[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004001350A - Composite sheet and method for manufacturing molding using the same - Google Patents

Composite sheet and method for manufacturing molding using the same Download PDF

Info

Publication number
JP2004001350A
JP2004001350A JP2002240938A JP2002240938A JP2004001350A JP 2004001350 A JP2004001350 A JP 2004001350A JP 2002240938 A JP2002240938 A JP 2002240938A JP 2002240938 A JP2002240938 A JP 2002240938A JP 2004001350 A JP2004001350 A JP 2004001350A
Authority
JP
Japan
Prior art keywords
resin layer
composite sheet
semi
sheet according
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002240938A
Other languages
Japanese (ja)
Other versions
JP4053374B2 (en
Inventor
Hiroshi Kakuno
覚野 博司
Tomoo Hiranishi
平西 智雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Shin Kobe Electric Machinery Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002240938A priority Critical patent/JP4053374B2/en
Publication of JP2004001350A publication Critical patent/JP2004001350A/en
Application granted granted Critical
Publication of JP4053374B2 publication Critical patent/JP4053374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite sheet for manufacturing a molding having a protection layer by forming the protection layer made of a hard resin on the surface of the molding obtained by thermoforming a thermoplastic resin sheet at a small man-hour. <P>SOLUTION: The composite sheet has a semicurable resin layer which can be cured with heat and/or light is on the skin layer of a thermoplastic base resin layer. This composite sheet is subjected to thermoformings, such as vacuum forming, and shaped as prescribed, then fully cured of the tacky resin layer on surface of the shaped article with heat and/or light, and the protection layer of the hard resin is formed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ベース樹脂層が熱可塑性樹脂からなる複合シートに関する。また、この複合シートを真空成形等の熱成形に供し、表面に硬質樹脂の保護層を有する成形品を製造する方法に関する。
【0002】
【従来の技術】
熱可塑性樹脂成形品の表面に硬質の保護層を形成する技術として、熱可塑性樹脂のベース樹脂層に薄いメチルメタクリレート樹脂(PMMA)層を一体化した複合シートを準備し、この複合シートを真空成形等の熱成形に供し、所定形状の成形品を製造する方法がある。成形品表面のPMMA層が、表面を傷つけにくくする保護層として機能している。
しかし、用途によっては、PMMA層が保護層として十分な硬度を有しているとは、必ずしもいえない。
【0003】
また、別の技術として、熱可塑性樹脂シートを所定形状に熱成形した後に、成形品表面に光硬化性の樹脂液を塗布し、乾燥後、光(紫外線)を照射してこれを硬化させ、表面に硬質樹脂からなる保護層を形成する方法がある。
しかし、この方法は、三次元形状の成形品表面に光硬化性の樹脂液を均一に塗布することが難しいし、塗布の工数も多くかかる。
【0004】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、熱可塑性樹脂シートを熱成形した成形品の表面に硬質樹脂からなる保護層を少ない工数で形成することである。また、表面に硬質樹脂からなる保護層を有する成形品を製造するための熱成形に適した複合シートを提供する。
【0005】
【課題を解決するための手段】
上記課題を達成するために、本発明に係る複合シートは、熱可塑性のベース樹脂層の表層に、熱及び/又は光で硬化可能な半硬化樹脂層を有することを特徴とする。半硬化樹脂層は、例えば、光硬化性樹脂からなるものや、硬化した熱硬化性樹脂と未硬化の光硬化性樹脂で構成されたものである。
【0006】
上記複合シートを真空成形等の熱成形に供し成形品を製造する。ベース樹脂層の表層にある半硬化樹脂層は、熱成形時にはまだ十分に硬化していないので、熱可塑性のベース樹脂層の熱成形形状に良好に追従し、支障なく熱成形を実施することができる。成形後に、成形品表層の半硬化樹脂層を熱および/又は光で完全硬化し、硬質樹脂の保護層とする。本発明においては、保護層とするための半硬化樹脂層を、平らなベース樹脂層に予め設けるので、三次元形状に成形した成形品に樹脂液を塗布する工程を経て保護層を設けるのに比し、その作業は簡単であり、保護層厚さの均一化も容易である。
【0007】
【発明の実施の形態】
本発明においては、熱可塑性のベース樹脂層、例えば、押出成形したABSシートに、熱及び/又は光で硬化する樹脂液を塗布し乾燥し、当該塗布層の樹脂の硬化を熱又は光により半ば進め半硬化樹脂層とする。
樹脂液は、(a)光硬化性樹脂を溶剤で希釈したもの、(b)熱硬化性樹脂を溶剤で希釈したもの、(c)熱硬化性樹脂と光硬化性樹脂を溶剤で希釈した混合物などである。(a)の樹脂液を採用する場合は、塗布層への光(紫外線)の照射量を少なく調整することにより半硬化の樹脂層とする。(b)の樹脂液を採用する場合は、塗布層の加熱を少なく調整することにより半硬化の樹脂層とする。(c)の樹脂液を採用する場合は、塗布層を加熱して熱硬化性樹脂の硬化を選択的に進め、全体として半硬化の樹脂層とする。あるいは、塗布層へ光(紫外線)を照射して光硬化性樹脂の硬化を選択的に進め、全体として半硬化の樹脂層とする。
半硬化樹脂層の生成は、通常、樹脂液の塗布層を加熱乾燥した後に実施する。従って、上記(b)又は(c)の樹脂液を採用すれば、その塗布層の加熱乾燥工程で熱硬化性樹脂の硬化を進め、半硬化樹脂層を生成することができるので好都合である。さらに、(c)の樹脂液を採用すれば、光硬化性樹脂を未硬化のままとすることによって、半硬化状態の調整を容易に行なうことができる。
【0008】
このような複合シートを真空成形等の熱成形により所定形状とした後に、成形品表面に光(紫外線)を照射して、あるいは加熱して、半硬化樹脂層を完全に硬化させる。これにより、半硬化樹脂層は、硬質樹脂の保護層となる。
上記熱成形に際しては、半硬化樹脂層側の加熱を、ベース樹脂層側より遅れて開始し、かつ、ベース樹脂層側より低い温度で行なうとよい。熱成形時に、半硬化樹脂層の硬化が進むのを抑制することができる。尚、後述するように、半硬化樹脂層を生成する樹脂液の組成を工夫すれば、半硬化樹脂層側の加熱とベース樹脂層側の加熱を同時に開始することも可能となる。
【0009】
上記熱可塑性のベース樹脂層は、単層の熱可塑性樹脂シートであっても、着色した化粧層をもつ二層以上の多層シートであってもよい。多層シートは、共押出成形により製造することができる。
【0010】
上記(a)の樹脂液は、例えば、アクリレートモノマ(多官能アクリレート、単官能アクリレート)、ウレタンアクリレート等に光硬化開始剤を配合したものである。また、上記(b)の樹脂液は、例えば、水酸基含有アクリルアクリレート等にポリイソシアネート(熱硬化助剤)を配合したものである。さらに、上記(c)の樹脂液は、例えば、アクリレートモノマ(多官能アクリレート、単官能アクリレート)、水酸基含有アクリルアクリレート等に光硬化開始剤とポリイソシアネート(熱硬化助剤)を配合したものである。
(c)の樹脂液を使用した場合には、加熱により、水酸基含有アクリルアクリレートとポリイソシアネートが優先的に反応する。すなわち、ポリイソシアネートと水酸基含有アクリルアクリレートの水酸基が、熱により架橋してウレタン構造を作り、塗布層が半硬化樹脂層となる(第1反応)。このような半硬化樹脂層をもつ複合シートを熱成形した後、前記半硬化樹脂層に紫外線を照射すると、水酸基含有アクリルアクリレートのアクリロイル基とアクリルモノマが架橋して、半硬化樹脂層が硬質の樹脂層となる(第2反応)。
【0011】
(c)の樹脂液において、水酸基含有アクリルアクリレートとアクリレートモノマを合せた質量100に対して、ポリイソシアネートの質量を30以下の配合とするのが好ましい。さらに好ましくは20以下、一層好ましくは10以下、なお一層好ましくは5以下である。ポリイソシアネートの配合が多くなると、上記第1反応が進みすぎ、また、時間の経過ととも反応が自然に進み、半硬化樹脂層が硬くなってくる。そうすると、複合シートを所定形状へ熱成形する時に半硬化樹脂層の追従性が低下してくる。しかし、ポリイソシアネートの配合が少なすぎると、生成した半硬化樹脂層表面にタック性が残り取扱い性が悪くなり、また、塗膜に充分な硬度が発現しなくなるので、その下限値は適宜調整する。好ましくは、ポリイソシアネートの質量を3以上の配合とする。
【0012】
アクリレートモノマには、単官能と2官能以上の多官能のものがあるが、好ましくは、単官能アクリレートモノマを選択する。水酸基含有アクリルアクリレートのアクリロイル基とアクリレートモノマは、第1反応時にも、すなわち熱によっても多少架橋が進む。単官能アクリレートモノマを選択することにより、前記熱による架橋の架橋点が少なくなるので、半硬化樹脂層が固くなりすぎず、複合シートを所定形状へ熱成形する時に半硬化樹脂層の追従性が一層良好になる。
【0013】
(c)の樹脂液において、さらに好ましくは、アクリレートモノマと水酸基含有アクリルアクリレートの混合質量比を、20:80〜40:60とする。アクリレートモノマの配合が多すぎると、上記第1反応後のアクリレートモノマの残存が多くなり、生成した半硬化樹脂層表面にタック性が残る。逆に、アクリレートモノマの配合が少なすぎると、上記第2反応による硬質樹脂層が発現しにくくなる。
また、水酸基含有アクリルアクリレートのOH当量は30〜50が好ましい。
【0014】
【実施例】
上記(a)の樹脂液を採用する場合(実施例1)と上記(c)の樹脂液を採用する場合(実施例2)〜(実施例7)について、実施例を説明する。
まず、表1に樹脂液の配合組成(質量部)を示す。
アクリレートモノマは単官能アクリレートと多官能アクリレートの両タイプを準備し、水酸基含有アクリルアクリレートはOH当量40のものを、ポリイソシアネートはアダクトタイプを準備した。溶剤は、トルエンである。
【0015】
【表1】

Figure 2004001350
【0016】
いずれの実施例においても、上記樹脂液を2.0mm厚のABSシートにバーコータで塗布し、予備乾燥後に、実施例1では紫外線照射により、実施例2〜7では加熱により、それぞれ塗布層の樹脂の硬化を半ば進め、表層に半硬化樹脂層を有する複合シートとする。
樹脂液塗布後の乾燥と半硬化樹脂層を形成するための処理条件は表2に示すとおりである。
【0017】
次に、上記各複合シートを真空成形に供する。また、比較のために、表面にPMMA層を一体化した実施例と同厚みのABSシートを真空成形に供する(比較例)。これら真空成形は、展開倍率1.2倍までの成形と1.8倍までの成形を実施した。
比較例は、PMMA層を上にしてシートをクランプに挟んで固定し、下ヒータ温度:400℃、上ヒータ温度:450℃に設定し、加熱:上下同時に55秒間の加熱後に、ドーム型の成形品を真空成形する。
一方、実施例1〜6は、半硬化樹脂層を上にしてシートをクランプに挟んで固定し、下ヒータ温度:500℃、上ヒータ温度:300℃に設定し、加熱:下面は55秒間加熱、上面は下面より30秒遅れで25秒間加熱の後に、ドーム型の成形品を真空成形する。
また、実施例7は、半硬化樹脂層を上にしてシートをクランプに挟んで固定し、下ヒータ温度:400℃、上ヒータ温度:450℃に設定し、加熱:上下同時に55秒間の加熱後に、ドーム型の成形品を真空成形する。
実施例1〜7は、真空成形後に、高圧水銀ランプにて約500mJの紫外線照射を行ない、半硬化樹脂層を完全硬化して透明硬質樹脂の保護層とする。
表2には、これら成形条件等も纏めて示した。
【0018】
【表2】
Figure 2004001350
【0019】
上記実施例1〜6では、真空成形に際して、半硬化樹脂層側の加熱温度を低くし加熱時間も短くして、シートの加熱中に半硬化樹脂層の硬化が徒に進行しないようにしている。半硬化樹脂層は、ベース樹脂層(ABSシート)の成形形状に無理なく追随し、成形品の表面状態は良好であった。真空成形時に半硬化樹脂層の硬化が進み過ぎていると、半硬化樹脂層が成形形状に追随できず、剥離や破断が起きることになる。
上記実施例7では、樹脂液の配合を、水酸基含有アクリルアクリレートとアクリレートモノマを合せた質量100に対しポリイソシアネートの質量5以下としたことにより、比較例と同じ条件で成形をしても、半硬化樹脂層は、ベース樹脂層(ABSシート)の成形形状に無理なく追随し、成形品の表面状態は良好であった。
表3に、成形品表面の目視観察結果と成形品表面の硬度を測定した結果を纏めた。
【0020】
【表3】
Figure 2004001350
【0021】
表3から、アクリレートモノマとして単官能のものを用いると熱成形時の追従性がよりよくなることが理解でき(実施例2と実施例3の対照)、アクリレートモノマと水酸基含有アクリルアクリレートを合せた質量100に対して、イソシアネートの質量が30以下であると、紫外線照射により形成した硬質樹脂層の硬度は多少低くなるものの、真空成形時の追従性は極めて良好になることを理解できる(実施例3と実施例4〜7の対照)。前記イソシアネートの配合質量が20以下、さらに好ましくは10以下であると、大きい展開倍率の真空成形に対しても追従性が十分となる(実施例4と実施例5〜7の対照)。イソシアネートの配合質量が5以下であると、比較例と同様の加熱条件で真空成形を行っても表面状態や追従性を損なうことなく、しかも、大きい展開倍率での成形が可能となる。(実施例6と実施例7の対照)。
【0022】
【発明の効果】
上述のように、本発明に係る複合シートは、硬質樹脂の保護層を有する成形品を二次成形するのに有用である。また、本発明に係る方法によれば、前記複合シートを用いて、硬質樹脂の保護層を有する成形品を容易に製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite sheet in which a base resin layer is made of a thermoplastic resin. The present invention also relates to a method of subjecting the composite sheet to thermoforming such as vacuum forming to produce a molded article having a hard resin protective layer on the surface.
[0002]
[Prior art]
As a technique for forming a hard protective layer on the surface of a thermoplastic resin molded product, a composite sheet in which a thin methyl methacrylate resin (PMMA) layer is integrated with a base resin layer of a thermoplastic resin is prepared, and the composite sheet is vacuum formed. There is a method of producing a molded article having a predetermined shape by subjecting the molded article to thermoforming. The PMMA layer on the surface of the molded article functions as a protective layer that makes the surface hard to damage.
However, depending on the application, the PMMA layer does not always have sufficient hardness as a protective layer.
[0003]
Further, as another technique, after a thermoplastic resin sheet is thermoformed into a predetermined shape, a photocurable resin liquid is applied to the surface of the molded article, dried, and then irradiated with light (ultraviolet light) to cure it. There is a method of forming a protective layer made of a hard resin on the surface.
However, in this method, it is difficult to uniformly apply a photocurable resin liquid to the surface of a three-dimensional molded product, and the number of coating steps is increased.
[0004]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to form a protective layer made of a hard resin on the surface of a molded product obtained by thermoforming a thermoplastic resin sheet with a small number of steps. Further, the present invention provides a composite sheet suitable for thermoforming for producing a molded article having a protective layer made of a hard resin on the surface.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a composite sheet according to the present invention is characterized in that a semi-cured resin layer curable by heat and / or light is provided on a surface layer of a thermoplastic base resin layer. The semi-cured resin layer is made of, for example, a photo-curable resin or a cured thermosetting resin and an uncured photo-curable resin.
[0006]
The composite sheet is subjected to thermoforming such as vacuum forming to produce a molded product. Since the semi-cured resin layer on the surface layer of the base resin layer has not been sufficiently cured at the time of thermoforming, it can follow the thermoformed shape of the thermoplastic base resin layer well and can be thermoformed without any trouble. it can. After molding, the semi-cured resin layer on the surface of the molded article is completely cured by heat and / or light to form a hard resin protective layer. In the present invention, since a semi-cured resin layer for forming a protective layer is provided in advance on a flat base resin layer, the protective layer is provided through a step of applying a resin liquid to a molded product molded into a three-dimensional shape. On the other hand, the operation is simple and the thickness of the protective layer can be easily made uniform.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, a resin liquid that is cured by heat and / or light is applied to a thermoplastic base resin layer, for example, an extruded ABS sheet, and dried. Advance to a semi-cured resin layer.
The resin liquid is (a) a photo-curable resin diluted with a solvent, (b) a thermo-curable resin diluted with a solvent, (c) a mixture of the thermo-curable resin and the photo-curable resin diluted with a solvent. And so on. When the resin liquid of (a) is employed, a semi-cured resin layer is obtained by adjusting the irradiation amount of light (ultraviolet light) to the coating layer to be small. When the resin liquid of (b) is employed, a semi-cured resin layer is obtained by adjusting the heating of the coating layer to a low level. When the resin liquid of (c) is employed, the application layer is heated to selectively advance the curing of the thermosetting resin, thereby forming a semi-cured resin layer as a whole. Alternatively, the coating layer is irradiated with light (ultraviolet light) to selectively advance the curing of the photocurable resin, thereby forming a semi-cured resin layer as a whole.
The formation of the semi-cured resin layer is usually performed after the resin liquid coating layer is heated and dried. Therefore, if the resin liquid of the above (b) or (c) is employed, the curing of the thermosetting resin can be advanced in the heating and drying step of the coating layer, and a semi-cured resin layer can be advantageously produced. Furthermore, if the resin liquid of (c) is employed, the semi-cured state can be easily adjusted by keeping the photocurable resin uncured.
[0008]
After forming such a composite sheet into a predetermined shape by thermoforming such as vacuum forming, the surface of the molded article is irradiated with light (ultraviolet rays) or heated to completely cure the semi-cured resin layer. As a result, the semi-cured resin layer becomes a hard resin protective layer.
In the thermoforming, the heating of the semi-cured resin layer side may be started later than the base resin layer side and at a lower temperature than the base resin layer side. At the time of thermoforming, the progress of curing of the semi-cured resin layer can be suppressed. As will be described later, if the composition of the resin liquid for forming the semi-cured resin layer is devised, heating of the semi-cured resin layer side and heating of the base resin layer side can be started simultaneously.
[0009]
The thermoplastic base resin layer may be a single-layer thermoplastic resin sheet or a multilayer sheet of two or more layers having a colored decorative layer. The multilayer sheet can be manufactured by co-extrusion.
[0010]
The resin liquid (a) is obtained by blending a photocuring initiator with acrylate monomer (polyfunctional acrylate, monofunctional acrylate), urethane acrylate, or the like. Further, the resin liquid (b) is obtained by mixing a polyisocyanate (a thermosetting auxiliary) with, for example, an acrylic acrylate having a hydroxyl group. Further, the resin liquid (c) is obtained by blending a photocuring initiator and a polyisocyanate (a heat-curing aid) with, for example, acrylate monomer (polyfunctional acrylate, monofunctional acrylate), hydroxyl group-containing acrylic acrylate, or the like. .
When the resin liquid (c) is used, the hydroxyl group-containing acrylic acrylate and the polyisocyanate react preferentially by heating. That is, the hydroxyl groups of the polyisocyanate and the hydroxyl group-containing acrylic acrylate are crosslinked by heat to form a urethane structure, and the coating layer becomes a semi-cured resin layer (first reaction). After thermoforming a composite sheet having such a semi-cured resin layer, when the semi-cured resin layer is irradiated with ultraviolet light, the acryloyl group of the hydroxyl group-containing acrylic acrylate and the acrylic monomer are crosslinked, and the semi-cured resin layer is hard. It becomes a resin layer (second reaction).
[0011]
In the resin liquid of (c), it is preferable that the mass of the polyisocyanate is 30 or less with respect to the mass 100 of the hydroxyl group-containing acrylic acrylate and the acrylate monomer. It is more preferably 20 or less, more preferably 10 or less, and still more preferably 5 or less. When the blending amount of the polyisocyanate increases, the first reaction proceeds too much, and the reaction proceeds spontaneously over time, and the semi-cured resin layer becomes hard. Then, the followability of the semi-cured resin layer is reduced when the composite sheet is thermoformed into a predetermined shape. However, if the amount of the polyisocyanate is too small, tackiness remains on the surface of the generated semi-cured resin layer, resulting in poor handleability, and sufficient hardness is not exhibited in the coating film. Therefore, the lower limit is appropriately adjusted. . Preferably, the mass of the polyisocyanate is 3 or more.
[0012]
The acrylate monomer includes a monofunctional and a polyfunctional one having two or more functions. Preferably, a monofunctional acrylate monomer is selected. The acryloyl group of the hydroxyl group-containing acrylic acrylate and the acrylate monomer undergo some crosslinking even during the first reaction, that is, by heat. By selecting a monofunctional acrylate monomer, the cross-linking point of the heat-induced cross-linking is reduced, so that the semi-cured resin layer does not become too hard, and the followability of the semi-cured resin layer when thermoforming a composite sheet into a predetermined shape is improved. It will be even better.
[0013]
In the resin liquid (c), the mixing mass ratio of the acrylate monomer and the hydroxyl group-containing acrylic acrylate is more preferably 20:80 to 40:60. If the amount of the acrylate monomer is too large, the amount of the acrylate monomer remaining after the first reaction increases, and tackiness remains on the surface of the generated semi-cured resin layer. On the other hand, if the amount of the acrylate monomer is too small, the hard resin layer due to the second reaction becomes difficult to develop.
Further, the OH equivalent of the hydroxyl group-containing acrylic acrylate is preferably 30 to 50.
[0014]
【Example】
Examples will be described for the case where the resin liquid of the above (a) is employed (Example 1) and the case where the resin liquid of the above (c) is employed (Example 2) to (Example 7).
First, Table 1 shows the composition (parts by mass) of the resin liquid.
Acrylate monomers were prepared in both monofunctional acrylate and polyfunctional acrylate types, hydroxyl group-containing acrylic acrylates having an OH equivalent of 40, and polyisocyanates in adduct type were prepared. The solvent is toluene.
[0015]
[Table 1]
Figure 2004001350
[0016]
In any of the examples, the resin liquid was applied to a 2.0 mm-thick ABS sheet with a bar coater, and after pre-drying, the resin in the coating layer was irradiated by ultraviolet irradiation in Example 1 and heated in Examples 2 to 7, respectively. Is advanced halfway to obtain a composite sheet having a semi-cured resin layer on the surface layer.
The processing conditions for drying after forming the resin solution and forming the semi-cured resin layer are as shown in Table 2.
[0017]
Next, each of the composite sheets is subjected to vacuum forming. For comparison, an ABS sheet having the same thickness as that of the example in which the PMMA layer is integrated on the surface is subjected to vacuum forming (comparative example). In these vacuum moldings, molding up to a magnification of 1.2 times and molding up to 1.8 times were carried out.
In the comparative example, the sheet is clamped and fixed with the PMMA layer facing upward, the lower heater temperature is set to 400 ° C., the upper heater temperature is set to 450 ° C., and the heating is performed simultaneously for 55 seconds in the upper and lower directions. The product is vacuum formed.
On the other hand, in Examples 1 to 6, the sheet was clamped and fixed with the semi-cured resin layer facing upward, the lower heater temperature was set to 500 ° C., the upper heater temperature was set to 300 ° C., and the lower surface was heated for 55 seconds. After heating the upper surface for 30 seconds with a delay of 30 seconds from the lower surface, the dome-shaped molded product is vacuum-formed.
In Example 7, the sheet was clamped and fixed with the semi-cured resin layer facing upward, the lower heater temperature was set to 400 ° C., and the upper heater temperature was set to 450 ° C. Then, the dome shaped product is vacuum formed.
In Examples 1 to 7, after the vacuum molding, ultraviolet ray irradiation of about 500 mJ was performed with a high-pressure mercury lamp to completely cure the semi-cured resin layer to form a transparent hard resin protective layer.
Table 2 also summarizes these molding conditions and the like.
[0018]
[Table 2]
Figure 2004001350
[0019]
In the above Examples 1 to 6, at the time of vacuum forming, the heating temperature on the semi-cured resin layer side is lowered and the heating time is also shortened, so that the curing of the semi-cured resin layer does not progress unnecessarily during heating of the sheet. . The semi-cured resin layer reasonably followed the molded shape of the base resin layer (ABS sheet), and the surface condition of the molded product was good. If the curing of the semi-cured resin layer proceeds excessively during vacuum molding, the semi-cured resin layer cannot follow the molded shape, and peeling or breakage will occur.
In Example 7 described above, by mixing the resin liquid with the polyisocyanate at a mass of 5 or less with respect to the mass of the hydroxyl group-containing acrylic acrylate and the acrylate monomer of 100, the molding was carried out under the same conditions as in the comparative example. The cured resin layer followed the molded shape of the base resin layer (ABS sheet) without difficulty, and the surface condition of the molded product was good.
Table 3 summarizes the results of visual observation of the molded product surface and the results of measuring the hardness of the molded product surface.
[0020]
[Table 3]
Figure 2004001350
[0021]
From Table 3, it can be understood that the use of a monofunctional acrylate monomer improves the followability during thermoforming (compared with Examples 2 and 3), and the mass of the acrylate monomer and the hydroxyl group-containing acrylic acrylate combined. If the mass of isocyanate is less than or equal to 100, the hardness of the hard resin layer formed by irradiation with ultraviolet rays is slightly reduced, but the followability during vacuum forming is extremely good (Example 3). And the controls of Examples 4-7). If the compounding mass of the isocyanate is 20 or less, more preferably 10 or less, the followability becomes sufficient even in vacuum forming with a large expansion ratio (control of Example 4 and Examples 5 to 7). When the compounding mass of the isocyanate is 5 or less, it is possible to perform molding at a large expansion ratio without impairing the surface state and followability even when performing vacuum molding under the same heating conditions as in the comparative example. (Control of Example 6 and Example 7).
[0022]
【The invention's effect】
As described above, the composite sheet according to the present invention is useful for secondary forming a molded article having a hard resin protective layer. Further, according to the method of the present invention, a molded article having a hard resin protective layer can be easily manufactured using the composite sheet.

Claims (13)

熱可塑性のベース樹脂層の表層に、熱及び/又は光で硬化可能な半硬化樹脂層を有する複合シート。A composite sheet having a semi-cured resin layer curable by heat and / or light on a surface layer of a thermoplastic base resin layer. 半硬化樹脂層が、光硬化性樹脂からなる請求項1記載の複合シート。The composite sheet according to claim 1, wherein the semi-cured resin layer is made of a photo-curable resin. 半硬化樹脂層が、硬化した熱硬化性樹脂と未硬化の光硬化性樹脂で構成されている請求項1記載の複合シート。The composite sheet according to claim 1, wherein the semi-cured resin layer is composed of a cured thermosetting resin and an uncured photocurable resin. 半硬化樹脂層の樹脂組成が、水酸基含有アクリルアクリレート、ポリイソシアネート、アクリレートモノマ、光硬化開始剤を必須成分としていることを特徴とする請求項3記載の複合シート。4. The composite sheet according to claim 3, wherein the resin composition of the semi-cured resin layer contains hydroxyl group-containing acrylic acrylate, polyisocyanate, acrylate monomer, and a photo-curing initiator as essential components. 水酸基含有アクリルアクリレートとアクリレートモノマを合せた質量100に対して、ポリイソシアネートの質量が30以下であることを特徴とする請求項4記載の複合シート。5. The composite sheet according to claim 4, wherein the mass of the polyisocyanate is 30 or less based on the total mass of the hydroxyl group-containing acrylic acrylate and the acrylate monomer of 100. 6. 水酸基含有アクリルアクリレートとアクリレートモノマを合せた質量100に対して、ポリイソシアネートの質量が20以下であることを特徴とする請求項4記載の複合シート。The composite sheet according to claim 4, wherein the mass of the polyisocyanate is 20 or less with respect to the mass 100 of the hydroxyl group-containing acrylic acrylate and the acrylate monomer. 水酸基含有アクリルアクリレートとアクリレートモノマを合せた質量100に対して、ポリイソシアネートの質量が10以下であることを特徴とする請求項4記載の複合シート。The composite sheet according to claim 4, wherein the mass of the polyisocyanate is 10 or less with respect to the mass 100 of the hydroxyl group-containing acrylic acrylate and the acrylate monomer. 水酸基含有アクリルアクリレートとアクリレートモノマを合せた質量100に対して、ポリイソシアネートの質量が5以下であることを特徴とする請求項4記載の複合シート。The composite sheet according to claim 4, wherein the mass of the polyisocyanate is 5 or less with respect to the mass 100 of the hydroxyl group-containing acrylic acrylate and the acrylate monomer. アクリレートモノマが単官能であることを特徴とする請求項5〜7のいずれかに記載の複合シート。The composite sheet according to any one of claims 5 to 7, wherein the acrylate monomer is monofunctional. アクリレートモノマが単官能であることを特徴とする請求項8記載の複合シート。9. The composite sheet according to claim 8, wherein the acrylate monomer is monofunctional. 請求項1〜7、9のいずれかに記載の複合シートを所定形状に熱成形する当たり、半硬化樹脂層側の加熱を、ベース樹脂層側より遅れて開始し、かつ、ベース樹脂層側より低い温度で行なうことを特徴とする成形品の製造法。When the composite sheet according to any one of claims 1 to 7 and 9 is thermoformed into a predetermined shape, heating of the semi-cured resin layer side is started later than the base resin layer side, and from the base resin layer side. A method for producing a molded product, which is performed at a low temperature. 請求項11の工程を経て製造された成形品表層の半硬化樹脂層を熱および/又は光で完全硬化し硬質の樹脂層とすることを特徴とする成形品の製造法。A method for producing a molded article, wherein the semi-cured resin layer on the surface of the molded article produced through the step of claim 11 is completely cured by heat and / or light to form a hard resin layer. 請求項8又は10記載の複合シートを所定形状に熱成形した成形品表層の半硬化樹脂層を光で完全硬化し硬質の樹脂層とすることを特徴とする成形品の製造法。A method for producing a molded article, characterized in that a hardened resin layer is obtained by completely curing a semi-cured resin layer of a molded article surface layer obtained by thermoforming the composite sheet according to claim 8 or 10 into a predetermined shape to form a hard resin layer.
JP2002240938A 2001-09-19 2002-08-21 Manufacturing method of molded product using composite sheet Expired - Fee Related JP4053374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002240938A JP4053374B2 (en) 2001-09-19 2002-08-21 Manufacturing method of molded product using composite sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001284929 2001-09-19
JP2002087333 2002-03-27
JP2002240938A JP4053374B2 (en) 2001-09-19 2002-08-21 Manufacturing method of molded product using composite sheet

Publications (2)

Publication Number Publication Date
JP2004001350A true JP2004001350A (en) 2004-01-08
JP4053374B2 JP4053374B2 (en) 2008-02-27

Family

ID=30449034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002240938A Expired - Fee Related JP4053374B2 (en) 2001-09-19 2002-08-21 Manufacturing method of molded product using composite sheet

Country Status (1)

Country Link
JP (1) JP4053374B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186678A (en) * 2005-11-29 2007-07-26 Bayer Materialscience Ag Coated film
GB2470261A (en) * 2009-05-15 2010-11-17 Niles Co Ltd Caulking coupling device and transmission switch
WO2011062143A1 (en) * 2009-11-19 2011-05-26 アイシン精機株式会社 Quarter window for vehicle
JP2011143719A (en) * 2009-12-17 2011-07-28 Dic Corp Active energy ray curable transfer sheet and method for producing the same
WO2012176742A1 (en) * 2011-06-20 2012-12-27 Jnc株式会社 Transfer film for in-mold molding and method for producing same
EP2730405A1 (en) 2007-07-03 2014-05-14 Nippon Soda Co., Ltd. Method for forming hard coat layer
JP2014117944A (en) * 2012-12-19 2014-06-30 Jnc Corp Transfer film for in-mold molding, method of producing in-mold molding and molding
KR20200028816A (en) 2018-09-07 2020-03-17 아라까와 가가꾸 고교 가부시끼가이샤 Active energy ray-curable resin composition, cured product and lamination body
KR20220044113A (en) 2020-09-30 2022-04-06 아라까와 가가꾸 고교 가부시끼가이샤 Active energy ray-curable resin composition and laminate

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186678A (en) * 2005-11-29 2007-07-26 Bayer Materialscience Ag Coated film
EP2730405A1 (en) 2007-07-03 2014-05-14 Nippon Soda Co., Ltd. Method for forming hard coat layer
US9556317B2 (en) 2007-07-03 2017-01-31 Nippon Soda Co., Ltd. Molding sheet for forming hard coat layer
GB2470261A (en) * 2009-05-15 2010-11-17 Niles Co Ltd Caulking coupling device and transmission switch
WO2011062143A1 (en) * 2009-11-19 2011-05-26 アイシン精機株式会社 Quarter window for vehicle
JP2011143719A (en) * 2009-12-17 2011-07-28 Dic Corp Active energy ray curable transfer sheet and method for producing the same
JPWO2012176742A1 (en) * 2011-06-20 2015-02-23 Jnc株式会社 Transfer film for in-mold molding and method for producing the same
US9375867B2 (en) 2011-06-20 2016-06-28 Jnc Corporation Transfer film for in-mold molding and method for producing same
WO2012176742A1 (en) * 2011-06-20 2012-12-27 Jnc株式会社 Transfer film for in-mold molding and method for producing same
TWI601621B (en) * 2011-06-20 2017-10-11 捷恩智股份有限公司 Transfer film for in mold decoration, method for manufacturing the film and method for manufacturing in mold formed article
JP2014117944A (en) * 2012-12-19 2014-06-30 Jnc Corp Transfer film for in-mold molding, method of producing in-mold molding and molding
KR20200028816A (en) 2018-09-07 2020-03-17 아라까와 가가꾸 고교 가부시끼가이샤 Active energy ray-curable resin composition, cured product and lamination body
KR20220044113A (en) 2020-09-30 2022-04-06 아라까와 가가꾸 고교 가부시끼가이샤 Active energy ray-curable resin composition and laminate

Also Published As

Publication number Publication date
JP4053374B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
US9744715B2 (en) Method for producing patterned materials
US6139953A (en) Adhesive tape, base material for adhesive tape and their manufacturing methods
JPS6242769A (en) Production of foil having lacquer layer
CN111763479B (en) Thermoplastic polyurethane elastomer film, composite film thereof and preparation method
JP4053374B2 (en) Manufacturing method of molded product using composite sheet
JP3153349B2 (en) Decorative sheet and method for producing the decorative sheet
JP2006150949A (en) Composite film for multilayering thermoplastic resin sheet and thermoplastic resin multi-layer sheet, and preparation of molded article
JPS60161121A (en) Decorating method of resin molded piece
JP2006083213A (en) Sheet for forming protective layer and method for forming protective layer
JP2874774B2 (en) Manufacturing method of decorative sheet
CN114716945A (en) 3D protective film, preparation method thereof and UV (ultraviolet) curing composition
JPS6277999A (en) Transfer sheet and manufacture of plastic mirror using transfer sheet
JPH0117849B2 (en)
JPH0692130B2 (en) Fresnel lens plate manufacturing method
JPS60149417A (en) Manufacture of formed part with highly hard surface
JPH01176531A (en) Manufacture of molding having protective layer
CN107057093A (en) A kind of method that ultraviolet lighting eliminates Degradable high polymer film chill mark
JP2002240092A (en) Method for manufacturing insert molded product obtained by laminating light pervious protective films
JPH04151242A (en) Plastic component and optical component
CN114656890A (en) Protective film, film pasting method and equipment
JPS60149416A (en) Manufacture of formed part with highly hard surface
JPH0280246A (en) Manufacture of molded sheet and molded product with the same
JPH05220859A (en) Thermoplastic resin molded article having hardened surface and production thereof
JPS63134080A (en) Production of scratching resistant matte material
JP2001030363A (en) Repairing method of reaction injection-molded object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees