JP3462604B2 - Method and apparatus for purifying inert gas - Google Patents
Method and apparatus for purifying inert gasInfo
- Publication number
- JP3462604B2 JP3462604B2 JP33727494A JP33727494A JP3462604B2 JP 3462604 B2 JP3462604 B2 JP 3462604B2 JP 33727494 A JP33727494 A JP 33727494A JP 33727494 A JP33727494 A JP 33727494A JP 3462604 B2 JP3462604 B2 JP 3462604B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- adsorbent
- inert gas
- catalyst
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Catalysts (AREA)
- Separation Of Gases By Adsorption (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は不活性ガスの精製方法お
よび装置に関し、さらに詳細には、二酸化炭素、一酸化
炭素、酸素、水素、水分などの不純物を含む窒素、アル
ゴン、ヘリウム、キセノンなどの不活性ガスからこれら
の不純物を除去することによって高純度の精製ガスを得
るための不活性ガスの精製方法および装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for purifying an inert gas, and more particularly to nitrogen, argon, helium, xenon, etc. containing impurities such as carbon dioxide, carbon monoxide, oxygen, hydrogen and water. And an apparatus for purifying an inert gas for obtaining a highly purified gas by removing these impurities from the inert gas.
【0002】半導体製造プロセスでは水素、酸素などと
ともに窒素、アルゴンおよびヘリウムなどの不活性ガス
が多量に使用されるが、近年、半導体の高度集積化の進
展とともにこれらのガスも極めて高純度であることが要
求されている。In the semiconductor manufacturing process, a large amount of hydrogen, oxygen, and other inert gases such as nitrogen, argon, and helium are used. In recent years, with the progress of highly integrated semiconductors, these gases also have extremely high purity. Is required.
【0003】[0003]
【従来の技術】不活性ガス中に不純物として含まれる一
酸化炭素、二酸化炭素、酸素、水素および水分などを除
去し、精製ガスを得る方法として、白金、パラジウム
触媒でこれらを炭酸ガスと水に転換した後、生成した二
酸化炭素および水分などを合成ゼオライトなどの吸着剤
により除去する方法、不純物として少なくとも酸素を
含有するガスについてはニッケル、銅などを主成分とす
る触媒と接触させ、酸素の他、少量の一酸化炭素、二酸
化炭素、水素などを固定し、次いで、水分、二酸化炭素
など残る不純物を合成ゼオライトなどの吸着剤で除去す
る方法、あるいは、二酸化炭素が比較的多いようなガ
スではニッケル、銅などの触媒による処理後、酸化亜鉛
などの吸着剤で主に二酸化炭素を除去し、残る不純物を
合成ゼオライトなどの吸着剤で除去する方法(特開平2
−120212号)などがある。2. Description of the Related Art As a method for obtaining purified gas by removing carbon monoxide, carbon dioxide, oxygen, hydrogen and water contained as impurities in an inert gas, platinum and palladium catalysts are used to convert them into carbon dioxide gas and water. After conversion, a method of removing generated carbon dioxide and water with an adsorbent such as synthetic zeolite, and a gas containing at least oxygen as an impurity is brought into contact with a catalyst containing nickel, copper or the like as a main component, , A method of fixing a small amount of carbon monoxide, carbon dioxide, hydrogen, etc., and then removing residual impurities such as water and carbon dioxide with an adsorbent such as synthetic zeolite, or nickel for a gas with a relatively large amount of carbon dioxide. , After treatment with a catalyst such as copper, carbon dioxide is mainly removed with an adsorbent such as zinc oxide, and the remaining impurities are absorbed by synthetic zeolite. How to remove the dosage (JP 2
-120212).
【0004】[0004]
【発明が解決しようとする課題】しかしながら、白
金、パラジウム触媒と合成ゼオライトなどとの組合せの
みでは酸素、一酸化炭素、水素および二酸化炭素などを
ppbオーダーのような低濃度域まで除去することは困
難である。また、ニッケル、銅などと合成ゼオライト
との組合せだけでは酸素および水分などは効率よく除去
できてもその他の不純物、特に二酸化炭素などが多い場
合には、触媒および吸着剤の量を多くしなければなら
ず、処理費用が高価になるばかりでなく装置全体が大型
になるという欠点がある。さらに、二酸化炭素の多い
ガスをニッケル、銅などの触媒による処理後、合成ゼオ
ライトに加えて酸化亜鉛などの二酸化炭素の除去能の高
い吸着剤を使用して処理した場合には、二酸化炭素、水
分は除去される反面、酸素、一酸化炭素および水素など
が充分低能度域まで除去されなくなるという問題点があ
った。従って、ガス中に含まれる不純物のいずれをも極
低濃度まで効率よく除去し、超高純度の精製不活性ガス
を得る方法の確立が強く望まれている。However, it is difficult to remove oxygen, carbon monoxide, hydrogen, carbon dioxide and the like to a low concentration range such as ppb order only by using a combination of platinum or palladium catalyst and synthetic zeolite or the like. Is. Further, even if only a combination of nickel, copper, etc. and synthetic zeolite can be efficiently removed oxygen and water, etc., if there are many other impurities, especially carbon dioxide, etc., the amount of catalyst and adsorbent must be increased. However, there is a drawback that not only the processing cost becomes expensive, but also the entire apparatus becomes large. Furthermore, when a gas rich in carbon dioxide is treated with a catalyst such as nickel or copper, and then treated with an adsorbent having a high ability to remove carbon dioxide such as zinc oxide in addition to synthetic zeolite, carbon dioxide and moisture However, there is a problem that oxygen, carbon monoxide, hydrogen and the like cannot be removed to a sufficiently low efficiency region. Therefore, it has been strongly desired to establish a method for efficiently removing any of the impurities contained in the gas to an extremely low concentration to obtain a purified inert gas of ultra-high purity.
【0005】[0005]
【課題を解決するための手段】本発明者らはこれらの課
題に対処し、高純度の精製ガスを長時間にわたって効率
よく得るための方法について研究を重ねた結果、不純物
を含む不活性ガスを最初に二酸化炭素の除去能力の大き
い酸化亜鉛を主成分とする吸着剤と接触させた後、ニッ
ケル、銅など酸素除去能力の大きい触媒および合成ゼオ
ライト等を主成分とする吸着剤の順に接触させて処理す
ることにより極めて純度の高い精製不活性ガスが得られ
ることを見い出し、本発明を完成した。Means for Solving the Problems The inventors of the present invention have dealt with these problems and have conducted research on a method for efficiently obtaining a high-purity purified gas for a long time. As a result, an inert gas containing impurities is removed. First, contact with an adsorbent whose main component is zinc oxide, which has a high carbon dioxide removal capacity, and then contact a catalyst with a large oxygen removal capacity, such as nickel and copper, and an adsorbent whose main component is synthetic zeolite, in that order. The present invention has been completed by finding that a purified inert gas having an extremely high purity can be obtained by the treatment.
【0006】すなわち本発明は、不純物として二酸化炭
素、および、酸素、一酸化炭素、水素、水から選ばれる
少なくとも1種を含む不活性ガスの精製方法において、
該不活性ガスを酸化亜鉛を主成分とする吸着剤、ニッケ
ルまたは銅を有効成分とする触媒、合成ゼオライト、シ
リカゲルまたは塩化カルシウムを主成分とする吸着剤と
順次接触せしめることを特徴とする不活性ガスの精製方
法である。また本発明は、不純物として 二酸化炭素、
および、酸素、一酸化炭素、水素、水から選ばれる少な
くとも1種を含む不活性ガスの精製装置であって、ガス
の入口側から出口側に向かって順に酸化亜鉛を主成分と
する吸着剤、ニッケルまたは銅を有効成分とする触媒、
合成ゼオライト、シリカゲルまたは塩化カルシウムを主
成分とする吸着剤が充填され、かつヒーターが配設され
た少なくとも2系列の精製筒を備えてなり、精製筒のガ
ス出口側の配管に触媒再生用の水素ガスの供給管が接続
されたことを特徴とする不活性ガスの精製装置でもあ
る。本発明は窒素、アルゴン、ヘリウム、ネオン、キセ
ノン、クリプトンおよびこれらの混合ガスなど不活性ガ
スの高純度精製に適用される。That is, the present invention provides a method for purifying an inert gas containing carbon dioxide as an impurity and at least one selected from oxygen, carbon monoxide, hydrogen and water,
Nickel, an adsorbent containing zinc oxide as the main component of the inert gas
Catalysts containing copper or copper as an active ingredient, synthetic zeolites,
This is a method for purifying an inert gas, which is characterized by sequentially contacting with an adsorbent mainly composed of Rica gel or calcium chloride . The present invention also includes carbon dioxide as an impurity,
And a device for purifying an inert gas containing at least one selected from oxygen, carbon monoxide, hydrogen, and water, wherein the adsorbent contains zinc oxide as a main component in order from the gas inlet side to the gas outlet side. A catalyst containing nickel or copper as an active ingredient,
At least two series of purification tubes filled with an adsorbent mainly composed of synthetic zeolite , silica gel or calcium chloride and equipped with a heater are provided, and hydrogen for catalyst regeneration is provided in a pipe on the gas outlet side of the purification tube. It is also an inert gas purification device characterized by connecting a gas supply pipe.
It The present invention is applicable to high-purity purification of inert gases such as nitrogen, argon, helium, neon, xenon, krypton, and mixed gas thereof.
【0007】本発明において、二酸化炭素除去能の高い
吸着剤A、酸素、一酸化炭素、水素の捕捉能の高い触媒
および水の除去能の高い吸着剤Bが順次組合わせられて
用いられる。吸着剤Aは、酸化亜鉛を主成分とするもの
であり、特に、本願発明者らによる酸化亜鉛を成型して
なる吸着剤および酸化亜鉛に酸化アルミニウムおよびア
ルカリ化合物を混合し、成型してなる吸着剤(特開平0
1−164418号、特開平02−43917号公報)
などが好適である。In the present invention, an adsorbent A having a high carbon dioxide removing ability, a catalyst having a high ability to capture oxygen, carbon monoxide and hydrogen, and an adsorbent B having a high ability to remove water are used in combination. Adsorbent A is mainly composed of zinc oxide
In particular, an adsorbent formed by molding the zinc oxide by the present inventors and an adsorbent formed by mixing zinc oxide with aluminum oxide and an alkali compound (Japanese Patent Application Laid-Open No. HEI 0-58).
1-164418, JP-A-02-43917)
Etc. are suitable.
【0008】また、吸着剤Aの下流側に充填される触媒
は、酸素の捕捉能の高いものであり通常は、ニッケル、
銅などを有効成分とするものである。中でもニッケルは
常温においても酸素の捕捉能力が大きいだけでなく、一
酸化炭素、水素および二酸化炭素などの不純物も少量で
あれば低能度域まで捕捉しうる点で優れている。ニッケ
ル触媒としてはニッケル単独でもよいが、ガスとの接触
効率を高めるため、通常は珪藻土、アルミナ、シリカア
ルミナなどの触媒担体に担持させた形で使用される。触
媒中のニッケルの含有量は金属ニッケル換算で通常は5
〜80wt%、好ましくは20〜80wt%、また、比
表面積は、通常は10〜300m2 /g、好ましくは3
0〜250m2 /g程度のものである。これらの触媒は
市販もされているので、それらの中から選択して使用す
ることができる。The catalyst filled downstream of the adsorbent A has a high oxygen scavenging ability and is usually nickel.
It contains copper and other active ingredients. Above all, nickel is excellent not only in its ability to capture oxygen even at room temperature, but also in that it can capture impurities such as carbon monoxide, hydrogen and carbon dioxide even in a low efficiency range to a low efficiency range. The nickel catalyst may be nickel alone, but is usually used in the form of being supported on a catalyst carrier such as diatomaceous earth, alumina or silica-alumina in order to enhance the contact efficiency with gas. The content of nickel in the catalyst is usually 5 in terms of metallic nickel.
˜80 wt%, preferably 20 to 80 wt%, and the specific surface area is usually 10 to 300 m 2 / g, preferably 3
It is about 0 to 250 m 2 / g. Since these catalysts are commercially available, they can be selected from them and used.
【0009】次に、吸着剤Bとしては、水の除去能の高
いものであり、合成ゼオライト、シリカゲル、塩化カル
シウムなどがあるが、中でも水分の除去容量が大きく、
しかもガス中に残存する二酸化炭素、一酸化炭素などの
不純物をも合わせて低濃度域まで除去できる点で合成ゼ
オライトが好ましい。合成ゼオライトとしては例えばモ
レキュラーシーブ3A、5A(米、ユニオンカーバイド
社製)などが好適である。Next, as the adsorbent B, which has a high water removing ability, there are synthetic zeolite, silica gel, calcium chloride, etc. Among them, the water removing capacity is large,
In addition, synthetic zeolite is preferable in that impurities such as carbon dioxide and carbon monoxide remaining in the gas can be removed to a low concentration range. As the synthetic zeolite, for example, molecular sieves 3A and 5A (US, manufactured by Union Carbide Co.) are suitable.
【0010】次に、本発明を図面によって具体的に例示
して説明する。図1は本発明の精製装置のフローシート
である。図1において、原料ガスの供給管1から分岐し
た流路2aおよび2bはそれぞれ弁を介して精製筒Aお
よびBの入口3aおよび3bに接続されている。精製筒
AおよびBのそれぞれには入口3側から順に二酸化炭
素除去用の吸着剤A4、酸素、一酸化炭素、水素の捕
捉用の触媒5、および水の除去用の吸着剤B6が充填
され、かつ、ヒーター7が配設されている。精製筒Aお
よびBのガスの入口3aおよび3bに接続された流路2
aおよび2bから分岐した流路8aおよび8bはそれぞ
れ弁を介して再生ガスの放出管9に接続されている。 他
方、 精製筒AおよびBのガスの出口10aおよび10b
は流路11aおよび11bによってそれぞれ弁を介して
精製ガスの抜出し管12に接続され、 また、 流路11a
および11bから分岐した流路13aおよび13bはそ
れぞれ弁を介してそれぞれ再生用ガスの供給管14に接
続されている。 さらに、 精製ガスの抜出し管12から分
岐した自己ガスの供給管15は弁を介して再生用ガスの
供給管14に接続されている。Next, the present invention will be described in detail with reference to the drawings. FIG. 1 is a flow sheet of the refining device of the present invention. In FIG. 1, the flow paths 2a and 2b branched from the raw material gas supply pipe 1 are connected to the inlets 3a and 3b of the refining cylinders A and B through valves, respectively. Each of the purifying cylinders A and B is filled with an adsorbent A4 for removing carbon dioxide, a catalyst 5 for trapping oxygen, carbon monoxide and hydrogen, and an adsorbent B6 for removing water, in order from the inlet 3 side, Moreover, the heater 7 is provided. Flow path 2 connected to gas inlets 3a and 3b of purifying cylinders A and B
The flow paths 8a and 8b branched from a and 2b are connected to a regeneration gas discharge pipe 9 via valves, respectively. On the other hand, the gas outlets 10a and 10b of the purification tubes A and B
Is connected to the extraction pipe 12 for the purified gas via valves through flow channels 11a and 11b, respectively.
The flow paths 13a and 13b branched from 11 and 11b are connected to the regeneration gas supply pipe 14 via valves. Further, the self-gas supply pipe 15 branched from the purified gas extraction pipe 12 is connected to the regeneration gas supply pipe 14 via a valve.
【0011】ガスの精製および触媒、吸着剤の再生は精
製筒AおよびBを交互に切り替えておこなわれる。原料
不活性ガスは供給管1から流路2aを経てガスの入口3
aから精製筒Aに入る。精製筒Aに入ったガスは、先ず
吸着剤A4と接触し、不純物のうち、主に二酸化炭素が
除去される。次に触媒5と接触し、酸素の他、一酸化炭
素、水素などの不純物が除去される。引続き、吸着剤B
6と接触することにより水および残存するその他の不純
物が完全に除去され、高純度に精製されたガスは出口1
0aから流路11aを経て抜出し管12から抜き出され
る。Purification of gas and regeneration of catalyst and adsorbent are carried out by switching purifying cylinders A and B alternately. The raw material inert gas is fed from the supply pipe 1 through the flow path 2a to the gas inlet 3
Enter the purifying cylinder A from a. The gas that has entered the purification column A first comes into contact with the adsorbent A4, and among the impurities, mainly carbon dioxide is removed. Next, in contact with the catalyst 5, impurities such as carbon monoxide and hydrogen are removed in addition to oxygen. Adsorbent B continues
By contacting with No. 6, water and other impurities remaining are completely removed, and the highly purified gas is discharged through the outlet 1
0a through the flow path 11a and is withdrawn from the withdrawal pipe 12.
【0012】精製筒Aでガスの精製がおこなわれている
間に精製筒Bでは吸着剤および触媒の再生がおこなわれ
る。ヒーター7によって精製筒Bを例えば、200〜4
00℃程度に加熱しながら再生ガスの供給管14から水
素ガスを単独に、または精製自己ガスを供給管15から
供給して混合しながら流路13bを経て出口10bから
精製筒Bに供給することにより吸着剤B6に吸着されて
いた水およびその他の不純物が脱着し、触媒5に捕捉さ
れていた酸素は触媒5の作用により水素と反応して水
に、また、一酸化炭素、二酸化炭素などはメタンなどに
転換されて脱着し、続いて吸着剤A4に吸着されていた
二酸化炭素などが脱着されて再生用ガスとともに精製筒
Bの入口3b、流路8bを経て放出管9から排出され
る。これによって、吸着剤A、Bおよび触媒が再生され
る。水素ガスの供給を停止し、精製自己ガスのみを流す
ことにより、系内は精製ガスに置換されて次の精製工程
に備えられる。While the gas is being purified in the purification column A, the adsorbent and the catalyst are regenerated in the purification column B. The purification cylinder B is heated by the heater 7 to, for example, 200 to 4
Supplying hydrogen gas alone from the regeneration gas supply pipe 14 while heating to about 00 ° C., or supplying purified self-gas from the supply pipe 15 and mixing it to the purification cylinder B from the outlet 10b via the flow path 13b. As a result, water and other impurities adsorbed on the adsorbent B6 are desorbed, and the oxygen captured by the catalyst 5 reacts with hydrogen by the action of the catalyst 5 to become water, and carbon monoxide, carbon dioxide, etc. It is converted to methane or the like and desorbed, and subsequently carbon dioxide or the like adsorbed on the adsorbent A4 is desorbed and discharged together with the regeneration gas from the discharge pipe 9 through the inlet 3b of the purification cylinder B and the flow path 8b. As a result, the adsorbents A and B and the catalyst are regenerated. By stopping the supply of hydrogen gas and flowing only the purified self-gas, the inside of the system is replaced with the purified gas to be prepared for the next purification step.
【0013】本発明において、精製筒は図1で示したよ
うに吸着剤A、触媒および吸着剤Bを1つの筒に同時に
充填した形態であってもよく、また吸着剤、触媒をそれ
ぞれ別の筒に充填したものを直列に連結した形態であっ
てもよい。また、精製筒は通常は2系列とされるが、必
要に応じて3系列以上とすることもできる。これらは装
置の大きさ、設置場所のレイアウトなどに応じて設計さ
れる。In the present invention, the purification column may have a form in which the adsorbent A, the catalyst and the adsorbent B are simultaneously packed in one column as shown in FIG. 1, or the adsorbent and the catalyst may be separated from each other. The form filled with the cylinder may be connected in series. Further, the purification column is usually of two series, but it may be of three or more series if necessary. These are designed according to the size of the device and the layout of the installation site.
【0014】精製時における不活性ガスと吸着剤、触媒
との接触温度は一般的には80℃以下とされるが、通常
は常温で操作され、加熱や冷却は特に必要としない。ガ
スの流速は含有される不純物の種類、濃度等によって異
なり一概に特定はできないが、通常は空筒線速度で15
0cm/sec以下、好ましくは1〜70cm/se
c、さらに好ましくは3〜30cm/secとされる。
また、圧力にも特に制限はないが、実用上は10Kg/
cm2 G以下でおこなわれることが多い。The contact temperature of the inert gas with the adsorbent and the catalyst at the time of purification is generally 80 ° C. or lower, but it is usually operated at room temperature, and heating or cooling is not particularly required. The gas flow rate differs depending on the type and concentration of impurities contained, and cannot be specified unconditionally, but normally it is 15
0 cm / sec or less, preferably 1 to 70 cm / se
c, and more preferably 3 to 30 cm / sec.
The pressure is not particularly limited, but it is practically 10 kg /
It is often performed at cm 2 G or less.
【0015】[0015]
実施例1
図1で示したと同様の構成の精製装置で接ガス部内面が
電解研磨によって高度に仕上げられた装置で、内径2
8.4mm、長さ700mmのステンレス鋼製の精製筒
を備えた装置を用いた。精製筒AおよびBのそれぞれに
入口側から順に酸化亜鉛、酸化アルミニウムおよび無
水炭酸カリウムを重量比で100:10:5の割合で混
合し水を加えて混練し押出成型したものを乾燥後350
℃で1時間焼成して得た吸着剤Aを20cm、ニッケ
ル系の触媒としてN−112(日揮化学(株)製)を2
0cm、吸着剤Bとしてモレキュラーシーブ5A
(米、ユニオンカーバイド社製)を10cm充填して不
活性ガスの精製装置とした。Example 1 A refining apparatus having the same structure as that shown in FIG.
An apparatus equipped with a 8.4 mm and 700 mm long stainless steel refining cylinder was used. Zinc oxide, aluminum oxide and anhydrous potassium carbonate were mixed in order from the inlet side into each of the purifying cylinders A and B in a weight ratio of 100: 10: 5, water was added, and the mixture was kneaded and extruded, and then dried.
20 cm of the adsorbent A obtained by baking at 1 ° C. for 1 hour and 2 of N-112 (manufactured by JGC Chemical Co., Ltd.) as a nickel-based catalyst
0 cm, molecular sieve 5A as adsorbent B
(US, manufactured by Union Carbide Co., Ltd.) was filled to 10 cm to prepare an inert gas purifying device.
【0016】この装置に不純物として酸素を3.1pp
m、一酸化炭素を0.5ppm、二酸化炭素を0.6p
pm、水素を0.5ppmを含み、露点が−78℃(水
分換算0.75ppm)の窒素ガスを5Kg/cm2 G
の圧力下で3Nm3 /Hrの速度で流しながら精製をお
こない、出口の精製ガス中の不純物を分析した。水素に
ついては、還元性ガス分析計RGA−3(米、トレース
アナリティカル社製)で、その他の不純物については大
気圧質量分析計(日立東京エレクトロニクス社製)を用
いて測定した。この状態で精製を続け、最初に破過する
不純物および破過までの時間の測定をおこなった。それ
らの結果を表1に示す。Oxygen as an impurity was added to this apparatus at 3.1 pp.
m, carbon monoxide 0.5ppm, carbon dioxide 0.6p
5 kg / cm 2 G of nitrogen gas containing pm and 0.5 ppm of hydrogen and having a dew point of −78 ° C. (water conversion 0.75 ppm)
Purification was performed under a pressure of 3 Nm 3 / Hr at a rate of 3 Nm 3 / Hr, and impurities in the purified gas at the outlet were analyzed. Hydrogen was measured using a reducing gas analyzer RGA-3 (manufactured by Trace Analytical Co., USA), and other impurities were measured using an atmospheric pressure mass spectrometer (manufactured by Hitachi Tokyo Electronics Co., Ltd.). Purification was continued in this state, and the impurities that would break through first and the time until breakthrough were measured. The results are shown in Table 1.
【0017】比較例1
精製筒AおよびBのそれぞれに入口側から順にニッケ
ル系の触媒を20cm、実施例1で用いたと同じ酸化
亜鉛系の吸着剤Aを20cm、モレキュラーシーブ5
A(吸着剤B)を10cm充填した他は実施例1におけ
ると同様にして精製をおこない、出口ガスの分析および
破過までの時間を測定した。その結果を表1に示す。Comparative Example 1 20 cm of a nickel-based catalyst, 20 cm of the same zinc oxide-based adsorbent A used in Example 1 and molecular sieve 5 in order from the inlet side of each of the purifying cylinders A and B.
Purification was performed in the same manner as in Example 1 except that A (adsorbent B) was charged to 10 cm, and the time required for analysis of the outlet gas and breakthrough was measured. The results are shown in Table 1.
【0018】比較例2
精製筒AおよびBのそれぞれに入口側から順にニッケ
ル系の触媒を40cmおよびモレキュラーシーブ5A
を10cm充填した他は実施例1におけると同様にして
精製をおこない出口ガスの分析および破過までの時間を
測定した。その結果を表1に示す。Comparative Example 2 Purification cylinders A and B each had a nickel-based catalyst of 40 cm and a molecular sieve 5A in order from the inlet side.
Purification was carried out in the same manner as in Example 1 except that the gas was charged for 10 cm and the outlet gas was analyzed and the time until breakthrough was measured. The results are shown in Table 1.
【0019】[0019]
【表1】 表1 精製ガスの純度および破過時間 不 純 物(ppb) CO CO2 H2 O2 H2 O 実施例1 <0.1 <0.03 <0.5 <0.03 <0.1 比較例1 <0.1 0.3 <0.5 0.3 <0.1 比較例2 <0.1 0.6 <0.5 0.2 <0.1 破過時間 最初に破過 (hr) した不純物 実施例1 54 CO 比較例1 43 CO 比較例2 26 CO2 Table 1 Purity of Purified Gas and Breakthrough Time Impurities (ppb) CO CO 2 H 2 O 2 H 2 O Example 1 <0.1 <0.03 <0.5 <0.03 < 0.1 Comparative Example 1 <0.1 0.3 <0.5 0.3 <0.1 Comparative Example 2 <0.1 0.6 <0.5 0.2 <0.1 Breakthrough Time First Impurities that have passed through (hr) Example 1 54 CO Comparative Example 1 43 CO Comparative Example 2 26 CO 2
【0020】[0020]
【発明の効果】本発明は不活性ガス中に含有される二酸
化炭素、酸素、水素、一酸化炭素および水分など多種類
の不純物を特定性能の吸着剤および触媒を所定の順序で
組み合わせて除去するものであり、これによって各不純
物が極低濃度まで除かれ、長時間にわたって極めて高純
度の精製ガスを得ることができる。しかも、除去効率が
高いため、装置の小型化が可能となり、半導体製造設備
内など高価で限られたスペースにも設置することができ
るようになった。INDUSTRIAL APPLICABILITY The present invention removes various kinds of impurities such as carbon dioxide, oxygen, hydrogen, carbon monoxide and water contained in an inert gas by combining an adsorbent having a specific performance and a catalyst in a predetermined order. As a result, each impurity is removed to an extremely low concentration, and an extremely high-purity purified gas can be obtained for a long time. Moreover, the removal efficiency
Since it is expensive , the device can be miniaturized and can be installed in an expensive and limited space such as in a semiconductor manufacturing facility.
【0021】[0021]
【図面の簡単な説明】[Brief description of drawings]
【図1】 不活性ガス精製装置のフローシート。FIG. 1 is a flow sheet of an inert gas purification device.
1 供給管 3 入口 4 吸着剤A 5 触媒 6 吸着剤B 7 ヒーター 9 放出管 10 出口 12 抜出し管 AおよびB 精製筒 1 supply pipe 3 entrance 4 Adsorbent A 5 catalyst 6 Adsorbent B 7 heater 9 discharge pipe 10 exit 12 Withdrawal tube A and B Purification tube
フロントページの続き (51)Int.Cl.7 識別記号 FI C01B 23/00 C01B 23/00 Q B01D 53/36 Z B01J 23/74 321M (58)調査した分野(Int.Cl.7,DB名) B01D 53/04 C01B 23/00 Front page continuation (51) Int.Cl. 7 identification code FI C01B 23/00 C01B 23/00 Q B01D 53/36 Z B01J 23/74 321M (58) Fields investigated (Int.Cl. 7 , DB name) B01D 53/04 C01B 23/00
Claims (3)
素、一酸化炭素、水素、水から選ばれる少なくとも1種
を含む不活性ガスの精製方法において、該不活性ガスを
酸化亜鉛を主成分とする吸着剤、ニッケルまたは銅を有
効成分とする触媒、合成ゼオライト、シリカゲルまたは
塩化カルシウムを主成分とする吸着剤と順次接触せしめ
ることを特徴とする不活性ガスの精製方法。1. A method for purifying an inert gas containing carbon dioxide as an impurity and at least one selected from oxygen, carbon monoxide, hydrogen and water.
With an adsorbent mainly composed of zinc oxide, nickel or copper
Catalyst as active ingredient, synthetic zeolite, silica gel or
A method for purifying an inert gas, which comprises sequentially contacting with an adsorbent containing calcium chloride as a main component .
キセノン、クリプトン、ネオン、またはこれらの混合ガ
スである請求項1に記載の方法。2. The inert gas is nitrogen, argon, helium,
The method according to claim 1, which is xenon, krypton, neon, or a mixed gas thereof.
素、一酸化炭素、水素、水から選ばれる少なくとも1種
を含む不活性ガスの精製装置であって、ガスの入口側か
ら出口側に向かって順に酸化亜鉛を主成分とする吸着
剤、ニッケルまたは銅を有効成分とする触媒、合成ゼオ
ライト、シリカゲルまたは塩化カルシウムを主成分とす
る吸着剤が充填され、かつヒーターが配設された少なく
とも2系列の精製筒を備えてなり、精製筒のガス出口側
の配管に触媒再生用の水素ガスの供給管が接続されたこ
とを特徴とする不活性ガスの精製装置。3. A refining apparatus for an inert gas containing carbon dioxide as an impurity and at least one selected from oxygen, carbon monoxide, hydrogen and water, which is sequentially provided from the gas inlet side to the gas outlet side. Purification of at least two series in which an adsorbent containing zinc oxide as a main component, a catalyst containing nickel or copper as an active ingredient, a synthetic zeolite , an adsorbent containing silica gel or calcium chloride as a main component is filled and a heater is provided. An apparatus for purifying an inert gas, comprising a cylinder, wherein a hydrogen gas supply pipe for catalyst regeneration is connected to a gas outlet side pipe of the purification cylinder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33727494A JP3462604B2 (en) | 1994-12-26 | 1994-12-26 | Method and apparatus for purifying inert gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33727494A JP3462604B2 (en) | 1994-12-26 | 1994-12-26 | Method and apparatus for purifying inert gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08173748A JPH08173748A (en) | 1996-07-09 |
JP3462604B2 true JP3462604B2 (en) | 2003-11-05 |
Family
ID=18307073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33727494A Expired - Fee Related JP3462604B2 (en) | 1994-12-26 | 1994-12-26 | Method and apparatus for purifying inert gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3462604B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19708780A1 (en) * | 1997-03-04 | 1998-09-10 | Linde Ag | Process for krypton and xenon extraction |
JP4520372B2 (en) * | 2005-06-21 | 2010-08-04 | シーケーディ株式会社 | Refining cylinder and air or inert gas circulation purification device |
JP4685523B2 (en) * | 2005-06-28 | 2011-05-18 | シーケーディ株式会社 | Circulating purification equipment |
JP5002230B2 (en) * | 2006-10-05 | 2012-08-15 | 日本パイオニクス株式会社 | Inert gas purification method |
JP2009096676A (en) * | 2007-10-17 | 2009-05-07 | Olympus Corp | Apparatus and method for manufacturing optical element |
JP5232686B2 (en) * | 2009-02-24 | 2013-07-10 | 大陽日酸株式会社 | Gas purification method and purification apparatus |
JP5566815B2 (en) * | 2010-08-31 | 2014-08-06 | 大陽日酸株式会社 | Gas purification method and gas purification apparatus |
EP2799134B1 (en) | 2011-11-29 | 2019-09-11 | The Kansai Electric Power Co., Inc. | Device, method and use involving a co2 desorption catalyst |
JP6089579B2 (en) * | 2012-10-23 | 2017-03-08 | 新日鐵住金株式会社 | Carbon dioxide adsorbent, carbon dioxide recovery device using the same, and carbon dioxide recovery method |
JP6147339B2 (en) * | 2013-05-28 | 2017-06-14 | 関西電力株式会社 | CO2 recovery device and CO2 recovery method |
CN110090616A (en) * | 2018-01-30 | 2019-08-06 | 北京航天试验技术研究所 | A kind of preparation of cryogenic liquid absorption water removal material |
-
1994
- 1994-12-26 JP JP33727494A patent/JP3462604B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08173748A (en) | 1996-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3351815B2 (en) | Purification method of inert gas | |
US6048509A (en) | Gas purifying process and gas purifying apparatus | |
US5478534A (en) | Apparatus for preparing ultra-pure nitrogen | |
CA2291388C (en) | Purification of gases | |
EP0832678A2 (en) | Inert gas purification | |
US4507271A (en) | Removal of nitrous oxide from gases containing hydrogen, nitric oxide and nitrous oxide | |
JP3462604B2 (en) | Method and apparatus for purifying inert gas | |
US6093379A (en) | Purification of gases | |
JP2003311148A (en) | Adsorbent, and method and apparatus for purifying gas | |
JP3572548B2 (en) | Gas purification method and apparatus | |
JP2640513B2 (en) | Inert gas purification equipment | |
JP2003103132A (en) | Gas refining by pressure swing adsorption | |
JPS62119104A (en) | Method for recovering high-purity argon from exhaust gas of single crystal producing furnace | |
JPS63107720A (en) | Method for separating and removing water content and carbon dioxide gas in air | |
JPH10130010A (en) | Purifying method of gaseous carbon dioxide and device therefor | |
JPH10137530A (en) | Removal of o2/co from inert gas by adsorption to porous metal oxide | |
JPH10130009A (en) | Purifying method of gaseous carbon dioxide and device therefor | |
EP1060774A1 (en) | Purification of gases | |
EP1005895A1 (en) | Purification of gases | |
JP3977501B2 (en) | Method and apparatus for purifying oxygen gas | |
JP2004161503A (en) | Gas purification method | |
JP2627792B2 (en) | Hydrogen gas purification equipment | |
JP2872631B2 (en) | Nitrogen / oxygen production system | |
JPH07179377A (en) | Preparation of ethanol and isopropanol | |
JPH0114164B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080815 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090815 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100815 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120815 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |