JPH0790462A - High strength magnesium alloy and its production - Google Patents
High strength magnesium alloy and its productionInfo
- Publication number
- JPH0790462A JPH0790462A JP23960993A JP23960993A JPH0790462A JP H0790462 A JPH0790462 A JP H0790462A JP 23960993 A JP23960993 A JP 23960993A JP 23960993 A JP23960993 A JP 23960993A JP H0790462 A JPH0790462 A JP H0790462A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- strength
- atomic
- magnesium alloy
- series
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 20
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 15
- 239000000956 alloy Substances 0.000 claims abstract description 15
- 229910003023 Mg-Al Inorganic materials 0.000 claims abstract description 7
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 6
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 5
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 5
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 5
- 239000013078 crystal Substances 0.000 claims abstract description 5
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 5
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 4
- 239000011159 matrix material Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 239000011777 magnesium Substances 0.000 claims description 9
- 229910001122 Mischmetal Inorganic materials 0.000 claims description 4
- 239000013081 microcrystal Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 20
- 239000000843 powder Substances 0.000 abstract description 15
- 229910052751 metal Inorganic materials 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract description 6
- 230000006866 deterioration Effects 0.000 abstract 2
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 5
- 238000007712 rapid solidification Methods 0.000 description 5
- 238000009689 gas atomisation Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910016429 Ala Znb Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高強度マグネシウム合
金及びその製造方法に関するものであり、さらに詳しく
述べるならば、急冷凝固により得られるマグネシウム合
金の強度特性をさらに改良する提案に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength magnesium alloy and a method for producing the same, and more specifically to a proposal for further improving the strength characteristics of a magnesium alloy obtained by rapid solidification.
【0002】[0002]
【従来の技術】マグネシウム合金を急冷凝固することに
より高強度及び優れた耐食性を実現することは、例えば
特開昭62−83446号により公知である。この公報
のマグネシウム合金は、一般式:Mgbal Ala Znb
Xc (但し、XはMn,Ce,Nd,Pr,Y,及び/
又はAg、0≦a≦15原子%、0≦b≦4原子%、
0.2≦c≦3原子%、2≦a+b≦15原子%)の組
成を有する。この組成をもつ急冷凝固合金の粉末を熱間
圧縮することによりバルク材とすることができ、その強
度は極限引張り強さで513MPa程度のものが得られ
ている。2. Description of the Related Art It is known, for example, from JP-A-62-83446 that high strength and excellent corrosion resistance are realized by rapidly solidifying magnesium alloy. The magnesium alloy of this publication has the general formula: Mgbal Ala Znb
Xc (where X is Mn, Ce, Nd, Pr, Y, and /
Or Ag, 0 ≦ a ≦ 15 atomic%, 0 ≦ b ≦ 4 atomic%,
0.2 ≦ c ≦ 3 atomic%, 2 ≦ a + b ≦ 15 atomic%). A powder of a rapidly solidified alloy having this composition can be hot-compressed to form a bulk material, and its strength is about 513 MPa in ultimate tensile strength.
【0003】[0003]
【発明が解決ようとする課題】上記した従来の急冷凝固
型Mg合金を、例えばピストン等のように200〜30
0℃程度の高温で使用される部品とすると、強度が著し
く低下することが判明した。さらに、上記の急冷凝固し
たMg合金を、加工性が良好な300〜400℃程度の
温度で加工すると、結晶粒の粗大化が起こり強度が著し
く低下することも判明した。DISCLOSURE OF INVENTION Problems to be Solved by the Invention The above-mentioned conventional rapidly solidified Mg alloy is used in the range of 200 to 30 such as a piston.
It has been found that the strength is remarkably reduced when the component is used at a high temperature of about 0 ° C. Further, it has been found that when the rapidly solidified Mg alloy is processed at a temperature of about 300 to 400 ° C., which has good workability, the crystal grains become coarse and the strength is significantly reduced.
【0004】したがって、本発明は、室温及び高温強度
が優れた急冷凝固型Mg合金を提供することを目的とす
る。さらに本発明は急冷凝固型Mg合金を塑性加工して
種々の形状の素材を成形する際に強度の低下を抑制する
ことを目的とする。Therefore, it is an object of the present invention to provide a rapidly solidified Mg alloy having excellent room temperature and high temperature strength. A further object of the present invention is to suppress a decrease in strength when a rapidly solidified Mg alloy is subjected to plastic working to form materials of various shapes.
【0005】[0005]
【課題を解決するための手段及び作用】本発明の第一
は、一般式:Mga Alb Xc (但し、XはY,Ce,
La,Nd,Pr,Sm,及びMm(ミッシュメタル)
からなる群から選択される1種又は2種以上の元素、7
7.5原子%≦a<95原子%、2原子%≦b≦15原
子%、3原子%<c<7.5原子%)からなる組成を有
し、微結晶からなる母相にMg−Al系、Mg−X系及
びAl−X系からなる群から選択された1種又は2種以
上の金属間化合物が分散した組織を有することを特徴と
する高強度マグネシウム合金に関するものであり、また
本発明の第二は、上記組成を有する合金を急冷凝固し、
その後該急冷凝固合金に450℃以下の温度で塑性加工
を施し、微結晶からなる母相にMg−Al系、Mg−X
系及びAl−X系からなる群から選択された1種又は2
種以上の金属間化合物が分散した組織を有する高強度マ
グネシウム合金を製造する方法に関するものである。The first aspect of the present invention is to provide a compound represented by the general formula: Mga Alb Xc (where X is Y, Ce,
La, Nd, Pr, Sm, and Mm (Misch metal)
One or more elements selected from the group consisting of 7
7.5 atomic% ≤ a <95 atomic%, 2 atomic% ≤ b ≤ 15 atomic%, 3 atomic% <c <7.5 atomic%), and Mg- The present invention relates to a high-strength magnesium alloy having a structure in which one or more intermetallic compounds selected from the group consisting of Al-based, Mg-X-based, and Al-X-based are dispersed, and The second of the present invention is to rapidly solidify the alloy having the above composition,
After that, the rapidly solidified alloy is subjected to plastic working at a temperature of 450 ° C. or lower, and a matrix consisting of microcrystals is formed into a Mg—Al-based or Mg-X-based matrix.
System or one or two selected from the group consisting of Al-X system
The present invention relates to a method for producing a high-strength magnesium alloy having a structure in which one or more intermetallic compounds are dispersed.
【0006】まず、本発明のマグネシウム合金の組成限
定理由を説明する。マグネシウム合金の主成分であるM
gの含有量が77.5原子%(以下百分率は特記しない
限り原子%である)未満であると、軽量であるというマ
グネシウム合金の特長が失われ、また母相の割合が少な
くなり靭性の低下を招く。一方Mgの含有量が95%を
超えると、Mg母相中に析出する金属間化合物の量が不
足して、常温及び高温強度の低下を招く。First, the reasons for limiting the composition of the magnesium alloy of the present invention will be described. M which is the main component of magnesium alloy
When the content of g is less than 77.5 atomic% (the percentages below are atomic% unless otherwise specified), the feature of the magnesium alloy that it is lightweight is lost, and the ratio of the matrix phase is reduced and the toughness decreases. Invite. On the other hand, when the content of Mg exceeds 95%, the amount of intermetallic compound precipitated in the Mg mother phase becomes insufficient, and the room temperature and high temperature strength decreases.
【0007】AlはMgとの金属間化合物及びX成分
(Y,Ce,La,Nd,Pr,Sm,及びMm(ミッ
シュメタル)からなる群から選択される1種又は2種以
上)との金属間化合物を形成し,これらの金属間化合物
が微細なMg母相中にさらに微細分散して靭性を損なう
ことなく強度を高める。AlとX成分(Y,Ce,L
a,Nd,Pr,Sm,及びMm(ミッシュメタル)か
らなる群から選択される1種又は2種以上)の含有量は
図1に示された範囲とすることが必要である。すなわ
ち、AD線(Al=2%)より左側及びCD線(X=3
%)上及びその下側では分散する金属間化合物の量が不
足して常温及び高温強度の低下を招く。またAB線(x
=7.5%)より上側及びBC線(Al=15%)より
右側では母相中に分散する金属間化合物が粗大化し、材
料が脆くなる。したがって、Alの含有量は2%≦b≦
15%、X成分の含有量は3%<c≦7.5%であるこ
とが必要である。Al is a metal with an intermetallic compound with Mg and an X component (one or more selected from the group consisting of Y, Ce, La, Nd, Pr, Sm, and Mm (Misch metal)). Intermetallic compounds are formed, and these intermetallic compounds are further finely dispersed in the fine Mg matrix phase to enhance the strength without impairing the toughness. Al and X components (Y, Ce, L
The content of one or more selected from the group consisting of a, Nd, Pr, Sm, and Mm (Misch metal) needs to be within the range shown in FIG. That is, to the left of the AD line (Al = 2%) and the CD line (X = 3)
%) Above and below that, the amount of intermetallic compound dispersed becomes insufficient, resulting in a decrease in strength at room temperature and high temperature. Also AB line (x
= 7.5%) and the right side of the BC line (Al = 15%), the intermetallic compound dispersed in the matrix becomes coarse and the material becomes brittle. Therefore, the Al content is 2% ≦ b ≦
It is necessary that the content of the X component is 15%, and the content of the X component is 3% <c ≦ 7.5%.
【0008】続いて、本発明のマグネシウム合金の組織
を説明する。本発明のマグネシウム合金の組織は、母
相、すなわちMgの結晶構造をもつ相と、Mg−Al
系,Mg−X系及び又は低X高Al側で生成するAl−
X系金属間化合物の分散相から構成されている。上記の
Mg母相はサブミクロンの微結晶であり、この中にさら
に微細な金属間化合物の分散相が分散している。これら
のMg−Al系,Mg−X系及びAl−X系金属間化合
物は熱的に安定であり、微細でありかつ量も十分である
ために、母相の変形や成長を抑制して高温における強度
低下を少なくする。このように微細なMg母相にさらに
微細な金属間化合物が分散した組織とするためには、上
記の組成をもつマグネシウム合金を急冷凝固させること
により非平衡相中にAl及びX成分を十分に固溶させ、
その後熱処理によりこれらを微細な金属間化合物として
析出させる方法を採用する。この方法としては、好まし
くは450℃以下で熱処理するかあるいは450℃以下
で塑性加工する方法を採用することができる。熱処理又
は塑性加工温度の下限は130℃以上が好ましい。Next, the structure of the magnesium alloy of the present invention will be described. The structure of the magnesium alloy of the present invention comprises a matrix phase, that is, a phase having a Mg crystal structure, and a Mg-Al structure.
System, Mg-X system and / or Al-generated on the low X and high Al side
It is composed of a dispersed phase of an X-based intermetallic compound. The Mg matrix phase is a submicron crystallite, and a finer dispersed phase of the intermetallic compound is dispersed therein. Since these Mg-Al-based, Mg-X-based, and Al-X-based intermetallic compounds are thermally stable, fine, and have a sufficient amount, deformation and growth of the parent phase are suppressed and high temperature is achieved. To reduce the decrease in strength. In order to form a structure in which a finer intermetallic compound is dispersed in the fine Mg matrix phase as described above, the magnesium alloy having the above composition is rapidly solidified so that the Al and X components are sufficiently contained in the non-equilibrium phase. Solid solution,
After that, a method of precipitating these as fine intermetallic compounds by heat treatment is adopted. As this method, it is preferable to employ a method of heat treatment at 450 ° C. or lower or plastic working at 450 ° C. or lower. The lower limit of the heat treatment or plastic working temperature is preferably 130 ° C or higher.
【0009】続いて、本発明の第二にかかるマグネシウ
ム合金の加工方法について説明する。この方法において
は、上記組成を有する急冷凝固合金を450℃以下の温
度で塑性加工することにより所望の形状・寸法の素材を
得る。塑性加工の温度を450℃以下としたのは、これ
を越える温度ではMg母相が粗大化するとともに非平衡
相が分解して生成する金属間化合物も微細ではなくな
り、この結果所望の特性が得られ難いからである。Next, a method of processing a magnesium alloy according to the second aspect of the present invention will be described. In this method, a rapidly solidified alloy having the above composition is plastically worked at a temperature of 450 ° C. or lower to obtain a material having a desired shape and size. The plastic working temperature was set to 450 ° C. or lower because at a temperature above this, the Mg matrix phase coarsens and the non-equilibrium phase decomposes to produce fine intermetallic compounds, and as a result, desired characteristics are obtained. This is because it is hard to be beaten.
【0010】以下、本発明の方法の実施態様を説明す
る。Mg合金溶湯の急冷凝固は、一般的に急冷凝固法と
して知られる、各種方法、例えば、薄片を作製するガン
法、ピストン・アンビル法、連続的薄帯を作製する遠心
法、単ロール法、双ロール法、粉末を作製するスプレー
法、高圧ガス噴霧法、あるいは細線を作製する回転液中
紡糸法などによることができる。これらの方法の中で
も、102 〜106 k/sの冷却速度が容易に得られ、
Al及びX成分がほぼ全量固溶する単ロール法、双ロー
ル法、または高圧ガス噴霧法が特に適している。The embodiments of the method of the present invention will be described below. The rapid solidification of molten Mg alloy is generally known as rapid solidification method, for example, gun method for producing flakes, piston-anvil method, centrifugal method for producing continuous ribbons, single roll method, twin method. A roll method, a spray method for producing powder, a high-pressure gas atomizing method, or a spinning submerged spinning method for producing fine wires can be used. Among these methods, a cooling rate of 10 2 to 10 6 k / s can be easily obtained,
A single roll method, a twin roll method, or a high-pressure gas atomization method, in which almost all Al and X components are in solid solution, are particularly suitable.
【0011】単ロール法及び双ロール法によりMg合金
薄帯を作製するためには300〜10000rpmで回
転する直径30〜300mmの銅製又は鋼製ロールに合
金溶湯を噴射する。これにより幅が1〜300mm、厚
さが5〜500μmの薄帯が得られる。In order to produce the Mg alloy ribbon by the single roll method and the twin roll method, the molten alloy is sprayed onto a copper or steel roll having a diameter of 30 to 300 mm which rotates at 300 to 10000 rpm. As a result, a ribbon having a width of 1 to 300 mm and a thickness of 5 to 500 μm can be obtained.
【0012】また、高圧ガス噴霧法によりMg合金粉末
を得るには、溶湯ノズルから流下させた合金溶湯に4〜
15MPaの高圧窒素ガス、アルゴンガス、ヘリウムガ
スなどを吹きつけ、溶湯を微細に分断し、同時に急冷凝
固させる。更に好ましくは微細な粉末を分級することに
より、Al及びX成分の固溶量が多い粉末を塑性加工に
供するのがよい。Further, in order to obtain the Mg alloy powder by the high pressure gas atomization method, the alloy melt flowed down from the melt nozzle should be 4 to
High-pressure nitrogen gas of 15 MPa, argon gas, helium gas, etc. are blown to finely divide the molten metal, and at the same time rapidly solidified. More preferably, by classifying the fine powder, the powder containing a large amount of Al and the X component in solid solution may be subjected to plastic working.
【0013】上記の急冷凝固法で得られたMg合金は、
そのまま塑性加工することを可能であるが、薄帯あるい
は細線の場合は粉砕した後、Cu,Al又はそれらの合
金製の缶に充填して塑性加工することが好ましい。この
際、急冷凝固してから金属缶に充填するまでの急冷凝固
材の酸化を抑制するため酸素量1ppm以下の高清浄度
の雰囲気中で急冷凝固粉末を取り扱うことが好ましい。
また金属缶に充填された粉末には塑性加工するに先立っ
て、真空脱ガスを施すことが好ましい。The Mg alloy obtained by the above-mentioned rapid solidification method is
Although it is possible to perform plastic working as it is, in the case of a thin strip or a thin wire, it is preferable to crush and then fill a can made of Cu, Al or an alloy thereof and perform plastic working. At this time, it is preferable to handle the rapidly solidified powder in an atmosphere of high cleanliness with an oxygen content of 1 ppm or less in order to suppress the oxidation of the rapidly solidified material after the rapid solidification and filling into the metal can.
Further, it is preferable that the powder filled in the metal can is subjected to vacuum degassing before being plastically worked.
【0014】塑性加工方法は、押出、鍛造、圧延などの
各種方法を行うことができる。As the plastic working method, various methods such as extrusion, forging and rolling can be performed.
【0015】[0015]
【作用】本発明における高温強度は、200℃における
極限引張り強さが室温の値に対する比率で0.8以上で
あり、高温における強度低下が少ない。The high temperature strength in the present invention is such that the ultimate tensile strength at 200 ° C. is 0.8 or more as a ratio with respect to the value at room temperature, and the strength is not significantly reduced at high temperature.
【0016】[0016]
実施例1 表1に化学組成を示すMg合金をAr雰囲気中で高周波
溶解して母合金を溶製した。この母合金をAr雰囲気中
で高周波炉で850℃で溶解した後、9.8MPaのA
rガスで高圧ガス噴霧法により微細な結晶質金属からな
る粉末とした。アトマイズされた粉末のうち粒径の小さ
いものはよく急冷されており、添加元素の固溶量も大き
い。得られた粉末を分級し、25μm以下の粉末を温度
150〜400℃、加圧力200〜1000MPa、押
出比10:1で押出し、直径約6mm、長さ約270m
m、密度100%の円柱材を得た。尚、粉末作製から押
出しまでの段階で粉末が暴露された雰囲気は酸素・水分
濃度ともに1ppm以下の高清浄度雰囲気であった。円
柱材をX線回折したところ表1に示す金属間化合物がM
g相と共に観察された。表中、unknownは未だ同
定されていない金属間化合物である。Example 1 A Mg alloy whose chemical composition is shown in Table 1 was high-frequency melted in an Ar atmosphere to melt a mother alloy. This mother alloy was melted at 850 ° C. in a high frequency furnace in an Ar atmosphere, and then A of 9.8 MPa
Powder of fine crystalline metal was obtained by a high pressure gas atomization method using r gas. Among the atomized powders, those having a small particle size are well quenched, and the solid solution amount of the additive element is large. The obtained powder is classified, and a powder of 25 μm or less is extruded at a temperature of 150 to 400 ° C., a pressure of 200 to 1000 MPa, and an extrusion ratio of 10: 1, and a diameter of about 6 mm and a length of about 270 m.
A columnar material having m and a density of 100% was obtained. The atmosphere to which the powder was exposed during the steps from powder preparation to extrusion was a high cleanliness atmosphere with both oxygen and water concentrations of 1 ppm or less. X-ray diffraction of the cylindrical material revealed that the intermetallic compounds shown in Table 1 were M
Observed with g-phase. In the table, unknown is an intermetallic compound that has not been identified yet.
【0017】次に、円柱材料をインストロン型引張試験
機による引張試験に供した。この結果も表1に示す。な
お、伸びの百分率は引張試験片の長さの比である。Next, the columnar material was subjected to a tensile test by an Instron type tensile tester. The results are also shown in Table 1. The elongation percentage is the ratio of the lengths of the tensile test pieces.
【0018】[0018]
【表1】 No. 組 成 押出温度 金属間化合物相 UTS 伸び 1 Mg94.5Al2Y3.5 300℃ Mg24Y5,unknown 583MPa 2.7 % 2 Mg90Al5Y5 300 Mg24Y5,unknown 600 2.5 3 Mg82.5Al10Y7.5 250 Al2Y,Mg24Y5 560 1.8 4 Mg80Al15Y5 150 Al2Y,unknown 530 2.5 5 Mg92.5Al5Y2.5 250 Al2Y 425 4.8 6 Mg75Al15Y10 300 Al2Y,Mg24Y5 480 0.1 7 Mg80Al5Y15 400 Mg24Y5 382 − 備考No.5,6,7−比較例[Table 1] No. Composition Extrusion temperature Intermetallic compound phase UTS elongation 1 Mg94.5Al2Y3.5 300 ℃ Mg24Y5, unknown 583MPa 2.7% 2 Mg90Al5Y5 300 Mg24Y5, unknown 600 2.5 3 Mg82.5Al10Y7.5 250 Al2Y, Mg24Y5 560 1.8 4 Mg80Al15Y5 150 Al2Y, unknown 530 2.5 5 Mg92.5Al5Y2.5 250 Al2Y 425 4.8 6 Mg75Al15Y10 300 Al2Y, Mg24Y5 480 0.1 7 Mg80Al5Y15 400 Mg24Y5 382- Note No. 5, 6, 7-Comparative example
【0019】表1より、本発明のMg合金の極限引張り
強さ(UTS)は500〜600MPaであって極めて
高いことがわかる。また比較例の組成は強度が低いまた
は脆い材料となることがわかる。From Table 1, it can be seen that the ultimate tensile strength (UTS) of the Mg alloy of the present invention is 500 to 600 MPa, which is extremely high. Further, it can be seen that the composition of the comparative example is a material having low strength or brittleness.
【0020】[0020]
【発明の効果】以上説明したように、本発明にかかるマ
グネシウム合金は強度が高くしかも高温における強度低
下が少ない。さらに本発明における方法によると強度が
高くしかも高温における強度低下が少ないマグネシウム
合金で所望の形状、寸法のものが押出などの各種加工法
により得られる。As described above, the magnesium alloy according to the present invention has a high strength and a small decrease in strength at high temperatures. Further, according to the method of the present invention, a magnesium alloy having a high strength and a small strength reduction at a high temperature and having a desired shape and size can be obtained by various processing methods such as extrusion.
【図1】本発明のマグネシウム合金のX成分とAlの組
成範囲を示すグラフである。FIG. 1 is a graph showing a composition range of X component and Al of a magnesium alloy of the present invention.
───────────────────────────────────────────────────── フロントページの続き (71)出願人 000003207 トヨタ自動車株式会社 愛知県豊田市トヨタ町1番地 (72)発明者 増本 健 宮城県仙台市青葉区上杉3丁目8番22号 (72)発明者 井上 明久 宮城県仙台市青葉区川内無番地 川内住宅 11−806 (72)発明者 堀切 秀彦 東京都中央区八重洲1丁目9番9号 帝国 ピストンリング株式会社内 (72)発明者 加藤 晃 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 000003207 Toyota Motor Corporation 1 Toyota Town, Toyota City, Aichi Prefecture (72) Inventor Ken Masumoto 3-8-22 Uesugi, Aoba-ku, Sendai City, Miyagi Prefecture (72) Inventor Akihisa Inoue Banuchi, Kawauchi, Aoba-ku, Sendai-shi, Miyagi 11-806 (72) Inventor Hidehiko Horikiri 1-9-9 Yaesu, Chuo-ku, Tokyo Imperial Piston Ring Co., Ltd. (72) Akira Kato Toyota, Aichi Prefecture City Toyota-City, Toyota City
Claims (2)
Y,Ce,La,Nd,Pr,Sm及びMm(ミッシュ
メタル)からなる群から選択される1種又は2種以上の
元素、77.5原子%≦a<95原子%、2原子%≦b
≦15原子%、3原子%<c≦7.5原子%)からなる
組成を有し、微結晶からなるMg母相にMg−Al系、
Mg−X系及びAl−X系からなる群から選択された1
種又は2種以上の金属間化合物が分散した組織を有する
ことを特徴とする高強度マグネシウム合金。1. A general formula: Mga Alb Xc (where X is one or more elements selected from the group consisting of Y, Ce, La, Nd, Pr, Sm and Mm (Misch metal), 77. .5 atomic% ≤ a <95 atomic%, 2 atomic% ≤ b
≦ 15 atomic%, 3 atomic% <c ≦ 7.5 atomic%), and a Mg mother phase composed of microcrystals in a Mg-Al system,
1 selected from the group consisting of Mg-X system and Al-X system
A high-strength magnesium alloy having a structure in which one or more intermetallic compounds are dispersed.
させ、その後該急冷凝固合金に450℃以下の温度で塑
性加工を施し、微結晶からなる母相にMg−Al系、M
g−X系及びAl−X系からなる群から選択された1種
又は2種以上の金属間化合物が分散した組織とすること
を特徴とする高強度マグネシウム合金の製造方法。2. An alloy having the composition of claim 1 is rapidly solidified, and then the rapidly solidified alloy is subjected to plastic working at a temperature of 450 ° C. or lower, and a matrix phase composed of fine crystals is formed into a Mg—Al-based, M-based alloy.
A method for producing a high-strength magnesium alloy, which has a structure in which one or more intermetallic compounds selected from the group consisting of g-X type and Al-X type are dispersed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23960993A JP3193208B2 (en) | 1993-09-27 | 1993-09-27 | High strength magnesium alloy and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23960993A JP3193208B2 (en) | 1993-09-27 | 1993-09-27 | High strength magnesium alloy and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0790462A true JPH0790462A (en) | 1995-04-04 |
JP3193208B2 JP3193208B2 (en) | 2001-07-30 |
Family
ID=17047294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23960993A Expired - Fee Related JP3193208B2 (en) | 1993-09-27 | 1993-09-27 | High strength magnesium alloy and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3193208B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100406614C (en) * | 2005-03-09 | 2008-07-30 | 沈阳工业大学 | Spray coating technology of magnesium alloy surface protective layer |
JP2008536005A (en) * | 2005-03-08 | 2008-09-04 | ペ,ドン−ヒョン | Magnesium alloy added with misch metal, magnesium alloy processed material added with misch metal, and magnesium alloy processed material manufactured thereby |
-
1993
- 1993-09-27 JP JP23960993A patent/JP3193208B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008536005A (en) * | 2005-03-08 | 2008-09-04 | ペ,ドン−ヒョン | Magnesium alloy added with misch metal, magnesium alloy processed material added with misch metal, and magnesium alloy processed material manufactured thereby |
CN100406614C (en) * | 2005-03-09 | 2008-07-30 | 沈阳工业大学 | Spray coating technology of magnesium alloy surface protective layer |
Also Published As
Publication number | Publication date |
---|---|
JP3193208B2 (en) | 2001-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02503331A (en) | Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy | |
JP2911673B2 (en) | High strength aluminum alloy | |
JP2799642B2 (en) | High strength aluminum alloy | |
JPH0621326B2 (en) | High strength, heat resistant aluminum base alloy | |
JPH07268528A (en) | High strength aluminum-based alloy | |
JPH06184712A (en) | Production of high strength aluminum alloy | |
EP0558957B1 (en) | High-strength, wear-resistant aluminum alloy | |
JPH0941065A (en) | High strength magnesium alloy and its production | |
JPH07238336A (en) | High strength aluminum-base alloy | |
JP3110512B2 (en) | High strength and high toughness magnesium alloy material | |
US20070264149A1 (en) | Reinforced aluminum alloy and its process of manufacture | |
JPH05222491A (en) | High strength rapidly solidified alloy | |
JP2705996B2 (en) | High strength magnesium based alloy | |
JPH06264200A (en) | Ti series amorphous alloy | |
JP3238516B2 (en) | High strength magnesium alloy and method for producing the same | |
JP2865499B2 (en) | Superplastic aluminum-based alloy material and method for producing superplastic alloy material | |
JP2807374B2 (en) | High-strength magnesium-based alloy and its solidified material | |
JPH0748646A (en) | High strength magnesium base alloy and production thereof | |
JPH0790517A (en) | Aluminum-base alloy | |
JPH07316601A (en) | Production of rapidly solidified aluminum powder and aluminum alloy compact | |
JPH0790462A (en) | High strength magnesium alloy and its production | |
JPH06330263A (en) | Production of high toughness al-si series alloy | |
EP0577944B1 (en) | High-strength aluminum-based alloy, and compacted and consolidated material thereof | |
JP3485961B2 (en) | High strength aluminum base alloy | |
JPH0892680A (en) | High strength aluminum-based alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |