[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3123572B2 - Body attitude control device - Google Patents

Body attitude control device

Info

Publication number
JP3123572B2
JP3123572B2 JP04137942A JP13794292A JP3123572B2 JP 3123572 B2 JP3123572 B2 JP 3123572B2 JP 04137942 A JP04137942 A JP 04137942A JP 13794292 A JP13794292 A JP 13794292A JP 3123572 B2 JP3123572 B2 JP 3123572B2
Authority
JP
Japan
Prior art keywords
displacement
control
axle
calculating means
vehicle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04137942A
Other languages
Japanese (ja)
Other versions
JPH05305807A (en
Inventor
健一 降幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP04137942A priority Critical patent/JP3123572B2/en
Publication of JPH05305807A publication Critical patent/JPH05305807A/en
Application granted granted Critical
Publication of JP3123572B2 publication Critical patent/JP3123572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は車体の姿勢制御装置、特
に路面の凸部による車軸への過大なバンプ(突上力)と
路面の凹部による車軸への過大なリバウンド(突下力)
に対し、油圧式懸架機構のピストンがシリンダ端壁に衝
突しないように、油圧式懸架機構の作動量を電気的に制
御する、車体の姿勢制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an attitude control device for a vehicle body, and more particularly to an excessive bump (thrust force) on an axle due to a convex portion on a road surface and an excessive rebound (thrust force) on an axle due to a concave portion on a road surface.
On the other hand, the present invention relates to a posture control device for a vehicle body that electrically controls an operation amount of a hydraulic suspension mechanism so that a piston of the hydraulic suspension mechanism does not collide with a cylinder end wall.

【0002】[0002]

【従来の技術】特開昭64-30816号に開示される車体の姿
勢制御装置では、車軸への路面入力などにより発生する
車体の姿勢変化を抑えるために、各車軸と車体の相対的
な上下変位量に対応して油圧式懸架機構の油量を加減し
ているが、例えば路面から車軸へ過大な突上力が作用す
ると、油圧式懸架機構は過大に短縮する。この時、油圧
式懸架機構のピストンがシリンダ端壁に激突して破損す
る恐れがある。油圧式懸架機構の作動限界に機械的なス
トツパを設ければ、油圧式懸架機構の破損は防止できる
が、油圧式懸架機構の作動部がストツパに当つた時の衝
撃が大きく、乗り心地を悪くする。
2. Description of the Related Art In a vehicle attitude control apparatus disclosed in Japanese Patent Application Laid-Open No. Sho 64-30816, in order to suppress a change in the attitude of a vehicle body caused by a road surface input to the axle, a relative vertical movement of each axle and the vehicle body is performed. Although the oil amount of the hydraulic suspension mechanism is adjusted according to the displacement amount, for example, when an excessive thrust force acts from the road surface to the axle, the hydraulic suspension mechanism is excessively shortened. At this time, the piston of the hydraulic suspension mechanism may strike the cylinder end wall and be damaged. If a mechanical stop is provided at the operating limit of the hydraulic suspension mechanism, breakage of the hydraulic suspension mechanism can be prevented, but the impact when the operating part of the hydraulic suspension mechanism hits the stopper is large, and the ride comfort is poor. I do.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は上述の
問題に鑑み、各車軸の車高変化量に応じて連続的に油量
制御部へ加える制御量を加減し、油圧式懸架機構のピス
トンがシリンダ端壁に衝突しないように作動量を制限す
る、信頼性が高く、乗り心地がよい、車体の姿勢制御装
置を提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to adjust a control amount to be continuously applied to an oil amount control unit in accordance with a vehicle height change amount of each axle, thereby providing a hydraulic suspension mechanism. It is an object of the present invention to provide a vehicle body posture control device that limits the amount of operation so that a piston does not collide with a cylinder end wall, has high reliability, and is comfortable to ride.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明の構成は各車輪の車高を検出する車高センサ
の信号に基づき車体のロール変位量、ピツチ変位量、上
下変位量を求める相対変位量算出手段と、相対変位量算
出手段の信号に基づき車体をフラツトに保つための各車
輪のロール制御トルクF12、ピツチ制御トルクF22、上
下変位制御力F32を求める制御量算出手段と、制御量算
出手段の信号に基づき各車輪の油圧式懸架機構の油量を
求める油量算出手段と、油量算出手段の信号に基づき各
油圧式懸架機構の油量に相当する次式から求めた制御電
圧VFL〜VRRを加減する油量制御弁とを備える車体の姿
勢制御装置において、 −F12=−K1・Δφ−K2・dΔφ/dt−K7・∫Δφdt −F22=−K3・Δθ−K4・dΔθ/dt−K8・∫Δθdt −F32=−K5・Δx−K6・dΔx/dt−K9・∫Δxdt ただし、Δφ:車体と車軸との間の相対的なロール変位
量 Δθ:車体と車軸との間の相対的なピツチ変位量 Δx:車軸のバウンス変位量 K1〜K6:フイードバツクゲイン K7〜K9:定数 VFL=−KV1・F12−KV2・F22−KV5・F32 VFR=+KV1・F12−KV2・F22−KV5・F32 VRL=−KV3・F12+KV4・F22−KV6・F32 VRR=+KV3・F12+KV4・F22−KV6・F32 ただし、KV1〜KV6:定数 前記制御電圧に次式 KV7・FbsFL=KV7・[xFL/xstF]・xFL KV7・FbsFR=KV7・[xFR/xstF]・xFR KV8・FbsRL=KV8・[xRL/xstR]・xRL KV8・FbsRR=KV8・[xRR/xstR]・xRR ただし、KV7〜KV8:定数 xFL〜xRR:各車輪支持部の車高変化量 xstF,xstR:バンプ・ストツプ力 n:1よりも大きい任意の数 で表されるバンプ・ストツプ力に相当する制御電圧KV7・
FbsFL,KV7・FbsFR,KV8・FbsRL,KV8・FbsRRを加算す
ることを特徴とする。
In order to attain the above object, according to the present invention, a roll displacement, a pitch displacement and a vertical displacement of a vehicle body based on a signal from a vehicle height sensor for detecting the vehicle height of each wheel. And a control amount calculating means for obtaining a roll control torque F12, a pitch control torque F22, and a vertical displacement control force F32 of each wheel for keeping the vehicle body flat based on a signal from the relative displacement amount calculating means. The oil amount calculating means for obtaining the oil amount of the hydraulic suspension mechanism of each wheel based on the signal of the control amount calculating means, and the oil amount of each hydraulic suspension mechanism based on the signal of the oil amount calculating means are obtained from the following equations. And an oil amount control valve for adjusting the control voltages VFL to VRR, the control device comprising: -F12 = -K1..DELTA..phi.-K2.d.DELTA. / Dt-K7..SIGMA..DELTA..phi.dt -F22 = -K3..DELTA..theta.-K4・ DΔθ / dt-K8 ・ ∫Δθdt-F32 = −K5 · Δx−K6 · dΔx / dt−K9 · ∫Δxdt where Δφ: relative roll displacement between the vehicle body and the axle Δθ: relative pitch displacement between the vehicle body and the axle Δx: axle Bounce displacement K1 to K6: feedback gain K7 to K9: constant VFL = -KV1, F12-KV2, F22-KV5, F32 VFR = + KV1, F12-KV2, F22-KV5, F32 VRL = -KV3, F12 + KV4 · F22-KV6 · F32 VRR = + KV3 · F12 + KV4 · F22-KV6 · F32 However, KV1~KV6: following equation constant the control voltage KV7 · FbsFL = KV7 · [xFL / xstF] n · xFL KV7 · FbsFR = KV7 · [xFR / xstF] n · xFR KV8 · FbsRL = KV8 · [xRL / xstR] n · xRL KV8 · FbsRR = KV8 · [xRR / xstR] n · xRR However, KV7~KV8: constant XFL~xRR: each wheel support XstF, xstR: Bump stop force n: The bump stop force represented by an arbitrary number greater than n: 1 Control voltage equivalent to KV7 ·
It is characterized in that FbsFL, KV7 · FbsFR, KV8 · FbsRL, and KV8 · FbsRR are added.

【0005】[0005]

【作用】本発明は各車輪を支持する車軸の上下変位量な
いし車高変化量からバンプ・リバウンド・ストツプ力を
求め、路面入力と走行条件の変化とに対する車体のロー
ル制御力とピツチ制御力と上下制御力と、上述のバンプ
・リバウンド・ストツプ力とに関連して、コンピユータ
による制御プログラムの上で各油圧式懸架機構の油量を
連続的に加減し、油圧式懸架機構における作動部の機械
的衝突を回避し、乗り心地を改善する。
According to the present invention, a bump rebound stop force is obtained from an amount of vertical displacement or a change in vehicle height of an axle supporting each wheel, and a roll control force and a pitch control force of a vehicle body with respect to road surface input and changes in running conditions are obtained. In connection with the vertical control force and the bump / rebound / stopping force described above, the amount of oil in each hydraulic suspension mechanism is continuously adjusted on a control program by a computer, and the machine of the operating part in the hydraulic suspension mechanism is controlled. Avoid collisions and improve ride comfort.

【0006】このため、各車軸の標準車高からの車高変
化量xFL〜xRRを求め、予め設定された前車軸のバンプ
・リバウンド作動限界xstF に対する車高変化量xFL,
xFRの割合からバンブ・リバウンド・ストツプ・フイー
ドバツクゲインKbsFL ,KbsFR を求め、後車軸のバンプ
・リバウンド作動限界xstR に対する車高変化量xRL,
xRRの割合からバンプ・リバウンド・ストツプ・フイー
ドバツクゲインKbsRL,KbsRR を求める。
For this reason, the vehicle height change amounts xFL to xRR of each axle from the standard vehicle height are obtained, and the vehicle height change amounts xFL, xFL, with respect to a predetermined front axle bump / rebound operation limit xstF.
The bump rebound stop feedback gains KbsFL and KbsFR are calculated from the ratio of xFR, and the vehicle height change xRL with respect to the bump / rebound operation limit xstR of the rear axle is calculated.
The bump rebound stop feedback gains KbsRL and KbsRR are obtained from the ratio of xRR.

【0007】次いで、バンプ・リバウンド・ストツプ力
算出手段により、各車軸のバンプ・リバウンド・ストツ
プ力FbsFL〜FbsRRをそれぞれ求め、各バンプ・リバウ
ンド・ストツプ力に対応する制御電圧を、各車軸の油圧
式懸架機構の油量制御弁の電磁コイルへ加える。
Next, the bump rebound stop force calculating means calculates the bump rebound stop force FbsFL-FbsRR of each axle, and calculates a control voltage corresponding to each bump rebound stop force by the hydraulic type of each axle. Add to the electromagnetic coil of the oil quantity control valve of the suspension mechanism.

【0008】[0008]

【実施例】図1は本発明に係る車体の姿勢制御装置のブ
ロツク図、図2は油圧式懸架機構の油圧回路図である。
図2に示すように、機関により駆動される油圧ポンプ4
は、油槽2から油を吸い込み、管5から逆止弁6を経て
管7の蓄圧器8へ供給する。管7への油圧を所定値に保
つために、油圧監視手段Aが備えられる。つまり、管5
の油圧を検出する油圧センサ9の検出値が所定値を超え
ると、油圧制御弁12が切り換わり、管5の圧油の一部
が管10、油圧制御弁12、管13、フイルタ27を経
て油槽2へ戻される。また、油圧ポンプ4の吐出口の油
圧が異常に高くなると、管5の圧油の一部が公知の逃し
弁26、管13、フイルタ27を経て油槽2へ戻され
る。
FIG. 1 is a block diagram of a vehicle body attitude control apparatus according to the present invention, and FIG. 2 is a hydraulic circuit diagram of a hydraulic suspension mechanism.
As shown in FIG. 2, the hydraulic pump 4 driven by the engine
Sucks oil from the oil tank 2 and supplies the oil from the pipe 5 to the pressure accumulator 8 of the pipe 7 via the check valve 6. Oil pressure monitoring means A is provided to keep the oil pressure to the pipe 7 at a predetermined value. That is, tube 5
When the detection value of the oil pressure sensor 9 that detects the oil pressure of the oil tank exceeds a predetermined value, the oil pressure control valve 12 is switched, and a part of the oil pressure of the pipe 5 passes through the pipe 10, the oil pressure control valve 12, the pipe 13, and the filter 27. It is returned to the oil tank 2. When the oil pressure at the discharge port of the hydraulic pump 4 becomes abnormally high, a part of the pressure oil in the pipe 5 is returned to the oil tank 2 via the known relief valve 26, the pipe 13, and the filter 27.

【0009】管7の圧油は左右の前輪と左右の後輪25
(図2には左前輪だけを代表して示す)の各油圧式懸架
機構19へそれぞれ供給される。油圧式懸架機構19は
シリンダ23にピストン22を嵌装し、ピストン22か
ら上方へ突出するロツド24を車体20に連結する一
方、シリンダ23から下方へ突出するロツドを車輪25
のナツクルに連結してなる。シリンダ23の壁部と車体
20との間にばね21が介装される。車体20とナツク
ルとの間に、車体20と車輪25との相対的上下変位量
を検出する車高センサ28が配設される。なお、左右の
前輪、左右の後輪の各懸架機構19を特定する場合は、
FL,FR,RL,RRの添字を付すことにする。
The pressure oil in the pipe 7 is supplied to the left and right front wheels and the left and right rear wheels 25
(Only the left front wheel is shown as a representative in FIG. 2). The hydraulic suspension mechanism 19 fits a piston 22 in a cylinder 23 and connects a rod 24 protruding upward from the piston 22 to the vehicle body 20, while connecting a rod protruding downward from the cylinder 23 to wheels 25.
It is connected to the knuckle. A spring 21 is interposed between the wall of the cylinder 23 and the vehicle body 20. A vehicle height sensor 28 for detecting a relative vertical displacement between the vehicle body 20 and the wheel 25 is provided between the vehicle body 20 and the nuticle. When specifying the suspension mechanisms 19 for the left and right front wheels and the left and right rear wheels,
The subscripts of FL, FR, RL, and RR will be added.

【0010】管7の圧油は逆止弁14、一般的な中立位
置閉鎖型の電磁比例油圧制御弁からなる油量制御弁1
6、絞り18aを経て蓄圧器18へ供給され、さらに油
圧式懸架機構19のシリンダ23の下端室へ供給され
る。シリンダ23の下端室へ供給される油圧は、油圧セ
ンサ17により検出される。油量制御弁16が切り換わ
ると、シリンダ23の下端室の油は油量制御弁16、逆
止弁15、管13、フイルタ27を経て油槽2へ戻され
る。
The pressure oil in the pipe 7 is supplied to a check valve 14, an oil amount control valve 1 comprising a general neutral position closed type electromagnetic proportional hydraulic control valve.
6. The pressure is supplied to the pressure accumulator 18 via the throttle 18a, and further supplied to the lower end chamber of the cylinder 23 of the hydraulic suspension mechanism 19. The oil pressure supplied to the lower end chamber of the cylinder 23 is detected by the oil pressure sensor 17. When the oil amount control valve 16 is switched, the oil in the lower end chamber of the cylinder 23 is returned to the oil tank 2 via the oil amount control valve 16, the check valve 15, the pipe 13, and the filter 27.

【0011】前後・左右の車軸の各油圧式懸架機構19
は独立に、逆止弁14,15、油量制御弁16、絞り1
8a、蓄圧器18、油圧センサ17、車高センサ28を
備えている。各油量制御弁16はマイクロコンピユータ
からなる制御装置の制御電圧に対応するように、各油圧
式懸架機構19の油圧をフイードバツク制御する。
The respective hydraulic suspension mechanisms 19 for the front, rear, left and right axles
Are independently check valves 14, 15, oil quantity control valve 16, throttle 1
8a, an accumulator 18, a hydraulic sensor 17, and a vehicle height sensor 28 are provided. Each oil amount control valve 16 performs feedback control of the hydraulic pressure of each hydraulic suspension mechanism 19 so as to correspond to the control voltage of a control device composed of a microcomputer.

【0012】車体(ばね上)のロール変位量(角度)を
φ2 、車体(ばね上)のピツチ変位量(角度)をθ2 、
車体重心のバウンス変位量をx2 とし、車軸(ばね下)
のロール変位量をφ1 、車軸(ばね下)のピツチ変位量
をθ1 、車軸(左右中心部)のバウンス変位量をx1 と
すると、車体と車軸との間の相対的なロール変位量Δ
φ、ピツチ変位量Δθ、車軸のバウンス変位量Δxは、
次の式で表される。
The roll displacement (angle) of the vehicle body (spring) is φ2, the pitch displacement (angle) of the vehicle body (spring) is θ2,
Axle (unsprung), with the bounce displacement of the center of gravity of the car as x2
Is the roll displacement of φ1, the pitch displacement of the axle (unsprung) is θ1, and the bounce displacement of the axle (center of left and right) is x1, the relative roll displacement Δ between the vehicle body and the axle
φ, pitch displacement Δθ, axle bounce displacement Δx are
It is expressed by the following equation.

【0013】φ2=φ1+Δφ θ2=θ1+Δθ x2=x1+Δx また、各車輪の車高センサ28により検出した標準車高
に対する車高変化量をxFL〜xRRとすると、車体と車軸
との間の相対的なロール変位量Δφ、ピツチ変位量Δ
θ、車軸のバウンス変位量Δxは、次の式で表される。
.Phi.2 = .phi.1 + .DELTA..phi..theta.2 = .theta.1 + .DELTA..theta.x2 = x1 + .DELTA.x Further, if the vehicle height change amount with respect to the standard vehicle height detected by the vehicle height sensor 28 is xFL-xRR, the relative roll between the vehicle body and the axle Displacement Δφ, pitch displacement Δ
θ and the axle bounce displacement Δx are expressed by the following equations.

【0014】Δφ=K11(xFL−xFR)+K12(xRL−x
RR) Δθ=K21(xFL+xFR)−K22(xRL+xRR) Δx=K31(xFL+xFR)+K32(xRL+xRR) ただし、K11,K21,K31:定数 K12,K22,K32:定数 一般に、路面入力に対し車体をフラツトに保つ条件は、 極低周波の路面入力に対しては、Δφ→0 Δφ/φ1→0 Δθ→0 Δθ/θ1→0 Δx→0 Δx/x1→0 高周波の路面入力に対しては、 Δφ→−φ1 Δφ/φ1→−1 Δθ→−θ1 Δθ/θ1→−1 Δx→−x1 Δx/x1→−1 と考えられる。
Δφ = K11 (xFL−xFR) + K12 (xRL−x
RR) Δθ = K21 (xFL + xFR)-K22 (xRL + xRR) Δx = K31 (xFL + xFR) + K32 (xRL + xRR) where K11, K21, K31: constant K12, K22, K32: constant In general, keep the vehicle flat against road surface input The condition is: Δφ → 0 Δφ / φ1 → 0 Δθ → 0 Δθ / θ1 → 0 Δx → 0 Δx / x1 → 0 For extremely low frequency road surface input, Δφ → − φ1 Δφ / φ1 → −1 Δθ → −θ1 Δθ / θ1 → −1 Δx → −x1 Δx / x1 → −1

【0015】そこで、車速一定の直進走行時の路面入力
に対し車体をフラツトに保つためのロール制御トルクF
12、ピツチ制御トルクF22、上下制御力F32は、次の式
(1)で与えられるものと仮定する。
Therefore, the roll control torque F for keeping the vehicle body flat against the road surface input during straight running at a constant vehicle speed.
12. It is assumed that the pitch control torque F22 and the vertical control force F32 are given by the following equation (1).

【0016】 −F12=−K1・Δφ−K2・dΔφ/dt −F22=−K3・Δθ−K4・dΔθ/dt −F32=−K5・Δx−K6・dΔx/dt ……(1) ただし、F12:直進走行時の路面入力に対するロール制
御トルク F22:直進走行時の路面入力に対するピツチ制御トルク F32:直進走行時の路面入力に対するバウンス変位制御
力 K1〜K6:フイードバツクゲイン(後述のように調整す
る) ここで、定数K1,K3,K5は車高変化量に乗じるものであ
るからばね定数に相当するもの、K2,K4,K6は車高変化
率に乗じるものであるから減衰係数に相当するものと考
えてよい。
−F12 = −K1 · Δφ−K2 · dΔφ / dt −F22 = −K3 · Δθ−K4 · dΔθ / dt −F32 = −K5 · Δx−K6 · dΔx / dt (1) where F12 : Roll control torque for road input during straight running F22: Pitch control torque for road input during straight running F32: Bounce displacement control force for road input during straight running K1 to K6: Feedback gain (adjusted as described later) Here, the constants K1, K3, and K5 are equivalent to spring constants because they are multiplied by the vehicle height change amount, and K2, K4, and K6 are equivalent to damping coefficients because they are multiplied by the vehicle height change rate. You can think of it as something.

【0017】式(1)から、次の運動方程式が成り立
つ。
From equation (1), the following equation of motion holds.

【0018】 IX・dφ/dt=−K1・Δφ−K2・dΔφ/dt IY・dθ/dt=−K3・Δθ−K4・dΔθ/dt m2・dx/dt=−K5・Δx−K6・dΔx/dt ……(2) ただし、IX:車体ロールに対する慣性モーメント IY:車体ピツチに対する慣性モーメント m2:車体質量 上の式(2)を変形し、ラプラス変換すると、式(3)
になる。
IX · d 2 φ / dt 2 = −K1 · Δφ−K2 · dΔφ / dt IY · d 2 θ / dt 2 = −K3 · Δθ−K4 · dΔθ / dt m2 · d 2 x / dt 2 = −K5 · Δx−K6 · dΔx / dt (2) where IX: Moment of inertia with respect to the vehicle body roll IY: Moment of inertia with respect to the vehicle body pitch m2: Body mass The above equation (2) is transformed into Laplace transform. (3)
become.

【0019】 Δφ/φ1=−1+(K1+K2・s)/(K1+K2・s+Ix・s) Δθ/θ1=−1+(K3+K4・s)/(K3+K4・s+IY・s) Δx/x1=−1+(K5+K6・s)/(K5+K6・s+m2・s)……(3) ただし、s:ラプラス演算子 式(3)において、極低周波の路面入力に対する応答は
上の伝達関数においてs→0とした場合に相当し、高周
波の路面入力に対する応答は上の伝達関数においてs→
∞とした場合に相当するから、 となり、車体がフラツトとなる条件を満していることが
分る。
[0019] Δφ / φ1 = -1 + (K1 + K2 · s) / (K1 + K2 · s + Ix · s 2) Δθ / θ1 = -1 + (K3 + K4 · s) / (K3 + K4 · s + IY · s 2) Δx / x1 = -1 + ( K5 + K6 · s) / (K5 + K6 · s + m2 · s 2 ) (3) where s: Laplace operator In equation (3), the response to extremely low-frequency road surface input is s → 0 in the above transfer function. In this case, the response to a high-frequency road surface input is s →
Since it is equivalent to ∞, It turns out that the vehicle body satisfies the condition of being flat.

【0020】しかし、式(2)のみの制御を行う場合
は、定数K1〜K6の値をある程度大きくしないと、車両停
止時の姿勢をフラツトに維持できなくなる恐れがある。
また、定数K1〜K6の値を大きくしすぎると、低周波の路
面入力での乗り心地に悪影響を及ぼす恐れがある。
However, in the case of controlling only the equation (2), unless the values of the constants K1 to K6 are increased to some extent, the attitude when the vehicle stops may not be able to be maintained flat.
On the other hand, if the values of the constants K1 to K6 are too large, there is a possibility that the ride comfort on low-frequency road surface input may be adversely affected.

【0021】そこで、式(1)の右辺に積分項を追加す
ることにより、定常偏差を取り除く。
Therefore, the steady-state error is removed by adding an integral term to the right side of the equation (1).

【0022】 −F12=−K1・Δφ−K2・dΔφ/dt−K7・ΣΔφdt −F22=−K3・Δθ−K4・dΔθ/dt−K8・ΣΔθdt −F32=−K5・Δx−K6・dΔx/dt−K9・ΣΔxdt ……(4) ただし、K7〜K9:定数 Σは都合により積分記号を表すものとする上述のフイー
ドバツク制御は例えば特開平4−208613号公報に
より既に公知であり、車両がほぼ真直ぐな道路を走行す
る場合は車体の姿勢を路面とほぼ平行(フラツト)に保
つことができる。
−F12 = −K1 · Δφ−K2 · dΔφ / dt−K7 · ΣΔφdt −F22 = −K3 · Δθ−K4 · dΔθ / dt−K8 · ΣΔθdt −F32 = −K5 · Δx−K6 · dΔx / dt −K9 · ΣΔxdt (4) where K7 to K9: constant Σ represents an integral symbol for convenience. The above-described feedback control is already known, for example, from Japanese Patent Application Laid-Open No. 4-208613, and the vehicle is almost straight. When traveling on a smooth road, the posture of the vehicle body can be kept substantially parallel (flat) to the road surface.

【0023】しかし、旋回走行時の横加速度や加減速時
の前後加速度に対しては応答が間に合わず、車体に姿勢
変化が生じる。そこで、横加速度g1 、前後加速度g2
に対応した比例制御を付加するのが好ましい。車両が凹
凸のない平坦な路面を走行していると仮定すると、車体
のロールと車体のピツチについて、次の運動方程式が成
り立つ。
However, the response to the lateral acceleration at the time of turning and the longitudinal acceleration at the time of acceleration / deceleration cannot be made in time, and the body changes posture. Therefore, the lateral acceleration g1 and the longitudinal acceleration g2
It is preferable to add a proportional control corresponding to. Assuming that the vehicle is traveling on a flat road surface without unevenness, the following equation of motion is established for the roll of the vehicle body and the pitch of the vehicle body.

【0024】 IX・dφ/dt=m2・hr・g1+m2・g・hr・φ+F11−KS1・φ IY・dθ/dt=m2・hp・g2+m2・g・hp・θ+F21−KS2・θ ……(5) ただし、hr:車体重心とロール中心の高低差 hp:車体重心とピツチ中心の高低差 F11:旋回走行時のロール制御トルク F21:加減速時のピツチ制御トルク KS1:ばね21のロール剛性係数 KS2:ばね21のピツチ剛性係数 g1:車体重心に作用する横加速度 g2:車体重心に作用する前後加速度 式(5)において、右辺の第1項は車体重心に作用する
横加速度(前後加速度)が車体をロール(ピツチ)させ
るモーメント、第2項は車体のロール(ピツチ)に伴う
車体重心に作用する重力の加速度gが、車体をロール
(ピツチ)させるモーメントm2 gとhr sin φの積
(m2 gとhp sin θの積)である。
IX · d 2 φ / dt 2 = m 2 · hr · g 1 + m 2 · g · hr · φ + F 11 -KS 1 · φ I Y · d 2 θ / dt 2 = m 2 · hp · g 2 + m 2 · g · hp · θ + F 21 -KS 2 · θ: (5) where, hr: height difference between the vehicle center of gravity and the center of the roll hp: height difference between the vehicle center of gravity and the center of the pitch F11: roll control torque during turning F21: pitch control torque during acceleration / deceleration KS1: spring 21 Roll rigidity coefficient KS2: pitch rigidity coefficient of spring 21 g1: lateral acceleration acting on vehicle center of gravity g2: longitudinal acceleration acting on vehicle center of gravity In equation (5), the first term on the right side is lateral acceleration acting on vehicle center of gravity ( The longitudinal acceleration) is the moment that causes the body to roll (pitch). The second term is that the acceleration g of the gravitational force acting on the vehicle center of gravity due to the roll (pitch) of the body causes the moment m2 g and hr sin φ that cause the body to roll (pitch). Product (m2 g hp is a sin product of θ).

【0025】したがつて、車体のロール、車体のピツチ
をそれぞれ0とするためのロール制御トルクF11、ピツ
チ制御トルクF21は、次の式(6)で表される。
Accordingly, the roll control torque F11 and the pitch control torque F21 for setting the roll of the vehicle body and the pitch of the vehicle body to 0 are expressed by the following equation (6).

【0026】 −F11=m2・hr・g1+m2・g・hr・φ−KS1・φ −F21=m2・hp・g2+m2・g・hp・θ−KS2・θ ……(6) 凹凸のない平坦な路面では路面入力はないから、タイヤ
の上下方向の撓みを無視し、φ=Δφ,θ=Δθとおく
と、旋回走行時のロール制御トルクF11、加減速時のピ
ツチ制御トルクF21は、次の式(7)で表される。
−F11 = m2 · hr · g1 + m2 · g · hr · φ−KS1 · φ −F21 = m2 · hp · g2 + m2 · g · hp · θ−KS2 · θ (6) Flat road surface without unevenness Since there is no road surface input, ignoring the vertical deflection of the tire and setting φ = Δφ and θ = Δθ, the roll control torque F11 during turning and the pitch control torque F21 during acceleration / deceleration are given by the following equations. It is represented by (7).

【0027】 −F11=m2・hr・g1+m2・g・hr・Δφ−KS1・Δφ −F21=m2・hp・g2+m2・g・hp・Δθ−KS2・Δθ ……(7) 本発明によれば、油圧式懸架機構のフルバンプ、フルリ
バウンドを防止するために、図4に示すバンプ・リバウ
ンド・ストツプルーチンにより各車軸の標準車高に対す
る車高変化量xFL〜xRRから、予め設定された前車軸の
バンプ・リバウンド作動限界xstF に対する車高変化量
xFL,xFRの割合αFL,αFRを求め、予め設定された後
車軸のバンプ・リバウンド作動限界xstR に対する車高
変化量xRL,xRRの割合αRL,αRRを求める。
-F11 = m2 · hr · g1 + m2 · g · hr · Δφ−KS1 · Δφ -F21 = m2 · hp · g2 + m2 · g · hp · Δθ−KS2 · Δθ (7) According to the present invention, In order to prevent full-bump and full-rebound of the hydraulic suspension mechanism, the bump-rebound-stop routine shown in FIG. The ratios αFL, αFR of the vehicle height change amounts xFL, xFR to the bump / rebound operation limit xstF are determined, and the ratios αRL, αRR of the vehicle height change amounts xRL, xRR to the preset rear axle bump / rebound operation limit xstR are determined. .

【0028】当然、上で求めた各割合αFL〜αRRは1よ
りも小さいので、各油圧式懸架機構19に車高変化量が
大きいほど、より大きなバンプ・リバウンド・ストツプ
力が作用するように、各割合αFL〜αRRをn乗(nは1
より大きい任意の数)してなるバンプ・リバウンド・ス
トツプ・フイードバツクゲインに基づき、次の式(8)
により、各車軸の油圧式懸架機構19へ加えるバンプ・
リバウンド・ストツプ力FbsFL〜FbsRRを求める。
Naturally, since the ratios αFL to αRR obtained above are smaller than 1, the larger the amount of change in the vehicle height of each hydraulic suspension mechanism 19, the greater the bump, rebound and stop force is applied. Each ratio αFL to αRR is raised to the nth power (n is 1
The following equation (8) is obtained based on the bump / rebound / stop / feedback gain obtained
The bumps to be applied to the hydraulic suspension mechanism 19 of each axle
The rebound stop force FbsFL to FbsRR is obtained.

【0029】 KbsFL=[xFL/xstF], FbsFL=KbsFL・xFL KbsFR=[xFR/xstF], FbsFR=KbsFR・xFR KbsRL=[xRL/xstR], FbsRL=KbsRL・xRL KbsRR=[xRR/xstR], FbsRR=KbsRR・xRR ……(8) ただし、記号[]は都合により絶対値を表すものとす
る。
[0029] KbsFL = [xFL / xstF] n , FbsFL = KbsFL · xFL KbsFR = [xFR / xstF] n, FbsFR = KbsFR · xFR KbsRL = [xRL / xstR] n, FbsRL = KbsRL · xRL KbsRR = [xRR / xstR] n , FbsRR = KbsRR · xRR (8) where the symbol [] represents an absolute value for convenience.

【0030】以上の結果から各車軸の油量制御弁16の
制御電圧VFL〜VRRは、次の式(9)で表される。
From the above results, the control voltages VFL to VRR of the oil amount control valve 16 of each axle are expressed by the following equation (9).

【0031】VFL=−KV1・F12−KV2・F22−KV5・F32−
KV7・F11−KV09・F21+KV11・FbsFLVFR=+KV1・F12−
KV2・F22−KV5・F32+KV7・F11−KV09・F21+KV11・Fbs
FRVRL=−KV3・F12+KV4・F22−KV6・F32−KV8・F11+
KV10・F21+KV12・FbsRLVRR=+KV3・F12+KV4・F22−
KV6・F32+KV8・F11+KV10・F21+KV12・FbsRR……
(9)ただし、KV1〜KV12:定数 図1に示すように、本発明は上述の原理により、各車軸
の車高センサ28により車高変化量xFL〜xRRを検出
し、相対変位量算出手段35により車体と車軸との間の
相対的なロール変位量Δφ、ピツチ変位量Δθ、バウン
ス変位量Δxを求め、振動制御量算出手段38により直
進走行時のロール制御トルクF12、ピツチ制御トルクF
22、上下制御力F32を求める。
VFL = -KV1 / F12-KV2 / F22-KV5 / F32-
KV7 ・ F11−KV09 ・ F21 + KV11 ・ FbsFLVFR = + KV1 ・ F12−
KV2 ・ F22−KV5 ・ F32 + KV7 ・ F11−KV09 ・ F21 + KV11 ・ Fbs
FRVRL = −KV3 ・ F12 + KV4 ・ F22−KV6 ・ F32−KV8 ・ F11 +
KV10 ・ F21 + KV12 ・ FbsRLVRR = + KV3 ・ F12 + KV4 ・ F22−
KV6 ・ F32 + KV8 ・ F11 + KV10 ・ F21 + KV12 ・ FbsRR ……
(9) However, KV1 to KV12: constants As shown in FIG. 1, according to the present invention, the vehicle height change amounts xFL to xRR are detected by the vehicle height sensors 28 of each axle, and the relative displacement amount calculating means 35 is used. To obtain the relative roll displacement Δφ, pitch displacement Δθ, and bounce displacement Δx between the vehicle body and the axle, and the roll control torque F12 and pitch control torque F during straight running by the vibration control amount calculating means 38.
22. Calculate the vertical control force F32.

【0032】ロール制御トルク算出手段36によりロー
ル変位量Δφと横加速度センサ32により検出した横加
速度g1 とから、旋回走行時の車体のロール制御トルク
F11を求め、ピツチ制御トルク算出手段37によりピツ
チ変位量Δθと前後加速度センサ29により検出した前
後加速度g2 とから、車体の加減速時のピツチ制御トル
クF21を求める。バンプ・リバウンド・ストツプ力算出
手段34により車高変化量xFL〜xRRから、バンプ・リ
バウンド・ストツプ力FbsFL〜FbsRRを求める。
The roll control torque F11 of the vehicle body during turning is obtained from the roll displacement amount Δφ by the roll control torque calculating means 36 and the lateral acceleration g1 detected by the lateral acceleration sensor 32, and the pitch displacement is calculated by the pitch control torque calculating means 37. From the amount Δθ and the longitudinal acceleration g2 detected by the longitudinal acceleration sensor 29, a pitch control torque F21 during acceleration / deceleration of the vehicle body is obtained. The bump rebound stop force calculating means 34 calculates the bump rebound stop force FbsFL-FbsRR from the vehicle height change amounts xFL-xRR.

【0033】上述の結果から制御油量算出手段39によ
り各油量制御弁16の制御電圧VFL〜VRRを求め、各制
御電圧VFL〜VRRに対応して油量制御弁16を駆動し、
各車軸の油圧式懸架機構19の油量を加減し、車体をほ
ぼフラツトに保つ。
From the above results, the control oil amount calculating means 39 obtains the control voltages VFL to VRR of the respective oil amount control valves 16, and drives the oil amount control valves 16 in accordance with the respective control voltages VFL to VRR.
The amount of oil in the hydraulic suspension mechanism 19 of each axle is adjusted to keep the vehicle body substantially flat.

【0034】図3〜5はマイクロコンピユータからなる
電子制御装置により、上述の制御を行う制御プログラム
の流れ図である。この制御プログラムは所定時間ごとに
繰り返し実行する。p11〜p22,p31〜p34,p51〜p
57は制御プログラムのステツプを表す。p11で制御プロ
グラムを開始し、p12で初期化を行い、p13で割込プロ
グラムに移り、油圧センサ9により油圧ポンプ4の出力
油圧pm を読み込み、出力油圧pm が所定値pc よりも
大きい場合は、油圧制御弁12を開いて出力油圧pm を
下げ、出力油圧pm が所定値pc よりも小さい場合は、
油圧制御弁12を閉じて出力油圧pm を上げ所定値pc
に保ち、本プログラムへ戻る。
FIGS. 3 to 5 are flow charts of a control program for performing the above-described control by an electronic control unit composed of a microcomputer. This control program is repeatedly executed at predetermined time intervals. p11-p22, p31-p34, p51-p
57 represents the steps of the control program. A control program is started at p11, initialization is performed at p12, an interrupt program is started at p13, an output oil pressure pm of the hydraulic pump 4 is read by the oil pressure sensor 9, and if the output oil pressure pm is larger than a predetermined value pc, When the output hydraulic pressure pm is lowered by opening the hydraulic control valve 12 and the output hydraulic pressure pm is smaller than the predetermined value pc,
The hydraulic pressure control valve 12 is closed and the output hydraulic pressure pm is increased to a predetermined value pc.
And return to this program.

【0035】p14で各車軸の車高hFL〜hRRを車高セン
サ28から、横加速度g1 を横加速度センサ32から、
前後加速度g2 を前後加速度センサ29からそれぞれ読
み込む。p15で各車軸の車高変化量xFL〜xRRを求め、
p16で車体重心と各車軸中心との相対的なロール変位量
Δφ、ピツチ変位量Δθ、バウンス変位量Δxを求め、
p17で直進走行時のロール制御トルクF12、ピツチ制御
トルクF22、バウンス変位量F32を求める。P18でロー
ル変位量Δφと横加速度g1 とから旋回走行時のロール
制御トルクF11を求め、ピツチ変位量Δθと前後加速度
g2 とから加減速時のピツチ制御トルクF21を求める。
At p14, the vehicle heights hFL to hRR of each axle are obtained from the vehicle height sensor 28, and the lateral acceleration g1 is obtained from the lateral acceleration sensor 32.
The longitudinal acceleration g2 is read from the longitudinal acceleration sensor 29, respectively. Calculate the vehicle height change amount xFL ~ xRR of each axle by p15,
At p16, the relative roll displacement Δφ, pitch displacement Δθ, and bounce displacement Δx between the vehicle center of gravity and the center of each axle are obtained,
At p17, the roll control torque F12, pitch control torque F22, and bounce displacement F32 during straight running are determined. At P18, a roll control torque F11 during turning is obtained from the roll displacement Δφ and the lateral acceleration g1, and a pitch control torque F21 during acceleration / deceleration is obtained from the pitch displacement Δθ and the longitudinal acceleration g2.

【0036】p19で図4に示すバンプ・リバウンド・ス
トツプルーチンによりバンプ・リバウンド・ストツプ力
FbsFL〜FbsRRをそれぞれ求める。p20で車体をフラツ
トに保つための各車軸の油量制御弁16の制御電圧VFL
〜VRRを求める。p21で図5に示す油圧式懸架機構駆動
ルーチンにより各油量制御弁16をフイードバツク制御
し、各油圧式懸架機構19の油量を加減し、p22で終了
する。
At p19, the bump rebound stop forces FbsFL to FbsRR are obtained by the bump rebound stop routine shown in FIG. The control voltage VFL of the oil amount control valve 16 of each axle for keeping the vehicle flat at p20
Find VRR. At p21, each oil amount control valve 16 is feedback-controlled by the hydraulic suspension mechanism driving routine shown in FIG. 5, the amount of oil of each hydraulic suspension mechanism 19 is adjusted, and the process ends at p22.

【0037】図4に示すように、バンプ・リバウンド・
ストツプルーチンはp31で開始し、p32で各車軸の車高
変化量xFL〜xRRを求める。p33で予め設定された前車
軸のバンプ・リバウンド作動限界xstF に対する車高変
化量xFL,xFRの割合からバンプ・リバウンド・ストツ
プ・フイードバツクゲインKbsFL ,KbsFR を求め、後車
軸のバンプ・リバウンド作動限界xstR に対する車高変
化量xRL,xRRの割合からバンプ・リバウンド・ストツ
プ・フイードバツクゲインKbsRL ,KbsRR を求める。p
34で各車軸の油圧式懸架機構へ加えるバンプ・リバウン
ド・ストツプ力FbsFL〜FbsRRをそれぞれ求め、p35で
本プログラムへ戻る。
As shown in FIG. 4, the bump rebound
The stop routine starts at p31, and at p32, the vehicle height change amounts xFL to xRR of each axle are obtained. The bump rebound stop stop feedback gains KbsFL and KbsFR are obtained from the ratio of the vehicle height change amounts xFL and xFR to the front axle bump rebound operation limit xstF set in p33, and the rear axle bump rebound operation limit. The bump rebound stop feedback gains KbsRL and KbsRR are obtained from the ratio of the vehicle height change amounts xRL and xRR to xstR. p
At 34, the bump / rebound / stopping forces FbsFL to FbsRR to be applied to the hydraulic suspension mechanism of each axle are determined, and the program returns to p35 at p35.

【0038】図5に示すように、油圧式懸架機構駆動ル
ーチンはp51で開始し、p52で各油圧式懸架機構19の
油圧pFL〜pRRを油圧センサ17から読み込み、p53で
油圧pFL〜pRRを電圧VsFL 〜VsRR に変換する。p54
で電圧VsFL 〜VsRR から各油量制御弁16の励磁電圧
VeFL 〜VeRR を求める。p55で油量制御弁16を励磁
し、各油圧式懸架機構19へ供給しまたは排出する油量
QFL〜QRRを調整し、p56により油圧式懸架機構19を
駆動し、p57で本プログラムへ戻る。
As shown in FIG. 5, the hydraulic suspension mechanism driving routine is started at p51, the hydraulic pressures pFL-pRR of each hydraulic suspension mechanism 19 are read from the hydraulic pressure sensor 17 at p52, and the hydraulic pressures pFL-pRR are applied to the voltage at p53. Convert to VsFL to VsRR. p54
Then, the excitation voltages VeFL-VeRR of each oil amount control valve 16 are obtained from the voltages VsFL-VsRR. The oil amount control valve 16 is excited at p55, the oil amount QFL to QRR to be supplied to or discharged from each hydraulic suspension mechanism 19 is adjusted, the hydraulic suspension mechanism 19 is driven at p56, and the program returns to p57.

【0039】以上により、各車軸へ過大な路面入力が作
用しても、油圧式懸架機構19の作動量が作動限界に抑
えられるので、油圧式懸架機構19のフルバンプ、フル
リバウンドによる破損を防止できる。
As described above, even when an excessive road surface input is applied to each axle, the amount of operation of the hydraulic suspension mechanism 19 is suppressed to the operation limit, so that the hydraulic suspension mechanism 19 can be prevented from being damaged by full bump and full rebound. .

【0040】[0040]

【発明の効果】本発明によれば、各車軸の車高変化量が
油圧式懸架機構の作動限界に近づくと、各車軸のフルバ
ンプ、フルリバウンドを防止しようとするバンプ・リバ
ウンド・ストツプ力が大きくなるので、油圧式懸架機構
のピストンがシリンダ端壁に衝突して損傷するのを防止
できる。
According to the present invention, when the amount of change in vehicle height of each axle approaches the operating limit of the hydraulic suspension mechanism, the bump-rebound-stopping force for preventing full-bump and full-rebound of each axle increases. Therefore, the piston of the hydraulic suspension mechanism can be prevented from colliding with the cylinder end wall and being damaged.

【0041】フルバンプ、フルリバウンドを防止するバ
ンプ・リバウンド・ストツプ力をきめ細かく制御できる
ので、過大な路面入力に対する車体の受ける衝撃が小さ
く、乗り心地が悪くなる度合も少くなる。
Since the bump-rebound-stopping force for preventing full-bump and full-rebound can be finely controlled, the impact of the vehicle body on excessive road input is small, and the degree of deterioration in riding comfort is also reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る車体の姿勢制御装置のブロツク図
である。
FIG. 1 is a block diagram of a vehicle body attitude control device according to the present invention.

【図2】油圧式懸架機構の油圧回路図である。FIG. 2 is a hydraulic circuit diagram of a hydraulic suspension mechanism.

【図3】同制御装置の制御プログラムの流れ図である。FIG. 3 is a flowchart of a control program of the control device.

【図4】同制御プログラムのバンプ・リバウンド・スト
ツプルーチンの流れ図である。
FIG. 4 is a flowchart of a bump rebound stop routine of the control program.

【図5】同制御プログラムの油圧式懸架機構駆動ルーチ
ンの流れ図である。
FIG. 5 is a flowchart of a hydraulic suspension mechanism driving routine of the control program.

【符号の説明】[Explanation of symbols]

16:油量制御弁 19:油圧式懸架機構 28:車高
センサ 29:前後加速度センサ 32:横加速度セン
サ 34:バンプ・リバウンド・ストツプ力算出手段
35:相対変位量算出手段 36:ロール制御トルク算
出手段 37:ピツチ制御トルク算出手段 38:振動
制御量算出手段 39:制御油量算出手段
16: oil amount control valve 19: hydraulic suspension mechanism 28: vehicle height sensor 29: longitudinal acceleration sensor 32: lateral acceleration sensor 34: bump / rebound / stop force calculating means
35: relative displacement amount calculating means 36: roll control torque calculating means 37: pitch control torque calculating means 38: vibration control amount calculating means 39: control oil amount calculating means

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B60G 1/00 - 25/00 ──────────────────────────────────────────────────続 き Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) B60G 1/00-25/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】各車輪の車高を検出する車高センサの信号
に基づき車体のロール変位量、ピツチ変位量、上下変位
量を求める相対変位量算出手段と、相対変位量算出手段
の信号に基づき車体をフラツトに保つための各車輪のロ
ール制御トルクF12、ピツチ制御トルクF22、上下変位
制御力F32を求める制御量算出手段と、制御量算出手段
の信号に基づき各車輪の油圧式懸架機構の油量を求める
油量算出手段と、油量算出手段の信号に基づき各油圧式
懸架機構の油量に相当する次式から求めた制御電圧VFL
〜VRRを加減する油量制御弁とを備える車体の姿勢制御
装置において、 −F12=−K1・Δφ−K2・dΔφ/dt−K7・∫Δφdt −F22=−K3・Δθ−K4・dΔθ/dt−K8・∫Δθdt −F32=−K5・Δx−K6・dΔx/dt−K9・∫Δxdt ただし、Δφ:車体と車軸との間の相対的なロール変位
量 Δθ:車体と車軸との間の相対的なピツチ変位量 Δx:車軸のバウンス変位量 K1〜K6:フイードバツクゲイン K7〜K9:定数 VFL=−KV1・F12−KV2・F22−KV5・F32 VFR=+KV1・F12−KV2・F22−KV5・F32 VRL=−KV3・F12+KV4・F22−KV6・F32 VRR=+KV3・F12+KV4・F22−KV6・F32 ただし、KV1〜KV6:定数 前記制御電圧に次式 KV7・FbsFL=KV7・[xFL/xstF]・xFL KV7・FbsFR=KV7・[xFR/xstF]・xFR KV8・FbsRL=KV8・[xRL/xstR]・xRL KV8・FbsRR=KV8・[xRR/xstR]・xRR ただし、KV7〜KV8:定数 xFL〜xRR:各車輪支持部の車高変化量 xstF,xstR:バンプ・ストツプ力 n:1よりも大きい任意の数 で表されるバンプ・ストツプ力に相当する制御電圧KV7・
FbsFL,KV7・FbsFR,KV8・FbsRL,KV8・FbsRRを加算す
ることを特徴とする車体の姿勢制御装置。
1. A relative displacement calculating means for calculating a roll displacement, a pitch displacement and a vertical displacement of a vehicle body based on a signal of a vehicle height sensor for detecting a vehicle height of each wheel, and a signal of a relative displacement calculating means. Control amount calculating means for obtaining the roll control torque F12, pitch control torque F22, and vertical displacement control force F32 of each wheel for keeping the vehicle body flat based on the signals of the control amount calculating means. An oil amount calculating means for obtaining the oil amount, and a control voltage VFL obtained from the following equation corresponding to the oil amount of each hydraulic suspension mechanism based on a signal from the oil amount calculating means.
-F12 = -K1..DELTA..phi.-K2.d.DELTA.φ / dt-K7..DELTA..DELTA..phi.dt -F22 = -K3..DELTA..theta.-K4.d.DELTA..theta. / Dt −K8 · ∫Δθdt −F32 = −K5 · Δx−K6 · dΔx / dt−K9 · ∫Δxdt where Δφ: relative roll displacement between the vehicle body and the axle Δθ: relative between the vehicle body and the axle Pitch displacement Δx: Bounce displacement of axle K1 to K6: Feedback gain K7 to K9: Constant VFL = −KV1, F12−KV2, F22−KV5, F32 VFR = + KV1, F12−KV2, F22−KV5 · F32 VRL = -KV3 · F12 + KV4 · F22-KV6 · F32 VRR = + KV3 · F12 + KV4 · F22-KV6 · F32 However, KV1~KV6: following equation constant the control voltage KV7 · FbsFL = KV7 · [xFL / xstF] n · xFL KV7 · FbsFR = KV7 · [xFR / xstF] n · xFR KV8 · FbsRL = KV8 · [xRL / xstR] n · xRL KV8 · FbsRR = KV8 · [ RR / xstR] n · xRR However, KV7~KV8: constant XFL~xRR: vehicle height variation xstF of each wheel support portion, xstr: bump Sutotsupu force n: bump represented by any number greater than 1 The control voltage KV7 equivalent to the stop force
A body attitude control device characterized by adding FbsFL, KV7 · FbsFR, KV8 · FbsRL, KV8 · FbsRR.
JP04137942A 1992-04-30 1992-04-30 Body attitude control device Expired - Fee Related JP3123572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04137942A JP3123572B2 (en) 1992-04-30 1992-04-30 Body attitude control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04137942A JP3123572B2 (en) 1992-04-30 1992-04-30 Body attitude control device

Publications (2)

Publication Number Publication Date
JPH05305807A JPH05305807A (en) 1993-11-19
JP3123572B2 true JP3123572B2 (en) 2001-01-15

Family

ID=15210311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04137942A Expired - Fee Related JP3123572B2 (en) 1992-04-30 1992-04-30 Body attitude control device

Country Status (1)

Country Link
JP (1) JP3123572B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714649U (en) * 1993-08-12 1995-03-10 東洋電機製造株式会社 Vacuum suction chuck

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714649U (en) * 1993-08-12 1995-03-10 東洋電機製造株式会社 Vacuum suction chuck

Also Published As

Publication number Publication date
JPH05305807A (en) 1993-11-19

Similar Documents

Publication Publication Date Title
US5555501A (en) Road vehicle cab attitude controlling apparatus
JP2565384B2 (en) Control device for automobile active suspension
JPH02182521A (en) Suspension control device
JPH04504701A (en) Control device for suspension control of land vehicles
EP0963867A1 (en) Vehicle suspension control system and method
JP2956221B2 (en) Body attitude control device
JP3123572B2 (en) Body attitude control device
JP3189850B2 (en) Body attitude control device
JPH07117532A (en) Position control device for seat
JP2956222B2 (en) Body attitude control device
JPH06278442A (en) Vehicle attitude controller
JP3047467B2 (en) Body attitude control device
JP3123579B2 (en) Body attitude control device
JPH06107242A (en) Posture controller of cab
JP2953062B2 (en) Body attitude control device
JP3006088B2 (en) Body attitude control device
JPH06107241A (en) Posture controller of cab
JPH05270230A (en) Car attitude control device
JPH06107243A (en) Posture controller of cab
JPH06286507A (en) Attitude control device for seat
JPH05278429A (en) Lateral acceleration detecting method for vehicle and active suspension device using such method
JP3189859B2 (en) Vehicle attitude control device
JPH0986448A (en) Attitude control device for cab
JP3360692B2 (en) Cab attitude control device
JPH05330451A (en) Attitude controller for cab

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees