JP2640513B2 - Inert gas purification equipment - Google Patents
Inert gas purification equipmentInfo
- Publication number
- JP2640513B2 JP2640513B2 JP63273266A JP27326688A JP2640513B2 JP 2640513 B2 JP2640513 B2 JP 2640513B2 JP 63273266 A JP63273266 A JP 63273266A JP 27326688 A JP27326688 A JP 27326688A JP 2640513 B2 JP2640513 B2 JP 2640513B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- oxygen
- carbon dioxide
- inert gas
- adsorbent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B23/00—Noble gases; Compounds thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Separation Of Gases By Adsorption (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は不活性ガスの精製方法に関し、さらに詳細に
は窒素、アルゴンおよびヘリウムなどの不活性ガス中に
含有される炭化水素、一酸化炭素、炭酸ガス、酸素、水
素および水などの不純物を除去することによって高純度
の精製ガスを得るための不活性ガスの精製方法に関す
る。Description: FIELD OF THE INVENTION The present invention relates to a method for purifying an inert gas, and more particularly to a hydrocarbon and carbon monoxide contained in an inert gas such as nitrogen, argon and helium. The present invention relates to a method for purifying an inert gas for obtaining a high-purity purified gas by removing impurities such as carbon dioxide, oxygen gas, hydrogen and water.
半導体製造プロセスでは水素、酸素などとともに窒
素、アルゴンおよびヘリウムなどの不活性ガスが多量に
使用されているが、近年、半導体の高度集積化の急速な
進展とともにこれらのガスも極めて高純度であることが
要求されつつある。In the semiconductor manufacturing process, a large amount of inert gas such as nitrogen, argon and helium is used in addition to hydrogen and oxygen.In recent years, with the rapid progress of high integration of semiconductors, these gases also have extremely high purity. Is being demanded.
不活性ガス中に不純物として含有される炭化水素、一
酸化炭素、炭酸ガス、酸素、水素および水分などを除去
し、精製ガスを得る方法として、白金、パラジウム触媒
でこれらを炭酸ガスと水に転換した後、生成した炭酸ガ
スおよび水分を合成ゼオライトなどの吸着剤により除去
する方法、あるいは、不純物として主に酸素を含有する
ガスについてはニッケル、銅などと接触させ酸素および
微量の炭素化合物をを固定すると同時に水素を水に転換
し、炭酸ガスなどと共に合成ゼオライトなどで吸着除去
する方法などが知られている。As a method to remove hydrocarbons, carbon monoxide, carbon dioxide, oxygen, hydrogen, and moisture contained as impurities in the inert gas and obtain purified gas, these are converted to carbon dioxide and water with platinum and palladium catalysts. After that, the generated carbon dioxide gas and moisture are removed by an adsorbent such as synthetic zeolite, or gas containing mainly oxygen as impurities is contacted with nickel, copper, etc. to fix oxygen and trace carbon compounds At the same time, a method is known in which hydrogen is converted to water, and is removed by adsorption with a synthetic zeolite together with carbon dioxide.
半導体の高度集積化が進み、サブミクロン級の超LSI
の製造などに対処し、これらのガスもさらに高純度であ
ることが強く望まれている。As semiconductors become more highly integrated, sub LSI micro LSI
Therefore, it is strongly desired that these gases have higher purity.
しかしながら、白金、パラジウム触媒と合成ゼオライ
トの組合せのみでは残存酸素のみならず炭酸ガスの除去
が十分でなく、また、ニッケル、銅などと合成ゼオライ
トとの組合せでは酸素は除去できてもその他の不純物に
対する除去能力は小さく、合成ゼオライトについては上
記と同様炭酸ガスが十分に除去できないという欠点があ
り超高純度のガスを得ることはできなかった。However, the combination of the platinum and palladium catalysts and the synthetic zeolite alone does not sufficiently remove not only the residual oxygen but also the carbon dioxide gas, and the combination of nickel and copper with the synthetic zeolite can remove oxygen even if oxygen can be removed. The removal ability was small, and the synthetic zeolite had the disadvantage that the carbon dioxide gas could not be sufficiently removed in the same manner as described above.
本発明者らは、これらの課題を解決し極めて高純度の
精製ガスを得るべく研究を重ねた結果、炭酸ガスおよび
水への転換工程と酸素などの捕捉工程とを組み合わせ、
さらに、炭酸ガスの吸着力の大きい吸着剤層を介在させ
ることにより超高純度のガスが得られることを見い出し
本発明を完成した。The present inventors have solved the above problems and have repeatedly studied to obtain a purified gas of extremely high purity.As a result, the process of converting to carbon dioxide and water is combined with the process of capturing oxygen and the like,
Further, the present inventors have found that an ultrahigh-purity gas can be obtained by interposing an adsorbent layer having a large carbon dioxide adsorbing power, and completed the present invention.
すなわち本発明は、不活性ガス中に不純物として含有
される炭化水素、一酸化炭素、酸素、および水素を炭酸
ガスおよび水に転換するための反応筒と、該反応筒に接
続され、酸素およびその他の未反応の微量不純物を捕捉
するための触媒層と主として炭酸ガスを除去するための
吸着剤層と主として水分を除去するための吸着剤層とを
一筒または複数筒に分離して直列に組合わせた精製筒と
を備えてなることを特徴とする不活性ガスの精製装置で
ある。That is, the present invention provides a reaction tube for converting hydrocarbons, carbon monoxide, oxygen, and hydrogen contained as impurities in an inert gas into carbon dioxide gas and water, and is connected to the reaction tube, A catalyst layer for trapping unreacted trace impurities, an adsorbent layer for mainly removing carbon dioxide, and an adsorbent layer for mainly removing moisture are separated into one or more tubes and assembled in series. An inert gas refining device comprising a combined refining cylinder.
本発明は窒素、アルゴンおよびヘリウムなどの不活性
ガスの高純度精製に適用される。The invention applies to the high purity purification of inert gases such as nitrogen, argon and helium.
本発明を図面によって具体的に例示して説明する。 The present invention will be described with reference to the drawings.
第1図は本発明の装置の例を示すフローシートであ
る。FIG. 1 is a flow sheet showing an example of the apparatus of the present invention.
第1図において、Pt,Pdなどの触媒が充填され、か
つ、ヒーターHが配設された反応筒1の入口2および出
口3は原料ガスの供給路4および反応ガスの流路5とそ
れぞれ接続され流路5には冷却器Cが設けられている。In FIG. 1, an inlet 2 and an outlet 3 of a reaction tube 1 filled with a catalyst such as Pt and Pd and provided with a heater H are connected to a supply path 4 of a raw material gas and a flow path 5 of a reaction gas, respectively. A cooler C is provided in the flow path 5.
一方、反応ガスの入口6および精製ガスの出口7を有
し、上から順にNiなどの触媒8、酸化亜鉛系の吸着剤9
および合成ゼオライト系の吸着剤10が充填され、かつ、
ヒーターHが配設された2系列の精製筒AおよびBが設
けられている。On the other hand, it has a reaction gas inlet 6 and a purified gas outlet 7, and from the top, a catalyst 8 such as Ni, and a zinc oxide-based adsorbent 9
And filled with a synthetic zeolite-based adsorbent 10, and
Two series of purification cylinders A and B provided with a heater H are provided.
精製筒AおよびBのガスの入口6aおよび6bは冷却器C
の出口側で分散した流路5aおよび5bとそれぞれ弁を介し
て接続されている。また、流路5aおよび5bから分岐した
流路11aおよび11bはそれぞれ弁を介して再生ガスの放出
路12に接続されている。他方、精製筒AおよびBのガス
の出口7aおよび7bは流路13aおよび13bによってそれぞれ
弁を介して精製ガスの抜出し路14に接続され、また、流
路13aおよび13bから分岐した流路15aおよび15bはそれぞ
れ弁を介してそれぞれ再生用ガスの供給路16に接続され
ている。さらに、精製ガスの抜出し路14から分岐した自
己ガス部17は弁を介して再生用ガスの供給路16に接続さ
れている。The gas inlets 6a and 6b of the purification tubes A and B are connected to the cooler C
Are connected to the dispersed flow paths 5a and 5b via valves. The flow paths 11a and 11b branched from the flow paths 5a and 5b are connected to the regeneration gas discharge path 12 via valves. On the other hand, the gas outlets 7a and 7b of the purifying cylinders A and B are connected to the purifying gas extraction path 14 via flow paths 13a and 13b via valves, respectively, and the flow paths 15a and 15b branched from the flow paths 13a and 13b. 15b are respectively connected to the supply path 16 of the regeneration gas via valves. Further, the self-gas portion 17 branched from the purified gas extraction passage 14 is connected to a regeneration gas supply passage 16 via a valve.
ガスの精製および触媒、吸着剤の再生は精製筒Aおよ
びBを交互に切り替えて行われる。Purification of the gas and regeneration of the catalyst and the adsorbent are performed by alternately switching the purification tubes A and B.
原料不活性ガスは供給路4からヒーターHで加熱され
た反応筒1に導かれ触媒と接触してガス中の不純成分で
ある炭化水素、一酸化炭素、酸素および水素は互いに反
応して炭酸ガスおよび水に転換された後出口3から出
て、冷却器Cで冷却され、流路5aを経てガスの入口6aか
ら精製筒Aに入る。精製筒Aに入ったガスはまずNiなど
の触媒8と接触し、ここで残存酸素および未反応の状態
で残る微量の炭化水素、一酸化炭素などが捕捉される。
次にガスは酸化亜鉛系の吸着剤9と接触することにより
反応で生じた炭酸ガスは原料ガスに元から含有されてい
た炭酸ガスとともに吸着除去される。また、水分につい
ても大部分がこの段階で除去されるが、合成ゼオライト
系の吸着剤10と接触することによりさらに十分に除去さ
れる。不純物が除去され高純度に精製されたガスは出口
7aから流路13aを経て抜出路14から抜き出される。The raw material inert gas is led from the supply path 4 to the reaction tube 1 heated by the heater H, comes into contact with the catalyst, and hydrocarbons, carbon monoxide, oxygen and hydrogen, which are impure components in the gas, react with each other to produce carbon dioxide gas. After having been converted to water, it exits from the outlet 3, is cooled by the cooler C, and enters the purification column A from the gas inlet 6a via the flow path 5a. The gas that has entered the purification column A first contacts the catalyst 8 such as Ni, where residual oxygen and trace amounts of hydrocarbons and carbon monoxide remaining in an unreacted state are captured.
Next, the carbon dioxide gas generated by the reaction when the gas comes into contact with the zinc oxide-based adsorbent 9 is adsorbed and removed together with the carbon dioxide gas originally contained in the raw material gas. Most of the water is also removed at this stage, but it is more sufficiently removed by contact with the synthetic zeolite-based adsorbent 10. Outlet for high-purity gas from which impurities have been removed
It is extracted from the extraction path 14 from 7a via the flow path 13a.
精製筒Aでガスの精製がおこなわれている間に精製筒
Bでは触媒8および吸着剤9、10の再生がおこなわれ
る。While the gas is being purified in the purification column A, the catalyst 8 and the adsorbents 9 and 10 are regenerated in the purification column B.
ヒーターHによって精製筒Bを加熱し、再生ガスの供
給路16から水素ガスを単独に、または精製自己ガスを流
路17から供給して混合しながら流路15bを経て出口7bか
ら精製筒Bに供給することにより合成ゼオライト系の吸
着剤10および酸化亜鉛系の吸着剤9に吸着されていた炭
酸ガスおよび水が脱着され、続いてNi系の触媒8に捕捉
されている酸素は水素と反応して水に転換され、その他
の炭素系の微量不純物と同時に離脱して再生ガスととも
に精製筒の入口6b、流路5bおよび11bを経て放出路12か
ら排出される。引き続き精製自己ガスのみを流すことに
より吸着剤が十分に再生され、系内は精製ガスに置換さ
れて次の精製工程に備えられる。The purification tube B is heated by the heater H, and the hydrogen gas is supplied to the purification tube B from the outlet 7b via the passage 15b while supplying and mixing the hydrogen gas alone from the regeneration gas supply passage 16 or the purified gas from the passage 17 and mixing. By the supply, the carbon dioxide gas and water adsorbed by the synthetic zeolite-based adsorbent 10 and the zinc oxide-based adsorbent 9 are desorbed, and subsequently the oxygen trapped by the Ni-based catalyst 8 reacts with hydrogen. The water is then converted to water, is separated at the same time as other carbon-based trace impurities, and is discharged together with the regeneration gas from the discharge passage 12 through the inlet 6b of the purification cylinder and the flow passages 5b and 11b. Subsequently, by flowing only the purified gas, the adsorbent is sufficiently regenerated, and the inside of the system is replaced with a purified gas to prepare for the next purification step.
精製筒は第1図で示したような1筒式である必要はな
く、触媒、吸着剤をそれぞれ別の筒に充填してなる複数
の筒が直列に接続された形態であってもよい。The purification cylinder need not be a single cylinder as shown in FIG. 1, but may be a form in which a plurality of cylinders each having a catalyst and an adsorbent filled in different cylinders are connected in series.
本発明において、反応筒で使用される触媒は白金、パ
ラジウムなどであり、精製筒で使用される主として酸素
を捕捉するための触媒はニッケル、銅などであり、ま
た、主として水分を除去するための吸着剤は合成ゼオラ
イトなどであり、いずれも従来公知のものを使用するこ
とができる。一方、主として炭酸ガスを除去するための
吸着剤としては通常は、酸化亜鉛系のものであり、例え
ば本出願人による酸化亜鉛を成型してなる吸着剤(特願
昭62−318800号)および酸化亜鉛に酸化アルミニウムお
よびアルカリ化合物を混合し、成型してなる吸着剤(特
願昭63−192104号)などが好適である。In the present invention, the catalyst used in the reaction tube is platinum, palladium or the like, the catalyst mainly used for trapping oxygen used in the purification tube is nickel, copper, or the like, and is mainly used for removing water. The adsorbent is a synthetic zeolite or the like, and any known one can be used. On the other hand, as an adsorbent for mainly removing carbon dioxide gas, a zinc oxide-based adsorbent is usually used. For example, an adsorbent formed by molding zinc oxide by the present applicant (Japanese Patent Application No. 62-318800) and an oxide An adsorbent formed by mixing zinc oxide with an aluminum oxide and an alkali compound and forming the mixture (Japanese Patent Application No. 63-192104) is suitable.
本発明において、原料ガスとしては空気分離などで得
られる窒素のように不純物として酸素が最も多く含有さ
れているものについてはそのまま反応筒に供給すること
により炭素、水素系の不純物は炭酸ガスと水に転換され
る。一方、原料ガスが事前に脱酸素処理されているなど
で他の不純物に対して酸素の含有量が少ない場合には、
原料ガスに酸素を新たに添加するなどにより他の不純物
を炭酸ガスと水に転換するに必要な酸素濃度としてから
反応筒に供給される。酸素濃度は不純物の転換反応に対
する化学量論量の3倍以上であることが好ましい。In the present invention, carbon and hydrogen-based impurities such as nitrogen gas obtained by air separation or the like containing the largest amount of oxygen as a raw material gas are supplied to the reaction tube as they are, so that carbon dioxide and water are removed. Is converted to On the other hand, when the content of oxygen is small relative to other impurities because the source gas has been previously deoxidized,
The oxygen concentration necessary for converting other impurities into carbon dioxide and water by adding oxygen to the raw material gas is supplied to the reaction tube. The oxygen concentration is preferably at least three times the stoichiometric amount for the impurity conversion reaction.
本発明は不活性ガス中に含有される炭素、水素系の多
種類の不純物を炭酸ガスと水に転換し、残存する酸素と
合わせて不純物を3成分として、それぞれの成分の個々
について除去性能の高い触媒および吸着剤を用いて順次
除去するものであり、不純物は確実に除かれ極めて高純
度の精製ガスを得ることができる。The present invention converts various types of carbon and hydrogen impurities contained in an inert gas into carbon dioxide gas and water, and combines the remaining oxygen with the impurities into three components to improve the removal performance of each component individually. The removal is performed sequentially using a high catalyst and an adsorbent, and impurities are surely removed, so that a purified gas of extremely high purity can be obtained.
第1図で示したと同様の構成で内面が電解研磨によっ
て高度に仕上げられた装置で、反応筒には白金系触媒90
cc、精製筒AおよびBのそれぞれに上層としてNi系の触
媒100cc、中層として酸化亜鉛、酸化アルミニウムおよ
び無水炭酸カリウムを重量比で100:10:5の割合で混合し
水を加えて混練し押出成型したものを乾燥後350℃で1
時間焼成して得た吸着剤170cc、下層としてモレキュラ
ーシーブ5A 100ccを充填して不活性ガスの精製装置とし
た。This apparatus has the same structure as that shown in FIG. 1 and its inner surface is highly finished by electropolishing.
cc, 100 cc of a Ni-based catalyst as an upper layer in each of the purification tubes A and B, and zinc oxide, aluminum oxide and anhydrous potassium carbonate in an intermediate layer in a weight ratio of 100: 10: 5, water was added and kneaded and extruded. Dry the molded product at 350 ℃
170 cc of the adsorbent obtained by calcining for an hour and 100 cc of molecular sieve 5A as a lower layer were filled to form an inert gas purifying apparatus.
反応筒を400℃に加熱しながらこの装置に不純物とし
てO3 3.1ppm、CH4 0.3ppm、CO 0.5ppm、CO2 0.6ppmを含
み露点が−78℃の窒素ガスを5Kg/cm2Gで300Nl/Hの速度
で流し、出口の精製ガス中の不純物をO2についてはHers
ch微量酸素分析計(大阪酸素工業(株)製)、CH4、C
O、CO2についてはFIガラスクロマトグラフ、露点につい
ては静電容量式水分分析計(パナメトリックス社製)を
用いて測定した。その結果いずれの不純物も検出下限値
以下であり、O2は2ppb以下、CH4、CO、CO2はいずれも4p
pb以下であり、露点は−90〜92℃であった。この状態で
精製を続けた結果、24時間後に精製筒を切替えるまでの
間不純物は検出されず、露点についても変化を見られな
かった。While heating the reaction tube to 400 ° C., nitrogen gas containing 3.1 ppm of O 3 , 0.3 ppm of CH 4 , 0.5 ppm of CO, and 0.6 ppm of CO 2 as impurities in this apparatus and having a dew point of −78 ° C. was supplied at 300 Nl at 5 kg / cm 2 G. / flushed with H rate of, Hers for the impurities in the purified gas outlet O 2
ch Trace oxygen analyzer (Osaka Oxygen Industry Co., Ltd.), CH 4 , C
O and CO 2 were measured using an FI glass chromatograph, and the dew point was measured using a capacitance-type moisture analyzer (manufactured by Panametrics). As a result any impurities was below the detection limit value, O 2 is 2ppb less, CH 4, CO, both CO 2 is 4p
pb or less and the dew point was -90 to 92 ° C. As a result of continuing purification in this state, no impurities were detected and the dew point was not changed until the purification cylinder was switched after 24 hours.
第1図は本発明の不活性ガス精製装置のフローシートで
ある。 図面の各番号は以下の通りである。 1……反応筒、4……供給路、8……触媒 9および10……吸着剤、14……抜出路 AおよびB……精製筒、H……ヒーター C……冷却器FIG. 1 is a flow sheet of the inert gas purifying apparatus of the present invention. The respective numbers in the drawings are as follows. DESCRIPTION OF SYMBOLS 1 ... Reaction cylinder, 4 ... Supply path, 8 ... Catalyst 9 and 10 ... Adsorbent, 14 ... Extraction path A and B ... Purification cylinder, H ... Heater C ... Cooler
Claims (1)
化水素、一酸化炭素、酸素および水素を炭酸ガスおよび
水に転換するための触媒を充填した反応筒と、該反応筒
に接続され、主として酸素を捕捉するための触媒層と主
として炭酸ガスを除去するための吸着剤層と主として水
分を除去するための吸着剤層とを一筒または複数筒に分
離して直列に組合わせた精製筒とを備えてなることを特
徴とする不活性ガスの精製装置。1. A reaction tube filled with a catalyst for converting hydrocarbons, carbon monoxide, oxygen and hydrogen contained as impurities in an inert gas into carbon dioxide gas and water, connected to the reaction tube, A purification column in which a catalyst layer for mainly capturing oxygen, an adsorbent layer for mainly removing carbon dioxide gas, and an adsorbent layer for mainly removing moisture are separated into one or more tubes, and are combined in series. An inert gas purifying apparatus comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63273266A JP2640513B2 (en) | 1988-10-31 | 1988-10-31 | Inert gas purification equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63273266A JP2640513B2 (en) | 1988-10-31 | 1988-10-31 | Inert gas purification equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02120212A JPH02120212A (en) | 1990-05-08 |
JP2640513B2 true JP2640513B2 (en) | 1997-08-13 |
Family
ID=17525440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63273266A Expired - Fee Related JP2640513B2 (en) | 1988-10-31 | 1988-10-31 | Inert gas purification equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2640513B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012051753A (en) * | 2010-08-31 | 2012-03-15 | Taiyo Nippon Sanso Corp | Method and apparatus for purifying gas |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6340381B1 (en) * | 1991-12-02 | 2002-01-22 | Ebara Research Co., Ltd. | Method and apparatus for the preparation of clean gases |
EP0672445B1 (en) * | 1992-12-02 | 1998-03-25 | Ebara Corporation | Method and apparatus for preventing contamination of substrate or substrate surface |
CA2589897A1 (en) * | 2004-11-30 | 2006-08-17 | Phyre Technologies, Inc. | Contacting systems and methods and uses thereof |
JP4520372B2 (en) * | 2005-06-21 | 2010-08-04 | シーケーディ株式会社 | Refining cylinder and air or inert gas circulation purification device |
JP4918255B2 (en) * | 2005-12-22 | 2012-04-18 | ウチヤ・サーモスタット株式会社 | Nitrogen gas generator |
JP5133929B2 (en) * | 2009-03-31 | 2013-01-30 | 大陽日酸株式会社 | Method and apparatus for producing ultra-high purity nitrogen gas |
GB2477322B (en) * | 2010-02-01 | 2015-10-21 | Gas Recovery & Recycle Ltd | Inert gas recovery system |
JP5748272B2 (en) * | 2010-07-07 | 2015-07-15 | 住友精化株式会社 | Helium gas purification method and purification apparatus |
JP5614808B2 (en) * | 2011-01-18 | 2014-10-29 | 住友精化株式会社 | Helium gas purification method and purification apparatus |
CN102807199B (en) * | 2011-05-30 | 2015-04-29 | 住友精化株式会社 | Purifying method and purifying device for argon gas |
JP5852422B2 (en) * | 2011-11-26 | 2016-02-03 | 国立研究開発法人農業環境技術研究所 | Purification method of ultra-high purity nitrogen gas |
JP2017051903A (en) | 2015-09-09 | 2017-03-16 | 日本パイオニクス株式会社 | Gas purifier |
CN107362683A (en) * | 2017-08-21 | 2017-11-21 | 昆明鹏翼达气体产品有限公司 | A kind of ultra-pure gases purification devices and purification process |
-
1988
- 1988-10-31 JP JP63273266A patent/JP2640513B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012051753A (en) * | 2010-08-31 | 2012-03-15 | Taiyo Nippon Sanso Corp | Method and apparatus for purifying gas |
Also Published As
Publication number | Publication date |
---|---|
JPH02120212A (en) | 1990-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6048509A (en) | Gas purifying process and gas purifying apparatus | |
US6660064B2 (en) | Activated carbon as sole absorbent in rapid cycle hydrogen PSA | |
CA2214557C (en) | Process for argon purification | |
KR960002190B1 (en) | Process for the purification of the inert gases | |
JP2640513B2 (en) | Inert gas purification equipment | |
US6074621A (en) | Purification of gases | |
US5478534A (en) | Apparatus for preparing ultra-pure nitrogen | |
KR20070028264A (en) | Process for gas purification | |
US6093379A (en) | Purification of gases | |
JP3462604B2 (en) | Method and apparatus for purifying inert gas | |
JP2003103132A (en) | Gas refining by pressure swing adsorption | |
AU672612B2 (en) | Process for producing hydrocarbon partial oxidation products | |
JP3569420B2 (en) | Hydrogen production method by pressure swing adsorption method | |
JP3977501B2 (en) | Method and apparatus for purifying oxygen gas | |
EP1060774A1 (en) | Purification of gases | |
EP1005895A1 (en) | Purification of gases | |
JP2872631B2 (en) | Nitrogen / oxygen production system | |
JP2627792B2 (en) | Hydrogen gas purification equipment | |
JPH0751441B2 (en) | Method for producing high-purity hydrogen | |
JP2012101976A (en) | Refining method and refining apparatus for argon gas | |
JPS634824A (en) | Impure gas adsorption bed | |
JPH0857240A (en) | Gas purifying method and apparatus | |
SIRCAR | Adsorption Technology for Gas Separation | |
JPS63315503A (en) | Purification of hydrogen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |