JP3047467B2 - Body attitude control device - Google Patents
Body attitude control deviceInfo
- Publication number
- JP3047467B2 JP3047467B2 JP2339439A JP33943990A JP3047467B2 JP 3047467 B2 JP3047467 B2 JP 3047467B2 JP 2339439 A JP2339439 A JP 2339439A JP 33943990 A JP33943990 A JP 33943990A JP 3047467 B2 JP3047467 B2 JP 3047467B2
- Authority
- JP
- Japan
- Prior art keywords
- longitudinal acceleration
- vehicle
- pitch
- control
- vehicle body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Vehicle Body Suspensions (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は車両の加減速時の車体のピツチ(前後傾動)
を抑え、車体姿勢をほぼフラツトに保つ車体の姿勢制御
装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a pitch (forward and backward tilting) of a vehicle body during acceleration and deceleration of a vehicle.
The present invention relates to a posture control device for a vehicle body that suppresses the vehicle body posture and keeps the vehicle body posture substantially flat.
[従来の技術] 特開昭61−181714号公報に開示される車体の姿勢制御
装置では、加速時の車体の前上り(クウオート)や減速
時の車体の前下り(ダイブ)を抑えるために、前後加速
度に比例した油量を前・後輪の油圧式懸架機構に対し各
別に供給するか排出し、車体姿勢をほぼフラツトに保つ
ようにしている。[Prior Art] The vehicle body posture control device disclosed in Japanese Patent Application Laid-Open No. 61-181714 discloses a vehicle body attitude control device that suppresses the forward movement of the vehicle body during acceleration (quote) and the forward movement of the vehicle body during deceleration (dive). The amount of oil proportional to the longitudinal acceleration is supplied to or discharged from the hydraulic suspension mechanisms for the front and rear wheels, respectively, so that the vehicle body attitude is kept substantially flat.
上述の車体の姿勢制御装置では、前後加速度を検出す
る前後加速度センサが車体の前後傾動中心と同じ高さに
設置されていれば問題はないが、第4図に示すように、
普通の車両では車体の前後傾動中心Oが路面よりも下位
に存するので、前後加速度センサを車体のピツチ中心と
同じ高さに配設することは不可能である。In the above body posture control device, there is no problem if the longitudinal acceleration sensor for detecting longitudinal acceleration is installed at the same height as the longitudinal tilt center of the vehicle, but as shown in FIG.
In a normal vehicle, the longitudinal center O of the vehicle body is located below the road surface, so that it is impossible to arrange the longitudinal acceleration sensor at the same height as the pitch center of the vehicle body.
そこで、前後加速度センサを車体のピツチ中心よりも
上位に設けると、車体のピツチに伴う前後加速度成分g1
も加算されて検出されるので、前後加速度センサの検出
値に基づき各油圧式懸架機構の油量を加減すると、乗り
心地に悪影響を及ぼす。Therefore, when the longitudinal acceleration sensor is provided above the center of the pitch of the vehicle body, the longitudinal acceleration component g1 due to the pitch of the vehicle body is obtained.
Is also added and detected. Therefore, if the oil amount of each hydraulic suspension mechanism is adjusted based on the detection value of the longitudinal acceleration sensor, the ride comfort is adversely affected.
[発明が解決しようとする問題点] 本発明の目的は上述の問題に鑑み、前後加速度センサ
を車体のピツチ中心よりも高いところに配設したことに
よる悪影響を除去するために、特に影響度の高い中速走
行での前後加速度センサの検出値を補正し、補正された
前後加速度に基づき、各油圧式懸架機構の油量を加減
し、車体のピツチを抑える車体の姿勢制御装置を提供す
ることにある。[Problems to be Solved by the Invention] In view of the above-described problems, an object of the present invention is to reduce the adverse effect caused by disposing the longitudinal acceleration sensor at a position higher than the pitch center of the vehicle body. Provided is a vehicle body posture control device that corrects a detection value of a longitudinal acceleration sensor during high middle-speed running, adjusts the oil amount of each hydraulic suspension mechanism based on the corrected longitudinal acceleration, and suppresses the vehicle body pitch. It is in.
[問題を解決するための手段] 上記目的を達成するために、本発明の構成は各車輪の
車高を検出する車高センサの信号に基づきピツチ変位量
を求める相対変位量算出手段と、前記車速センサと前後
加速度センサの各信号から低速と高速では0、中速では
車速変化に関連して1以下の値をとる補正係数を乗じた
前後加速度を求める前後加速度補正手段と、前記相対変
位量算出手段と前記前後加速度補正手段の信号に基づき
車体をフラツトに保つためのピツチ制御トルクを求める
振動制御量算出手段と、該振動制御量算出手段の信号に
基づき油圧式懸架機構の制御油量を求める油量算出手段
と、該油量算出手段の信号に基づき各油圧式懸架機構の
油量を加減する油量制御弁とを備えたことを特徴とす
る。[Means for Solving the Problem] In order to achieve the above object, a configuration of the present invention comprises a relative displacement amount calculating means for obtaining a pitch displacement amount based on a signal from a vehicle height sensor for detecting a vehicle height of each wheel; A longitudinal acceleration correcting means for obtaining a longitudinal acceleration multiplied by a correction coefficient which takes a value of 0 at low speed and high speed and 1 or less at medium speed from a signal of the vehicle speed sensor and the longitudinal acceleration sensor, and a relative displacement amount at medium speed; A vibration control amount calculating means for obtaining a pitch control torque for keeping the vehicle body flat based on signals from the calculating means and the longitudinal acceleration correcting means; and a control oil amount of the hydraulic suspension mechanism based on a signal from the vibration control amount calculating means. It is characterized by comprising an oil amount calculating means to be obtained, and an oil amount control valve for adjusting the oil amount of each hydraulic suspension mechanism based on a signal from the oil amount calculating means.
[作用] 極低速走行では車体のピツチの乗心地への悪影響が少
いこと、高速走行では車体にピツチを起すような路面入
力が少いことに着目し、前後加速度センサの検出値をそ
のまま用い、前後の各油圧式懸架機構の油量を加減す
る。[Action] Focusing on the fact that the pitch of the vehicle body does not adversely affect the riding comfort at extremely low speeds and the fact that there is little road surface input that causes the vehicle body to pitch at high speeds, the detection value of the longitudinal acceleration sensor is used as it is. The amount of oil in each of the front and rear hydraulic suspension mechanisms is adjusted.
中速走行では、前後加速度センサの検出値に適正な補
正値を乗じ、補正した前後加速度に基づき、ピツチを抑
えるよう前後の油圧式懸架機構へ加える油量を制御す
る。In middle-speed running, the detection value of the longitudinal acceleration sensor is multiplied by an appropriate correction value, and the amount of oil applied to the front and rear hydraulic suspension mechanisms is controlled based on the corrected longitudinal acceleration so as to suppress the pitch.
本発明によれば、前後加速度センサの検出値の内で車
体のピツチに伴い前後加速度センサに加わる前後加速度
成分が除去され、路面変化や車両の加減速に伴い車体に
作用する前後加速度に対応する油量が、油圧式懸架機構
へ加えられることになり、従来の過大な油量の制御によ
る悪影響がなく、車体姿勢がより迅速にフラツトに復帰
する。According to the present invention, the longitudinal acceleration component applied to the longitudinal acceleration sensor due to the pitch of the vehicle body is removed from the detection values of the longitudinal acceleration sensor, and the longitudinal acceleration component acting on the vehicle body due to the road surface change or the acceleration / deceleration of the vehicle is removed. The oil amount is added to the hydraulic suspension mechanism, and the vehicle body attitude returns to the flat more quickly without the adverse effect of the conventional excessive oil amount control.
[発明の実施例] 第1図は本発明に係る車体の姿勢制御装置のブロツク
図、第2図は油圧式懸架機構の油圧回路図である。第2
図に示すように、機関により駆動される油圧ポンプ4
は、油槽から油を吸い込み、管5から逆止弁6を経て管
7の蓄圧器8へ供給する。管7への油圧を所定値に保つ
ために、油圧監視手段Aが備えられる。つまり、管5の
油圧を検出する油圧センサ9の検出値が所定値を超える
と、油圧制御弁12が切り換わり、管5の圧油の一部が管
10、油圧制御弁12、管13、フイルタ27を経て油槽2へ戻
される。また、油圧ポンプ4の吐出口の油圧が異常に高
くなると、管5の圧油の一部が公知の逃し弁26、フイル
タ27を経て油槽2へ戻される。FIG. 1 is a block diagram of an attitude control device for a vehicle body according to the present invention, and FIG. 2 is a hydraulic circuit diagram of a hydraulic suspension mechanism. Second
As shown in the figure, a hydraulic pump 4 driven by the engine
Sucks oil from the oil tank and supplies the oil from the pipe 5 to the accumulator 8 of the pipe 7 via the check valve 6. Oil pressure monitoring means A is provided to keep the oil pressure to the pipe 7 at a predetermined value. That is, when the detection value of the oil pressure sensor 9 for detecting the oil pressure of the pipe 5 exceeds a predetermined value, the hydraulic control valve 12 is switched, and a part of the pressure oil of the pipe 5
10. The oil is returned to the oil tank 2 via the hydraulic control valve 12, the pipe 13, and the filter 27. When the oil pressure at the discharge port of the hydraulic pump 4 becomes abnormally high, a part of the pressure oil in the pipe 5 is returned to the oil tank 2 through a known relief valve 26 and a filter 27.
管7の圧油は左右の前輪と左右の後輪(第2図には左
後輪だけを代表して示す)25の各油圧式懸架機構19へそ
れぞれ供給される。油圧式懸架機構19はシリンダ23にピ
ストン22を嵌装し、ピストン22から上方へ突出するロツ
ド24を車体20に結合する一方、シリンダ23から下方へ突
出するロツドを車輪25のナツクルに連結してなる。シリ
ンダ23の壁部と車体20との間にばね21が介装される。車
体20のナツクルとの間に、車体20と車輪25との上下変位
量を検出する車高センサ28が配設される。なお、左右の
前輪、左右の後輪の各懸架機構19を特定する場合は、F
L,FR,RL,RRの添字を付けることにする。The pressure oil in the pipe 7 is supplied to each hydraulic suspension mechanism 19 of the left and right front wheels and left and right rear wheels (only the left rear wheel is shown in FIG. 2). The hydraulic suspension mechanism 19 fits the piston 22 in the cylinder 23 and connects the rod 24 projecting upward from the piston 22 to the vehicle body 20, while connecting the rod projecting downward from the cylinder 23 to the nut of the wheel 25. Become. A spring 21 is interposed between the wall of the cylinder 23 and the vehicle body 20. A vehicle height sensor 28 that detects the amount of vertical displacement between the vehicle body 20 and the wheels 25 is provided between the vehicle body 20 and a nut of the vehicle body 20. When specifying the suspension mechanisms 19 for the left and right front wheels and the left and right rear wheels, F
L, FR, RL, RR will be appended.
管7の圧油は逆止弁14、一般的な中立位置閉鎖型の電
磁比例圧力制御弁からなる油量制御弁16、絞り18aを経
て蓄圧器18へ供給され、さらに油圧式懸架機構19のロツ
ド24とピストン22の内部通路を経てシリンダ23の下端室
へ供給される。シリンダ23の下端室へ供給される油圧
は、油圧センサ17により検出される。油量制御弁16が切
り換わると、シリンダ23の下端室の油は油量制御弁16、
逆止弁15、管13、フイルタ27を経て油槽2へ戻される。The pressure oil in the pipe 7 is supplied to an accumulator 18 through a check valve 14, an oil amount control valve 16 composed of a general neutral position closed type electromagnetic proportional pressure control valve, and a throttle 18a. It is supplied to the lower end chamber of the cylinder 23 through the internal passage of the rod 24 and the piston 22. The oil pressure supplied to the lower end chamber of the cylinder 23 is detected by the oil pressure sensor 17. When the oil amount control valve 16 is switched, the oil in the lower end chamber of the cylinder 23 is changed to the oil amount control valve 16,
The oil is returned to the oil tank 2 through the check valve 15, the pipe 13, and the filter 27.
前後・左右の車輪を支持する各油圧式懸架機構19は独
立に、逆止弁14,15、油量制御弁16、絞り18a、蓄圧器1
8、油圧センサ17、車高センサ28を備えている。Each hydraulic suspension mechanism 19 supporting the front, rear, left and right wheels is independently provided with check valves 14, 15, oil quantity control valve 16, throttle 18a, pressure accumulator 1
8, a hydraulic sensor 17 and a vehicle height sensor 28 are provided.
車体(ばね上)のロール量(角度)、車体ピツチ量
(角度)、車体重心の上下位置をそれぞれφ2,θ2,x2と
し、車軸(ばね下)のロール量、車軸のピツチ量、車軸
(左右中心)の上下位置をそれぞれφ1,θ1,x1とする
と、車体と車軸との間の相対的なロール変位量Δφ、ピ
ツチ変位量Δθ、車軸の上下変位量Δxは、次式で表さ
れる。The roll amount (angle) of the body (spring), the body pitch (angle), and the vertical position of the vehicle center of gravity are φ2, θ2, x2, respectively, the roll amount of the axle (unsprung), the pitch of the axle, the axle (left and right) Assuming that the vertical position of (center) is φ1, θ1, x1, respectively, the relative roll displacement Δφ, pitch displacement Δθ, and vertical displacement Δx of the axle between the vehicle body and the axle are expressed by the following equations.
φ2=φ1+Δφ θ2=θ1+Δθ x2=x1+Δx 停車中の平均的な車高をh、各車輪の車高センサ28の
検出値をhFL,hFR,hRL,hRR、各車輪の車高変化がロール
変位量Δφ、ピツチ変位量Δθに及ぼす影響度を表す係
数をk11,k12,k21,k22とすると、ロール変位量Δφ、ピ
ツチ変位量Δθ、車軸の上下変位量Δxは、次式にな
る。φ2 = φ1 + Δφ θ2 = θ1 + Δθ x2 = x1 + Δx h is the average vehicle height during stop, hFL, hFR, hRL, hRR is the detection value of the vehicle height sensor 28 of each wheel, and the vehicle height change of each wheel is the roll displacement amount Δφ And k11, k12, k21 and k22 as coefficients representing the degree of influence on the pitch displacement .DELTA..theta., The roll displacement .DELTA..phi., The pitch displacement .DELTA..theta.
Δφ=kφ{k11(hFL−hFR)+k12(hRL−hR
R)} Δθ=kθ{k21(hFL+hFR)−k22(hRL+hR
R)} Δx=kx(hFL+hFR+hRL+hRR−4h) …(1) ただし、kφ,kθ,kxはゲインである。各係数k11,k1
2,k21,k22は前・後軸の荷重負担、ばね21のばね定数な
どを勘案して実験的に求める。Δφ = kφ {k11 (hFL−hFR) + k12 (hRL−hR
R)} Δθ = kθ {k21 (hFL + hFR) -k22 (hRL + hR
R)} Δx = kx (hFL + hFR + hRL + hRR−4h) (1) where kφ, kθ, and kx are gains. Each coefficient k11, k1
2, k21 and k22 are experimentally determined in consideration of the load burden on the front and rear shafts, the spring constant of the spring 21, and the like.
一般に、路面入力に対し車体をフラツトに保つ条件
は、極低周波入力に対しては、 Δφ→0 Δφ/φ1→0 Δθ→0 Δθ/θ1→0 Δx→0 Δx/x1→0 高周波入力に対しては、 Δφ→−φ1 Δφ/φ1→−1 Δθ→−θ1 Δθ/θ1→−1 Δx→−x1 Δx/x1→−1 と考えられる。Generally, the condition for keeping the vehicle flat against road surface input is as follows: For extremely low frequency input, Δφ → 0 Δφ / φ1 → 0 Δθ → 0 Δθ / θ1 → 0 Δx → 0 Δx / x1 → 0 High frequency input On the other hand, it can be considered that Δφ → −φ1 Δφ / φ1 → −1 Δθ → −θ1 Δθ / θ1 → −1 Δx → −x1 Δx / x1 → −1.
そこで、路面入力に対し車体をフラツトに保つための
振動制御量、すなわちロール制御トルクF12、ピツチ制
御トルクF22、上下制御力F32は、 −F12=−k1・Δφ−k2・Δφ′ −F22=−k3・Δθ−k4・Δθ′ −F32=−k5・Δx−k6・Δx′ …(2) ただし、k1〜k6は定数 で与えられると仮定すると、次の運動方程式が成り立
つ。Therefore, the vibration control amounts for keeping the vehicle body flat against the road surface input, that is, the roll control torque F12, the pitch control torque F22, and the vertical control force F32 are given by -F12 = -k1, .DELTA..phi.-k2..DELTA..phi .'- F22 =- k3 · Δθ−k4 · Δθ′−F32 = −k5 · Δx−k6 · Δx ′ (2) However, assuming that k1 to k6 are given by constants, the following equation of motion is established.
IX・φ2″=−k1・Δφ−k2・Δφ′ IY・θ2″=−k3・Δθ−k4・Δθ′ m2・x2″=−k5・Δx−k6・Δx′ ただし、IX:車体ロールに対する慣性モーメント IY:車体ピツチに対する慣性モーメント m2:車体質量 上の方程式を変形し、ラプラス変換し、ラプラス演算
子をsで表すと、次式になる。IX ・ φ2 ″ = − k1 ・ Δφ−k2 ・ Δφ ′ IY ・ θ2 ″ = − k3 ・ Δθ−k4 ・ Δθ ′ m2 ・ x2 ″ = − k5 ・ Δx−k6 ・ Δx ′ where IX: inertia to the body roll Moment IY: Moment of inertia with respect to vehicle pitch m2: Vehicle mass The above equation is transformed, Laplace transform is performed, and the Laplace operator is represented by s, and the following equation is obtained.
Δφ/φ1=−1+(k1+k2・s) /(k1+k2・s+IX・s2) Δθ/θ1=−1+(k3+k4・s) /(k3+k4・s+IY・s2) Δx/x1=−1+(k5+k6・s) /(k5+k6・s+m2・s2) …(3) ここで、極低周波の入力に対する応答は上の伝達関数
においてs→0とした場合に相当し、高周波の入力にに
対する応答は上の伝達関数においてs→∽とした場合に
相当するから、 s→0の時 Δφ/φ1→−1+1→0 Δθ/θ1→−1+1→0 Δx/x1→−1+1→0 s→∽の時 Δφ/φ1→−1+0→−1 Δθ/θ1→−1+0→−1 Δx/x1→−1+0→−1 となり、車体がフラツトとなる条件を満していることが
分る。Δφ / φ1 = -1 + (k1 + k2 · s) / (k1 + k2 · s + IX · s 2) Δθ / θ1 = -1 + (k3 + k4 · s) / (k3 + k4 · s + IY · s 2) Δx / x1 = -1 + (k5 + k6 · s ) / (K5 + k6 · s + m2 · s 2 ) (3) Here, the response to the extremely low frequency input corresponds to the case where s → 0 in the above transfer function, and the response to the high frequency input is the above transfer. Since this corresponds to the case where s → ∽ in the function, when s → 0 Δφ / φ1 → −1 + 1 → 0 Δθ / θ1 → −1 + 1 → 0 Δx / x1 → −1 + 1 → 0 When s → ∽ Δφ / φ1 → −1 + 0 → −1 Δθ / θ1 → −1 + 0 → −1 Δx / x1 → −1 + 0 → −1, indicating that the vehicle body satisfies the condition of being flat.
しかし、(2)式のみにより制御を行う場合は、定数
k1〜k6の値をある程度大きくしないと、車両停止時の姿
勢をフラツトに維持できなくなる恐れがある。また、定
数k1〜k6の値が大きすぎると、低周波入力での乗り心地
に悪影響を及ぼす恐れがある。However, when control is performed only by equation (2), the constant
If the values of k1 to k6 are not increased to some extent, the posture when the vehicle is stopped may not be able to be maintained flat. On the other hand, if the values of the constants k1 to k6 are too large, there is a possibility that the ride comfort at low frequency input may be adversely affected.
そこで、(4)式で表すように、積分項を追加するこ
とにより、定常偏差を取り除く。つまり、 −F12=−k1・Δφ−k2・Δφ′−k7・∫Δφdt −F22=−k3・Δθ−k4・Δθ′−k8・∫Δθdt −F32=−k5・Δx−k6・Δx′−k9・∫Δxdt …(4) ただし、k7〜k9は定数 上述のフイードバツク制御を行えば、車速一定の直進
走行での路面入力に対して車体をフラツトに保つことが
できる。Therefore, as represented by equation (4), the steady-state error is removed by adding an integral term. That is, -F12 = -k1 · Δφ -k2 · Δφ'-k7 · ∫Δφdt -F22 = -k3 · Δθ -k4 · Δθ'-k8 · ∫Δθdt -F32 = -k5 · Δx -k6 · Δx'-k9 .DELTA..DELTA.xdt (4) where k7 to k9 are constants If the above-described feedback control is performed, the vehicle body can be kept flat against road surface input during straight running at a constant vehicle speed.
しかし、旋回走行時の横加速度と加減速時の前後加速
度とに対しては応答が間に合わず、車体の姿勢変化が生
じる。そこで、次のような横加速度、前後加速度に対応
した比例制御を付加する。車両が凹凸のない平坦な路面
を走行していると仮定すると、車体のロールとピツチに
ついて、次の運動方程式が成り立つ。However, the response is not enough for the lateral acceleration during turning and the longitudinal acceleration during acceleration / deceleration, and the posture of the vehicle body changes. Therefore, the following proportional control corresponding to the lateral acceleration and the longitudinal acceleration is added. Assuming that the vehicle is traveling on a flat road surface with no unevenness, the following equation of motion holds for the roll and pitch of the vehicle body.
IX・φ″=m2・hR・GYS+m2・g・hR・φ+F11 −kS1・φ IX・θ″=m2・hP・GXS+m2・g・hP・θ+F21 −kS2・θ …(5) ただし、hR :車体重心とロール中心の高低差 hP :車体重心とピツチ中心の高低差 F11:ロール制御トルク F21:ピツチ制御トルク kS1:ばね21のロール剛性係数 kS2:ばね21のピツチ剛性係数 GYS:横加速度センサの検出値 GXS:前後加速度センサの検出値 第4図にピツチ中心Oを中心とする車体のピツチの場
合について示すように、(5)式において、右辺の第1
項は車体重心に作用する横加速度(前後加速度)が車体
をロール(ピツチ)させるモーメント、第2項は車体の
ロール(ピツチ)に伴う車体重心に作用する重力加速度
が車体をロール(ピツチ)させるモーメントm2・gとh
R・sinφの積(m2・gとhP・sinθの積)である。IX · φ ″ = m2 · hR · GYS + m2 · g · hR · φ + F11 −kS1 · φ IX · θ ″ = m2 · hP · GXS + m2 · g · hP · θ + F21 −kS2 · θ (5) where hR: vehicle weight center And the center of the roll hP: Height difference between the center of gravity of the vehicle and the center of the pitch F11: Roll control torque F21: Pitch control torque kS1: Roll stiffness coefficient of spring 21 kS2: Pitch stiffness coefficient of spring 21 GYS: Detection value of lateral acceleration sensor GXS: Detected value of longitudinal acceleration sensor As shown in FIG. 4 for the case of the pitch of the vehicle centering on the pitch center O, in the equation (5), the first value on the right side
The term is a moment in which lateral acceleration (longitudinal acceleration) acting on the center of gravity of the vehicle causes the vehicle body to roll (pitch), and the second term is a gravitational acceleration acting on the center of gravity of the vehicle accompanying the roll (pitch) of the vehicle body, causing the body to roll (pitch). Moment m2 · g and h
The product of R · sin φ (the product of m2 · g and hP · sin θ).
したがつて、車体のロール、ピツチをそれぞれ0とす
るためのロール制御トルクF11、ピツチ制御トルクF21
は、次式で表される。Accordingly, the roll control torque F11 and the pitch control torque F21 for setting the roll and the pitch of the vehicle body to 0 respectively are set.
Is represented by the following equation.
−F11=m2・hR・GYS+m2・g・hR・φ−kS1・φ −F21=m2・hP・GXS+m2・g・hP・θ−kS2・θ 凹凸のない平坦な路面では路面入力はないから、タイ
ヤの上下方向の撓みを無視し、ほぼφ=Δφ,θ=Δθ
とおくと、ロール制御トルクF11、ピツチ制御トルクF12
は、次式で表される。-F11 = m2 · hR · GYS + m2 · g · hR · φ-kS1 · φ -F21 = m2 · hP · GXS + m2 · g · hP · θ-kS2 · θ Since there is no road surface input on a flat road surface without unevenness, tires Neglecting the vertical deflection of, approximately φ = Δφ, θ = Δθ
In other words, roll control torque F11, pitch control torque F12
Is represented by the following equation.
−F11=m2・hR・GYS+m2・g・hR・Δφ−kS1・
Δφ −F21=m2・hP・GXS+m2・g・hP・Δφ−kS2・
Δθ −F11=k13・GYS+k14・Δφ−kS1・Δφ −F21=k23・GXS+k24・Δθ−kS2・Δθ …(6) ただし、K13,K14,K23,K24は定数 したがつて、ロール制御トルクF11を後述のように前
・後軸に分配すれば良好なステア特性が得られる。-F11 = m2 · hR · GYS + m2 · g · hR · Δφ-kS1 ·
Δφ-F21 = m2 · hP · GXS + m2 · g · hP · Δφ-kS2 ·
Δθ -F11 = k13 · GYS + k14 · Δφ-kS1 · Δφ -F21 = k23 · GXS + k24 · Δθ-kS2 · Δθ (6) However, K13, K14, K23, and K24 are constants, and the roll control torque F11 is described later. By distributing to the front and rear shafts as described above, good steering characteristics can be obtained.
車両が車速一定の旋回走行中で、舵角が小さいと仮定
すると、ヨー角速度r、前輪コーナリングフオースC
F、後輪コーナリングフオースCRは、次のようになる。Assuming that the vehicle is turning at a constant vehicle speed and the steering angle is small, the yaw angular velocity r and the front wheel cornering force C
F, rear wheel cornering force CR is as follows.
r=GY/V−βs ただし、−β=GX/GY CF=−kF(β+1F・r/V−δ) CR=−kR(β−1R・r/V) ただし、V :車速 β :車体の横すべり角 GX:旋回による前後加速度 GY:旋回による横加速度 kF:前輪コーナリングパワー kR:後輪コーナリングパワー 1F:前輪・車体重心間距離 1R:後輪・車体重心間距離 δ :実舵角 ここで、横加速度についてほぼGY=GYSではある
が、前後加速度については、前後加速度センサの検出値
GXSには車両が加減速される時の前後加速度成分が含ま
れ、GX=GXSとはならないので、補正する必要があ
る。そこで、旋回走行による前後加速度GXを、車速V
の変化率V′の関数とおく。r = GY / V−βs where −β = GX / GY CF = −kF (β + 1F · r / V−δ) CR = −kR (β−1R · r / V) where V: vehicle speed β: vehicle body Side slip angle GX: longitudinal acceleration due to turning GY: lateral acceleration due to turning kF: front wheel cornering power kR: rear wheel cornering power 1F: distance between front wheel and vehicle weight center 1R: distance between rear wheel and vehicle weight center δ: actual steering angle The lateral acceleration is approximately GY = GYS, but the longitudinal acceleration is corrected because the detected value GXS of the longitudinal acceleration sensor includes the longitudinal acceleration component when the vehicle is accelerated / decelerated, and does not become GX = GXS. There is a need. Therefore, the longitudinal acceleration GX due to the turning travel is calculated by the vehicle speed V
As a function of the rate of change V ′.
GX=GXS−kG・V′ ただし、kGは調整ゲイン また、全体のコーナリングフオースに対する前・後軸
のコーナリングフオースの比kCF,kCRは、次式のように
なる。GX = GXS-kG.V 'where kG is the adjustment gain. The ratios kCF and kCR of the front and rear axle cornering forces to the entire cornering force are as follows.
kCF=CF/(CF+CR) kCR=CR/(CF+CR) したがつて、車体のロールを0とするためのロール制
御トルクF11を、前軸のロール制御トルクF11Fと後軸の
ロール制御トルクF11Rに配分すると、次式のようにな
る。kCF = CF / (CF + CR) kCR = CR / (CF + CR) Therefore, the roll control torque F11 for setting the roll of the vehicle body to 0 is distributed to the roll control torque F11F of the front shaft and the roll control torque F11R of the rear shaft. Then, the following equation is obtained.
F11F=kV6・kCR・F11 F11R=kV7・kCF・F11 ……(7) ただし、kV6・kV7は調整ゲイン 以上により、ロール制御トルクは旋回走行開始時(コ
ーナ進入時)はF11F<F11Rとなり、後軸の移動荷重が前
軸の移動荷重よりも大きくなり、オーバステア気味とな
り、旋回走行終了時(コーナ離脱時)はアンダステア気
味となる。F11F = kV6 ・ kCR ・ F11 F11R = kV7 ・ kCF ・ F11 (7) However, kV6 ・ kV7 is equal to or more than the adjustment gain, so that the roll control torque becomes F11F <F11R at the start of cornering (at the time of corner entry), and The moving load of the shaft becomes larger than the moving load of the front shaft, and the vehicle tends to be oversteered. At the end of turning (when leaving a corner), the vehicle tends to be understeered.
ところで、上の(6)式によりピツチ制御を行うと、
路面入力による制御と干渉し、振動乗心地に悪影響を及
ぼす。By the way, when pitch control is performed by the above equation (6),
It interferes with control by road surface input and adversely affects the riding comfort.
そこで、本発明は高速走行時は車体のピツチを起すよ
うな路面入力が少いこと、極低速走行では振動乗心地へ
の悪影響が少いことに着目し、極低速走行時と高速走行
時は前後加速度センサの出力に重きをおいた姿勢制御を
行い、中速走行時は車速センサの出力の変化率V′に重
きをおいた姿勢制御を行うことにより、振動乗心地制御
への悪影響を極力抑えるものである。つまり、第3図に
示すように、 V=0でkGX=0 V=VC1でkGX=kGXC(0<kGXC≦1) V=VC2でkGX=0 となるような関数f(V)を設定し、 GXS′=k12{kGX・V′+(1−kGX)GXS} −F21=m2・hP・GXS′+m2・g・hP・Δθ−kS2・Δθ ……(8) によりピツチ制御トルクF21を求め、前・後軸に適当に
配分する。Therefore, the present invention focuses on the fact that the road surface input that causes pitching of the vehicle body is small during high-speed running, and that there is little adverse effect on the vibration riding comfort at extremely low speed running. By controlling the posture with the output of the longitudinal acceleration sensor being weighted, and performing the posture control with the change rate V 'of the output of the vehicle speed sensor at the middle speed, the adverse effect on the vibration and ride comfort control is minimized. It is to suppress. That is, as shown in FIG. 3, a function f (V) is set such that kGX = 0 at V = 0, kGX = kGXC at V = VC1 (0 <kGXC ≦ 1), and kGX = 0 at V = VC2. GXS '= k12 {kGX.V' + (1-kGX) GXS} -F21 = m2.hP.GXS '+ m2.g.hP..DELTA..theta.-kS2..DELTA..theta. , And distribute appropriately to the front and rear axes.
F21F=kV8・F21 F21R=kV9・F21 ……(9) ただし、kV8,kV9は調整ゲイン、 以上の結果から各車輪へ加える制御量(油圧式懸架機
構の制御油量)VFL,VFR・VRL,VRRは次式で表される。F21F = kV8 · F21 F21R = kV9 · F21 (9) Here, kV8 and kV9 are adjustment gains. From the above results, the control amount (control oil amount of the hydraulic suspension mechanism) applied to each wheel VFL, VFR / VRL, VRR is expressed by the following equation.
VFL=−kV1・F12−kV2・F22+kV5・F32+F11F−F
21F VFR=+kV1・F12−kV2・F22+kV5・F32+F11F−F
21F VRL=−kV3・F12+kV4・F22+kV5・F32+F11R+F
21R VRR=+kV3・F12+kV4・F22+kV5・F32+F11R+F
21R …(10) ただし、kV1〜kV5は定数 本発明は上述の原理により、各車輪の車高から相対変
位量算出手段により車体と車軸との間の相対的なピツチ
変位量を求め、前後加速度補正手段により前後加速度セ
ンサの検出値を車速に関連して補正し、ピツチ変位量と
補正された前後加速度から振動制御量算出手段によりピ
ツチ制御トルクを求め、ピツチ制御トルクに対応して油
量制御弁を駆動し、各車輪の油圧式懸架機構の油量を加
減して車高を調整し、車体姿勢をほぼフラツトに保つも
のである。VFL = -kV1 / F12-kV2 / F22 + kV5 / F32 + F11F-F
21F VFR = + kV1 / F12-kV2 / F22 + kV5 / F32 + F11F-F
21F VRL = −kV3 · F12 + kV4 · F22 + kV5 · F32 + F11R + F
21R VRR = + kV3 · F12 + kV4 · F22 + kV5 · F32 + F11R + F
21R (10) where kV1 to kV5 are constants. According to the above principle, the relative pitch displacement between the vehicle body and the axle is calculated from the vehicle height of each wheel by the relative displacement calculating means, and the longitudinal acceleration is calculated. The detection value of the longitudinal acceleration sensor is corrected by the correcting means in relation to the vehicle speed, and the pitch control torque is obtained by the vibration control amount calculating means from the pitch displacement and the corrected longitudinal acceleration, and the oil amount is controlled in accordance with the pitch control torque. The valve is driven to adjust the vehicle height by adjusting the amount of oil in the hydraulic suspension mechanism of each wheel, thereby keeping the vehicle body attitude substantially flat.
第5図はマイクロコンピユータからなる電子制御装置
により、上述の車体のピツチ制御と併せてロール制御と
上下制御を行う制御プログラムの流れ図である。この制
御プログラムは所定時間ごとに繰り返し実行する。p11
〜p21は制御プログラムのステツプを表す。p11で制御プ
ログラムを開始し、p12で初期化を行い、p13で油圧監視
手段Aにより油圧ポンプ4の出力油圧pmを読み込み、出
力油圧pmが所定値pcよりも大きい場合は、油圧制御弁12
を開いて圧力を下げ、出力油圧pmが所定値pcよりも小さ
い場合は、油圧制御弁12を閉じて出力油圧pmを上げ所定
値に保つ。FIG. 5 is a flow chart of a control program for performing roll control and up / down control in addition to the above-described vehicle body pitch control by an electronic control device including a microcomputer. This control program is repeatedly executed at predetermined time intervals. p11
Pp21 represents the steps of the control program. The control program is started at p11, initialization is performed at p12, and the output hydraulic pressure pm of the hydraulic pump 4 is read by the hydraulic pressure monitoring means A at p13. If the output hydraulic pressure pm is larger than the predetermined value pc, the hydraulic control valve 12
When the output hydraulic pressure pm is smaller than the predetermined value pc, the hydraulic pressure control valve 12 is closed to increase the output hydraulic pressure pm and maintain the output hydraulic pressure pm at the predetermined value.
p14で各車輪の車高を車高センサ28から、前後加速度
を前後加速度センサ29から、横加速度を横加速度センサ
32から、車速を車速センサ31から、舵角を舵角センサ30
からそれぞれ読み込み、p15で相対変位量算出手段35に
より車体と車軸との相対的なロール変位量Δφ、ピツチ
変位量Δθ、上下変位量Δxを求める。In p14, the vehicle height of each wheel is obtained from the vehicle height sensor 28, the longitudinal acceleration is obtained from the longitudinal acceleration sensor 29, and the lateral acceleration is obtained from the lateral acceleration sensor.
32, the vehicle speed from the vehicle speed sensor 31, and the steering angle from the steering angle sensor 30
, The relative displacement calculating means 35 calculates the relative roll displacement Δφ, pitch displacement Δθ, and vertical displacement Δx between the vehicle body and the axle at p15.
p16で車速センサ31と前後加速度センサ29の信号から
前後加速度補正手段34により、低速と高速では0、中速
では車速変化に関連して1以下の値をとる補正係数を乗
じた前後加速度を求める。p17で移動荷重配分算出手段3
3により全体のコーナリングフオースに対する前・後軸
のコーナリングフオースの比kCF,kCRを求める。In step p16, the longitudinal acceleration correcting means 34 calculates the longitudinal acceleration multiplied by a correction coefficient which takes a value of 0 or less at low and high speeds and 1 or less at medium speeds in relation to changes in vehicle speed from the signals of the vehicle speed sensor 31 and the longitudinal acceleration sensor 29. . Moving load distribution calculation means 3 in p17
The ratios kCF and kCR of the cornering forces of the front and rear axes with respect to the entire cornering force are determined by 3.
p18で振動制御量算出手段39により車体をフラツトに
保つためのロール制御トルクF11F,F11R,F12、ピツチ制
御トルクF21F,F21R,F22、上下制御力F32を求める。p19
で油量算出手段40により各油圧式懸架機構19の制御油量
VFL,VFR・VRL,VRRを求める。p20で制御油量VFL,VFR
・VRL,VRRに基づき、各油量制御弁16を駆動し、各油圧
式懸架機構19の油量を加減し、p21で終了する。In p18, the roll control torques F11F, F11R, F12, pitch control torques F21F, F21R, F22, and vertical control force F32 for keeping the vehicle body flat are obtained by the vibration control amount calculation means 39. p19
Then, the control oil amount VFL, VFR / VRL, VRR of each hydraulic suspension mechanism 19 is obtained by the oil amount calculating means 40. Control oil volume VFL, VFR with p20
-Based on VRL and VRR, each oil amount control valve 16 is driven, the oil amount of each hydraulic suspension mechanism 19 is adjusted, and the process ends at p21.
第6図に示すように、実際には、各車輪の油圧式懸架
機構19(第6図には左前輪の場合を示す)へ加えられる
油量信号は、制御油量に対応する直流電圧またはデユー
テイ比のパルス電圧として各油量制御弁16の電磁コイル
へ加えられ、車高を加減する。この時各車輪の油圧式懸
架機構19へ加えられる油圧pは油圧センサ17により検出
され、電圧として油量制御弁16の電磁コイルへフイード
バツクされる。第6図において、kVL1〜kVL3はゲイ
ン、kSは油圧センサ17のゲイン、GVLは油量制御弁16
の伝達関数、GACTは油圧式懸架機構の伝達関数であ
る。As shown in FIG. 6, actually, the oil amount signal applied to the hydraulic suspension mechanism 19 of each wheel (FIG. 6 shows the case of the left front wheel) is a DC voltage or a DC voltage corresponding to the control oil amount. A pulse voltage having a duty ratio is applied to the electromagnetic coil of each oil amount control valve 16 to adjust the vehicle height. At this time, the hydraulic pressure p applied to the hydraulic suspension mechanism 19 of each wheel is detected by the hydraulic pressure sensor 17 and fed back to the electromagnetic coil of the oil amount control valve 16 as a voltage. 6, kVL1 to kVL3 are gains, kS is the gain of the oil pressure sensor 17, GVL is the oil amount control valve 16
GACT is the transfer function of the hydraulic suspension mechanism.
[発明の効果] 本発明は上述のように、各車輪の車高を検出する車高
センサの信号に基づきピツチ変位量を求める相対変位量
算出手段と、前記車速センサと前後加速度センサの各信
号から低速と高速では0、中速では車速変化に関連して
1以下の値をとる補正係数を乗じた前後加速度を求める
前後加速度補正手段と、前記相対変位量算出手段と前記
前後加速度補正手段の信号に基づき車体をフラツトに保
つためのピツチ制御トルクを求める振動制御量算出手段
と、該振動制御量算出手段の信号に基づき油圧式懸架機
構の制御油量を求める油量算出手段と、該油量算出手段
の信号に基づき各油圧式懸架機構の油量を加減する油量
制御弁とを備えたから、車体の姿勢を精度よく検出し、
車体姿勢を常にほぼフラツトに保つことができ、乗り心
地と操縦安定性が向上される。[Effects of the Invention] As described above, the present invention provides a relative displacement calculating means for calculating a pitch displacement based on a signal from a vehicle height sensor for detecting a vehicle height of each wheel, and signals from the vehicle speed sensor and the longitudinal acceleration sensor. A longitudinal acceleration correction means for obtaining a longitudinal acceleration multiplied by a correction coefficient which takes a value of 1 or less in relation to a change in vehicle speed at low and high speeds, and a relative displacement amount calculating means and a longitudinal acceleration correcting means. A vibration control amount calculating means for obtaining a pitch control torque for keeping the vehicle body flat based on the signal; an oil amount calculating means for obtaining a control oil amount of the hydraulic suspension mechanism based on a signal from the vibration control amount calculating means; Since an oil amount control valve for adjusting the oil amount of each hydraulic suspension mechanism based on the signal of the amount calculating means is provided, the posture of the vehicle body is accurately detected,
The vehicle body posture can be kept almost flat at all times, and the ride comfort and steering stability are improved.
第1図は本発明に係る車体の姿勢制御装置の制御装置の
ブロツク図、第2図は油圧式懸架機構の油圧回路図、第
3図は車速と前後加速度に乗じる補正係数との関係を表
す線図、第4図は車体のピツチ状態を示す側面図、第5
図は姿勢制御装置の制御プログラムの流れ図、第6図は
各車輪の油圧式懸架機構に備えられるフイードバツク制
御機構のブロツク線図である。 16:油量制御弁、19:油圧式懸架機構、28:車高センサ、2
9:前後加速度センサ、31:車速センサ、33:移動荷重配分
算出手段、34:前後加速度補正手段、35:相対変位量算出
手段、39:振動制御量算出手段、40:油量算出手段FIG. 1 is a block diagram of a control device of a body attitude control device according to the present invention, FIG. 2 is a hydraulic circuit diagram of a hydraulic suspension mechanism, and FIG. 3 shows a relationship between a vehicle speed and a correction coefficient for multiplying a longitudinal acceleration. FIG. 4 is a side view showing the pitch state of the vehicle body, and FIG.
FIG. 6 is a flowchart of a control program of the attitude control device, and FIG. 6 is a block diagram of a feedback control mechanism provided in a hydraulic suspension mechanism of each wheel. 16: oil amount control valve, 19: hydraulic suspension mechanism, 28: vehicle height sensor, 2
9: longitudinal acceleration sensor, 31: vehicle speed sensor, 33: moving load distribution calculation means, 34: longitudinal acceleration correction means, 35: relative displacement amount calculation means, 39: vibration control amount calculation means, 40: oil amount calculation means
Claims (1)
に基づきピツチ変位量を求める相対変位量算出手段と、
前記車速センサと前後加速度センサの各信号から低速と
高速では0、中速では車速変化に関連して1以下の値を
とる補正係数を乗じた前後加速度を求める前後加速度補
正手段と、前記相対変位量算出手段と前記前後加速度補
正手段の信号に基づき車体をフラツトに保つためのピツ
チ制御トルクを求める振動制御量算出手段と、該振動制
御量算出手段の信号に基づき油圧式懸架機構の制御油量
を求める油量算出手段と、該油量算出手段の信号に基づ
き各油圧式懸架機構の油量を加減する油量制御弁とを備
えたことを特徴とする車体の姿勢制御装置。A relative displacement calculating means for obtaining a pitch displacement based on a signal from a vehicle height sensor for detecting a vehicle height of each wheel;
A longitudinal acceleration correction means for obtaining a longitudinal acceleration multiplied by a correction coefficient that takes a value of 0 at low speed and high speed and 1 or less at medium speed in relation to a change in vehicle speed from the signals of the vehicle speed sensor and the longitudinal acceleration sensor; Vibration control amount calculating means for obtaining a pitch control torque for keeping the vehicle body flat based on signals from the amount calculating means and the longitudinal acceleration correcting means, and a control oil amount for the hydraulic suspension mechanism based on a signal from the vibration control amount calculating means. And a hydraulic control valve for adjusting the hydraulic flow of each hydraulic suspension mechanism based on a signal from the hydraulic flow calculation means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2339439A JP3047467B2 (en) | 1990-11-30 | 1990-11-30 | Body attitude control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2339439A JP3047467B2 (en) | 1990-11-30 | 1990-11-30 | Body attitude control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04208617A JPH04208617A (en) | 1992-07-30 |
JP3047467B2 true JP3047467B2 (en) | 2000-05-29 |
Family
ID=18327477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2339439A Expired - Lifetime JP3047467B2 (en) | 1990-11-30 | 1990-11-30 | Body attitude control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3047467B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013173405A (en) * | 2012-02-23 | 2013-09-05 | Toyota Motor Corp | Pitch behavior obtaining device and pitch behavior absorbing device |
-
1990
- 1990-11-30 JP JP2339439A patent/JP3047467B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04208617A (en) | 1992-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1632382B1 (en) | Vehicle stability control system with running resistance fluctuation compensation | |
US8718872B2 (en) | Vehicle attitude controller | |
EP0487529B1 (en) | A wheeled vehicle steering system | |
EP0827852B1 (en) | Method for enhancing vehicle stability | |
US7680577B2 (en) | Estimating method for road friction coefficient and vehicle slip angle estimating method | |
CN105984462B (en) | Vibration control apparatus and vibration control system | |
JPH02182521A (en) | Suspension control device | |
JPH02283555A (en) | Movement control device of vehicle | |
JP2956221B2 (en) | Body attitude control device | |
KR20040047544A (en) | Apparatus for controlling behavior of vehicle | |
JP3047467B2 (en) | Body attitude control device | |
JP3006088B2 (en) | Body attitude control device | |
US20220134835A1 (en) | Method and system for active roll control | |
JP2953062B2 (en) | Body attitude control device | |
JPH03231016A (en) | Camber angle control device for wheel | |
JP3123572B2 (en) | Body attitude control device | |
JP2956222B2 (en) | Body attitude control device | |
JP4736510B2 (en) | Vehicle steering system | |
JP2952434B2 (en) | Suspension control device | |
JPH04232112A (en) | Car body attitude control device | |
JP3189850B2 (en) | Body attitude control device | |
JP2746002B2 (en) | Driving force distribution device for four-wheel drive vehicle with four-wheel steering device | |
JP3086931B2 (en) | Suspension control method | |
JPH02179525A (en) | Active movement type suspension | |
JP3123579B2 (en) | Body attitude control device |