Optical element
JP3885441B2 (en) Manufacturing method of molded body
JP2002240092A (en) Method for manufacturing insert molded product obtained by laminating light pervious protective films
JP2005008669A (en) Adhesive for semiconductor device, semiconductor device and display using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040519

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees