JP2024019300A - Encapsulating composition, production method therefor, and semiconductor device - Google Patents
Encapsulating composition, production method therefor, and semiconductor device Download PDFInfo
- Publication number
- JP2024019300A JP2024019300A JP2023205597A JP2023205597A JP2024019300A JP 2024019300 A JP2024019300 A JP 2024019300A JP 2023205597 A JP2023205597 A JP 2023205597A JP 2023205597 A JP2023205597 A JP 2023205597A JP 2024019300 A JP2024019300 A JP 2024019300A
- Authority
- JP
- Japan
- Prior art keywords
- inorganic filler
- sealing composition
- alumina
- sealing
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 98
- 239000004065 semiconductor Substances 0.000 title claims description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000011256 inorganic filler Substances 0.000 claims abstract description 94
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 94
- 239000003822 epoxy resin Substances 0.000 claims abstract description 33
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 33
- 238000007789 sealing Methods 0.000 claims description 72
- 239000002245 particle Substances 0.000 claims description 46
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 34
- 239000003795 chemical substances by application Substances 0.000 claims description 34
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 27
- 239000000377 silicon dioxide Substances 0.000 claims description 13
- 238000002156 mixing Methods 0.000 claims description 4
- 239000004848 polyfunctional curative Substances 0.000 abstract 1
- 239000011800 void material Substances 0.000 abstract 1
- -1 aldehyde compound Chemical class 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 12
- 239000007822 coupling agent Substances 0.000 description 11
- 150000002500 ions Chemical class 0.000 description 11
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 10
- 238000009826 distribution Methods 0.000 description 9
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 8
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 239000000945 filler Substances 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 6
- 239000006082 mold release agent Substances 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000003566 sealing material Substances 0.000 description 5
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 4
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 4
- JWAZRIHNYRIHIV-UHFFFAOYSA-N 2-naphthol Chemical compound C1=CC=CC2=CC(O)=CC=C21 JWAZRIHNYRIHIV-UHFFFAOYSA-N 0.000 description 4
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 4
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 4
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 239000008393 encapsulating agent Substances 0.000 description 4
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000005011 phenolic resin Substances 0.000 description 4
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 4
- SMQUZDBALVYZAC-UHFFFAOYSA-N salicylaldehyde Chemical compound OC1=CC=CC=C1C=O SMQUZDBALVYZAC-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 3
- UMHKOAYRTRADAT-UHFFFAOYSA-N [hydroxy(octoxy)phosphoryl] octyl hydrogen phosphate Chemical compound CCCCCCCCOP(O)(=O)OP(O)(=O)OCCCCCCCC UMHKOAYRTRADAT-UHFFFAOYSA-N 0.000 description 3
- 125000003710 aryl alkyl group Chemical group 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- 150000003003 phosphines Chemical class 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- FRASJONUBLZVQX-UHFFFAOYSA-N 1,4-naphthoquinone Chemical compound C1=CC=C2C(=O)C=CC(=O)C2=C1 FRASJONUBLZVQX-UHFFFAOYSA-N 0.000 description 2
- NADHCXOXVRHBHC-UHFFFAOYSA-N 2,3-dimethoxycyclohexa-2,5-diene-1,4-dione Chemical compound COC1=C(OC)C(=O)C=CC1=O NADHCXOXVRHBHC-UHFFFAOYSA-N 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000013065 commercial product Substances 0.000 description 2
- 229930003836 cresol Natural products 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000005040 ion trap Methods 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 2
- NXPPAOGUKPJVDI-UHFFFAOYSA-N naphthalene-1,2-diol Chemical compound C1=CC=CC2=C(O)C(O)=CC=C21 NXPPAOGUKPJVDI-UHFFFAOYSA-N 0.000 description 2
- 150000004780 naphthols Chemical class 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 2
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- UIXPTCZPFCVOQF-UHFFFAOYSA-N ubiquinone-0 Chemical compound COC1=C(OC)C(=O)C(C)=CC1=O UIXPTCZPFCVOQF-UHFFFAOYSA-N 0.000 description 2
- KYLUAQBYONVMCP-UHFFFAOYSA-N (2-methylphenyl)phosphane Chemical compound CC1=CC=CC=C1P KYLUAQBYONVMCP-UHFFFAOYSA-N 0.000 description 1
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- XGINAUQXFXVBND-UHFFFAOYSA-N 1,2,6,7,8,8a-hexahydropyrrolo[1,2-a]pyrimidine Chemical compound N1CC=CN2CCCC21 XGINAUQXFXVBND-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 229940005561 1,4-benzoquinone Drugs 0.000 description 1
- HIQAWCBKWSQMRQ-UHFFFAOYSA-N 16-methylheptadecanoic acid;2-methylprop-2-enoic acid;propan-2-ol;titanium Chemical compound [Ti].CC(C)O.CC(=C)C(O)=O.CC(=C)C(O)=O.CC(C)CCCCCCCCCCCCCCC(O)=O HIQAWCBKWSQMRQ-UHFFFAOYSA-N 0.000 description 1
- IEKHISJGRIEHRE-UHFFFAOYSA-N 16-methylheptadecanoic acid;propan-2-ol;titanium Chemical compound [Ti].CC(C)O.CC(C)CCCCCCCCCCCCCCC(O)=O.CC(C)CCCCCCCCCCCCCCC(O)=O.CC(C)CCCCCCCCCCCCCCC(O)=O IEKHISJGRIEHRE-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 1
- ZEGDFCCYTFPECB-UHFFFAOYSA-N 2,3-dimethoxy-1,4-benzoquinone Natural products C1=CC=C2C(=O)C(OC)=C(OC)C(=O)C2=C1 ZEGDFCCYTFPECB-UHFFFAOYSA-N 0.000 description 1
- AHDSRXYHVZECER-UHFFFAOYSA-N 2,4,6-tris[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(CN(C)C)=C(O)C(CN(C)C)=C1 AHDSRXYHVZECER-UHFFFAOYSA-N 0.000 description 1
- SENUUPBBLQWHMF-UHFFFAOYSA-N 2,6-dimethylcyclohexa-2,5-diene-1,4-dione Chemical compound CC1=CC(=O)C=C(C)C1=O SENUUPBBLQWHMF-UHFFFAOYSA-N 0.000 description 1
- IYAYDWLKTPIEDC-UHFFFAOYSA-N 2-[2-hydroxyethyl(3-triethoxysilylpropyl)amino]ethanol Chemical compound CCO[Si](OCC)(OCC)CCCN(CCO)CCO IYAYDWLKTPIEDC-UHFFFAOYSA-N 0.000 description 1
- KKOHCQAVIJDYAF-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid;propan-2-ol;titanium Chemical compound [Ti].CC(C)O.CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O.CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O.CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O KKOHCQAVIJDYAF-UHFFFAOYSA-N 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 2-phenyl-1h-imidazole Chemical compound C1=CNC(C=2C=CC=CC=2)=N1 ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 0.000 description 1
- RLQZIECDMISZHS-UHFFFAOYSA-N 2-phenylcyclohexa-2,5-diene-1,4-dione Chemical compound O=C1C=CC(=O)C(C=2C=CC=CC=2)=C1 RLQZIECDMISZHS-UHFFFAOYSA-N 0.000 description 1
- IKYAJDOSWUATPI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propane-1-thiol Chemical compound CO[Si](C)(OC)CCCS IKYAJDOSWUATPI-UHFFFAOYSA-N 0.000 description 1
- OXYZDRAJMHGSMW-UHFFFAOYSA-N 3-chloropropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCCl OXYZDRAJMHGSMW-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- TYOXIFXYEIILLY-UHFFFAOYSA-N 5-methyl-2-phenyl-1h-imidazole Chemical compound N1C(C)=CN=C1C1=CC=CC=C1 TYOXIFXYEIILLY-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- SRORDPCXIPXEAX-UHFFFAOYSA-N CCCCCCCCCCCCCP(CCCCCCCCCCCCC)(O)(OCCCCCCCC)OCCCCCCCC.CCCCCCCCCCCCCP(CCCCCCCCCCCCC)(O)(OCCCCCCCC)OCCCCCCCC Chemical compound CCCCCCCCCCCCCP(CCCCCCCCCCCCC)(O)(OCCCCCCCC)OCCCCCCCC.CCCCCCCCCCCCCP(CCCCCCCCCCCCC)(O)(OCCCCCCCC)OCCCCCCCC SRORDPCXIPXEAX-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- KNANZMNFPYPCHN-UHFFFAOYSA-N N'-[2-(dimethoxymethylsilyl)propan-2-yl]ethane-1,2-diamine Chemical compound COC(OC)[SiH2]C(C)(C)NCCN KNANZMNFPYPCHN-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- NOZAQBYNLKNDRT-UHFFFAOYSA-N [diacetyloxy(ethenyl)silyl] acetate Chemical compound CC(=O)O[Si](OC(C)=O)(OC(C)=O)C=C NOZAQBYNLKNDRT-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 239000004844 aliphatic epoxy resin Substances 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000008049 diazo compounds Chemical class 0.000 description 1
- CRGRWBQSZSQVIE-UHFFFAOYSA-N diazomethylbenzene Chemical compound [N-]=[N+]=CC1=CC=CC=C1 CRGRWBQSZSQVIE-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- HTDKEJXHILZNPP-UHFFFAOYSA-N dioctyl hydrogen phosphate Chemical compound CCCCCCCCOP(O)(=O)OCCCCCCCC HTDKEJXHILZNPP-UHFFFAOYSA-N 0.000 description 1
- XMQYIPNJVLNWOE-UHFFFAOYSA-N dioctyl hydrogen phosphite Chemical compound CCCCCCCCOP(O)OCCCCCCCC XMQYIPNJVLNWOE-UHFFFAOYSA-N 0.000 description 1
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 1
- GPAYUJZHTULNBE-UHFFFAOYSA-N diphenylphosphine Chemical compound C=1C=CC=CC=1PC1=CC=CC=C1 GPAYUJZHTULNBE-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- XHWQYYPUYFYELO-UHFFFAOYSA-N ditridecyl phosphite Chemical compound CCCCCCCCCCCCCOP([O-])OCCCCCCCCCCCCC XHWQYYPUYFYELO-UHFFFAOYSA-N 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- WOXXJEVNDJOOLV-UHFFFAOYSA-N ethenyl-tris(2-methoxyethoxy)silane Chemical compound COCCO[Si](OCCOC)(OCCOC)C=C WOXXJEVNDJOOLV-UHFFFAOYSA-N 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- NEXSMEBSBIABKL-UHFFFAOYSA-N hexamethyldisilane Chemical compound C[Si](C)(C)[Si](C)(C)C NEXSMEBSBIABKL-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- UJNZOIKQAUQOCN-UHFFFAOYSA-N methyl(diphenyl)phosphane Chemical compound C=1C=CC=CC=1P(C)C1=CC=CC=C1 UJNZOIKQAUQOCN-UHFFFAOYSA-N 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 1
- XFFPIAQRIDTSIZ-UHFFFAOYSA-N n'-[3-(dimethoxymethylsilyl)propyl]ethane-1,2-diamine Chemical compound COC(OC)[SiH2]CCCNCCN XFFPIAQRIDTSIZ-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- RPGWZZNNEUHDAQ-UHFFFAOYSA-N phenylphosphine Chemical compound PC1=CC=CC=C1 RPGWZZNNEUHDAQ-UHFFFAOYSA-N 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 150000007519 polyprotic acids Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000003918 potentiometric titration Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- GQIUQDDJKHLHTB-UHFFFAOYSA-N trichloro(ethenyl)silane Chemical compound Cl[Si](Cl)(Cl)C=C GQIUQDDJKHLHTB-UHFFFAOYSA-N 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- QLAGHGSFXJZWKY-UHFFFAOYSA-N triphenylborane;triphenylphosphane Chemical compound C1=CC=CC=C1B(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 QLAGHGSFXJZWKY-UHFFFAOYSA-N 0.000 description 1
- BIKXLKXABVUSMH-UHFFFAOYSA-N trizinc;diborate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]B([O-])[O-].[O-]B([O-])[O-] BIKXLKXABVUSMH-UHFFFAOYSA-N 0.000 description 1
- 239000005050 vinyl trichlorosilane Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 125000002256 xylenyl group Chemical class C1(C(C=CC=C1)C)(C)* 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/006—Additives being defined by their surface area
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Epoxy Resins (AREA)
Abstract
Description
本発明は、封止組成物及びその製造方法並びに半導体装置に関する。 The present invention relates to a sealing composition, a method for manufacturing the same, and a semiconductor device.
近年、小型化及び高集積化に伴い、半導体パッケージ内部の発熱が懸念されている。発熱により、半導体パッケージを有する電気部品又は電子部品の性能低下が生じる恐れがあるため、半導体パッケージに使用される部材には、高い熱伝導性が求められている。そのため、半導体パッケージの封止材を高熱伝導化することが求められている。
また、半導体パッケージを封止する際に、封止材には高い流動性が求められる。
無機充填材として例えばアルミナを用いた場合、封止材の高熱伝導化が可能になるものの封止材の流動性が低下する場合があり、封止材の高熱伝導化と流動性の向上とはトレードオフの関係にある。そのため、高熱伝導化と流動性の向上とを両立することが難しい場合がある。
In recent years, with miniaturization and higher integration, there has been concern about heat generation inside semiconductor packages. Because heat generation may cause deterioration in the performance of electrical or electronic components including semiconductor packages, members used in semiconductor packages are required to have high thermal conductivity. Therefore, it is required that the sealing material for semiconductor packages has high thermal conductivity.
Furthermore, when sealing a semiconductor package, the sealing material is required to have high fluidity.
For example, when alumina is used as an inorganic filler, it is possible to increase the thermal conductivity of the encapsulant, but the fluidity of the encapsulant may decrease. There is a trade-off relationship. Therefore, it may be difficult to achieve both high thermal conductivity and improved fluidity.
無機充填材にアルミナを用いた封止材の例として、(A)エポキシ樹脂、(B)硬化剤、並びに(D)球状アルミナ及び球状シリカを含有する無機充填材を必須成分としてなる半導体封止用エポキシ樹脂組成物であって、前記球状アルミナが、(d1)平均粒子径40μm以上70μm以下である第1の球状アルミナ、及び(d2)平均粒子径10μm以上15μm以下である第2の球状アルミナを含み、前記球状シリカが、(d3)平均粒子径4μm以上8μm以下である第1の球状シリカ、(d4)平均粒子径0.05μm以上~1.0μm以下である第2の球状シリカを含むものであり、(d3)+(d4)の合計量が全無機充填材に対して17%以上23%以下であり、(d3)/(d4)の比率が(d3)/(d4)=1/8以上5/4以下であり、無機充填材量が全樹脂組成物中85質量%~95質量%であることを特徴とする半導体封止用エポキシ樹脂組成物が知られている(例えば、特許文献1参照)。 An example of a sealing material using alumina as an inorganic filler is a semiconductor sealant whose essential components include (A) an epoxy resin, (B) a curing agent, and (D) an inorganic filler containing spherical alumina and spherical silica. an epoxy resin composition for use in which the spherical alumina is (d1) a first spherical alumina having an average particle diameter of 40 μm or more and 70 μm or less; and (d2) a second spherical alumina having an average particle diameter of 10 μm or more and 15 μm or less. The spherical silica includes (d3) a first spherical silica having an average particle diameter of 4 μm or more and 8 μm or less, and (d4) a second spherical silica having an average particle diameter of 0.05 μm or more and 1.0 μm or less. The total amount of (d3)+(d4) is 17% or more and 23% or less of the total inorganic filler, and the ratio of (d3)/(d4) is (d3)/(d4)=1. An epoxy resin composition for semiconductor encapsulation is known, which is characterized in that the ratio is 1/8 or more and 5/4 or less, and the amount of inorganic filler is 85% by mass to 95% by mass based on the total resin composition (for example, (See Patent Document 1).
しかし、高熱伝導フィラーであるアルミナを採用することで、封止材の硬化性及び成形性が悪化することがある。そのため、流動性、成形性及び硬化性を担保した高熱伝導封止材の開発は難題である。 However, by employing alumina, which is a highly thermally conductive filler, the curability and moldability of the sealing material may deteriorate. Therefore, it is a challenge to develop a highly thermally conductive encapsulant that ensures fluidity, moldability, and curability.
本開示は、上記従来の事情に鑑みてなされたものであり、硬化性、流動性及び成形性に優れ、硬化物としたときの熱伝導性に優れる封止組成物及びその製造方法並びに封止組成物を用いた半導体装置を提供することを目的とする。 The present disclosure has been made in view of the above-mentioned conventional circumstances, and provides a sealing composition that has excellent curability, fluidity, and moldability, and has excellent thermal conductivity when made into a cured product, a method for producing the same, and a sealing composition. An object of the present invention is to provide a semiconductor device using the composition.
前記課題を達成するための具体的手段は以下の通りである。
<1> エポキシ樹脂と、硬化剤と、空隙率が18体積%以下の無機充填材と、を含有する封止組成物。
<2> 前記無機充填材の体積平均粒子径が、4μm~100μmである<1>に記載の封止組成物。
<3> 前記無機充填材が、アルミナ及びシリカの少なくとも一方を含む<1>又は<2>に記載の封止組成物。
<4> 前記無機充填材の比表面積が、0.7m2/g~4.0m2/gである<1>~<3>のいずれか1項に記載の封止組成物。
<5> 半導体素子と、前記半導体素子を封止してなる<1>~<4>のいずれか1項に記載の封止組成物の硬化物と、を含む半導体装置。
<6> 空隙率が予め定められた値となるように無機充填材の組成を決定する工程と、
前記工程により決定された組成の無機充填材と、エポキシ樹脂と、硬化剤と、を混合する工程と、を有する封止組成物の製造方法。
Specific means for achieving the above object are as follows.
<1> A sealing composition containing an epoxy resin, a curing agent, and an inorganic filler having a porosity of 18% by volume or less.
<2> The sealing composition according to <1>, wherein the inorganic filler has a volume average particle diameter of 4 μm to 100 μm.
<3> The sealing composition according to <1> or <2>, wherein the inorganic filler contains at least one of alumina and silica.
<4> The sealing composition according to any one of <1> to <3>, wherein the inorganic filler has a specific surface area of 0.7 m 2 /g to 4.0 m 2 /g.
<5> A semiconductor device comprising a semiconductor element and a cured product of the sealing composition according to any one of <1> to <4>, which is obtained by sealing the semiconductor element.
<6> Determining the composition of the inorganic filler so that the porosity becomes a predetermined value;
A method for producing a sealing composition, comprising the step of mixing an inorganic filler having a composition determined in the step, an epoxy resin, and a curing agent.
本開示によれば、硬化性、流動性及び成形性に優れ、硬化物としたときの熱伝導性に優れる封止組成物及びその製造方法並びに封止組成物を用いた半導体装置を提供することができる。 According to the present disclosure, there is provided an encapsulating composition that has excellent curability, fluidity, and moldability, and excellent thermal conductivity when made into a cured product, a method for producing the same, and a semiconductor device using the encapsulating composition. I can do it.
以下、本発明の封止組成物及びその製造方法並びに半導体装置を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
EMBODIMENT OF THE INVENTION Hereinafter, the sealing composition of this invention, its manufacturing method, and the form for implementing a semiconductor device are demonstrated in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including elemental steps and the like) are not essential unless otherwise specified. The same applies to numerical values and their ranges, and they do not limit the present invention.
In the present disclosure, numerical ranges indicated using "~" include the numerical values written before and after "~" as minimum and maximum values, respectively.
In the numerical ranges described step by step in this disclosure, the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step. . Furthermore, in the numerical ranges described in this disclosure, the upper limit or lower limit of the numerical range may be replaced with the values shown in the Examples.
In the present disclosure, each component may contain multiple types of corresponding substances. If there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition, unless otherwise specified. means quantity.
In the present disclosure, each component may include a plurality of types of particles. When a plurality of types of particles corresponding to each component are present in the composition, the particle diameter of each component means a value for a mixture of the plurality of types of particles present in the composition, unless otherwise specified.
<封止組成物>
本開示の封止組成物は、エポキシ樹脂と、硬化剤と、空隙率が18体積%以下の無機充填材と、を含有する。
無機充填材の空隙率は、無機充填材の嵩体積に占める空隙の割合((空隙の体積/無機充填材の嵩体積)×100(%))を表す値である。同じ素材の無機充填材を用いた場合、無機充填材の重さが同じであれば、空隙率が小さくなるに従い無機充填材の嵩体積は小さくなる。封止組成物に含まれる無機充填材の嵩体積が小さくなると、封止組成物に含まれる無機充填材の含有量が同じであっても、封止組成物の体積から無機充填材の嵩体積を差し引いて得られる値は大きくなる。以下、この値を「余剰樹脂の量」と称することがある。
本発明者等は封止組成物における余剰樹脂の量に注目し、余剰樹脂の量が封止組成物の硬化性、流動性及び成形性並びに硬化物としたときの熱伝導性に与える影響について検討したところ、余剰樹脂の量が大きくなる(つまりは、無機充填材の空隙率が小さくなる)に従って封止組成物の硬化性、流動性、成形性及び硬化物としたときの熱伝導性が向上することを見出して本発明を完成させた。
余剰樹脂の量が大きくなるに従って封止組成物の硬化性、流動性、成形性及び硬化物としたときの熱伝導性が向上する理由は明確ではないが、余剰樹脂の量が増加することで封止組成物の粘度が低減して流動性が向上すると考えられる。また、余剰樹脂の量が増加することで、封止組成物の混練時の分散性が良くなり、硬化性、成形性及び硬化物としたときの熱伝導性の向上に寄与していると推測される。
<Sealing composition>
The sealing composition of the present disclosure contains an epoxy resin, a curing agent, and an inorganic filler having a porosity of 18% by volume or less.
The porosity of the inorganic filler is a value representing the proportion of voids in the bulk volume of the inorganic filler ((volume of voids/bulk volume of inorganic filler)×100(%)). When using inorganic fillers made of the same material, if the weight of the inorganic fillers is the same, the bulk volume of the inorganic fillers decreases as the porosity decreases. When the bulk volume of the inorganic filler contained in the sealing composition decreases, even if the content of the inorganic filler contained in the sealing composition is the same, the bulk volume of the inorganic filler decreases from the volume of the sealing composition. The value obtained by subtracting becomes larger. Hereinafter, this value may be referred to as "amount of surplus resin."
The present inventors focused on the amount of surplus resin in the sealing composition, and investigated the effects of the amount of surplus resin on the curability, fluidity, and moldability of the sealing composition, as well as on the thermal conductivity when made into a cured product. Upon investigation, we found that as the amount of surplus resin increases (in other words, the porosity of the inorganic filler decreases), the curability, fluidity, moldability, and thermal conductivity of the sealing composition when made into a cured product decrease. The present invention was completed after discovering that this can be improved.
It is not clear why the curability, fluidity, moldability, and thermal conductivity of the sealing composition improve as the amount of surplus resin increases, but as the amount of surplus resin increases, It is believed that the viscosity of the sealing composition is reduced and the fluidity is improved. In addition, it is assumed that an increase in the amount of surplus resin improves the dispersibility of the sealing composition during kneading, contributing to improvements in curability, moldability, and thermal conductivity when made into a cured product. be done.
以下、封止組成物を構成する各成分について説明する。本開示の封止組成物は、エポキシ樹脂と、硬化剤と、無機充填材とを含有し、必要に応じてその他の成分を含有してもよい。 Each component constituting the sealing composition will be explained below. The sealing composition of the present disclosure contains an epoxy resin, a curing agent, and an inorganic filler, and may contain other components as necessary.
-エポキシ樹脂-
封止組成物は、エポキシ樹脂を含有する。エポキシ樹脂の種類は特に限定されず、公知のエポキシ樹脂を使用することができる。
具体的には、例えば、フェノール化合物(例えば、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA及びビスフェノールF)並びにナフトール化合物(例えば、α-ナフトール、β-ナフトール及びジヒドロキシナフタレン)からなる群より選択される少なくとも1種と、アルデヒド化合物(例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド及びサリチルアルデヒド)とを、酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したもの(例えば、フェノールノボラック型エポキシ樹脂及びオルソクレゾールノボラック型エポキシ樹脂);ビスフェノール(例えば、ビスフェノールA、ビスフェノールAD、ビスフェノールF及びビスフェノールS)及びビフェノール(例えば、アルキル置換又は非置換のビフェノール)からなる群より選択される少なくとも1種のジグリシジルエーテル;フェノール・アラルキル樹脂のエポキシ化物;フェノール化合物とジシクロペンタジエン及びテルペン化合物からなる群より選択される少なくとも1種との付加物又は重付加物のエポキシ化物;多塩基酸(例えば、フタル酸及びダイマー酸)とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂;ポリアミン(例えば、ジアミノジフェニルメタン及びイソシアヌル酸)とエピクロルヒドリンとの反応により得られるグリシジルアミン型エポキシ樹脂;オレフィン結合を過酸(例えば、過酢酸)で酸化して得られる線状脂肪族エポキシ樹脂;並びに脂環族エポキシ樹脂が挙げられる。エポキシ樹脂は、1種類を単独で使用しても、2種類以上を併用してもよい。
-Epoxy resin-
The sealing composition contains an epoxy resin. The type of epoxy resin is not particularly limited, and any known epoxy resin can be used.
Specifically, for example, selected from the group consisting of phenolic compounds (e.g., phenol, cresol, xylenol, resorcinol, catechol, bisphenol A and bisphenol F) and naphthol compounds (e.g., α-naphthol, β-naphthol and dihydroxynaphthalene). and an aldehyde compound (e.g., formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, and salicylaldehyde) under an acidic catalyst. at least one selected from the group consisting of biphenols (e.g., bisphenol A, bisphenol AD, bisphenol F, and bisphenol S); and biphenols (e.g., alkyl-substituted or unsubstituted biphenols); One type of diglycidyl ether; Epoxidized product of phenol/aralkyl resin; Epoxidized product of adduct or polyadduct of a phenol compound and at least one selected from the group consisting of dicyclopentadiene and terpene compounds; Polybasic acid ( Glycidyl ester-type epoxy resins obtained by the reaction of epichlorohydrin with epichlorohydrin (e.g., phthalic acid and dimer acid); glycidylamine-type epoxy resins obtained by the reaction of polyamines (e.g., diaminodiphenylmethane and isocyanuric acid) with epichlorohydrin; Examples include linear aliphatic epoxy resins obtained by oxidation with (for example, peracetic acid); and alicyclic epoxy resins. Epoxy resins may be used singly or in combination of two or more.
集積回路(Integrated Circuit、IC)等の素子上のアルミニウム配線又は銅配線の腐食防止の観点から、エポキシ樹脂の純度は高い方が好ましく、加水分解性塩素量は少ない方が好ましい。封止組成物の耐湿性の向上の観点からは、加水分解性塩素量は質量基準で500ppm以下であることが好ましい。 From the viewpoint of preventing corrosion of aluminum wiring or copper wiring on elements such as integrated circuits (ICs), the purity of the epoxy resin is preferably high, and the amount of hydrolyzable chlorine is preferably low. From the viewpoint of improving the moisture resistance of the sealing composition, the amount of hydrolyzable chlorine is preferably 500 ppm or less on a mass basis.
ここで、加水分解性塩素量は、試料のエポキシ樹脂1gをジオキサン30mLに溶解し、1N-KOHメタノール溶液5mLを添加して30分間リフラックスした後、電位差滴定により求めた値である。 Here, the amount of hydrolyzable chlorine is a value determined by potentiometric titration after dissolving 1 g of the sample epoxy resin in 30 mL of dioxane, adding 5 mL of 1N-KOH methanol solution, and refluxing for 30 minutes.
封止組成物に占めるエポキシ樹脂の含有率は、2.5質量%~6質量%であることが好ましく、3.5質量%~5.5質量%であることがより好ましく、3.5質量%~5.0質量%であることがさらに好ましい。
無機充填材を除く封止組成物に占めるエポキシ樹脂の含有率は、40質量%~70質量%であることが好ましく、45質量%~64質量%であることがより好ましく、48質量%~55質量%であることがさらに好ましい。
The content of the epoxy resin in the sealing composition is preferably 2.5% by mass to 6% by mass, more preferably 3.5% by mass to 5.5% by mass, and 3.5% by mass. % to 5.0% by mass is more preferable.
The content of the epoxy resin in the sealing composition excluding the inorganic filler is preferably 40% by mass to 70% by mass, more preferably 45% to 64% by mass, and 48% to 55% by mass. More preferably, it is expressed in mass %.
-硬化剤-
封止組成物は、硬化剤を含有する。硬化剤の種類は特に限定されず、公知の硬化剤を使用することができる。
具体的には、例えば、フェノール化合物(例えば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA及びビスフェノールF)並びにナフトール化合物(例えば、α-ナフトール、β-ナフトール及びジヒドロキシナフタレン)からなる群より選択される少なくとも1種と、アルデヒド化合物(例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド及びサリチルアルデヒド)とを、酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂;フェノール・アラルキル樹脂;ビフェニル・アラルキル樹脂;並びにナフトール・アラルキル樹脂;が挙げられる。硬化剤は1種類を単独で使用しても、2種類以上を併用してもよい。
-Hardening agent-
The sealing composition contains a curing agent. The type of curing agent is not particularly limited, and any known curing agent can be used.
Specifically, for example, selected from the group consisting of phenolic compounds (e.g. phenol, cresol, resorcinol, catechol, bisphenol A and bisphenol F) and naphthol compounds (e.g. α-naphthol, β-naphthol and dihydroxynaphthalene) Novolac resin obtained by condensing or co-condensing at least one aldehyde compound (for example, formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, and salicylaldehyde) under an acidic catalyst; phenol/aralkyl resin; biphenyl/aralkyl resin; and naphthol aralkyl resins. One type of curing agent may be used alone, or two or more types may be used in combination.
硬化剤の官能基(例えば、ノボラック樹脂の場合にはフェノール性水酸基)の当量がエポキシ樹脂のエポキシ基1当量に対して0.5当量~1.5当量になるように、硬化剤が配合されることが好ましく、特に、0.7当量~1.2当量になるように硬化剤が配合されることが好ましい。 The curing agent is blended so that the equivalent of the functional group (for example, phenolic hydroxyl group in the case of novolac resin) of the curing agent is 0.5 to 1.5 equivalents per equivalent of epoxy group in the epoxy resin. In particular, it is preferable that the curing agent be blended in an amount of 0.7 to 1.2 equivalents.
-無機充填材-
封止組成物は、無機充填材を含む。無機充填材を含むことで、封止組成物の吸湿性が低減し、硬化状態での強度が向上する傾向にある。
-Inorganic filler-
The encapsulating composition includes an inorganic filler. Including an inorganic filler tends to reduce the hygroscopicity of the sealing composition and improve its strength in a cured state.
無機充填材は、1種類を単独で使用しても、2種類以上を併用してもよい。
無機充填材を2種類以上併用する場合としては、例えば、成分、平均粒子径、形状等が異なる無機充填材を2種類以上用いる場合が挙げられる。
無機充填材の形状は特に制限されず、例えば、粉状、球状、繊維状等が挙げられる。封止組成物の成形時の流動性及び金型摩耗性の点からは、球状であることが好ましい。
One type of inorganic filler may be used alone or two or more types may be used in combination.
Examples of cases where two or more types of inorganic fillers are used in combination include cases where two or more types of inorganic fillers having different components, average particle diameters, shapes, etc. are used.
The shape of the inorganic filler is not particularly limited, and examples include powder, spherical, and fibrous shapes. From the viewpoint of fluidity and mold abrasion resistance during molding of the sealing composition, a spherical shape is preferable.
本開示において、無機充填材の空隙率は18体積%以下であり、16体積%以下であることが好ましく、15体積%以下であることがより好ましく、14体積%以下であることがさらに好ましい。無機充填材の空隙率は7体積%以上であってもよい。無機充填材が1種類の場合には、無機充填材の空隙率は1種類の無機充填材についての空隙率を意味し、無機充填材が2種類以上の場合には、無機充填材の空隙率は2種類以上の無機充填材の混合物についての空隙率を意味する。 In the present disclosure, the porosity of the inorganic filler is 18 vol% or less, preferably 16 vol% or less, more preferably 15 vol% or less, and even more preferably 14 vol% or less. The porosity of the inorganic filler may be 7% by volume or more. When there is one type of inorganic filler, the porosity of the inorganic filler means the porosity of one type of inorganic filler, and when there are two or more types of inorganic fillers, the porosity of the inorganic filler means the porosity of a mixture of two or more types of inorganic fillers.
無機充填材の空隙率は、下記方法により測定された値をいう。
封止組成物をるつぼに入れ、800℃で4時間放置し、灰化させる。得られた灰分の粒度分布を、レーザー回折/散乱式粒子径分布測定装置(例えば、株式会社堀場製作所、LA920)を用いてアルミナの屈折率を適用して測定する。粒度分布から下記の大内山の式を用いて、空隙率εを算出する。なお、大内山の式に関しては、下記文献に詳しい。
N. Ouchiyama and T.Tanaka, Ind. Eng. Chem. Fundam., 19, 338 (1980)
N. Ouchiyama and T.Tanaka, Ind. Eng. Chem. Fundam., 20, 66 (1981)
N. Ouchiyama and T.Tanaka, Ind. Eng. Chem. Fundam., 23, 490 (1984)
The porosity of the inorganic filler refers to a value measured by the following method.
The sealing composition is placed in a crucible and left at 800° C. for 4 hours to incinerate. The particle size distribution of the obtained ash is measured using a laser diffraction/scattering particle size distribution measuring device (for example, Horiba, Ltd., LA920) by applying the refractive index of alumina. The porosity ε is calculated from the particle size distribution using Ouchiyama's formula below. Regarding Ouchiyama's formula, please refer to the following document for details.
N. Ouchiyama and T. Tanaka, Ind. Eng. Chem. Fundament. , 19, 338 (1980)
N. Ouchiyama and T. Tanaka, Ind. Eng. Chem. Fundament. , 20, 66 (1981)
N. Ouchiyama and T. Tanaka, Ind. Eng. Chem. Fundament. , 23, 490 (1984)
無機充填材としては、アルミナ及びシリカの少なくとも一方を含んでいることが好ましく、高熱伝導性の観点からアルミナを含むことがより好ましい。無機充填材の全てがアルミナであってもアルミナとその他の無機充填材とが併用されていてもよい。無機充填材がアルミナを含むことで、封止組成物の熱伝導性が向上する傾向にある。シリカとしては、球状シリカ、結晶シリカ等が挙げられる。
アルミナと併用可能なシリカ以外のその他の無機充填材としては、ジルコン、酸化マグネシウム、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化ホウ素、窒化アルミニウム、ベリリア、ジルコニア等が挙げられる。さらに、難燃効果のある無機充填材としては水酸化アルミニウム、硼酸亜鉛等が挙げられる。
The inorganic filler preferably contains at least one of alumina and silica, and more preferably contains alumina from the viewpoint of high thermal conductivity. All of the inorganic fillers may be alumina, or alumina and other inorganic fillers may be used in combination. When the inorganic filler contains alumina, the thermal conductivity of the sealing composition tends to improve. Examples of silica include spherical silica and crystalline silica.
Other inorganic fillers other than silica that can be used in combination with alumina include zircon, magnesium oxide, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, boron nitride, aluminum nitride, beryllia, zirconia, etc. . Further, examples of inorganic fillers having a flame retardant effect include aluminum hydroxide, zinc borate, and the like.
無機充填材としてアルミナとシリカとが併用される場合、無機充填材に占めるアルミナの含有率は、50体積%以上であることが好ましく、70体積%以上であることがより好ましく、85体積%以上であることがさらに好ましい。また、無機充填材に占めるアルミナの含有率は、99体積%以下であってもよい。 When alumina and silica are used together as an inorganic filler, the content of alumina in the inorganic filler is preferably 50 volume% or more, more preferably 70 volume% or more, and 85 volume% or more. It is more preferable that Further, the content of alumina in the inorganic filler may be 99% by volume or less.
無機充填材の含有率としては、吸湿性、線膨張係数の低減、強度向上及びはんだ耐熱性の観点から、封止組成物の全体に対して60体積%以上であることが好ましく、70体積%以上であることがより好ましく、75体積%以上であることがさらに好ましい。無機充填材の含有率は、95体積%以下であってもよい。 The content of the inorganic filler is preferably 60% by volume or more, and 70% by volume based on the entire sealing composition, from the viewpoints of hygroscopicity, reduction of linear expansion coefficient, improvement of strength, and soldering heat resistance. The content is more preferably 75% by volume or more, and even more preferably 75% by volume or more. The content of the inorganic filler may be 95% by volume or less.
無機充填材の平均粒子径としては、高熱伝導性の観点から、4μm~100μmであることが好ましく、7μm~70μmであることがより好ましく、7μm~40μmであることがさらに好ましい。本開示において、無機充填材の平均粒子径は、無機充填材としてアルミナが単独で用いられている場合にはアルミナの平均粒子径を、無機充填材としてアルミナとその他の無機充填材とが併用されている場合には無機充填材全体としての平均粒子径をいう。
封止組成物の硬化物の熱伝導率は、無機充填材の平均粒子径が大きくなる程、高くなる傾向にある。
無機充填材の平均粒子径は、以下の方法により測定することができる。
From the viewpoint of high thermal conductivity, the average particle diameter of the inorganic filler is preferably 4 μm to 100 μm, more preferably 7 μm to 70 μm, and even more preferably 7 μm to 40 μm. In the present disclosure, the average particle size of the inorganic filler is the average particle size of alumina when alumina is used alone as the inorganic filler, and the average particle size of alumina when alumina and another inorganic filler are used together as the inorganic filler. When the particle diameter is 1, it refers to the average particle diameter of the inorganic filler as a whole.
The thermal conductivity of the cured product of the sealing composition tends to increase as the average particle size of the inorganic filler increases.
The average particle diameter of the inorganic filler can be measured by the following method.
溶媒(純水)に、測定対象の無機充填材を1質量%~5質量%の範囲内で界面活性剤1質量%~8質量%とともに添加し、110Wの超音波洗浄機で30秒~5分間振動し、無機充填材を分散する。分散液の約3mL程度を測定用セルに注入して25℃で測定する。測定装置は、レーザー回折/散乱式粒子径分布測定装置(例えば、株式会社堀場製作所、LA920)を用い、体積基準の粒度分布を測定する。平均粒子径は、体積基準の粒度分布において小径側からの累積が50%となるときの粒子径(D50%)として求められる。なお、屈折率はアルミナの屈折率を用いる。無機充填材がアルミナとその他の無機充填材の混合物である場合においては、屈折率はアルミナの屈折率を用いるものとする。 Add the inorganic filler to be measured to a solvent (pure water) in a range of 1% to 5% by mass together with 1% to 8% by mass of a surfactant, and wash in a 110W ultrasonic cleaner for 30 seconds to 5%. Vibrate for a minute to disperse the inorganic filler. About 3 mL of the dispersion liquid is injected into a measurement cell and measured at 25°C. The measuring device measures the volume-based particle size distribution using a laser diffraction/scattering particle size distribution measuring device (for example, Horiba, Ltd., LA920). The average particle diameter is determined as the particle diameter (D50%) when the accumulation from the small diameter side is 50% in the volume-based particle size distribution. Note that the refractive index of alumina is used as the refractive index. When the inorganic filler is a mixture of alumina and other inorganic fillers, the refractive index of alumina is used as the refractive index.
無機充填材の比表面積としては、流動性及び成形性の観点から、0.7m2/g~4.0m2/gであることが好ましく、0.9m2/g~3.0m2/gであることがより好ましく、1.0m2/g~2.5m2/gであることがさらに好ましい。
封止組成物の流動性は、無機充填材の比表面積が小さくなる程、高くなる傾向にある。
本開示において、無機充填材の比表面積は、無機充填材として例えばアルミナが単独で用いられている場合にはアルミナの比表面積を、無機充填材としてアルミナとその他の無機充填材とが併用されている場合には無機充填材の混合物の比表面積をいう。
無機充填材の比表面積(BET比表面積)は、JIS Z 8830:2013に準じて窒素吸着能から測定することができる。評価装置としては、QUANTACHROME社:AUTOSORB-1(商品名)を用いることができる。BET比表面積の測定を行う際には、試料表面及び構造中に吸着している水分がガス吸着能に影響を及ぼすと考えられることから、まず、加熱による水分除去の前処理を行うことが好ましい。
前処理では、0.05gの測定試料を投入した測定用セルを、真空ポンプで10Pa以下に減圧した後、110℃で加熱し、3時間以上保持した後、減圧した状態を保ったまま常温(25℃)まで自然冷却する。この前処理を行った後、評価温度を77Kとし、評価圧力範囲を相対圧(飽和蒸気圧に対する平衡圧力)にて1未満として測定する。
The specific surface area of the inorganic filler is preferably 0.7 m 2 /g to 4.0 m 2 / g, and 0.9 m 2 /g to 3.0 m 2 /g from the viewpoint of fluidity and moldability. More preferably, it is 1.0 m 2 /g to 2.5 m 2 /g.
The fluidity of the sealing composition tends to increase as the specific surface area of the inorganic filler decreases.
In the present disclosure, the specific surface area of the inorganic filler is defined as the specific surface area of alumina when, for example, alumina is used alone as the inorganic filler, and the specific surface area of alumina when alumina and other inorganic fillers are used together as the inorganic filler. If present, it refers to the specific surface area of the mixture of inorganic fillers.
The specific surface area (BET specific surface area) of the inorganic filler can be measured from the nitrogen adsorption capacity according to JIS Z 8830:2013. As the evaluation device, AUTOSORB-1 (trade name) manufactured by QUANTACHROME can be used. When measuring the BET specific surface area, it is thought that moisture adsorbed on the sample surface and structure affects the gas adsorption ability, so it is preferable to first perform pretreatment to remove moisture by heating. .
In the pretreatment, the measurement cell containing 0.05 g of the measurement sample was depressurized to 10 Pa or less using a vacuum pump, heated to 110°C, held for more than 3 hours, and then heated to room temperature (while maintaining the depressurized state). Cool naturally to 25°C. After performing this pretreatment, the evaluation temperature is set to 77 K, and the evaluation pressure range is measured as relative pressure (equilibrium pressure with respect to saturated vapor pressure) less than 1.
(硬化促進剤)
封止組成物は、硬化促進剤をさらに含有してもよい。硬化促進剤の種類は特に制限されず、公知の硬化促進剤を使用することができる。
具体的には、1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7、1,5-ジアザ-ビシクロ[4.3.0]ノネン、5,6-ジブチルアミノ-1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7等のシクロアミジン化合物;シクロアミジン化合物に無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタン、フェノール樹脂などのπ結合をもつ化合物を付加してなる分子内分極を有する化合物;ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン化合物、3級アミン化合物の誘導体;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール等のイミダゾール化合物、イミダゾール化合物の誘導体;トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン化合物;有機ホスフィン化合物に無水マレイン酸、上記キノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有するリン化合物;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、2-エチル-4-メチルイミダゾールテトラフェニルボレート、N-メチルモルホリンテトラフェニルボレート等のテトラフェニルボロン塩、テトラフェニルボロン塩の誘導体;トリフェニルホスホニウム-トリフェニルボラン、N-メチルモルホリンテトラフェニルホスホニウム-テトラフェニルボレート等のホスフィン化合物とテトラフェニルボロン塩との付加物などが挙げられる。硬化促進剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
(hardening accelerator)
The sealing composition may further contain a curing accelerator. The type of curing accelerator is not particularly limited, and any known curing accelerator can be used.
Specifically, 1,8-diaza-bicyclo[5.4.0]undecene-7, 1,5-diaza-bicyclo[4.3.0]nonene, 5,6-dibutylamino-1,8- Cyclamidine compounds such as diaza-bicyclo[5.4.0]undecene-7; maleic anhydride, 1,4-benzoquinone, 2,5-torquinone, 1,4-naphthoquinone, 2,3-dimethyl in the cycloamidine compound Quinone compounds such as benzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone, diazo Compounds with intramolecular polarization obtained by adding compounds with π bonds such as phenylmethane and phenolic resins; tertiary amine compounds such as benzyldimethylamine, triethanolamine, dimethylaminoethanol, and tris(dimethylaminomethyl)phenol; Derivatives of tertiary amine compounds; derivatives of imidazole compounds and imidazole compounds such as 2-methylimidazole, 2-phenylimidazole, and 2-phenyl-4-methylimidazole; tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris(4- Organic phosphine compounds such as (methylphenyl)phosphine, diphenylphosphine, and phenylphosphine; intramolecular polarization obtained by adding compounds with π bonds such as maleic anhydride, the above quinone compounds, diazophenylmethane, and phenol resins to organic phosphine compounds; Phosphorus compounds containing; tetraphenylboron salts and derivatives of tetraphenylboron salts such as tetraphenylphosphonium tetraphenylborate, triphenylphosphine tetraphenylborate, 2-ethyl-4-methylimidazole tetraphenylborate, N-methylmorpholine tetraphenylborate, etc. ; Examples include adducts of phosphine compounds such as triphenylphosphonium-triphenylborane, N-methylmorpholinetetraphenylphosphonium-tetraphenylborate, and tetraphenylboron salts. One type of curing accelerator may be used alone, or two or more types may be used in combination.
硬化促進剤の含有率は、エポキシ樹脂と硬化剤の合計量に対して、0.1質量%~8質量%であることが好ましい。 The content of the curing accelerator is preferably 0.1% by mass to 8% by mass based on the total amount of the epoxy resin and curing agent.
(イオントラップ剤)
封止組成物は、イオントラップ剤をさらに含有してもよい。
本開示において使用可能なイオントラップ剤は、半導体装置の製造用途に用いられる封止材において、一般的に使用されているイオントラップ剤であれば特に制限されるものではない。イオントラップ剤としては、例えば、下記一般式(II-1)又は下記一般式(II-2)で表される化合物が挙げられる。
(ion trap agent)
The encapsulation composition may further contain an ion trapping agent.
The ion trapping agent that can be used in the present disclosure is not particularly limited as long as it is a commonly used ion trapping agent in sealing materials used for manufacturing semiconductor devices. Examples of the ion trapping agent include compounds represented by the following general formula (II-1) or the following general formula (II-2).
Mg1-aAla(OH)2(CO3)a/2・uH2O (II-1)
(一般式(II-1)中、aは0<a≦0.5であり、uは正数である。)
BiOb(OH)c(NO3)d (II-2)
(一般式(II-2)中、bは0.9≦b≦1.1、cは0.6≦c≦0.8、dは0.2≦d≦0.4である。)
Mg 1-a Al a (OH) 2 (CO 3 ) a/2・uH 2 O (II-1)
(In general formula (II-1), a is 0<a≦0.5, and u is a positive number.)
BiO b (OH) c (NO 3 ) d (II-2)
(In general formula (II-2), b is 0.9≦b≦1.1, c is 0.6≦c≦0.8, and d is 0.2≦d≦0.4.)
イオントラップ剤は、市販品として入手可能である。一般式(II-1)で表される化合物としては、例えば、「DHT-4A」(協和化学工業株式会社、商品名)が市販品として入手可能である。また、一般式(II-2)で表される化合物としては、例えば、「IXE500」(東亞合成株式会社、商品名)が市販品として入手可能である。 Ion trapping agents are commercially available. As the compound represented by the general formula (II-1), for example, "DHT-4A" (Kyowa Chemical Industry Co., Ltd., trade name) is available as a commercial product. Further, as a compound represented by the general formula (II-2), for example, "IXE500" (trade name, manufactured by Toagosei Co., Ltd.) is available as a commercial product.
また、上記以外のイオントラップ剤として、マグネシウム、アルミニウム、チタン、ジルコニウム、アンチモン等から選ばれる元素の含水酸化物などが挙げられる。
イオントラップ剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
In addition, examples of ion trapping agents other than those mentioned above include hydrous oxides of elements selected from magnesium, aluminum, titanium, zirconium, antimony, and the like.
One type of ion trap agent may be used alone, or two or more types may be used in combination.
封止組成物がイオントラップ剤を含有する場合、イオントラップ剤の含有量は、充分な耐湿信頼性を実現する観点からは、エポキシ樹脂100質量部に対して1質量部以上であることが好ましい。他の成分の効果を充分に発揮する観点からは、イオントラップ剤の含有量は、エポキシ樹脂100質量部に対して15質量部以下であることが好ましい。 When the sealing composition contains an ion trapping agent, the content of the ion trapping agent is preferably 1 part by mass or more per 100 parts by mass of the epoxy resin from the viewpoint of achieving sufficient moisture resistance reliability. . From the viewpoint of fully exhibiting the effects of other components, the content of the ion trapping agent is preferably 15 parts by mass or less based on 100 parts by mass of the epoxy resin.
また、イオントラップ剤の平均粒子径は0.1μm~3.0μmであることが好ましく、最大粒子径は10μm以下であることが好ましい。イオントラップ剤の平均粒子径は、無機充填材の場合と同様にして測定することができる。 Further, the average particle size of the ion trapping agent is preferably 0.1 μm to 3.0 μm, and the maximum particle size is preferably 10 μm or less. The average particle diameter of the ion trapping agent can be measured in the same manner as in the case of the inorganic filler.
(カップリング剤)
封止組成物は、カップリング剤をさらに含有してもよい。カップリング剤の種類は、特に制限されず、公知のカップリング剤を使用することができる。カップリング剤としては、例えば、シランカップリング剤及びチタンカップリング剤が挙げられる。カップリング剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
(coupling agent)
The sealing composition may further contain a coupling agent. The type of coupling agent is not particularly limited, and any known coupling agent can be used. Examples of the coupling agent include a silane coupling agent and a titanium coupling agent. One type of coupling agent may be used alone, or two or more types may be used in combination.
シランカップリング剤としては、例えば、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-[ビス(β-ヒドロキシエチル)]アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-(β-アミノエチル)アミノプロピルジメトキシメチルシラン、N-(トリメトキシシリルプロピル)エチレンジアミン、N-(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、メチルトリエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、γ-アニリノプロピルトリメトキシシラン、ビニルトリメトキシシラン及びγ-メルカプトプロピルメチルジメトキシシランが挙げられる。 Examples of the silane coupling agent include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane, γ-methacryloxypropyltrimethoxysilane, and β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane. , γ-glycidoxypropyltrimethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-[bis(β-hydroxyethyl)]aminopropyltriethoxysilane, N -β-(aminoethyl)-γ-aminopropyltrimethoxysilane, γ-(β-aminoethyl)aminopropyldimethoxymethylsilane, N-(trimethoxysilylpropyl)ethylenediamine, N-(dimethoxymethylsilylisopropyl)ethylenediamine, Methyltrimethoxysilane, methyltriethoxysilane, N-β-(N-vinylbenzylaminoethyl)-γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, hexamethyldisilane, γ-anilinopropyltrimethoxy Examples include silane, vinyltrimethoxysilane and γ-mercaptopropylmethyldimethoxysilane.
チタンカップリング剤としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシルホスファイト)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート及びテトライソプロピルビス(ジオクチルホスファイト)チタネートが挙げられる。 Examples of the titanium coupling agent include isopropyl triisostearoyl titanate, isopropyl tris(dioctylpyrophosphate) titanate, isopropyl tri(N-aminoethyl-aminoethyl) titanate, tetraoctyl bis(ditridecyl phosphite) titanate, and tetra( 2,2-diallyloxymethyl-1-butyl)bis(ditridecylphosphite) titanate, bis(dioctylpyrophosphate)oxyacetate titanate, bis(dioctylpyrophosphate)ethylene titanate, isopropyltrioctanoyltitanate, isopropyldimethacryliso Stearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tri(dioctyl phosphate) titanate, isopropyl tricumylphenyl titanate and tetraisopropyl bis(dioctyl phosphite) titanate.
封止組成物がカップリング剤を含有する場合、カップリング剤の含有率は、封止組成物の全体に対して3質量%以下であることが好ましく、その効果を発揮させる観点からは、0.1質量%以上であることが好ましい。 When the sealing composition contains a coupling agent, the content of the coupling agent is preferably 3% by mass or less based on the entire sealing composition, and from the viewpoint of exhibiting its effect, the content of the coupling agent is 0. .1% by mass or more is preferable.
(離型剤)
封止組成物は、離型剤をさらに含有してもよい。離型剤の種類は特に制限されず、公知の離型剤を使用することができる。具体的には、例えば、高級脂肪酸、カルナバワックス及びポリエチレン系ワックスが挙げられる。離型剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
封止組成物が離型剤を含有する場合、離型剤の含有率は、エポキシ樹脂と硬化剤の合計量に対して、10質量%以下であることが好ましく、その効果を発揮させる観点からは、0.5質量%以上であることが好ましい。
(Release agent)
The sealing composition may further contain a mold release agent. The type of mold release agent is not particularly limited, and any known mold release agent can be used. Specific examples include higher fatty acids, carnauba wax, and polyethylene wax. One type of mold release agent may be used alone, or two or more types may be used in combination.
When the sealing composition contains a mold release agent, the content of the mold release agent is preferably 10% by mass or less based on the total amount of the epoxy resin and the curing agent, from the viewpoint of exhibiting its effect. is preferably 0.5% by mass or more.
(着色剤及び改質剤)
封止組成物は、着色剤(例えば、カーボンブラック)を含有してもよい。また、封止組成物は、改質剤(例えば、シリコーン及びシリコーンゴム)を含有してもよい。着色剤及び改質剤は、それぞれ、1種類を単独で使用しても、2種類以上を併用してもよい。
(Colorants and modifiers)
The encapsulant composition may also contain a colorant (eg, carbon black). The encapsulating composition may also contain modifiers (eg, silicones and silicone rubbers). The colorant and the modifier may be used alone or in combination of two or more.
着色剤としてカーボンブラック等の導電性粒子を用いる場合、導電性粒子は、粒子径10μm以上の粒子の含有率が1質量%以下であることが好ましい。
封止組成物が導電性粒子を含有する場合、導電性粒子の含有率は、エポキシ樹脂と硬化剤の合計量に対して3質量%以下であることが好ましい。
When using conductive particles such as carbon black as a coloring agent, it is preferable that the content of conductive particles having a particle diameter of 10 μm or more is 1% by mass or less.
When the sealing composition contains conductive particles, the content of the conductive particles is preferably 3% by mass or less based on the total amount of the epoxy resin and the curing agent.
<封止組成物の製造方法>
本開示の封止組成物の製造方法は、空隙率が予め定められた値となるように無機充填材の組成を決定する工程と、前記工程により決定された組成の無機充填材と、エポキシ樹脂と、硬化剤と、を混合する工程と、を有する。予め定められた空隙率としては、18体積%以下であることが好ましく、16体積%以下であることがより好ましく、15体積%以下であることがさらに好ましく、14体積%以下であることが特に好ましい。
空隙率が予め定められた値となるように無機充填材の組成を決定する方法は特に限定されるものではない。無機充填材の形状が球状である場合、無機充填材の空隙率は、無機充填材の粒度分布に基づいて算出することが可能となる。そこで、予め複数の無機充填材の粒度分布を測定して蓄積しておき、封止組成物の特性等に応じて無機充填材の空隙率を定め、予め定められた空隙率となるように複数の無機充填材を組み合わせることで、無機充填材の組成を決定してもよい。
無機充填材の粒度分布に基づいて無機充填材の空隙率を算出する方法としては、上述した大内山の式を用いて算出する方法等が挙げられる。
次いで、予め定められた空隙率となるように組成が決定された無機充填材と、エポキシ樹脂と、硬化剤と、必要に応じて用いられるその他の成分とをミキサー等によって充分混合した後、熱ロール、押出機等によって混練し、冷却、粉砕等の処理を経ることによって封止組成物を製造することができる。封止組成物の状態は特に制限されず、粉末状、固体状、液体状等であってよい。
<Method for manufacturing sealing composition>
A method for producing a sealing composition of the present disclosure includes a step of determining the composition of an inorganic filler so that the porosity has a predetermined value, an inorganic filler having the composition determined by the step, and an epoxy resin. and a curing agent. The predetermined porosity is preferably 18% by volume or less, more preferably 16% by volume or less, even more preferably 15% by volume or less, particularly 14% by volume or less. preferable.
The method of determining the composition of the inorganic filler so that the porosity becomes a predetermined value is not particularly limited. When the shape of the inorganic filler is spherical, the porosity of the inorganic filler can be calculated based on the particle size distribution of the inorganic filler. Therefore, the particle size distribution of multiple inorganic fillers is measured and accumulated in advance, and the porosity of the inorganic filler is determined according to the characteristics of the sealing composition. The composition of the inorganic filler may be determined by combining these inorganic fillers.
Examples of a method for calculating the porosity of an inorganic filler based on the particle size distribution of the inorganic filler include a method of calculating using the Ouchiyama equation described above.
Next, the inorganic filler whose composition has been determined to have a predetermined porosity, the epoxy resin, the curing agent, and other components used as necessary are thoroughly mixed using a mixer or the like, and then heated. A sealing composition can be produced by kneading with a roll, extruder, etc., and then undergoing treatments such as cooling and pulverization. The state of the sealing composition is not particularly limited, and may be powder, solid, liquid, or the like.
<半導体装置>
本開示の半導体装置は、半導体素子と、前記半導体素子を封止してなる本開示の封止組成物の硬化物と、を含む。
<Semiconductor device>
The semiconductor device of the present disclosure includes a semiconductor element and a cured product of the sealing composition of the present disclosure, which seals the semiconductor element.
封止組成物を用いて半導体素子を封止する方法は特に限定されず、公知の方法を適用することが可能である。例えば、トランスファーモールド法が一般的であるが、コンプレッションモールド法、インジェクション成形法等を用いてもよい。 The method of sealing a semiconductor element using a sealing composition is not particularly limited, and any known method can be applied. For example, although a transfer molding method is common, a compression molding method, an injection molding method, etc. may also be used.
本開示の半導体装置は、IC、LSI(Large-Scale Integration、大規模集積回路)等として好適である。 The semiconductor device of the present disclosure is suitable as an IC, an LSI (Large-Scale Integration), or the like.
以下に本発明の実施例について説明するが、本発明はこれに限定されるものではない。また、表中の数値は特に断りのない限り「質量部」を意味する。 Examples of the present invention will be described below, but the present invention is not limited thereto. Moreover, the numerical values in the table mean "parts by mass" unless otherwise specified.
(実施例1~6及び比較例1~3)
下記に示す成分を表1又は表2に示す配合割合(質量部)で予備混合(ドライブレンド)した後、二軸ニーダーで混練し、冷却粉砕して粉末状の封止組成物を製造した。
(Examples 1 to 6 and Comparative Examples 1 to 3)
The components shown below were premixed (dry blended) at the blending ratios (parts by mass) shown in Table 1 or Table 2, then kneaded with a twin-screw kneader, cooled and ground to produce a powdery sealing composition.
(A)エポキシ樹脂
・A1・・・ビスフェノール型結晶性エポキシ樹脂、エポキシ当量:192g/eq
・A2・・・ビフェニル型エポキシ樹脂、エポキシ当量:192g/eq
・A3・・・ビスフェノールF型エポキシ樹脂、エポキシ当量:158g/eq
(B)硬化剤
・B1・・・トリフェニルメタン型フェノール樹脂、水酸基当量が104g/eqのトリフェニルメタン型フェノール樹脂
(C)硬化促進剤
・C1・・・リン系硬化促進剤(トリブチルホスフィンとベンゾキノンの付加物)
(D)フィラー(無機充填材)
・D1・・・平均粒子径(D50、小径側からの体積累積50%に対応する粒子径)10.4μm及び比表面積1.5m2/gのアルミナフィラー
・D2・・・平均粒子径1.6μm及び比表面積3.3m2/gのアルミナフィラー
・D3・・・平均粒子径43.9μm及び比表面積0.15m2/gのアルミナフィラー
・D4・・・平均粒子径0.7μm及び比表面積8.0m2/gのアルミナフィラー
・D5・・・比表面積200m2/gのシリカフィラー
・D6・・・平均粒子径11.7μm及び比表面積2.2m2/gのアルミナフィラー/シリカフィラー=9/1(質量比)混合物
(A) Epoxy resin・A1...Bisphenol type crystalline epoxy resin, epoxy equivalent: 192g/eq
・A2...Biphenyl type epoxy resin, epoxy equivalent: 192g/eq
・A3...Bisphenol F type epoxy resin, epoxy equivalent: 158g/eq
(B) Curing agent・B1...Triphenylmethane type phenol resin, triphenylmethane type phenol resin with a hydroxyl equivalent of 104 g/eq (C) Curing accelerator・C1...Phosphorous curing accelerator (tributylphosphine and benzoquinone adduct)
(D) Filler (inorganic filler)
・D1... Alumina filler with an average particle diameter (D50, particle diameter corresponding to 50% volume accumulation from the small diameter side) of 10.4 μm and a specific surface area of 1.5 m 2 /g.・D2... Average particle diameter 1. Alumina filler with an average particle diameter of 43.9 μm and a specific surface area of 0.15 m 2 /g. D4: an average particle diameter of 0.7 μm and a specific surface area of 0.15 m 2 /g. 8.0 m 2 /g alumina filler D5...Silica filler with a specific surface area of 200 m 2 /g D6...Alumina filler/silica filler with an average particle diameter of 11.7 μm and a specific surface area of 2.2 m 2 /g = 9/1 (mass ratio) mixture
<空隙率、比表面積及び平均粒子径>
無機充填材の空隙率、比表面積及び平均粒子径は、上述の方法により測定した。得られた結果を表3又は表4に示す。
<Porosity, specific surface area and average particle diameter>
The porosity, specific surface area, and average particle diameter of the inorganic filler were measured by the methods described above. The results obtained are shown in Table 3 or Table 4.
<硬化性>
硬化性は、ゲル化試験機を用いて以下のようにして測定されたゲルタイムに基づいて評価した。
上記で得られた封止組成物0.5gを175℃に熱した熱板上に乗せ、治具を用いて20回転/分~25回転/分の回転速度で、試料を2.0cm~2.5cmの円状に均一に広げた。試料を熱板に乗せてから、試料の粘性がなくなり、ゲル状態となって熱板から剥がれるようになるまでの時間を計測し、これをゲルタイム(sec)として測定した。
結果を表3又は表4に示す。エポキシ100質量部に対して同じ触媒量(硬化促進剤量)を用いた場合に、ゲルタイムの短いものほど、硬化性に優れる。
<Curability>
Curability was evaluated based on gel time measured as follows using a gelling tester.
Place 0.5 g of the sealing composition obtained above on a hot plate heated to 175°C, and use a jig to rotate the sample 2.0 cm to 2 cm at a rotation speed of 20 rpm to 25 rpm. It was spread evenly into a .5 cm circle. The time from when the sample was placed on the hot plate until the sample lost its viscosity, turned into a gel state, and peeled off from the hot plate was measured, and this time was measured as gel time (sec).
The results are shown in Table 3 or Table 4. When the same amount of catalyst (amount of curing accelerator) is used for 100 parts by mass of epoxy, the shorter the gel time, the better the curability.
<流動性>
上記で得られた封止組成物を、2段篩(上段:2.38mm、下段:0.5mm)に通し、下段に残った試料を7g秤量した。その封止組成物を180℃に熱した平滑な金型の上に置き、同様に180℃に熱した8kgの平滑な金型を試料の上に置いて60秒放置した。その後、得られた円板状成形品の長径(mm)と短径(mm)の平均値(mm)を求め、その平均値(mm)をディスクフロー(DF)とした。
結果を表3又は表4に示す。ディスクフローの長いものほど、流動性に優れる。
<Liquidity>
The sealing composition obtained above was passed through a two-stage sieve (upper stage: 2.38 mm, lower stage: 0.5 mm), and 7 g of the sample remaining in the lower stage was weighed. The sealing composition was placed on a smooth mold heated to 180°C, and an 8 kg smooth mold also heated to 180°C was placed on top of the sample and left for 60 seconds. Thereafter, the average value (mm) of the major axis (mm) and minor axis (mm) of the obtained disc-shaped molded product was determined, and the average value (mm) was defined as the disc flow (DF).
The results are shown in Table 3 or Table 4. The longer the disc flow, the better the fluidity.
<成形性>
上記で得られた封止組成物15gをプレス熱板上の180℃の金型上に乗せ、硬化時間90秒で成形した。成形後、金型に作製された50μm、30μm、20μm、10μm、5μm及び2μmのスリットで一番長く封止組成物が流れた部分の長さを、ノギスを用いて測定し、この測定値をバリ長さとした。
結果を表3又は表4に示す。バリの短いものほど、成形性に優れる。
<Moldability>
15 g of the sealing composition obtained above was placed on a mold at 180° C. on a press hot plate and molded for a curing time of 90 seconds. After molding, use calipers to measure the length of the longest part of the 50 μm, 30 μm, 20 μm, 10 μm, 5 μm, and 2 μm slits in which the sealing composition has flowed, and use this measurement value. It has a burr length.
The results are shown in Table 3 or Table 4. The shorter the burr, the better the moldability.
<熱伝導率>
上記で得られた封止組成物を用いて、真空ハンドプレス成形機により、金型温度175℃~180℃、成形圧力7MPa、硬化時間600秒の条件で熱伝導率評価用の試験片を作製した。次いで、成形した試験片について、厚さ方向の熱拡散率を測定した。熱拡散率の測定はレーザーフラッシュ法(装置:LFA467 nanoflash、NETZSCH社製)にて行った。パルス光照射は、パルス幅0.31(ms)、印加電圧247Vの条件で行った。測定は雰囲気温度25℃±1℃で行った。また上記試験片の密度は電子比重計(AUX220、株式会社島津製作所)を用いて測定した。比熱は、各材料の比熱の文献値と配合比率より算出した封止組成物の理論比熱を用いた。
次いで、式(1)を用いて比熱及び密度を熱拡散率に乗算することによって,熱伝導率の値を得た。
λ=α×Cp×ρ・・・式(1)
(式(1)中、λは熱伝導率(W/(m・K))、αは熱拡散率(m2/s)、Cpは比熱(J/(kg・K))、ρは密度(kg/m3)をそれぞれ示す。)
結果を表3又は表4に示す。
<Thermal conductivity>
Using the sealing composition obtained above, a test piece for thermal conductivity evaluation was prepared using a vacuum hand press molding machine under conditions of a mold temperature of 175°C to 180°C, a molding pressure of 7 MPa, and a curing time of 600 seconds. did. Next, the thermal diffusivity in the thickness direction of the molded test piece was measured. The thermal diffusivity was measured by a laser flash method (device: LFA467 nanoflash, manufactured by NETZSCH). Pulsed light irradiation was performed under conditions of a pulse width of 0.31 (ms) and an applied voltage of 247V. The measurements were carried out at an ambient temperature of 25°C±1°C. Further, the density of the above test piece was measured using an electronic hydrometer (AUX220, Shimadzu Corporation). For the specific heat, the theoretical specific heat of the sealing composition calculated from the literature values of the specific heat of each material and the blending ratio was used.
Thermal conductivity values were then obtained by multiplying the thermal diffusivity by the specific heat and density using equation (1).
λ=α×Cp×ρ...Formula (1)
(In formula (1), λ is thermal conductivity (W/(m・K)), α is thermal diffusivity (m 2 /s), Cp is specific heat (J/(kg・K)), and ρ is density (kg/m 3 ) is shown respectively.)
The results are shown in Table 3 or Table 4.
表3及び表4の評価結果から明らかなように、無機充填材の空隙率が18体積%以下である実施例1~6の封止組成物は、無機充填材の空隙率が18体積%を超える比較例1~3の封止組成物に比較して、硬化性、流動性及び形成性に優れる。また、実施例1~6の封止組成物の硬化物の熱伝導率は、比較例1~3の封止組成物の硬化物の熱伝導率と同等であるか又は高い。 As is clear from the evaluation results in Tables 3 and 4, the sealing compositions of Examples 1 to 6 in which the porosity of the inorganic filler was 18 vol.% or less, Compared to the sealing compositions of Comparative Examples 1 to 3, which have excellent curability, fluidity, and formability. Further, the thermal conductivity of the cured products of the sealing compositions of Examples 1 to 6 is equal to or higher than that of the cured products of the sealing compositions of Comparative Examples 1 to 3.
2017年12月28日に出願された日本国特許出願2017-254885号の開示は、その全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2017-254885 filed on December 28, 2017 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned herein are incorporated by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference. Incorporated herein by reference.
Claims (6)
前記工程により決定された組成の無機充填材と、エポキシ樹脂と、硬化剤と、を混合する工程と、を有する封止組成物の製造方法。
a step of determining the composition of the inorganic filler so that the porosity becomes a predetermined value;
A method for producing a sealing composition, comprising the step of mixing an inorganic filler having a composition determined in the step, an epoxy resin, and a curing agent.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017254885 | 2017-12-28 | ||
JP2017254885 | 2017-12-28 | ||
PCT/JP2018/047644 WO2019131671A1 (en) | 2017-12-28 | 2018-12-25 | Encapsulating composition, production method therefor, and semiconductor device |
JP2019562048A JPWO2019131671A1 (en) | 2017-12-28 | 2018-12-25 | Encapsulation composition, its manufacturing method, and semiconductor device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019562048A Division JPWO2019131671A1 (en) | 2017-12-28 | 2018-12-25 | Encapsulation composition, its manufacturing method, and semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024019300A true JP2024019300A (en) | 2024-02-08 |
Family
ID=67067431
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019562048A Pending JPWO2019131671A1 (en) | 2017-12-28 | 2018-12-25 | Encapsulation composition, its manufacturing method, and semiconductor device |
JP2023205597A Pending JP2024019300A (en) | 2017-12-28 | 2023-12-05 | Encapsulating composition, production method therefor, and semiconductor device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019562048A Pending JPWO2019131671A1 (en) | 2017-12-28 | 2018-12-25 | Encapsulation composition, its manufacturing method, and semiconductor device |
Country Status (5)
Country | Link |
---|---|
JP (2) | JPWO2019131671A1 (en) |
KR (1) | KR102668756B1 (en) |
CN (1) | CN111601849A (en) |
TW (1) | TW201930538A (en) |
WO (1) | WO2019131671A1 (en) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003306594A (en) | 2002-04-17 | 2003-10-31 | Hitachi Ltd | Epoxy resin composition and rotating machine using the same |
JP2004307649A (en) * | 2003-04-07 | 2004-11-04 | Hitachi Chem Co Ltd | Epoxy resin molding material for sealing and semiconductor device |
JP2005171209A (en) * | 2003-12-15 | 2005-06-30 | Toyota Motor Corp | Filler-containing resin composition and its production method |
JP4774778B2 (en) | 2005-03-28 | 2011-09-14 | 住友ベークライト株式会社 | Epoxy resin composition for semiconductor encapsulation and semiconductor device |
JP5480497B2 (en) * | 2008-12-26 | 2014-04-23 | 日揮触媒化成株式会社 | Method for producing surface-encapsulated silica-based particles, surface-encapsulated silica-based particles, and a resin composition for semiconductor encapsulation obtained by mixing the particles |
SG11201403633QA (en) | 2012-03-16 | 2014-10-30 | Sumitomo Bakelite Co | Resin composition for encapsulation and electronic device using thesame |
KR101659137B1 (en) * | 2013-07-19 | 2016-09-22 | 제일모직주식회사 | Epoxy resin composition and semiconductor apparatus prepared from using the same |
JP6339060B2 (en) | 2015-11-30 | 2018-06-06 | 住友ベークライト株式会社 | Epoxy resin composition for sealing, and method for producing electronic device using the same |
JP6854589B2 (en) | 2016-01-29 | 2021-04-07 | 住友ベークライト株式会社 | High Dielectric Resin Composition, Capacitive Sensor and Capacitive Sensor Manufacturing Method |
JP6267261B2 (en) * | 2016-03-30 | 2018-01-24 | 旭化成株式会社 | Thermosetting resin composition |
-
2018
- 2018-12-25 WO PCT/JP2018/047644 patent/WO2019131671A1/en active Application Filing
- 2018-12-25 JP JP2019562048A patent/JPWO2019131671A1/en active Pending
- 2018-12-25 CN CN201880083974.7A patent/CN111601849A/en active Pending
- 2018-12-25 KR KR1020207018216A patent/KR102668756B1/en active IP Right Grant
- 2018-12-26 TW TW107147234A patent/TW201930538A/en unknown
-
2023
- 2023-12-05 JP JP2023205597A patent/JP2024019300A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JPWO2019131671A1 (en) | 2021-01-14 |
CN111601849A (en) | 2020-08-28 |
TW201930538A (en) | 2019-08-01 |
WO2019131671A1 (en) | 2019-07-04 |
KR102668756B1 (en) | 2024-05-22 |
KR20200103683A (en) | 2020-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7571810B2 (en) | Encapsulating composition and semiconductor device | |
JP7263765B2 (en) | Encapsulating composition and semiconductor device | |
WO2017209047A1 (en) | Sealing composition and semiconductor device | |
JP2024019300A (en) | Encapsulating composition, production method therefor, and semiconductor device | |
JP2020139042A (en) | Sealing composition and semiconductor device | |
JP7392659B2 (en) | Encapsulation composition and semiconductor device | |
JP4748592B2 (en) | Flame retardant and epoxy resin composition for semiconductor encapsulation containing the same | |
JP7255497B2 (en) | Encapsulating composition and semiconductor device | |
JP7238789B2 (en) | Encapsulating composition and semiconductor device | |
JP7415950B2 (en) | Encapsulation composition and semiconductor device | |
TW202436581A (en) | Sealing composition, manufacturing method of sealing composition, and semiconductor device | |
JP7582179B2 (en) | Encapsulating composition and semiconductor device | |
JP2003171534A (en) | Epoxy resin composition for semiconductor sealing and semiconductor device | |
JP2024055627A (en) | Resin composition for molding and electronic component device | |
JP2022049480A (en) | Sealing composition and semiconductor device | |
JP2004256648A (en) | Epoxy resin composition and sealed semiconductor device | |
JP2000273279A (en) | Epoxy resin composition and semiconductor device | |
JP2005281597A (en) | Epoxy resin composition and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240104 |