[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW202436581A - Sealing composition, manufacturing method of sealing composition, and semiconductor device - Google Patents

Sealing composition, manufacturing method of sealing composition, and semiconductor device Download PDF

Info

Publication number
TW202436581A
TW202436581A TW113117932A TW113117932A TW202436581A TW 202436581 A TW202436581 A TW 202436581A TW 113117932 A TW113117932 A TW 113117932A TW 113117932 A TW113117932 A TW 113117932A TW 202436581 A TW202436581 A TW 202436581A
Authority
TW
Taiwan
Prior art keywords
inorganic filler
sealing composition
particle size
sealing
volume
Prior art date
Application number
TW113117932A
Other languages
Chinese (zh)
Inventor
田中実佳
山浦格
姜東哲
石橋健太
児玉拓也
堀慧地
Original Assignee
日商力森諾科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商力森諾科股份有限公司 filed Critical 日商力森諾科股份有限公司
Publication of TW202436581A publication Critical patent/TW202436581A/en

Links

Abstract

A sealing composition contains an epoxy resin, a curing agent, and an inorganic filler having a void fraction of 18 volume% or less.

Description

密封組成物及其製造方法以及半導體裝置Sealing composition, manufacturing method thereof, and semiconductor device

本發明是有關於一種密封組成物及其製造方法以及半導體裝置。The present invention relates to a sealing composition, a manufacturing method thereof and a semiconductor device.

近年來,伴隨小型化及高積體化,擔心半導體封裝體內部的發熱。存在因發熱而產生具有半導體封裝體的電氣零件或電子零件的性能下降之虞,因此對半導體封裝體中所使用的構件要求高導熱性。因此,要求對半導體封裝體的密封材進行高導熱化。 另外,於對半導體封裝體進行密封時,對密封材要求高的流動性。 於使用例如氧化鋁作為無機填充材的情況下,存在雖可實現密封材的高導熱化但密封材的流動性降低的情況,密封材的高導熱化與流動性的提高處於取捨的關係。因此,存在難以兼顧高導熱化與流動性的提高的情況。 In recent years, along with miniaturization and high integration, there are concerns about heat generation inside semiconductor packages. There is a risk that the performance of electrical or electronic components having semiconductor packages may be reduced due to heat generation, so high thermal conductivity is required for components used in semiconductor packages. Therefore, it is required that the sealing material of the semiconductor package has high thermal conductivity. In addition, when sealing the semiconductor package, high fluidity is required for the sealing material. When using, for example, alumina as an inorganic filler, there is a situation where the high thermal conductivity of the sealing material can be achieved but the fluidity of the sealing material is reduced, and the high thermal conductivity of the sealing material and the improvement of fluidity are in a trade-off relationship. Therefore, there is a situation where it is difficult to take into account both high thermal conductivity and improved fluidity.

作為將氧化鋁用於無機填充材的密封材的例子,已知有半導體密封用環氧樹脂組成物,其是將(A)環氧樹脂、(B)硬化劑、以及(D)含有球狀氧化鋁及球狀二氧化矽的無機填充材作為必需成分而成,所述半導體密封用環氧樹脂組成物的特徵在於:所述球狀氧化鋁包含(d1)平均粒徑為40 μm以上且70 μm以下的第1球狀氧化鋁、以及(d2)平均粒徑為10 μm以上且15 μm以下的第2球狀氧化鋁,所述球狀二氧化矽包含(d3)平均粒徑為4 μm以上且8 μm以下的第1球狀二氧化矽、(d4)平均粒徑為0.05 μm以上~1.0 μm以下的第2球狀二氧化矽,(d3)+(d4)的合計量相對於總無機填充材而為17%以上且23%以下,(d3)/(d4)的比率為(d3)/(d4)=1/8以上且5/4以下,無機填充材量於總樹脂組成物中為85質量%~95質量%(例如,參照專利文獻1)。 [現有技術文獻] [專利文獻] As an example of a sealing material using alumina as an inorganic filler, there is known an epoxy resin composition for semiconductor sealing, which comprises (A) an epoxy resin, (B) a hardener, and (D) an inorganic filler containing spherical alumina and spherical silica as essential components, wherein the spherical alumina comprises (d1) a first spherical alumina having an average particle size of 40 μm or more and 70 μm or less, and (d2) a second spherical alumina having an average particle size of 10 μm or more and 15 μm or less, and the spherical silica comprises (d3) a first spherical silica having an average particle size of 4 μm or more and 8 μm or less, and (d4) a second spherical silica having an average particle size of 0.05 μm or more and 1.0 μm or less. The second spherical silica with a size of less than μm, the total amount of (d3) + (d4) is 17% or more and 23% or less relative to the total inorganic filler, the ratio of (d3) / (d4) is (d3) / (d4) = 1/8 or more and 5/4 or less, and the amount of the inorganic filler in the total resin composition is 85% to 95% by mass (for example, refer to Patent Document 1). [Prior Art Document] [Patent Document]

[專利文獻1]日本專利特開2006-273920號公報[Patent Document 1] Japanese Patent Publication No. 2006-273920

[發明所欲解決之課題] 但是,藉由採用作為高導熱填料的氧化鋁,有時密封材的硬化性及成形性惡化。因此,開發確保流動性、成形性及硬化性的高導熱密封材成為難題。 [Problem to be solved by the invention] However, by using alumina as a high thermal conductive filler, the hardening and formability of the sealing material may deteriorate. Therefore, it is difficult to develop a high thermal conductive sealing material that ensures fluidity, formability and hardening properties.

本揭示是鑒於所述先前的情況而成者,其目的在於提供一種硬化性、流動性及成形性優異且製成硬化物時的導熱性優異的密封組成物及其製造方法,以及使用密封組成物的半導體裝置。 [解決課題之手段] This disclosure is made in view of the above-mentioned previous situation, and its purpose is to provide a sealing composition having excellent curability, fluidity and formability and excellent thermal conductivity when the cured product is made, and a method for manufacturing the sealing composition, as well as a semiconductor device using the sealing composition. [Means for solving the problem]

用以達成所述課題的具體的手段如以下般。 <1> 一種密封組成物,其含有環氧樹脂、硬化劑、以及空隙率為18體積%以下的無機填充材。 <2> 如<1>所述的密封組成物,其中所述無機填充材的體積平均粒徑為4 μm~100 μm。 <3> 如<1>或<2>所述的密封組成物,其中所述無機填充材包含氧化鋁及二氧化矽的至少一者。 <4> 如<1>至<3>中任一項所述的密封組成物,其中所述無機填充材的比表面積為0.7 m 2/g~4.0 m 2/g。 <5> 一種半導體裝置,其包含半導體元件、以及將所述半導體元件密封而成的如<1>至<4>中任一項所述的密封組成物的硬化物。 <6> 一種密封組成物的製造方法,其具有: 以空隙率成為預先制定的值的方式決定無機填充材的組成的步驟;以及 將藉由所述步驟而決定的組成的無機填充材、環氧樹脂、及硬化劑加以混合的步驟。 [發明的效果] Specific means for achieving the above-mentioned subject are as follows. <1> A sealing composition comprising an epoxy resin, a hardener, and an inorganic filler having a porosity of 18 volume % or less. <2> The sealing composition as described in <1>, wherein the volume average particle size of the inorganic filler is 4 μm to 100 μm. <3> The sealing composition as described in <1> or <2>, wherein the inorganic filler comprises at least one of aluminum oxide and silicon dioxide. <4> The sealing composition as described in any one of <1> to <3>, wherein the specific surface area of the inorganic filler is 0.7 m 2 /g to 4.0 m 2 /g. <5> A semiconductor device comprising a semiconductor element and a hardened product of the sealing composition as described in any one of <1> to <4>, which is formed by sealing the semiconductor element. <6> A method for producing a sealing composition, comprising: a step of determining the composition of an inorganic filler so that the porosity becomes a predetermined value; and a step of mixing the inorganic filler of the composition determined by the step, an epoxy resin, and a hardener. [Effect of the Invention]

根據本揭示,可提供一種硬化性、流動性及成形性優異且製成硬化物時的導熱性優異的密封組成物及其製造方法,以及使用密封組成物的半導體裝置。According to the present disclosure, a sealing composition having excellent curability, fluidity and formability and excellent thermal conductivity when cured, a method for manufacturing the sealing composition, and a semiconductor device using the sealing composition can be provided.

以下,對用以實施本發明的密封組成物及其製造方法以及半導體裝置的形態進行詳細說明。其中,本發明並不限定於以下的實施形態。於以下的實施形態中,其構成要素(亦包括要素步驟等)除特別明示的情況以外,並非必需。關於數值及其範圍亦同樣,並不限制本發明。 於本揭示中,使用「~」所表示的數值範圍中包含「~」的前後所記載的數值分別作為最小值及最大值。 於本揭示中階段性記載的數值範圍中,一個數值範圍所記載的上限值或下限值亦可置換為其他階段性記載的數值範圍的上限值或下限值。另外,於本揭示中所記載的數值範圍中,該數值範圍的上限值或下限值亦可置換為實施例中所示的值。 於本揭示中,各成分亦可包含多種相符的物質。於在組成物中存在多種與各成分相符的物質的情況下,只要無特別說明,則各成分的含有率或含量是指組成物中所存在的該多種物質的合計含有率或含量。 於本揭示中,亦可包含多種與各成分相符的粒子。於在組成物中存在多種與各成分相符的粒子的情況下,只要無特別說明,則各成分的粒徑是指關於組成物中所存在的該多種粒子的混合物的值。 The following is a detailed description of the sealing composition and its manufacturing method and the form of the semiconductor device used to implement the present invention. However, the present invention is not limited to the following implementation forms. In the following implementation forms, its constituent elements (including element steps, etc.) are not required unless specifically stated. The same is true for numerical values and their ranges, which do not limit the present invention. In the present disclosure, the numerical values recorded before and after the "~" in the numerical range represented by "~" are respectively the minimum value and the maximum value. In the numerical range recorded in stages in the present disclosure, the upper limit or lower limit recorded in one numerical range can also be replaced by the upper limit or lower limit of other numerical ranges recorded in stages. In addition, in the numerical range described in this disclosure, the upper limit or lower limit of the numerical range may also be replaced with the value shown in the embodiment. In this disclosure, each component may also contain a plurality of corresponding substances. When there are a plurality of substances corresponding to each component in the composition, unless otherwise specified, the content rate or content of each component refers to the total content rate or content of the plurality of substances present in the composition. In this disclosure, a plurality of particles corresponding to each component may also be included. When there are a plurality of particles corresponding to each component in the composition, unless otherwise specified, the particle size of each component refers to the value of the mixture of the plurality of particles present in the composition.

<密封組成物> 本揭示的密封組成物含有環氧樹脂、硬化劑、以及空隙率為18體積%以下的無機填充材。 無機填充材的空隙率是表示於無機填充材的總體積(bulk volume)中佔據的空隙的比例((空隙的體積/無機填充材的總體積)×100(%))的值。於使用相同原材料的無機填充材的情況下,若無機填充材的重量相同,則隨著空隙率變小而無機填充材的總體積變小。若密封組成物中所含的無機填充材的總體積變小,則即便密封組成物中所含的無機填充材的含量相同,自密封組成物的體積減去無機填充材的總體積而得的值亦變大。以下,有時將該值稱為「剩餘樹脂的量」。 本發明者等著眼於密封組成物中的剩餘樹脂的量,並對剩餘樹脂的量給密封組成物的硬化性、流動性及成形性以及製成硬化物時的導熱性帶來的影響進行了研究,結果發現,隨著剩餘樹脂的量變大(亦即,無機填充材的空隙率變小)而密封組成物的硬化性、流動性、成形性及製成硬化物時的導熱性得到提高,從而完成了本發明。 隨著剩餘樹脂的量變大而密封組成物的硬化性、流動性、成形性及製成硬化物時的導熱性得到提高的理由雖不明確,但認為藉由剩餘樹脂的量增加,密封組成物的黏度減少而流動性提高。另外,推測藉由剩餘樹脂的量增加,密封組成物的混煉時的分散性變佳,有助於硬化性、成形性及製成硬化物時的導熱性的提高。 <Sealing composition> The sealing composition disclosed herein contains an epoxy resin, a hardener, and an inorganic filler having a porosity of 18 volume % or less. The porosity of the inorganic filler is a value indicating the ratio of voids to the total bulk volume of the inorganic filler ((volumetry of voids/total volume of inorganic filler) × 100 (%)). When using inorganic fillers made of the same raw materials, if the weight of the inorganic filler is the same, the total volume of the inorganic filler decreases as the porosity decreases. If the total volume of the inorganic filler contained in the sealing composition decreases, even if the content of the inorganic filler contained in the sealing composition is the same, the value obtained by subtracting the total volume of the inorganic filler from the volume of the sealing composition becomes larger. Hereinafter, this value is sometimes referred to as the "amount of residual resin". The inventors of the present invention focused on the amount of residual resin in the sealing composition and studied the effect of the amount of residual resin on the curability, fluidity and formability of the sealing composition and the thermal conductivity when the cured product is made. As a result, it was found that as the amount of residual resin increases (that is, the porosity of the inorganic filler decreases), the curability, fluidity, formability and thermal conductivity of the sealing composition when the cured product is made are improved, thereby completing the present invention. Although the reason why the curability, fluidity, formability, and thermal conductivity of the sealing composition when the amount of residual resin increases are not clear, it is believed that the viscosity of the sealing composition decreases and the fluidity improves as the amount of residual resin increases. In addition, it is speculated that the dispersion of the sealing composition during kneading becomes better as the amount of residual resin increases, which helps to improve the curability, formability, and thermal conductivity of the cured product.

以下,對構成密封組成物的各成分進行說明。本揭示的密封組成物含有環氧樹脂、硬化劑、以及無機填充材,視需要亦可含有其他成分。The components constituting the sealing composition are described below. The sealing composition disclosed herein contains an epoxy resin, a hardener, and an inorganic filler, and may contain other components as required.

-環氧樹脂- 密封組成物含有環氧樹脂。環氧樹脂的種類並無特別限定,可使用公知的環氧樹脂。 具體而言,例如可列舉:將使選自由酚化合物(例如,苯酚、甲酚、二甲酚、間苯二酚、兒茶酚、雙酚A及雙酚F)以及萘酚化合物(例如,α-萘酚、β-萘酚及二羥基萘)所組成的群組中的至少一種、與醛化合物(例如,甲醛、乙醛、丙醛、苯甲醛及水楊醛)於酸性觸媒下縮合或共縮合而獲得的酚醛清漆樹脂環氧化而得者(例如,苯酚酚醛清漆型環氧樹脂及鄰甲酚酚醛清漆型環氧樹脂);選自由雙酚(例如,雙酚A、雙酚AD、雙酚F及雙酚S)及聯苯酚(例如,經烷基取代或未經取代的聯苯酚)所組成的群組中的至少一種二縮水甘油醚;苯酚·芳烷基樹脂的環氧化物;酚化合物與選自由二環戊二烯及萜烯化合物所組成的群組中的至少一種的加成物或聚合加成物的環氧化物;藉由多元酸(例如,鄰苯二甲酸及二聚物酸)與表氯醇的反應而獲得的縮水甘油酯型環氧樹脂;藉由多胺(例如,二胺基二苯基甲烷及異三聚氰酸)與表氯醇的反應而獲得的縮水甘油胺型環氧樹脂;利用過氧酸(例如,過乙酸)對烯烴鍵進行氧化而獲得的線狀脂肪族環氧樹脂;以及脂環族環氧樹脂。環氧樹脂可單獨使用一種,亦可併用兩種以上。 -Epoxy resin- The sealing composition contains epoxy resin. The type of epoxy resin is not particularly limited, and a known epoxy resin can be used. Specifically, for example, there can be mentioned: a novolac resin obtained by epoxidizing at least one selected from the group consisting of phenolic compounds (e.g., phenol, cresol, xylenol, resorcinol, catechol, bisphenol A and bisphenol F) and naphthol compounds (e.g., α-naphthol, β-naphthol and dihydroxynaphthalene) and an aldehyde compound (e.g., formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylic aldehyde) under an acidic catalyst (e.g., phenol novolac type epoxy resin and o-cresol novolac type epoxy resin); a novolac resin selected from bisphenols (e.g., bisphenol A, bisphenol AD, bisphenol F and bisphenol S) and diphenols (e.g., alkyl-substituted or non-alkyl-substituted bisphenols); At least one diglycidyl ether selected from the group consisting of substituted biphenols (e.g., substituted biphenols); epoxides of phenol-aralkyl resins; epoxides of adducts or polyadducts of phenol compounds and at least one selected from the group consisting of dicyclopentadiene and terpene compounds; glycidyl ester type epoxy resins obtained by the reaction of polyacids (e.g., phthalic acid and dimer acid) with epichlorohydrin; glycidylamine type epoxy resins obtained by the reaction of polyamines (e.g., diaminodiphenylmethane and isocyanuric acid) with epichlorohydrin; linear aliphatic epoxy resins obtained by oxidizing olefinic bonds with peroxyacids (e.g., peracetic acid); and aliphatic epoxide resins. Epoxy resins can be used alone or in combination of two or more.

就防止積體電路(Integrated Circuit,IC)等的元件上的鋁配線或銅配線的腐蝕的觀點而言,環氧樹脂的純度較佳為高,水解性氯量較佳為少。就提高密封組成物的耐濕性的觀點而言,水解性氯量較佳為以質量基準計為500 ppm以下。From the perspective of preventing corrosion of aluminum or copper wiring on components such as integrated circuits (ICs), the epoxy resin preferably has a high purity and a low hydrolyzable chlorine content. From the perspective of improving the moisture resistance of the sealing composition, the hydrolyzable chlorine content is preferably 500 ppm or less on a mass basis.

此處,水解性氯量是將作為試樣的環氧樹脂1 g溶解於二噁烷30 mL中,添加1 N-KOH甲醇溶液5 mL並回流30分鐘後,利用電位差滴定而求出的值。Here, the amount of hydrolyzable chlorine is a value obtained by dissolving 1 g of a sample epoxy resin in 30 mL of dioxane, adding 5 mL of a 1 N-KOH methanol solution, and refluxing for 30 minutes, followed by potentiometric titration.

於密封組成物中佔據的環氧樹脂的含有率較佳為2.5質量%~6質量%,更佳為3.5質量%~5.5質量%,進而佳為3.5質量%~5.0質量%。 於除無機填充材外的密封組成物中佔據的環氧樹脂的含有率較佳為40質量%~70質量%,更佳為45質量%~64質量%,進而佳為48質量%~55質量%。 The content of the epoxy resin in the sealing composition is preferably 2.5% to 6% by mass, more preferably 3.5% to 5.5% by mass, and further preferably 3.5% to 5.0% by mass. The content of the epoxy resin in the sealing composition other than the inorganic filler is preferably 40% to 70% by mass, more preferably 45% to 64% by mass, and further preferably 48% to 55% by mass.

-硬化劑- 密封組成物含有硬化劑。硬化劑的種類並無特別限定,可使用公知的硬化劑。 具體而言,例如可列舉:使選自由酚化合物(例如,苯酚、甲酚、間苯二酚、兒茶酚、雙酚A及雙酚F)以及萘酚化合物(例如,α-萘酚、β-萘酚及二羥基萘)所組成的群組中的至少一種、與醛化合物(例如,甲醛、乙醛、丙醛、苯甲醛及水楊醛)於酸性觸媒下縮合或共縮合而獲得的酚醛清漆樹脂;苯酚·芳烷基樹脂;聯苯·芳烷基樹脂;以及萘酚·芳烷基樹脂。硬化劑可單獨使用一種,亦可併用兩種以上。 -Hardener- The sealing composition contains a hardener. The type of hardener is not particularly limited, and a known hardener can be used. Specifically, for example: a novolac resin obtained by condensing or co-condensing at least one selected from the group consisting of phenolic compounds (e.g., phenol, cresol, resorcinol, catechol, bisphenol A, and bisphenol F) and naphthol compounds (e.g., α-naphthol, β-naphthol, and dihydroxynaphthalene) with an aldehyde compound (e.g., formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, and salicylic aldehyde) under an acidic catalyst; a phenol·aralkyl resin; a biphenyl·aralkyl resin; and a naphthol·aralkyl resin. The hardener may be used alone or in combination of two or more.

較佳為以相對於環氧樹脂的環氧基1當量,硬化劑的官能基(例如,於酚醛清漆樹脂的情況下為酚性羥基)的當量成為0.5當量~1.5當量的方式調配硬化劑,特佳為以成為0.7當量~1.2當量的方式調配硬化劑。The curing agent is preferably formulated so that the equivalent of the functional group of the curing agent (for example, phenolic hydroxyl group in the case of novolac resin) becomes 0.5 to 1.5 equivalents per 1 equivalent of epoxy group of the epoxy resin, and the curing agent is particularly preferably formulated so that the equivalent becomes 0.7 to 1.2 equivalents.

-無機填充材- 密封組成物包含無機填充材。藉由包含無機填充材,存在密封組成物的吸濕性降低,硬化狀態下的強度提高的傾向。 -Inorganic filler- The sealing composition contains an inorganic filler. By including the inorganic filler, the hygroscopicity of the sealing composition tends to decrease, and the strength in the cured state tends to increase.

無機填充材可單獨使用一種,亦可併用兩種以上。 作為併用兩種以上的無機填充材的情況,例如可列舉使用兩種以上的成分、平均粒徑、形狀等不同的無機填充材的情況。 無機填充材的形狀並無特別限制,例如可列舉:粉狀、球狀、纖維狀等。就密封組成物的成形時的流動性及模具磨損性的方面而言,較佳為球狀。 The inorganic filler may be used alone or in combination of two or more. As an example of using two or more inorganic fillers in combination, for example, two or more inorganic fillers having different components, average particle sizes, shapes, etc. may be used. The shape of the inorganic filler is not particularly limited, and for example, powder, spherical, fibrous, etc. may be used. In terms of fluidity and mold wear resistance during molding of the sealing composition, a spherical shape is preferred.

於本揭示中,無機填充材的空隙率為18體積%以下,較佳為16體積%以下,更佳為15體積%以下,進而佳為14體積%以下。無機填充材的空隙率亦可為7體積%以上。於無機填充材為一種的情況下,無機填充材的空隙率是指關於一種無機填充材的空隙率,於無機填充材為兩種以上的情況下,無機填充材的空隙率是指關於兩種以上的無機填充材的混合物的空隙率。In the present disclosure, the porosity of the inorganic filler is 18 volume % or less, preferably 16 volume % or less, more preferably 15 volume % or less, and further preferably 14 volume % or less. The porosity of the inorganic filler may also be 7 volume % or more. When the inorganic filler is one kind, the porosity of the inorganic filler refers to the porosity of the one kind of inorganic filler, and when the inorganic filler is two or more kinds, the porosity of the inorganic filler refers to the porosity of the mixture of the two or more kinds of inorganic fillers.

無機填充材的空隙率是指藉由下述方法而測定的值。 將密封組成物放入坩堝中,於800℃下放置4小時而使其進行灰化。使用雷射繞射/散射式粒徑分佈測定裝置(例如,堀場製作所股份有限公司,LA920)並應用氧化鋁的折射率來測定所獲得的灰分的粒度分佈。根據粒度分佈並使用下述的大內山方程式來算出空隙率ε。再者,關於大內山方程式,於下述文獻中有詳細說明。 N.大內山(Ouchiyama)與T.田中(Tanaka),工業工程化學基礎(Ind. Eng. Chem. Fundam.), 19, 338(1980) N.大內山(Ouchiyama)與T.田中(Tanaka),工業工程化學基礎(Ind. Eng. Chem. Fundam.), 20, 66(1981) N.大內山(Ouchiyama)與T.田中(Tanaka),工業工程化學基礎(Ind. Eng. Chem. Fundam.), 23, 490(1984) The void ratio of the inorganic filler is a value measured by the following method. The sealing composition is placed in a crucible and placed at 800°C for 4 hours to be ashed. The particle size distribution of the obtained ash is measured using a laser diffraction/scattering particle size distribution measuring device (e.g., LA920, manufactured by Horiba, Ltd.) and the refractive index of alumina. The void ratio ε is calculated from the particle size distribution using the following Ouchiyama equation. The Ouchiyama equation is described in detail in the following reference. N. Ouchiyama and T. Tanaka, Ind. Eng. Chem. Fundam., 19, 338 (1980) N. Ouchiyama and T. Tanaka, Ind. Eng. Chem. Fundam., 20, 66 (1981) N. Ouchiyama and T. Tanaka, Ind. Eng. Chem. Fundam., 23, 490 (1984)

[數1] [Number 1]

[數2] [Number 2]

[數3] [Number 3]

[數4] [Number 4]

[數5] [Number 5]

無機填充材較佳為包含氧化鋁及二氧化矽的至少一者,就高導熱性的觀點而言,更佳為包含氧化鋁。無機填充材的全部可為氧化鋁,亦可併用氧化鋁與其他無機填充材。藉由無機填充材包含氧化鋁,有密封組成物的導熱性提高的傾向。作為二氧化矽,可列舉球狀二氧化矽、結晶二氧化矽等。 作為可與氧化鋁併用的二氧化矽以外的其他無機填充材,可列舉:鋯石、氧化鎂、矽酸鈣、碳酸鈣、鈦酸鉀、碳化矽、氮化矽、氮化硼、氮化鋁、氧化鈹、氧化鋯等。進而,作為具有阻燃效果的無機填充材,可列舉氫氧化鋁、硼酸鋅等。 The inorganic filler preferably includes at least one of alumina and silica, and more preferably includes alumina from the viewpoint of high thermal conductivity. All of the inorganic filler may be alumina, or alumina and other inorganic fillers may be used in combination. When the inorganic filler includes alumina, the thermal conductivity of the sealing composition tends to be improved. As silica, spherical silica, crystalline silica, etc. can be listed. As other inorganic fillers other than silica that can be used in combination with alumina, zirconia, magnesium oxide, calcium silicate, calcium carbonate, potassium titanium oxide, silicon carbide, silicon nitride, boron nitride, aluminum nitride, ceria, zirconium oxide, etc. can be listed. Furthermore, as inorganic fillers with flame retardant effects, aluminum hydroxide, zinc borate, etc. can be listed.

於併用氧化鋁與二氧化矽作為無機填充材的情況下,於無機填充材中佔據的氧化鋁的含有率較佳為50體積%以上,更佳為70體積%以上,進而佳為85體積%以上。另外,於無機填充材中佔據的氧化鋁的含有率亦可為99體積%以下。When alumina and silicon dioxide are used together as inorganic fillers, the content of alumina in the inorganic filler is preferably 50 volume % or more, more preferably 70 volume % or more, and further preferably 85 volume % or more. In addition, the content of alumina in the inorganic filler may be 99 volume % or less.

就吸濕性、線膨脹係數的降低、強度提高及焊料耐熱性的觀點而言,相對於密封組成物整體,無機填充材的含有率較佳為60體積%以上,更佳為70體積%以上,進而佳為75體積%以上。無機填充材的含有率亦可為95體積%以下。From the viewpoint of hygroscopicity, reduction of linear expansion coefficient, improvement of strength and solder heat resistance, the content of the inorganic filler is preferably 60 volume % or more, more preferably 70 volume % or more, and further preferably 75 volume % or more relative to the entire sealing composition. The content of the inorganic filler may also be 95 volume % or less.

就高導熱性的觀點而言,無機填充材的平均粒徑較佳為4 μm~100 μm,更佳為7 μm~70 μm,進而佳為7 μm~40 μm。於本揭示中,關於無機填充材的平均粒徑,於單獨使用氧化鋁作為無機填充材的情況下,是指氧化鋁的平均粒徑,於併用氧化鋁與其他無機填充材作為無機填充材的情況下,是指作為無機填充材整體的平均粒徑。 密封組成物的硬化物的導熱率有無機填充材的平均粒徑越大而變得越高的傾向。 無機填充材的平均粒徑可藉由以下的方法來測定。 From the viewpoint of high thermal conductivity, the average particle size of the inorganic filler is preferably 4 μm to 100 μm, more preferably 7 μm to 70 μm, and further preferably 7 μm to 40 μm. In the present disclosure, the average particle size of the inorganic filler refers to the average particle size of the alumina when alumina is used alone as the inorganic filler, and refers to the average particle size of the inorganic filler as a whole when alumina and other inorganic fillers are used together as the inorganic filler. The thermal conductivity of the cured product of the sealing composition tends to become higher as the average particle size of the inorganic filler increases. The average particle size of the inorganic filler can be measured by the following method.

向溶媒(純水)中於1質量%~5質量%的範圍內添加作為測定對象的無機填充材,同時添加1質量%~8質量%的界面活性劑,利用110 W的超音波清洗機振動30秒~5分鐘,從而將無機填充材分散。將分散液的約3 mL左右注入至測定用槽中並於25℃下進行測定。測定裝置是使用雷射繞射/散射式粒徑分佈測定裝置(例如,堀場製作所股份有限公司,LA920)來測定體積基準的粒度分佈。平均粒徑是作為於體積基準的粒度分佈中自小徑側起的累計達到50%時的粒徑(D50%)來求出。再者,折射率是使用氧化鋁的折射率。於無機填充材為氧化鋁與其他無機填充材的混合物的情況下,折射率設為使用氧化鋁的折射率。Add the inorganic filler to be measured to the solvent (pure water) in the range of 1% to 5% by mass, and add 1% to 8% by mass of a surfactant, and use a 110 W ultrasonic cleaner to shake for 30 seconds to 5 minutes to disperse the inorganic filler. Pour about 3 mL of the dispersion into the measurement tank and measure at 25°C. The measurement device uses a laser diffraction/scattering particle size distribution measurement device (for example, LA920, manufactured by Horiba, Ltd.) to measure the volume-based particle size distribution. The average particle size is calculated as the particle size (D50%) at which the cumulative particle size from the small diameter side in the volume-based particle size distribution reaches 50%. The refractive index is the refractive index of aluminum oxide. When the inorganic filler is a mixture of aluminum oxide and other inorganic fillers, the refractive index is the refractive index of aluminum oxide.

就流動性及成形性的觀點而言,無機填充材的比表面積較佳為0.7 m 2/g~4.0 m 2/g,更佳為0.9 m 2/g~3.0 m 2/g,進而佳為1.0 m 2/g~2.5 m 2/g。 密封組成物的流動性有無機填充材的比表面積越小而變得越高的傾向。 於本揭示中,關於無機填充材的比表面積,例如於單獨使用氧化鋁作為無機填充材的情況下,是指氧化鋁的比表面積,於併用氧化鋁與其他無機填充材作為無機填充材的情況下,是指無機填充材的混合物的比表面積。 無機填充材的比表面積(布厄特(Brunauer-Emmett-Teller,BET)比表面積)可依據JIS Z 8830:2013並根據氮吸附能力來測定。作為評價裝置,可使用康塔(QUANTACHROME)公司:AUTOSORB-1(商品名)。於進行BET比表面積的測定時考慮到吸附於試樣表面及結構中的水分對氣體吸附能力造成影響,故較佳為首先進行藉由加熱去除水分的預處理。 於預處理中,利用真空泵將投入有0.05 g的測定試樣的測定用槽減壓至10 Pa以下後,於110℃下進行加熱並保持3小時以上後,於保持減壓的狀態下自然冷卻至常溫(25℃)。於進行該預處理後,將評價溫度設為77 K,將評價壓力範圍設為於相對壓力(相對於飽和蒸氣壓的平衡壓力)下未滿1來進行測定。 From the viewpoint of fluidity and formability, the specific surface area of the inorganic filler is preferably 0.7 m 2 / g to 4.0 m 2 /g, more preferably 0.9 m 2 /g to 3.0 m 2 /g, and further preferably 1.0 m 2 /g to 2.5 m 2 /g. The fluidity of the sealing composition tends to become higher as the specific surface area of the inorganic filler is smaller. In the present disclosure, the specific surface area of the inorganic filler, for example, when alumina is used alone as the inorganic filler, refers to the specific surface area of alumina, and when alumina and other inorganic fillers are used as the inorganic filler, refers to the specific surface area of the mixture of the inorganic fillers. The specific surface area (Brunauer-Emmett-Teller, BET) of an inorganic filler can be measured based on nitrogen adsorption capacity in accordance with JIS Z 8830:2013. As an evaluation device, AUTOSORB-1 (trade name) from QUANTACHROME can be used. When measuring the BET specific surface area, it is considered that the moisture adsorbed on the surface and structure of the sample affects the gas adsorption capacity, so it is better to first perform a pretreatment by heating to remove the moisture. In the pretreatment, the measurement tank with 0.05 g of the measurement sample is depressurized to less than 10 Pa using a vacuum pump, and then heated at 110°C and maintained for more than 3 hours, and then naturally cooled to room temperature (25°C) while maintaining the depressurization. After the pretreatment, the evaluation temperature was set to 77 K and the evaluation pressure range was set to be less than 1 under the relative pressure (equilibrium pressure relative to the saturated vapor pressure).

(硬化促進劑) 密封組成物亦可進而含有硬化促進劑。硬化促進劑的種類並無特別限制,可使用公知的硬化促進劑。 具體而言,可列舉:1,8-二氮雜-雙環[5.4.0]十一烯-7、1,5-二氮雜-雙環[4.3.0]壬烯、5,6-二丁基胺基-1,8-二氮雜-雙環[5.4.0]十一烯-7等環脒化合物;對環脒化合物加成馬來酸酐、1,4-苯醌、2,5-甲苯醌、1,4-萘醌、2,3-二甲基苯醌、2,6-二甲基苯醌、2,3-二甲氧基-5-甲基-1,4-苯醌、2,3-二甲氧基-1,4-苯醌、苯基-1,4-苯醌等醌化合物、重氮苯基甲烷、苯酚樹脂等具有π鍵的化合物而成的具有分子內極化的化合物;苄基二甲基胺、三乙醇胺、二甲基胺基乙醇、三(二甲基胺基甲基)苯酚等三級胺化合物、三級胺化合物的衍生物;2-甲基咪唑、2-苯基咪唑、2-苯基-4-甲基咪唑等咪唑化合物、咪唑化合物的衍生物;三丁基膦、甲基二苯基膦、三苯基膦、三(4-甲基苯基)膦、二苯基膦、苯基膦等有機膦化合物;對有機膦化合物加成馬來酸酐、所述醌化合物、重氮苯基甲烷、苯酚樹脂等具有π鍵的化合物而成的具有分子內極化的磷化合物;四苯基鏻四苯基硼酸鹽、三苯基膦四苯基硼酸鹽、2-乙基-4-甲基咪唑四苯基硼酸鹽、N-甲基嗎啉四苯基硼酸鹽等四苯基硼鹽、四苯基硼鹽的衍生物;三苯基鏻-三苯基硼烷、N-甲基嗎啉四苯基鏻-四苯基硼酸鹽等膦化合物與四苯基硼鹽的加成物等。硬化促進劑可單獨使用一種,亦可併用兩種以上。 (Hardening accelerator) The sealing composition may further contain a hardening accelerator. The type of hardening accelerator is not particularly limited, and a known hardening accelerator may be used. Specifically, cyclic amidine compounds such as 1,8-diaza-bicyclo[5.4.0]undecene-7, 1,5-diaza-bicyclo[4.3.0]nonene, 5,6-dibutylamino-1,8-diaza-bicyclo[5.4.0]undecene-7, and maleic anhydride added to the cyclic amidine compound, 1,4-benzoquinone, 2,5-toluoquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone Compounds with intramolecular polarization formed by quinone compounds such as 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone, compounds with π bonds such as diazonium phenylmethane, phenol resins, etc.; tertiary aminated compounds such as benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris(dimethylaminomethyl)phenol, etc. compounds, derivatives of tertiary amine compounds; imidazole compounds and derivatives of imidazole compounds such as 2-methylimidazole, 2-phenylimidazole, and 2-phenyl-4-methylimidazole; organic phosphine compounds such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tri(4-methylphenyl)phosphine, diphenylphosphine, and phenylphosphine; phosphorus compounds with intramolecular polarization formed by adding maleic anhydride, the quinone compound, diazonophenylmethane, phenol resin, and other compounds having π bonds to organic phosphine compounds; tetraphenylborates and derivatives of tetraphenylborates such as tetraphenylphosphonium tetraphenylborate, triphenylphosphine tetraphenylborate, 2-ethyl-4-methylimidazole tetraphenylborate, and N-methylmorpholine tetraphenylborate; adducts of phosphine compounds such as triphenylphosphonium-triphenylborane and N-methylmorpholine tetraphenylphosphonium-tetraphenylborate with tetraphenylborates, etc. One hardening accelerator may be used alone or two or more may be used in combination.

相對於環氧樹脂與硬化劑的合計量,硬化促進劑的含有率較佳為0.1質量%~8質量%。The content of the curing accelerator is preferably 0.1 mass % to 8 mass % relative to the total amount of the epoxy resin and the curing agent.

(離子捕捉劑) 密封組成物亦可進而含有離子捕捉劑。 本揭示中可使用的離子捕捉劑只要為於用於半導體裝置的製造用途中的密封材中一般所使用的離子捕捉劑,則並無特別限制。作為離子捕捉劑,例如可列舉下述通式(II-1)或下述通式(II-2)所表示的化合物。 (Ion scavenger) The sealing composition may further contain an ion scavenger. The ion scavenger that can be used in the present disclosure is not particularly limited as long as it is an ion scavenger generally used in a sealing material for manufacturing semiconductor devices. Examples of the ion scavenger include compounds represented by the following general formula (II-1) or the following general formula (II-2).

Mg 1-aAl a(OH) 2(CO 3) a/2・uH 2O            (II-1) (通式(II-1)中,a為0<a≦0.5,u為正數) BiO b(OH) c(NO 3) d(II-2) (通式(II-2)中,b為0.9≦b≦1.1,c為0.6≦c≦0.8,d為0.2≦d≦0.4) Mg 1-a Al a (OH) 2 (CO 3 ) a/2 ・uH 2 O (II-1) (In general formula (II-1), a is 0<a≦0.5, and u is a positive number) BiO b (OH) c (NO 3 ) d (II-2) (In general formula (II-2), b is 0.9≦b≦1.1, c is 0.6≦c≦0.8, and d is 0.2≦d≦0.4)

離子捕捉劑可作為市售品而獲取。作為通式(II-1)所表示的化合物,例如可作為市售品而獲取「DHT-4A」(協和化學工業股份有限公司,商品名)。另外,作為通式(II-2)所表示的化合物,例如可作為市售品而獲取「IXE500」(東亞合成股份有限公司,商品名)。Ion scavengers are commercially available. For example, the compound represented by the general formula (II-1) is available as "DHT-4A" (Kyowa Chemical Industry Co., Ltd., trade name). In addition, the compound represented by the general formula (II-2) is available as "IXE500" (Toagosei Co., Ltd., trade name).

另外,作為所述以外的離子捕捉劑,可列舉選自鎂、鋁、鈦、鋯、銻等中的元素的含水氧化物等。 離子捕捉劑可單獨使用一種,亦可併用兩種以上。 In addition, as ion scavengers other than those mentioned above, hydrous oxides of elements selected from magnesium, aluminum, titanium, zirconium, antimony, etc. can be listed. The ion scavengers can be used alone or in combination of two or more.

於密封組成物含有離子捕捉劑的情況下,就實現充分的耐濕可靠性的觀點而言,相對於環氧樹脂100質量份,離子捕捉劑的含量較佳為1質量份以上。就充分發揮其他成分的效果的觀點而言,相對於環氧樹脂100質量份,離子捕捉劑的含量較佳為15質量份以下。When the sealing composition contains an ion scavenger, the content of the ion scavenger is preferably 1 part by mass or more relative to 100 parts by mass of the epoxy resin from the viewpoint of achieving sufficient moisture resistance reliability. From the viewpoint of fully exerting the effects of other components, the content of the ion scavenger is preferably 15 parts by mass or less relative to 100 parts by mass of the epoxy resin.

另外,離子捕捉劑的平均粒徑較佳為0.1 μm~3.0 μm,最大粒徑較佳為10 μm以下。離子捕捉劑的平均粒徑可與無機填充材的情況同樣地進行測定。The average particle size of the ion scavenger is preferably 0.1 μm to 3.0 μm, and the maximum particle size is preferably 10 μm or less. The average particle size of the ion scavenger can be measured in the same manner as the case of the inorganic filler.

(偶合劑) 密封組成物亦可進而含有偶合劑。偶合劑的種類並無特別限制,可使用公知的偶合劑。作為偶合劑,例如可列舉矽烷偶合劑及鈦偶合劑。偶合劑可單獨使用一種,亦可併用兩種以上。 (Coupling agent) The sealing composition may further contain a coupling agent. The type of coupling agent is not particularly limited, and a known coupling agent may be used. Examples of coupling agents include silane coupling agents and titanium coupling agents. A coupling agent may be used alone or in combination of two or more.

作為矽烷偶合劑,例如可列舉:乙烯基三氯矽烷、乙烯基三乙氧基矽烷、乙烯基三(β-甲氧基乙氧基)矽烷、γ-甲基丙烯醯氧基丙基三甲氧基矽烷、β-(3,4-環氧基環己基)乙基三甲氧基矽烷、γ-縮水甘油氧基丙基三甲氧基矽烷、乙烯基三乙醯氧基矽烷、γ-巰基丙基三甲氧基矽烷、γ-胺基丙基三乙氧基矽烷、γ-[雙(β-羥基乙基)]胺基丙基三乙氧基矽烷、N-β-(胺基乙基)-γ-胺基丙基三甲氧基矽烷、γ-(β-胺基乙基)胺基丙基二甲氧基甲基矽烷、N-(三甲氧基矽烷基丙基)乙二胺、N-(二甲氧基甲基矽烷基異丙基)乙二胺、甲基三甲氧基矽烷、甲基三乙氧基矽烷、N-β-(N-乙烯基苄基胺基乙基)-γ-胺基丙基三甲氧基矽烷、γ-氯丙基三甲氧基矽烷、六甲基二矽烷、γ-苯胺基丙基三甲氧基矽烷、乙烯基三甲氧基矽烷及γ-巰基丙基甲基二甲氧基矽烷。Examples of the silane coupling agent include vinyl trichlorosilane, vinyl triethoxysilane, vinyl tri(β-methoxyethoxy)silane, γ-methacryloyloxypropyl trimethoxysilane, β-(3,4-epoxycyclohexyl)ethyl trimethoxysilane, γ-glycidyloxypropyl trimethoxysilane, vinyl triacetoxysilane, γ-butyl propyl trimethoxysilane, γ-aminopropyl triethoxysilane, γ-[bis(β-hydroxyethyl)]aminopropyl triethoxysilane, N-β-(aminoethyl)- γ-Aminopropyltrimethoxysilane, γ-(β-aminoethyl)aminopropyldimethoxymethylsilane, N-(trimethoxysilylpropyl)ethylenediamine, N-(dimethoxymethylsilylisopropyl)ethylenediamine, methyltrimethoxysilane, methyltriethoxysilane, N-β-(N-vinylbenzylaminoethyl)-γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, hexamethyldisilane, γ-anilinopropyltrimethoxysilane, vinyltrimethoxysilane and γ-butylpropylmethyldimethoxysilane.

作為鈦偶合劑,例如可列舉:鈦酸異丙基三異硬脂醯酯、鈦酸異丙基三(二辛基焦磷酸酯)酯、鈦酸異丙基三(N-胺基乙基-胺基乙基)酯、鈦酸四辛基雙(二-十三烷基亞磷酸酯)酯、鈦酸四(2,2-二烯丙氧基甲基-1-丁基)雙(二-十三烷基亞磷酸酯)酯、鈦酸雙(二辛基焦磷酸酯)氧乙酸酯、鈦酸雙(二辛基焦磷酸酯)伸乙酯、鈦酸異丙基三辛醯酯、鈦酸異丙基二甲基丙烯醯基異硬脂醯酯、鈦酸異丙基三-十二烷基苯磺醯酯、鈦酸異丙基異硬脂醯基二丙烯醯酯、鈦酸異丙基三(二辛基磷酸酯)酯、鈦酸異丙基三枯基苯酯及鈦酸四異丙基雙(二辛基亞磷酸酯)酯。Examples of the titanium coupling agent include isopropyl triisostearyl titanium ester, isopropyl tri(dioctyl pyrophosphate) titanium ester, isopropyl tri(N-aminoethyl-aminoethyl) titanium ester, tetraoctyl di(di-tridecyl phosphite) titanium ester, tetra(2,2-diallyloxymethyl-1-butyl) di(di-tridecyl phosphite) titanium ester, and di(dioctyl pyrophosphate) titanium ester. Titanium (isopropyl) oxyacetate, bis(dioctyl pyrophosphate) ethylidene titanium, isopropyl trioctyl titanium, isopropyl dimethacryl isostearyl titanium, isopropyl tri-dodecylbenzenesulfonyl titanium, isopropyl isostearyl diacryl titanium, isopropyl tri(dioctyl phosphate) titanium, isopropyl tricumylphenyl titanium and tetraisopropyl di(dioctyl phosphite) titanium.

於密封組成物含有偶合劑的情況下,相對於密封組成物的整體,偶合劑的含有率較佳為3質量%以下,就發揮其效果的觀點而言,較佳為0.1質量%以上。When the sealing composition contains a coupling agent, the content of the coupling agent is preferably 3 mass % or less, and is preferably 0.1 mass % or more in terms of exerting its effect, relative to the entire sealing composition.

(脫模劑) 密封組成物亦可進而含有脫模劑。脫模劑的種類並無特別限制,可使用公知的脫模劑。具體而言,例如可列舉:高級脂肪酸、棕櫚蠟及聚乙烯系蠟。脫模劑可單獨使用一種,亦可併用兩種以上。 於密封組成物含有脫模劑的情況下,相對於環氧樹脂與硬化劑的合計量,脫模劑的含有率較佳為10質量%以下,就發揮其效果的觀點而言,較佳為0.5質量%以上。 (Release agent) The sealing composition may further contain a release agent. There is no particular limitation on the type of release agent, and a known release agent may be used. Specifically, for example, higher fatty acids, palm wax, and polyethylene wax may be listed. A release agent may be used alone or in combination of two or more. When the sealing composition contains a release agent, the content of the release agent is preferably 10% by mass or less relative to the total amount of the epoxy resin and the hardener, and preferably 0.5% by mass or more from the viewpoint of exerting its effect.

(著色劑及改質劑) 密封組成物亦可含有著色劑(例如,碳黑)。另外,密封組成物亦可含有改質劑(例如,矽酮及矽酮橡膠)。著色劑及改質劑可分別單獨使用一種,亦可併用兩種以上。 (Colorant and modifier) The sealing composition may also contain a colorant (e.g., carbon black). In addition, the sealing composition may also contain a modifier (e.g., silicone and silicone rubber). The colorant and modifier may be used alone or in combination of two or more.

於使用碳黑等導電性粒子作為著色劑的情況下,導電性粒子較佳為粒徑10 μm以上的粒子的含有率為1質量%以下。 於密封組成物含有導電性粒子的情況下,相對於環氧樹脂與硬化劑的合計量,導電性粒子的含有率較佳為3質量%以下。 When conductive particles such as carbon black are used as a coloring agent, the content of conductive particles having a particle size of 10 μm or more is preferably 1% by mass or less. When the sealing composition contains conductive particles, the content of conductive particles is preferably 3% by mass or less relative to the total amount of epoxy resin and hardener.

<密封組成物的製造方法> 本揭示的密封組成物的製造方法具有:以空隙率成為預先制定的值的方式決定無機填充材的組成的步驟;以及將藉由所述步驟而決定的組成的無機填充材、環氧樹脂、及硬化劑加以混合的步驟。作為預先制定的空隙率,較佳為18體積%以下,更佳為16體積%以下,進而佳為15體積%以下,特佳為14體積%以下。 以空隙率成為預先制定的值的方式決定無機填充材的組成的方法並無特別限定。於無機填充材的形狀為球狀的情況下,無機填充材的空隙率可基於無機填充材的粒度分佈來算出。因此,可預先測定多個無機填充材的粒度分佈並加以累積,根據密封組成物的特性等制定無機填充材的空隙率,並以成為預先制定的空隙率的方式將多個無機填充材加以組合,從而決定無機填充材的組成。 作為基於無機填充材的粒度分佈來算出無機填充材的空隙率的方法,可列舉使用所述大內山方程式來算出的方法等。 繼而,可利用混合機等將以成為預先制定的空隙率的方式決定組成的無機填充材、環氧樹脂、硬化劑、以及視需要使用的其他成分充分混合後,利用熱輥、擠出機等加以混煉,並經過冷卻、粉碎等處理來製造密封組成物。密封組成物的狀態並無特別限制,亦可為粉末狀、固體狀、液體狀等。 <Method for producing a sealing composition> The method for producing a sealing composition disclosed herein comprises: a step of determining the composition of an inorganic filler material so that the void ratio becomes a predetermined value; and a step of mixing the inorganic filler material, epoxy resin, and hardener of the composition determined by the step. The predetermined void ratio is preferably 18 volume % or less, more preferably 16 volume % or less, further preferably 15 volume % or less, and particularly preferably 14 volume % or less. The method of determining the composition of an inorganic filler material so that the void ratio becomes a predetermined value is not particularly limited. When the shape of the inorganic filler material is spherical, the void ratio of the inorganic filler material can be calculated based on the particle size distribution of the inorganic filler material. Therefore, the particle size distribution of a plurality of inorganic fillers can be measured in advance and accumulated, the porosity of the inorganic filler can be determined according to the characteristics of the sealing composition, and the plurality of inorganic fillers can be combined in such a way as to obtain the porosity determined in advance, thereby determining the composition of the inorganic filler. As a method for calculating the porosity of the inorganic filler based on the particle size distribution of the inorganic filler, there can be cited a method of calculating using the aforementioned Ouchiyama equation, etc. Then, the inorganic filler, epoxy resin, hardener, and other components used as needed, whose composition is determined in such a way as to obtain the porosity determined in advance, can be fully mixed by a mixer, etc., and then kneaded by a hot roll, an extruder, etc., and subjected to cooling, pulverization, etc. to produce the sealing composition. The state of the sealing composition is not particularly limited and may be in powder, solid, liquid, etc.

<半導體裝置> 本揭示的半導體裝置包含半導體元件、以及將所述半導體元件密封而成的本揭示的密封組成物的硬化物。 <Semiconductor device> The semiconductor device disclosed herein includes a semiconductor element and a cured product of the sealing composition disclosed herein that seals the semiconductor element.

使用密封組成物而密封半導體元件的方法並無特別限定,可應用公知的方法。例如,一般為轉移模塑法,但亦可使用壓縮模塑法、噴射成形法等。The method of sealing the semiconductor element using the sealing composition is not particularly limited, and a known method can be applied. For example, transfer molding is generally used, but compression molding, injection molding, etc. can also be used.

本揭示的半導體裝置作為IC、大規模積體電路(Large-Scale Integration,LSI)等而較佳。 [實施例] The semiconductor device disclosed herein is preferably used as an IC, a large-scale integrated circuit (LSI), etc. [Example]

以下,對本發明的實施例進行說明,但本發明並不限定於此。另外,只要無特別說明,則表中的數值是指「質量份」。Hereinafter, the embodiments of the present invention will be described, but the present invention is not limited thereto. In addition, unless otherwise specified, the numerical values in the table refer to "parts by mass".

(實施例1~實施例6及比較例1~比較例3) 以表1或表2所示的調配比例(質量份)將下述所示的成分預混合(乾式摻合)後,利用雙軸捏合機加以混煉,並進行冷卻粉碎而製造粉末狀的密封組成物。 (Example 1 to Example 6 and Comparative Example 1 to Comparative Example 3) The following components are pre-mixed (dry blended) at the blending ratio (mass parts) shown in Table 1 or Table 2, kneaded using a double-screw kneader, and then cooled and pulverized to produce a powdered sealing composition.

[表1] 項目 比較例1 比較例2 實施例1 實施例2 實施例3 實施例4 (A)環氧樹脂 A1 62.5 62.5 62.5 62.5 62.5 62.5 A2 24 24 24 24 24 24 A3 16.7 16.7 16.7 16.7 16.7 16.7 (B)硬化劑 B1 56.1 56.1 56.1 56.1 56.1 56.1 (C)硬化促進劑 C1 3.3 3.3 3.3 3.3 3.3 3.3 (D)填料 D1 871 874 931 1258 1249 912 D2 731 609 499 331 150 50 D3 263 364 405 243 405 810 D4 66 91 108 113 151 195 D5 13 13 13 13 13 13 填料含有率[體積%] 77 77 77 77 77 77 [Table 1] Project Comparison Example 1 Comparison Example 2 Embodiment 1 Embodiment 2 Embodiment 3 Embodiment 4 (A)Epoxy A1 62.5 62.5 62.5 62.5 62.5 62.5 A2 twenty four twenty four twenty four twenty four twenty four twenty four A3 16.7 16.7 16.7 16.7 16.7 16.7 (B) Hardener B1 56.1 56.1 56.1 56.1 56.1 56.1 (C) Hardening accelerator C1 3.3 3.3 3.3 3.3 3.3 3.3 (D) Filling D1 871 874 931 1258 1249 912 D2 731 609 499 331 150 50 D3 263 364 405 243 405 810 D4 66 91 108 113 151 195 D5 13 13 13 13 13 13 Filler content [volume %] 77 77 77 77 77 77

[表2] 項目 比較例3 實施例5 實施例6 (A)環氧樹脂 A1 40 40 40 A2 24 24 24 A3 39.2 39.2 39.2 (B)硬化劑 B1 58.7 58.7 58.7 (C)硬化促進劑 C1 3.3 3.2 3.1 (D)填料 D6 1680 1716 1745 D4 268 229 199 D5 14 14 14 填料含有率[體積%] 78 78 78 [Table 2] Project Comparison Example 3 Embodiment 5 Embodiment 6 (A)Epoxy A1 40 40 40 A2 twenty four twenty four twenty four A3 39.2 39.2 39.2 (B) Hardener B1 58.7 58.7 58.7 (C) Hardening accelerator C1 3.3 3.2 3.1 (D) Filling D6 1680 1716 1745 D4 268 229 199 D5 14 14 14 Filler content [volume %] 78 78 78

(A)環氧樹脂 ·A1···雙酚型結晶性環氧樹脂,環氧當量:192 g/eq ·A2···聯苯型環氧樹脂,環氧當量:192 g/eq ·A3···雙酚F型環氧樹脂,環氧當量:158 g/eq (B)硬化劑 ·B1···三苯基甲烷型苯酚樹脂,羥基當量為104 g/eq的三苯基甲烷型苯酚樹脂 (C)硬化促進劑 ·C1···磷系硬化促進劑(三丁基膦與苯醌的加成物) (D)填料(無機填充材) ·D1···平均粒徑(D50,與自小徑側起的體積累計50%相對應的粒徑)10.4 μm及比表面積1.5 m 2/g的氧化鋁填料 ·D2···平均粒徑1.6 μm及比表面積3.3 m 2/g的氧化鋁填料 ·D3···平均粒徑43.9 μm及比表面積0.15 m 2/g的氧化鋁填料 ·D4···平均粒徑0.7 μm及比表面積8.0 m 2/g的氧化鋁填料 ·D5···比表面積200 m 2/g的二氧化矽填料 ·D6···平均粒徑11.7 μm及比表面積2.2 m 2/g的氧化鋁填料/二氧化矽填料=9/1(質量比)混合物 (A) Epoxy resin · A1···Bisphenol type crystalline epoxy resin, epoxy equivalent: 192 g/eq · A2···Biphenyl type epoxy resin, epoxy equivalent: 192 g/eq · A3···Bisphenol F type epoxy resin, epoxy equivalent: 158 g/eq (B) Hardener · B1···Triphenylmethane type phenol resin, triphenylmethane type phenol resin with hydroxyl equivalent of 104 g/eq (C) Hardening accelerator · C1···Phosphorus-based hardening accelerator (addition product of tributylphosphine and benzoquinone) (D) Filler (inorganic filler) ·D1···Alumina filler with an average particle size (D50, the particle size corresponding to 50% of the volume from the small diameter side) of 10.4 μm and a specific surface area of 1.5 m 2 /g ·D2···Alumina filler with an average particle size of 1.6 μm and a specific surface area of 3.3 m 2 /g ·D3···Alumina filler with an average particle size of 43.9 μm and a specific surface area of 0.15 m 2 /g ·D4···Alumina filler with an average particle size of 0.7 μm and a specific surface area of 8.0 m 2 /g ·D5···Silica filler with a specific surface area of 200 m 2 /g ·D6···Average particle size of 11.7 μm and a specific surface area of 2.2 m 2 /g of alumina filler/silicon dioxide filler = 9/1 (mass ratio) mixture

<空隙率、比表面積及平均粒徑> 無機填充材的空隙率、比表面積及平均粒徑是藉由所述方法進行測定。將所獲得的結果示於表3或表4中。 <Porosity, specific surface area and average particle size> The porosity, specific surface area and average particle size of the inorganic filler were measured by the above method. The obtained results are shown in Table 3 or Table 4.

<硬化性> 硬化性是基於使用凝膠化試驗機如以下般測定的凝膠時間來進行評價。 將所述獲得的密封組成物0.5 g載置於加熱至175℃的熱板上,使用夾具以20轉/分鐘~25轉/分鐘的旋轉速度將試樣均勻地擴展為2.0 cm~2.5 cm的圓狀。測量將試樣載置於熱板上至試樣的黏性消失,成為凝膠狀態而自熱板剝離為止的時間,將其設為凝膠時間(sec)來進行測定。 將結果示於表3或表4中。於相對於環氧樹脂100質量份而使用相同的觸媒量(硬化促進劑量)的情況下,凝膠時間越短,硬化性越優異。 <Hardening property> Hardening property is evaluated based on the gelation time measured as follows using a gelation tester. 0.5 g of the obtained sealing composition is placed on a hot plate heated to 175°C, and the sample is uniformly expanded into a 2.0 cm to 2.5 cm circle using a clamp at a rotation speed of 20 rpm to 25 rpm. The time from the sample being placed on the hot plate until the viscosity of the sample disappears, the sample becomes a gel state, and it is peeled off from the hot plate is measured, and this is set as the gelation time (sec) for measurement. The results are shown in Table 3 or Table 4. When the same amount of catalyst (hardening accelerator) is used relative to 100 parts by mass of epoxy resin, the shorter the gelling time, the better the hardening property.

<流動性> 使所述獲得的密封組成物通過兩段篩(上段:2.38 mm、下段:0.5 mm),並秤量7 g的殘留於下段的試樣。將所述密封組成物置於加熱至180℃的平滑的模具上,同樣地將加熱至180℃的8 kg的平滑的模具置於試樣上並放置60秒。之後,求出所獲得的圓板狀成形品的長徑(mm)與短徑(mm)的平均值(mm),將其平均值(mm)設為盤式流(disk flow,DF)。 將結果示於表3或表4中。盤式流越長,流動性越優異。 <Flowability> The obtained sealing composition was passed through two sieves (upper section: 2.38 mm, lower section: 0.5 mm), and 7 g of the sample remaining in the lower section was weighed. The sealing composition was placed on a smooth mold heated to 180°C, and an 8 kg smooth mold heated to 180°C was placed on the sample and left for 60 seconds. Thereafter, the average value (mm) of the major diameter (mm) and minor diameter (mm) of the obtained disk-shaped molded product was calculated, and the average value (mm) was set as the disk flow (DF). The results are shown in Table 3 or Table 4. The longer the disk flow, the better the flowability.

<成形性> 將所述獲得的密封組成物15 g載置於壓製熱板上的180℃的模具上,並以硬化時間90秒進行成形。於成形後,使用游標尺測定密封組成物於在模具中製作的50 μm、30 μm、20 μm、10 μm、5 μm及2 μm的狹縫上最長地流動的部分的長度,將該測定值設為毛刺長度。 將結果示於表3或表4中。毛刺越短,成形性越優異。 <Formability> 15 g of the obtained sealing composition was placed on a mold at 180°C on a hot plate and formed with a curing time of 90 seconds. After forming, the length of the longest portion of the sealing composition flowing on the narrow slits of 50 μm, 30 μm, 20 μm, 10 μm, 5 μm and 2 μm made in the mold was measured using a vernier ruler, and the measured value was set as the burr length. The results are shown in Table 3 or Table 4. The shorter the burr, the better the formability.

<導熱率> 使用所述獲得的密封組成物,利用真空手壓成形機於模具溫度175℃~180℃、成形壓力7 MPa、硬化時間600秒的條件下製作導熱率評價用試驗片。繼而,對成形的試驗片測定厚度方向的熱擴散率。熱擴散率的測定是利用雷射閃光法(裝置:LFA467 nanoflash,耐馳(NETZSCH)公司製造)來進行。脈衝光照射是於脈衝寬度0.31(ms)、施加電壓247 V的條件下進行。測定是於環境溫度25℃±1℃下進行。另外,所述試驗片的密度是使用電子比重計(AUX220,島津製作所股份有限公司)來進行測定。比熱是使用根據各材料的比熱的文獻值與調配比率而算出的密封組成物的理論比熱。 繼而,藉由使用式(1)並將比熱及密度乘以熱擴散率來獲得導熱率的值。 λ=α×Cp×ρ···式(1) (式(1)中,λ表示導熱率(W/(m·K)),α表示熱擴散率(m 2/s),Cp表示比熱(J/(kg·K)),ρ表示密度(kg/m 3)) 將結果示於表3或表4中。 <Thermal conductivity> Using the obtained sealing composition, a test piece for thermal conductivity evaluation was prepared using a vacuum hand-pressing machine at a mold temperature of 175°C to 180°C, a molding pressure of 7 MPa, and a curing time of 600 seconds. Then, the heat diffusion rate in the thickness direction of the molded test piece was measured. The heat diffusion rate was measured using a laser flash method (device: LFA467 nanoflash, manufactured by NETZSCH). Pulse light irradiation was performed under the conditions of a pulse width of 0.31 (ms) and an applied voltage of 247 V. The measurement was performed at an ambient temperature of 25°C ± 1°C. In addition, the density of the test piece was measured using an electronic densimeter (AUX220, Shimadzu Corporation). The specific heat is the theoretical specific heat of the sealing composition calculated using the literature value of the specific heat of each material and the blending ratio. Then, the value of thermal conductivity is obtained by using formula (1) and multiplying the specific heat and density by the heat diffusion rate. λ=α×Cp×ρ···Formula (1) (In formula (1), λ represents thermal conductivity (W/(m·K)), α represents heat diffusion rate (m 2 /s), Cp represents specific heat (J/(kg·K)), and ρ represents density (kg/m 3 )) The results are shown in Table 3 or Table 4.

[表3] 比較例1 比較例2 實施例1 實施例2 實施例3 實施例4 空隙率[%] 23.4 20.2 17.5 15.9 14.6 13.6 比表面積[m 2/g] 2.5 2.5 2.5 2.5 2.5 2.5 平均粒徑[μm] 5.0 6.4 7.9 8.5 11.7 24.3 凝膠時間[sec] 67 58 52 52 48 49 流動性(DF)[mm] 94 105 107 112 113 114 毛刺[mm] 6.8 4.5 3.4 3.0 2.1 2.6 導熱率λ[W/(m·K)] 4.5 4.6 4.9 4.8 5.2 5.5 [Table 3] Comparison Example 1 Comparison Example 2 Embodiment 1 Embodiment 2 Embodiment 3 Embodiment 4 Void ratio [%] 23.4 20.2 17.5 15.9 14.6 13.6 Specific surface area [m 2 /g] 2.5 2.5 2.5 2.5 2.5 2.5 Average particle size [μm] 5.0 6.4 7.9 8.5 11.7 24.3 Gel time [sec] 67 58 52 52 48 49 Flowability (DF) [mm] 94 105 107 112 113 114 Burr [mm] 6.8 4.5 3.4 3.0 2.1 2.6 Thermal conductivity λ[W/(m·K)] 4.5 4.6 4.9 4.8 5.2 5.5

[表4] 比較例3 實施例5 實施例6 空隙率[%] 18.1 16.7 16.0 比表面積[m 2/g] 3.4 3.1 2.9 平均粒徑[μm] 8.7 8.9 9.2 凝膠時間[sec] 50 51 50 流動性(DF)[mm] 115 119 123 毛刺[mm] 3.2 3.1 2.9 導熱率λ[W/(m·K)] 4.0 4.1 4.2 [Table 4] Comparison Example 3 Embodiment 5 Embodiment 6 Void ratio [%] 18.1 16.7 16.0 Specific surface area [m 2 /g] 3.4 3.1 2.9 Average particle size [μm] 8.7 8.9 9.2 Gel time [sec] 50 51 50 Flowability (DF) [mm] 115 119 123 Burr [mm] 3.2 3.1 2.9 Thermal conductivity λ[W/(m·K)] 4.0 4.1 4.2

根據表3及表4的評價結果而明確,無機填充材的空隙率為18體積%以下的實施例1~實施例6的密封組成物與無機填充材的空隙率超過18體積%的比較例1~比較例3的密封組成物相比,硬化性、流動性及成形性優異。另外,實施例1~實施例6的密封組成物的硬化物的導熱率與比較例1~比較例3的密封組成物的硬化物的導熱率同等或高。The evaluation results in Tables 3 and 4 clearly show that the sealing compositions of Examples 1 to 6, in which the void ratio of the inorganic filler is 18 volume % or less, are superior in curability, fluidity, and formability compared to the sealing compositions of Comparative Examples 1 to 3, in which the void ratio of the inorganic filler exceeds 18 volume %. In addition, the thermal conductivity of the cured products of the sealing compositions of Examples 1 to 6 is equal to or higher than the thermal conductivity of the cured products of the sealing compositions of Comparative Examples 1 to 3.

2017年12月28日申請的日本專利申請案2017-254885號的揭示的整體藉由參照而併入本說明書中。 關於本說明書中所記載的所有文獻、專利申請案、及技術規格,與具體且各個地記載有藉由參照而併入各個文獻、專利申請案、及技術規格的情況同等程度地,藉由參照而併入至本說明書中。 The disclosure of Japanese Patent Application No. 2017-254885 filed on December 28, 2017 is incorporated by reference in its entirety into this specification. All documents, patent applications, and technical specifications described in this specification are incorporated by reference into this specification to the same extent as if each document, patent application, and technical specification were specifically and individually described as being incorporated by reference.

Claims (6)

一種密封組成物,其含有環氧樹脂、硬化劑、以及空隙率為18體積%以下的無機填充材。A sealing composition comprises an epoxy resin, a hardener, and an inorganic filler having a porosity of 18 volume % or less. 如請求項1所述的密封組成物,其中所述無機填充材的體積平均粒徑為4 μm~100 μm。The sealing composition according to claim 1, wherein the volume average particle size of the inorganic filler is 4 μm to 100 μm. 如請求項1或請求項2所述的密封組成物,其中所述無機填充材包含氧化鋁及二氧化矽的至少一者。In the sealing composition according to claim 1 or claim 2, the inorganic filler comprises at least one of aluminum oxide and silicon dioxide. 如請求項1至請求項3中任一項所述的密封組成物,其中所述無機填充材的比表面積為0.7 m 2/g~4.0 m 2/g。 The sealing composition according to any one of claims 1 to 3, wherein the inorganic filler has a specific surface area of 0.7 m 2 /g to 4.0 m 2 /g. 一種半導體裝置,其包含半導體元件、以及將所述半導體元件密封而成的如請求項1至請求項4中任一項所述的密封組成物的硬化物。A semiconductor device comprises a semiconductor element and a cured product of the sealing composition according to any one of claims 1 to 4, which seals the semiconductor element. 一種密封組成物的製造方法,其具有: 以空隙率成為預先制定的值的方式決定無機填充材的組成的步驟;以及 將藉由所述步驟而決定的組成的無機填充材、環氧樹脂、及硬化劑加以混合的步驟。 A method for manufacturing a sealing composition, comprising: a step of determining the composition of an inorganic filler so that the porosity becomes a predetermined value; and a step of mixing the inorganic filler, epoxy resin, and hardener of the composition determined by the step.
TW113117932A 2017-12-28 2018-12-26 Sealing composition, manufacturing method of sealing composition, and semiconductor device TW202436581A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017-254885 2017-12-28

Publications (1)

Publication Number Publication Date
TW202436581A true TW202436581A (en) 2024-09-16

Family

ID=

Similar Documents

Publication Publication Date Title
JP7571810B2 (en) Encapsulating composition and semiconductor device
JP2019044006A (en) Resin composition for semiconductor sealing and semiconductor device
TWI733821B (en) Sealing composition and semiconductor device
JP7263765B2 (en) Encapsulating composition and semiconductor device
JP5542648B2 (en) Epoxy resin composition for semiconductor encapsulation
JP7392659B2 (en) Encapsulation composition and semiconductor device
TW202436581A (en) Sealing composition, manufacturing method of sealing composition, and semiconductor device
TWI835960B (en) Sealing composition and semiconductor device
JP7571815B2 (en) Encapsulating composition and semiconductor device
KR102668756B1 (en) Sealing composition and method for manufacturing the same and semiconductor device
TWI855015B (en) Sealing composition and semiconductor device
TW202116913A (en) Sealing material for compression molding and electronic component device
TWI791075B (en) Sealing composition and semiconductor device
JP2007211222A (en) Epoxy resin composition for use in semiconductor encapsulation
JP2024055627A (en) Resin composition for molding and electronic component device
TW202043321A (en) Sealing composition and semiconductor device
JP2024126133A (en) Encapsulating resin composition and electronic device
TW202235578A (en) Sealing composition and semiconductor apparatus
JP2005281597A (en) Epoxy resin composition and semiconductor device
JP2004359855A (en) Epoxy resin composition and semiconductor device
JP2007137943A (en) Resin composition for sealing and semiconductor device
JP2004352954A (en) Epoxy resin composition and semiconductor device