JP3193208B2 - High strength magnesium alloy and method for producing the same - Google Patents
High strength magnesium alloy and method for producing the sameInfo
- Publication number
- JP3193208B2 JP3193208B2 JP23960993A JP23960993A JP3193208B2 JP 3193208 B2 JP3193208 B2 JP 3193208B2 JP 23960993 A JP23960993 A JP 23960993A JP 23960993 A JP23960993 A JP 23960993A JP 3193208 B2 JP3193208 B2 JP 3193208B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- atomic
- magnesium alloy
- strength
- dispersed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Powder Metallurgy (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、高強度マグネシウム合
金及びその製造方法に関するものであり、さらに詳しく
述べるならば、急冷凝固により得られるマグネシウム合
金の強度特性をさらに改良する提案に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength magnesium alloy and a method for producing the same, and more particularly, to a proposal for further improving the strength characteristics of a magnesium alloy obtained by rapid solidification.
【0002】[0002]
【従来の技術】マグネシウム合金を急冷凝固することに
より高強度及び優れた耐食性を実現することは、例えば
特開昭62−83446号により公知である。この公報
のマグネシウム合金は、一般式:Mgbal Ala Znb
Xc (但し、XはMn,Ce,Nd,Pr,Y,及び/
又はAg、0≦a≦15原子%、0≦b≦4原子%、
0.2≦c≦3原子%、2≦a+b≦15原子%)の組
成を有する。この組成をもつ急冷凝固合金の粉末を熱間
圧縮することによりバルク材とすることができ、その強
度は極限引張り強さで513MPa程度のものが得られ
ている。2. Description of the Related Art It is known from JP-A-62-83446 to realize high strength and excellent corrosion resistance by rapidly solidifying a magnesium alloy. The magnesium alloy of this publication has a general formula: Mgbal Ala Znb
Xc (where X is Mn, Ce, Nd, Pr, Y, and / or
Or Ag, 0 ≦ a ≦ 15 at%, 0 ≦ b ≦ 4 at%,
0.2 ≦ c ≦ 3 at%, 2 ≦ a + b ≦ 15 at%). A rapidly solidified alloy powder having this composition can be made into a bulk material by hot compression, and its strength is as high as about 513 MPa in ultimate tensile strength.
【0003】[0003]
【発明が解決ようとする課題】上記した従来の急冷凝固
型Mg合金を、例えばピストン等のように200〜30
0℃程度の高温で使用される部品とすると、強度が著し
く低下することが判明した。さらに、上記の急冷凝固し
たMg合金を、加工性が良好な300〜400℃程度の
温度で加工すると、結晶粒の粗大化が起こり強度が著し
く低下することも判明した。The above-mentioned conventional rapidly solidified Mg alloy is used for 200 to 30 minutes, such as a piston.
It has been found that when a part is used at a high temperature of about 0 ° C., the strength is significantly reduced. Further, it was also found that when the above-mentioned rapidly solidified Mg alloy was worked at a temperature of about 300 to 400 ° C. with good workability, the crystal grains became coarse and the strength was significantly reduced.
【0004】したがって、本発明は、室温及び高温強度
が優れた急冷凝固型Mg合金を提供することを目的とす
る。さらに本発明は急冷凝固型Mg合金を塑性加工して
種々の形状の素材を成形する際に強度の低下を抑制する
ことを目的とする。Accordingly, an object of the present invention is to provide a rapidly solidified Mg alloy having excellent room temperature and high temperature strength. A further object of the present invention is to suppress a decrease in strength when plasticizing a rapidly solidified Mg alloy to form materials of various shapes.
【0005】[0005]
【課題を解決するための手段及び作用】本発明の第一
は、一般式:Mga Alb Xc (但し、XはY,Ce,
La,Nd,Pr,Sm,及びMm(ミッシュメタル)
からなる群から選択される1種又は2種以上の元素、7
7.5原子%≦a<95原子%、2原子%≦b≦15原
子%、3原子%<c<7.5原子%)からなる組成を有
し、微結晶からなる母相にMg−Al系、Mg−X系及
びAl−X系からなる群から選択された1種又は2種以
上の金属間化合物が分散した組織を有することを特徴と
する高強度マグネシウム合金に関するものであり、また
本発明の第二は、上記組成を有する合金を急冷凝固し、
その後該急冷凝固合金に450℃以下の温度で塑性加工
を施し、微結晶からなる母相にMg−Al系、Mg−X
系及びAl−X系からなる群から選択された1種又は2
種以上の金属間化合物が分散した組織を有する高強度マ
グネシウム合金を製造する方法に関するものである。A first aspect of the present invention is to provide a compound represented by the following general formula: Mga Alb Xc (where X is Y, Ce,
La, Nd, Pr, Sm, and Mm (Misch metal)
One or more elements selected from the group consisting of
7.5 atomic% ≦ a <95 atomic%, 2 atomic% ≦ b ≦ 15 atomic%, 3 atomic% <c <7.5 atomic%), and Mg— A high-strength magnesium alloy characterized by having a structure in which one or more intermetallic compounds selected from the group consisting of Al-based, Mg-X-based, and Al-X-based are dispersed; and A second aspect of the present invention is to rapidly solidify an alloy having the above composition,
Thereafter, the rapidly solidified alloy is subjected to plastic working at a temperature of 450 ° C. or less, and the matrix composed of microcrystals is made of Mg-Al, Mg-X
Or 2 selected from the group consisting of a system and an Al-X system
The present invention relates to a method for producing a high-strength magnesium alloy having a structure in which at least one kind of intermetallic compound is dispersed.
【0006】まず、本発明のマグネシウム合金の組成限
定理由を説明する。マグネシウム合金の主成分であるM
gの含有量が77.5原子%(以下百分率は特記しない
限り原子%である)未満であると、軽量であるというマ
グネシウム合金の特長が失われ、また母相の割合が少な
くなり靭性の低下を招く。一方Mgの含有量が95%を
超えると、Mg母相中に析出する金属間化合物の量が不
足して、常温及び高温強度の低下を招く。First, the reasons for limiting the composition of the magnesium alloy of the present invention will be described. M, the main component of magnesium alloy
When the content of g is less than 77.5 atomic% (the percentage is hereinafter atomic% unless otherwise specified), the feature of the magnesium alloy that it is lightweight is lost, and the ratio of the parent phase is reduced and the toughness is reduced. Invite. On the other hand, if the Mg content exceeds 95%, the amount of the intermetallic compound precipitated in the Mg parent phase becomes insufficient, resulting in a decrease in the strength at room temperature and high temperature.
【0007】AlはMgとの金属間化合物及びX成分
(Y,Ce,La,Nd,Pr,Sm,及びMm(ミッ
シュメタル)からなる群から選択される1種又は2種以
上)との金属間化合物を形成し,これらの金属間化合物
が微細なMg母相中にさらに微細分散して靭性を損なう
ことなく強度を高める。AlとX成分(Y,Ce,L
a,Nd,Pr,Sm,及びMm(ミッシュメタル)か
らなる群から選択される1種又は2種以上)の含有量は
図1に示された範囲とすることが必要である。すなわ
ち、AD線(Al=2%)より左側及びCD線(X=3
%)上及びその下側では分散する金属間化合物の量が不
足して常温及び高温強度の低下を招く。またAB線(x
=7.5%)より上側及びBC線(Al=15%)より
右側では母相中に分散する金属間化合物が粗大化し、材
料が脆くなる。したがって、Alの含有量は2%≦b≦
15%、X成分の含有量は3%<c≦7.5%であるこ
とが必要である。Al is an intermetallic compound with Mg and a metal with X component (one or more selected from the group consisting of Y, Ce, La, Nd, Pr, Sm, and Mm (mish metal)). Intermetallic compounds are formed, and these intermetallic compounds are further finely dispersed in a fine Mg matrix to increase the strength without impairing toughness. Al and X components (Y, Ce, L
The content of a, Nd, Pr, Sm, and Mm (one or more selected from the group consisting of misch metal) must be in the range shown in FIG. That is, the left side of the AD line (Al = 2%) and the CD line (X = 3
%) On the upper side and the lower side, the amount of the intermetallic compound dispersed is insufficient, and the room temperature and high temperature strengths are lowered. AB line (x
= 7.5%) and on the right side of the BC line (Al = 15%), the intermetallic compound dispersed in the parent phase coarsens and the material becomes brittle. Therefore, the content of Al is 2% ≦ b ≦
It is necessary that the content of the X component is 15% and the content of the X component is 3% <c ≦ 7.5%.
【0008】続いて、本発明のマグネシウム合金の組織
を説明する。本発明のマグネシウム合金の組織は、母
相、すなわちMgの結晶構造をもつ相と、Mg−Al
系,Mg−X系及び又は低X高Al側で生成するAl−
X系金属間化合物の分散相から構成されている。上記の
Mg母相はサブミクロンの微結晶であり、この中にさら
に微細な金属間化合物の分散相が分散している。これら
のMg−Al系,Mg−X系及びAl−X系金属間化合
物は熱的に安定であり、微細でありかつ量も十分である
ために、母相の変形や成長を抑制して高温における強度
低下を少なくする。このように微細なMg母相にさらに
微細な金属間化合物が分散した組織とするためには、上
記の組成をもつマグネシウム合金を急冷凝固させること
により非平衡相中にAl及びX成分を十分に固溶させ、
その後熱処理によりこれらを微細な金属間化合物として
析出させる方法を採用する。この方法としては、好まし
くは450℃以下で熱処理するかあるいは450℃以下
で塑性加工する方法を採用することができる。熱処理又
は塑性加工温度の下限は130℃以上が好ましい。Next, the structure of the magnesium alloy of the present invention will be described. The structure of the magnesium alloy of the present invention includes a parent phase, that is, a phase having a crystal structure of Mg, and a Mg-Al
System, Mg-X system and / or Al- formed on low X high Al side
It is composed of a dispersed phase of an X-based intermetallic compound. The Mg matrix is a submicron microcrystal, in which a finer dispersed phase of an intermetallic compound is dispersed. These Mg-Al-based, Mg-X-based, and Al-X-based intermetallic compounds are thermally stable, are fine and have a sufficient amount, so that deformation and growth of the parent phase are suppressed and high temperatures are obtained. In the strength reduction. In order to form a structure in which finer intermetallic compounds are dispersed in the fine Mg matrix, the magnesium alloy having the above-described composition is rapidly solidified to sufficiently reduce the Al and X components in the non-equilibrium phase. Solid solution,
Thereafter, a method of precipitating them as fine intermetallic compounds by heat treatment is employed. As this method, a method of performing heat treatment preferably at 450 ° C. or lower or plastic working at 450 ° C. or lower can be adopted. The lower limit of the heat treatment or plastic working temperature is preferably 130 ° C. or higher.
【0009】続いて、本発明の第二にかかるマグネシウ
ム合金の加工方法について説明する。この方法において
は、上記組成を有する急冷凝固合金を450℃以下の温
度で塑性加工することにより所望の形状・寸法の素材を
得る。塑性加工の温度を450℃以下としたのは、これ
を越える温度ではMg母相が粗大化するとともに非平衡
相が分解して生成する金属間化合物も微細ではなくな
り、この結果所望の特性が得られ難いからである。Next, a second method for processing a magnesium alloy according to the present invention will be described. In this method, a rapidly solidified alloy having the above composition is subjected to plastic working at a temperature of 450 ° C. or less to obtain a material having a desired shape and dimensions. The reason why the temperature of the plastic working is set to 450 ° C. or less is that at a temperature higher than this, the Mg matrix becomes coarse and the intermetallic compound formed by decomposition of the non-equilibrium phase is not fine, so that the desired characteristics can be obtained. Because it is hard to be.
【0010】以下、本発明の方法の実施態様を説明す
る。Mg合金溶湯の急冷凝固は、一般的に急冷凝固法と
して知られる、各種方法、例えば、薄片を作製するガン
法、ピストン・アンビル法、連続的薄帯を作製する遠心
法、単ロール法、双ロール法、粉末を作製するスプレー
法、高圧ガス噴霧法、あるいは細線を作製する回転液中
紡糸法などによることができる。これらの方法の中で
も。102〜106k/sの冷却速度が得られ、Al及びX
成分がほぼ全量固溶する単ロール法、双ロール法、また
は高圧ガス噴射法が特に適している。Hereinafter, an embodiment of the method of the present invention will be described. The rapid solidification of molten Mg alloy is performed by various methods generally known as rapid solidification method, for example, a gun method for producing a thin section, a piston / anvil method, a centrifugal method for producing a continuous ribbon, a single roll method, and a twin method. A roll method, a spray method for producing powder, a high-pressure gas spraying method, a spinning method in a rotating liquid for producing fine wires, and the like can be used. Among these methods. A cooling rate of 10 2 to 10 6 k / s is obtained, and Al and X
A single-roll method, a twin-roll method, or a high-pressure gas injection method, in which the components are almost completely dissolved, are particularly suitable.
【0011】単ロール法及び双ロール法によりMg合金
薄帯を作製するためには300〜10000rpmで回
転する直径30〜300mmの銅製又は鋼製ロールに合
金溶湯を噴射する。これにより幅が1〜300mm、厚
さが5〜500μmの薄帯が得られる。In order to produce a Mg alloy ribbon by the single roll method and the twin roll method, a molten alloy is sprayed on a copper or steel roll having a diameter of 30 to 300 mm rotating at 300 to 10000 rpm. As a result, a ribbon having a width of 1 to 300 mm and a thickness of 5 to 500 μm is obtained.
【0012】また、高圧ガス噴霧法によりMg合金粉末
を得るには、溶湯ノズルから流下させた合金溶湯に4〜
15MPaの高圧窒素ガス、アルゴンガス、ヘリウムガ
スなどを吹きつけ、溶湯を微細に分断し、同時に急冷凝
固させる。更に好ましくは微細な粉末を分級することに
より、Al及びX成分の固溶量が多い粉末を塑性加工に
供するのがよい。In order to obtain the Mg alloy powder by the high pressure gas atomization method, it is necessary to add 4 to 4 times to the molten alloy flowing down from the molten metal nozzle.
A high-pressure nitrogen gas of 15 MPa, an argon gas, a helium gas, or the like is sprayed to finely divide the molten metal, and at the same time, rapidly solidify. It is more preferable to classify the fine powder so as to subject the powder having a large amount of solid solution of the Al and X components to plastic working.
【0013】上記の急冷凝固法で得られたMg合金は、
そのまま塑性加工することを可能であるが、薄帯あるい
は細線の場合は粉砕した後、Cu,Al又はそれらの合
金製の缶に充填して塑性加工することが好ましい。この
際、急冷凝固してから金属缶に充填するまでの急冷凝固
材の酸化を抑制するため酸素量1ppm以下の高清浄度
の雰囲気中で急冷凝固粉末を取り扱うことが好ましい。
また金属缶に充填された粉末には塑性加工するに先立っ
て、真空脱ガスを施すことが好ましい。The Mg alloy obtained by the above-mentioned rapid solidification method is:
Although it is possible to carry out plastic working as it is, in the case of a thin ribbon or a thin wire, it is preferable to pulverize and then fill a can made of Cu, Al or an alloy thereof and carry out plastic working. At this time, it is preferable to handle the rapidly solidified powder in a highly clean atmosphere having an oxygen content of 1 ppm or less in order to suppress oxidation of the rapidly solidified material from rapid solidification to filling in a metal can.
In addition, it is preferable to subject the powder filled in the metal can to vacuum degassing prior to plastic working.
【0014】塑性加工方法は、押出、鍛造、圧延などの
各種方法を行うことができる。As the plastic working method, various methods such as extrusion, forging, and rolling can be performed.
【0015】[0015]
【作用】本発明における高温強度は、200℃における
極限引張り強さが室温の値に対する比率で0.8以上で
あり、高温における強度低下が少ない。The high-temperature strength in the present invention is such that the ultimate tensile strength at 200 ° C. is 0.8 or more in proportion to the value at room temperature, and the strength at high temperatures does not decrease much.
【0016】[0016]
実施例1 表1に化学組成を示すMg合金をAr雰囲気中で高周波
溶解して母合金を溶製した。この母合金をAr雰囲気中
で高周波炉で850℃で溶解した後、9.8MPaのA
rガスで高圧ガス噴霧法により微細な結晶質金属からな
る粉末とした。アトマイズされた粉末のうち粒径の小さ
いものはよく急冷されており、添加元素の固溶量も大き
い。得られた粉末を分級し、25μm以下の粉末を温度
150〜400℃、加圧力200〜1000MPa、押
出比10:1で押出し、直径約6mm、長さ約270m
m、密度100%の円柱材を得た。尚、粉末作製から押
出しまでの段階で粉末が暴露された雰囲気は酸素・水分
濃度ともに1ppm以下の高清浄度雰囲気であった。円
柱材をX線回折したところ表1に示す金属間化合物がM
g相と共に観察された。表中、unknownは未だ同
定されていない金属間化合物である。Example 1 An Mg alloy having a chemical composition shown in Table 1 was subjected to high frequency melting in an Ar atmosphere to produce a mother alloy. This mother alloy was melted at 850 ° C. in a high-frequency furnace in an Ar atmosphere, and then 9.8 MPa of A
The powder was made of fine crystalline metal by high pressure gas spraying with r gas. Among the atomized powders, those having a small particle size are rapidly quenched, and the solid solution amount of the added element is large. The obtained powder was classified, and powder having a diameter of 25 μm or less was extruded at a temperature of 150 to 400 ° C., a pressure of 200 to 1000 MPa, and an extrusion ratio of 10: 1, and was about 6 mm in diameter and about 270 m in length.
m, a columnar material having a density of 100% was obtained. The atmosphere to which the powder was exposed during the stages from powder preparation to extrusion was a high cleanness atmosphere in which both oxygen and moisture concentrations were 1 ppm or less. X-ray diffraction of the columnar material revealed that the intermetallic compound shown in Table 1 was M
Observed with g phase. In the table, unknown is an intermetallic compound that has not yet been identified.
【0017】次に、円柱材料をインストロン型引張試験
機による引張試験に供した。この結果も表1に示す。な
お、伸びの百分率は引張試験片の長さの比である。Next, the columnar material was subjected to a tensile test using an Instron type tensile tester. The results are also shown in Table 1. The percentage of elongation is the ratio of the length of a tensile test piece.
【0018】[0018]
【表1】 No. 組 成 押出温度 金属間化合物相 UTS 伸び 1 Mg94.5Al2Y3.5 300℃ Mg24Y5,unknown 583MPa 2.7 % 2 Mg90Al5Y5 300 Mg24Y5,unknown 600 2.5 3 Mg82.5Al10Y7.5 250 Al2Y,Mg24Y5 560 1.8 4 Mg80Al15Y5 150 Al2Y,unknown 530 2.5 5 Mg92.5Al5Y2.5 250 Al2Y 425 4.8 6 Mg75Al15Y10 300 Al2Y,Mg24Y5 480 0.1 7 Mg80Al5Y15 400 Mg24Y5 382 − 備考No.5,6,7−比較例[Table 1] No. Composition extrusion temperature Intermetallic compound phase UTS elongation 1 Mg94.5Al2Y3.5 300 ° C Mg24Y5, unknown 583MPa 2.7% 2 Mg90Al5Y5 300 Mg24Y5, unknown 600 2.5 3 Mg82.5Al10Y7.5 250 Al2Y, Mg24Y5 560 1.8 4 Mg80Al15Y5 150 Al2Y, unknown 530 2.5 5 Mg92.5Al5Y2.5 250 Al2Y 425 4.8 6 Mg75Al15Y10 300 Al2Y, Mg24Y5 480 0.17 Mg80Al5Y15 400 Mg24Y5 382- Remarks No. 5, 6, 7-Comparative example
【0019】表1より、本発明のMg合金の極限引張り
強さ(UTS)は500〜600MPaであって極めて
高いことがわかる。また比較例の組成は強度が低いまた
は脆い材料となることがわかる。From Table 1, it can be seen that the ultimate tensile strength (UTS) of the Mg alloy of the present invention is extremely high at 500 to 600 MPa. Further, it is understood that the composition of the comparative example is a material having low strength or brittleness.
【0020】[0020]
【発明の効果】以上説明したように、本発明にかかるマ
グネシウム合金は強度が高くしかも高温における強度低
下が少ない。さらに本発明における方法によると強度が
高くしかも高温における強度低下が少ないマグネシウム
合金で所望の形状、寸法のものが押出などの各種加工法
により得られる。As described above, the magnesium alloy according to the present invention has a high strength and a small decrease in strength at high temperatures. Further, according to the method of the present invention, a magnesium alloy having a high strength and a small decrease in strength at a high temperature and having a desired shape and dimensions can be obtained by various processing methods such as extrusion.
【図1】本発明のマグネシウム合金のX成分とAlの組
成範囲を示すグラフである。FIG. 1 is a graph showing a composition range of an X component and Al of a magnesium alloy of the present invention.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22F 1/00 630 C22F 1/00 630A 685 685A (72)発明者 増本 健 宮城県仙台市青葉区上杉3丁目8番22号 (72)発明者 井上 明久 宮城県仙台市青葉区川内無番地 川内住 宅11−806 (72)発明者 堀切 秀彦 東京都中央区八重洲1丁目9番9号 帝 国ピストンリング株式会社内 (72)発明者 加藤 晃 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 昭62−83446(JP,A) 特開 昭46−6202(JP,A) 特開 平5−287429(JP,A) 特開 平5−117798(JP,A) 特開 平3−87339(JP,A) 特表 平6−501056(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 45/00 C22C 23/00 - 23/06 C22F 1/06 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification code FI C22F 1/00 630 C22F 1/00 630A 685 685A (72) Inventor Takeshi Masumoto 3-8-22 Uesugi Uesugi, Aoba-ku, Sendai City, Miyagi Prefecture. (72) Inventor Akihisa Inoue 11-806 Kawauchi Residence, Kawauchi, Aoba-ku, Sendai, Miyagi Prefecture (72) Inventor Hidehiko Horikiri 1-9-9 Yaesu, Chuo-ku, Tokyo Inside Teikoku Piston Ring Co., Ltd. (72) Inventor Akira Kato 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (56) References JP-A-62-83446 (JP, A) JP-A-46-6202 (JP, A) JP-A-5-58 287429 (JP, A) JP-A-5-117798 (JP, A) JP-A-3-87339 (JP, A) JP-A-6-501056 (JP, A) (58) Fields investigated (Int. 7 , DB name) C22C 45/0 0 C22C 23/00-23/06 C22F 1/06
Claims (3)
e,La,Nd,Pr,Sm及びMm(ミッシュメタル)からな
る群から選択される1種又は2種以上の元素、77.5
原子%≦a<95原子%、2原子%≦b≦15原子%、
3原子%<c≦7.5原子%)からなる組成を有し、粒
子寸法がサブミクロンの微結晶からなるMg母相にMg
−Al系、Mg―X系及びAl―X系からなる群から選
択された1種又は2種以上の金属間化合物が分散した組
織を有しかつ極限引張り強さ(UTS)が500〜60
0MPaであることを特徴とする高強度マグネシウム合
金。1. The general formula Mg a Al b X c (where X is Y, C
one or more elements selected from the group consisting of e, La, Nd, Pr, Sm and Mm (Misch metal), 77.5
Atomic% ≦ a <95 atomic%, 2 atomic% ≦ b ≦ 15 atomic%,
Having a composition consisting of 3 atomic% <c ≦ 7.5 atomic%), grain
The Mg matrix consisting of microcrystals with
-Having a structure in which one or more intermetallic compounds selected from the group consisting of Al, Mg-X and Al-X are dispersed, and having an ultimate tensile strength (UTS) of 500 to 60;
A high-strength magnesium alloy having a pressure of 0 MPa.
Mg母相固溶体から析出したものであることを特徴とす
る請求項1記載の高強度マグネシウム合金。2. The high-strength magnesium alloy according to claim 1, wherein the one or more intermetallic compounds are precipitated from a Mg matrix solid solution.
させて微結晶マグネシウム固溶体を生成し、その後該急
冷凝固合金に450℃以下の温度で、塑性加工を加工を
施し、微結晶からなる母相にMg−Al系、Mg―X系
及びAl―X系からなる群から選択された1種又は2種
以上の金属間化合物が分散した組織とすることを特徴と
する高強度マグネシウム合金の製造方法。3. An alloy having the composition of claim 1 is rapidly solidified to form a microcrystalline magnesium solid solution, and thereafter, the rapidly solidified alloy is subjected to plastic working at a temperature of 450 ° C. or less, and is made of microcrystals. A high-strength magnesium alloy having a structure in which one or more intermetallic compounds selected from the group consisting of Mg-Al, Mg-X, and Al-X are dispersed in a matrix; Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23960993A JP3193208B2 (en) | 1993-09-27 | 1993-09-27 | High strength magnesium alloy and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23960993A JP3193208B2 (en) | 1993-09-27 | 1993-09-27 | High strength magnesium alloy and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0790462A JPH0790462A (en) | 1995-04-04 |
JP3193208B2 true JP3193208B2 (en) | 2001-07-30 |
Family
ID=17047294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23960993A Expired - Fee Related JP3193208B2 (en) | 1993-09-27 | 1993-09-27 | High strength magnesium alloy and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3193208B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006095999A1 (en) * | 2005-03-08 | 2006-09-14 | Dong-Hyun Bae | Mg alloys containing misch metal, manufacturing method of wrought mg alloys containing misch metal, and wrought mg alloys thereby |
CN100406614C (en) * | 2005-03-09 | 2008-07-30 | 沈阳工业大学 | Spray coating technology of magnesium alloy surface protective layer |
-
1993
- 1993-09-27 JP JP23960993A patent/JP3193208B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0790462A (en) | 1995-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5239022B2 (en) | High strength and high toughness magnesium alloy and method for producing the same | |
JP3905115B2 (en) | High strength and high toughness magnesium alloy and method for producing the same | |
JPH02503331A (en) | Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy | |
JP2021527758A (en) | High-performance Al-Zn-Mg-Zr-based aluminum alloy for welding and additive manufacturing | |
EP1640466B1 (en) | Magnesium alloy and production process thereof | |
JPH03257133A (en) | High strength heat resistant aluminum-based alloy | |
JPH06184712A (en) | Production of high strength aluminum alloy | |
JPH0941065A (en) | High strength magnesium alloy and its production | |
US7694713B2 (en) | Reinforced aluminum alloy and its process of manufacture | |
JP3110512B2 (en) | High strength and high toughness magnesium alloy material | |
JPWO2004085689A1 (en) | High strength and high toughness magnesium alloy and method for producing the same | |
EP0533780B1 (en) | Method for forging rapidly solidified magnesium base metal alloy billet | |
JP3238516B2 (en) | High strength magnesium alloy and method for producing the same | |
JP2865499B2 (en) | Superplastic aluminum-based alloy material and method for producing superplastic alloy material | |
JP2807374B2 (en) | High-strength magnesium-based alloy and its solidified material | |
JPH0748646A (en) | High strength magnesium base alloy and production thereof | |
JP3184367B2 (en) | Method for producing high toughness Al-Si alloy | |
JP3193208B2 (en) | High strength magnesium alloy and method for producing the same | |
JPH0790517A (en) | Aluminum-base alloy | |
JPH06316740A (en) | High strength magnesium-base alloy and its production | |
EP0577944B1 (en) | High-strength aluminum-based alloy, and compacted and consolidated material thereof | |
JP3203564B2 (en) | Aluminum-based alloy integrated solidified material and method for producing the same | |
JP2790935B2 (en) | Aluminum-based alloy integrated solidified material and method for producing the same | |
JP2752971B2 (en) | High strength and heat resistant aluminum alloy member and method of manufacturing the same | |
JPH0790463A (en) | High specific rigidigy and high specific strength magnesium-based alloy and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |