JP2023104870A - 樹脂組成物、成形体、積層体、パイプ、温水循環用パイプ、断熱多層パイプ、及び燃料用パイプ - Google Patents
樹脂組成物、成形体、積層体、パイプ、温水循環用パイプ、断熱多層パイプ、及び燃料用パイプ Download PDFInfo
- Publication number
- JP2023104870A JP2023104870A JP2022164090A JP2022164090A JP2023104870A JP 2023104870 A JP2023104870 A JP 2023104870A JP 2022164090 A JP2022164090 A JP 2022164090A JP 2022164090 A JP2022164090 A JP 2022164090A JP 2023104870 A JP2023104870 A JP 2023104870A
- Authority
- JP
- Japan
- Prior art keywords
- resin composition
- ppm
- pipe
- evoh
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
【課題】エチレン-ビニルアルコール共重合体(EVOH)を含む樹脂組成物であって、溶融成形の際のネックイン及びダイビルドアップが抑制されており、長期間高温で使用可能な成形体等を得ることができる樹脂組成物等の提供。【解決手段】EVOH(A)、クロトンアルデヒド(B1)及び酸化防止剤(G)を含み、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)からなる群より選ばれる少なくとも1種をさらに含み、酸化防止剤(G)の含有量gが0.01質量%以上5質量%以下である、樹脂組成物。【選択図】なし
Description
本発明は樹脂組成物、成形体、積層体、パイプ、温水循環用パイプ、断熱多層パイプ、及び燃料用パイプに関する。
エチレン-ビニルアルコール共重合体(以下「EVOH」と略記する場合がある。)は酸素等のガス遮断性、耐油性、非帯電性、機械強度、溶融成形性等に優れた高分子材料である。このため、EVOH樹脂組成物は容器、シート、フィルム等の成形材料として広く用いられる。また、酸化防止剤を含有するEVOH樹脂組成物は、フロアヒーティング用、地域熱供給用等の温水循環用パイプ、燃料用パイプ等に成形されて利用されている。容器、パイプ等の成形には、一般に溶融成形が多く用いられる。従って、溶融成形に供される樹脂組成物には、長時間の溶融成形を行ってもフィッシュアイ、ストリーク等の欠陥が発生しないといった、ロングラン性に優れる性能が必要とされる。
しかし、EVOHは分子内に比較的活性な水酸基を有するため、酸素がほとんどない状態の押出成形機内部でも、高温溶融状態で酸化・架橋反応が進行し、熱劣化物が生じる場合がある。特に、長期連続運転を行うと上記熱劣化物が成形機内部に堆積し、フィッシュアイの原因となるゲル・ブツを発生させるため、EVOH樹脂組成物はロングラン性が不十分となる場合がある。
これに対し、特許文献1には、EVOH及び0.01~100ppmの不飽和アルデヒドを含む樹脂組成物が、フィッシュアイ、ゲル、ストリーク等の欠陥の発生を抑制し、かつ、ロングラン性に優れることが記載されている。
また、最近の省資源及び省エネルギーの流れの中で、地域熱供給(地域冷暖房)システムが多く導入されるようになっている。地域熱供給システムは、敷設されたパイプラインにより、複数の建物に対して1か所にまとめた冷暖房・給湯設備から、温水・冷水等を供給するものである。ガスや液体を運ぶ内管、この内管を覆う断熱発泡体層、及びこの断熱発泡体層を覆う外管からなる断熱多層パイプが地域熱供給システムのパイプとして用いられており、断熱発泡体層には、断熱発泡剤として二酸化炭素、ペンタン、シクロペンタン等が使用されている。パイプラインに酸素バリア性を有さないパイプを使用すると、パイプを透過して酸素が循環水中に溶け込んでくるため、システム配管内の金属部分の腐食が進行するおそれがある。そこで長期間システムを維持するため、EVOH層を有した多層パイプが多用されている。しかし、長期使用時における空気中の酸素によるEVOHの酸化劣化の進行が問題となっている。この酸化劣化により力学的強度が低下し、EVOH層の長さ方向に平行なクラックが生成すると、パイプから発泡ガスが拡散し、断熱性能が低下するばかりでなく、システムの金属部分の腐食も進行する。このような問題を解決するため、EVOH層のより一層の長寿命化が求められている。
上記特許文献1のEVOH樹脂組成物を用いた場合、Tダイによるフィルム成形において、ダイの有効幅より押出されたフィルムの幅の方が小さくなるネックインが問題となる場合があることが分かった。本発明者らが鋭意検討した結果、驚くべきことに、特定の複数種類の不飽和アルデヒドを特定の比率で含むEVOH樹脂組成物が、かかるネックインを抑制できることを見出した。しかしながら、ネックイン抑制を試み複数種類の不飽和アルデヒドの含有量を調整した際に、上記複数種類の不飽和アルデヒドの比率によっては、溶融樹脂組成物の吐出口(ダイリップ)の外面にダイビルドアップ(目ヤニ:ダイリップ外面の堆積物を意味する)が付着しやすくなるという問題が新たに生じることが分かった。
一方、EVOH層を最外層として共押出することにより積層体のパイプ等を製造するケースがある。上記のダイビルドアップの発生は、EVOHがダイリップに接する範囲が大きい、EVOH層が積層体の最外層として共押出される場合に欠点を生じ、長期間高温で使用した場合、著しく問題となることがある。
本発明は、このような事情に基づいてなされたものであり、その目的は、EVOHを含む樹脂組成物であって、溶融成形の際のネックイン及びダイビルドアップが抑制されており、長期間高温で使用可能な成形体等を得ることができる樹脂組成物、並びにそれを用いた成形体、積層体、パイプ、温水循環用パイプ、断熱多層パイプ及び燃料用パイプを提供するものである。
上記の目的は、
[1]エチレン単位含有量が20モル%以上60モル%以下であるエチレン-ビニルアルコール共重合体(A)(以下「EVOH(A)」と略記する場合がある)、クロトンアルデヒド(B1)及び酸化防止剤(G)を含み、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)からなる群より選ばれる少なくとも1種をさらに含み、下記式(1)及び(2)を満たし、酸化防止剤(G)の含有量gが0.01質量%以上5質量%以下である、樹脂組成物;
2.0≦b1/(b2+b3)<150.0 ・・・(1)
b2+2b3≦0.65 ・・・(2)
上記式(1)及び(2)中、b1は、EVOH(A)に対するクロトンアルデヒド(B1)の含有量(ppm)であり、b2は、EVOH(A)に対する2,4-ヘキサジエナール(B2)の含有量(ppm)であり、b3は、EVOH(A)に対する2,4,6-オクタトリエナール(B3)の含有量(ppm)である。
[2]EVOH(A)に対するクロトンアルデヒド(B1)、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)の含有量の合計(b1+b2+b3)が0.01ppm以上7.0ppm以下である、[1]の樹脂組成物;
[3]クロトンアルデヒド(B1)の含有量b1が0.01ppm以上4.0ppm以下である、[1]又は[2]の樹脂組成物;
[4]2,4-ヘキサジエナール(B2)の含有量b2が0.005ppm以上0.65ppm以下である、[1]~[3]のいずれかの樹脂組成物;
[5]2,4,6-オクタトリエナール(B3)の含有量b3が0.325ppm以下である、[1]~[4]のいずれかの樹脂組成物;
[6]共役ポリエン化合物(C)をさらに含み、EVOH(A)に対する共役ポリエン化合物(C)の含有量cが1ppm以上300ppm未満である、[1]~[5]のいずれかの樹脂組成物;
[7]共役ポリエン化合物(C)がソルビン酸である、[6]の樹脂組成物;
[8]熱可塑性エラストマー(F)をさらに含有し、熱可塑性エラストマー(F)のEVOH(A)に対する質量比(F/A)が5/95以上35/65以下である、[1]~[7]のいずれかの樹脂組成物;
[9]熱可塑性エラストマー(F)が、ポリエステル系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー及びポリオレフィン系熱可塑性エラストマーからなる群より選ばれる少なくとも1種である、[8]の樹脂組成物;
[10][1]~[9]のいずれかの樹脂組成物からなる部分を有する成形体;
[11][1]~[9]のいずれかの樹脂組成物からなる層を少なくとも1層有する積層体;
[12][1]~[9]のいずれかの樹脂組成物からなる層を有するパイプ;
[13][12]のパイプからなる温水循環用パイプ;
[14]断熱発泡体層をさらに有する[12]のパイプからなる断熱多層パイプ;
[15][12]のパイプからなる燃料用パイプ;
を提供することで達成される。
[1]エチレン単位含有量が20モル%以上60モル%以下であるエチレン-ビニルアルコール共重合体(A)(以下「EVOH(A)」と略記する場合がある)、クロトンアルデヒド(B1)及び酸化防止剤(G)を含み、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)からなる群より選ばれる少なくとも1種をさらに含み、下記式(1)及び(2)を満たし、酸化防止剤(G)の含有量gが0.01質量%以上5質量%以下である、樹脂組成物;
2.0≦b1/(b2+b3)<150.0 ・・・(1)
b2+2b3≦0.65 ・・・(2)
上記式(1)及び(2)中、b1は、EVOH(A)に対するクロトンアルデヒド(B1)の含有量(ppm)であり、b2は、EVOH(A)に対する2,4-ヘキサジエナール(B2)の含有量(ppm)であり、b3は、EVOH(A)に対する2,4,6-オクタトリエナール(B3)の含有量(ppm)である。
[2]EVOH(A)に対するクロトンアルデヒド(B1)、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)の含有量の合計(b1+b2+b3)が0.01ppm以上7.0ppm以下である、[1]の樹脂組成物;
[3]クロトンアルデヒド(B1)の含有量b1が0.01ppm以上4.0ppm以下である、[1]又は[2]の樹脂組成物;
[4]2,4-ヘキサジエナール(B2)の含有量b2が0.005ppm以上0.65ppm以下である、[1]~[3]のいずれかの樹脂組成物;
[5]2,4,6-オクタトリエナール(B3)の含有量b3が0.325ppm以下である、[1]~[4]のいずれかの樹脂組成物;
[6]共役ポリエン化合物(C)をさらに含み、EVOH(A)に対する共役ポリエン化合物(C)の含有量cが1ppm以上300ppm未満である、[1]~[5]のいずれかの樹脂組成物;
[7]共役ポリエン化合物(C)がソルビン酸である、[6]の樹脂組成物;
[8]熱可塑性エラストマー(F)をさらに含有し、熱可塑性エラストマー(F)のEVOH(A)に対する質量比(F/A)が5/95以上35/65以下である、[1]~[7]のいずれかの樹脂組成物;
[9]熱可塑性エラストマー(F)が、ポリエステル系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー及びポリオレフィン系熱可塑性エラストマーからなる群より選ばれる少なくとも1種である、[8]の樹脂組成物;
[10][1]~[9]のいずれかの樹脂組成物からなる部分を有する成形体;
[11][1]~[9]のいずれかの樹脂組成物からなる層を少なくとも1層有する積層体;
[12][1]~[9]のいずれかの樹脂組成物からなる層を有するパイプ;
[13][12]のパイプからなる温水循環用パイプ;
[14]断熱発泡体層をさらに有する[12]のパイプからなる断熱多層パイプ;
[15][12]のパイプからなる燃料用パイプ;
を提供することで達成される。
本発明によれば、EVOHを含む樹脂組成物であって、溶融成形の際のネックイン及びダイビルドアップが抑制されており、長期間高温で使用可能な成形体等を得ることができる樹脂組成物、並びにそれを用いた成形体、積層体、パイプ、温水循環用パイプ、断熱多層パイプ及び燃料用パイプを提供できる。
<樹脂組成物>
本発明の樹脂組成物は、EVOH(A)、クロトンアルデヒド(B1)及び酸化防止剤(G)を含み、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)からなる群より選ばれる少なくとも1種をさらに含み、下記式(1)及び(2)を満たし、酸化防止剤(G)の含有量gが、0.01質量%以上5質量%以下である。
2.0≦b1/(b2+b3)<150.0 ・・・(1)
b2+2b3≦0.65 ・・・(2)
上記式(1)及び(2)中、b1は、EVOH(A)に対するクロトンアルデヒド(B1)の含有量(ppm)であり、b2は、EVOH(A)に対する2,4-ヘキサジエナール(B2)の含有量(ppm)であり、b3は、EVOH(A)に対する2,4,6-オクタトリエナール(B3)の含有量(ppm)である。なお、本明細書において、ppmで表される含有量は、質量基準の含有量である。
本発明の樹脂組成物は、EVOH(A)、クロトンアルデヒド(B1)及び酸化防止剤(G)を含み、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)からなる群より選ばれる少なくとも1種をさらに含み、下記式(1)及び(2)を満たし、酸化防止剤(G)の含有量gが、0.01質量%以上5質量%以下である。
2.0≦b1/(b2+b3)<150.0 ・・・(1)
b2+2b3≦0.65 ・・・(2)
上記式(1)及び(2)中、b1は、EVOH(A)に対するクロトンアルデヒド(B1)の含有量(ppm)であり、b2は、EVOH(A)に対する2,4-ヘキサジエナール(B2)の含有量(ppm)であり、b3は、EVOH(A)に対する2,4,6-オクタトリエナール(B3)の含有量(ppm)である。なお、本明細書において、ppmで表される含有量は、質量基準の含有量である。
b1/(b2+b3)の値が2.0以上150.0未満であることでネックイン耐性が良好となる傾向にある。一方、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)は、ダイビルドアップへ影響を与え、特に2,4,6-オクタトリエナール(B3)は、ダイビルドアップへ与える影響が大きい。そのため、b2+2b3の値が0.65ppm以下であることでダイビルドアップが抑制される傾向にある。このため、本発明の樹脂組成物は、溶融成形材料として好適に用いることができる。また、当該樹脂組成物は所定量の酸化防止剤(G)を含むため、当該樹脂組成物からは長期間高温で使用可能な成形体等が得られる。なお、本明細書においてクロトンアルデヒド(B1)、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)をまとめて不飽和脂肪族アルデヒド(B)と称する場合がある。
(EVOH(A))
EVOH(A)は、エチレン単位とビニルアルコール単位とを有し、エチレン単位含有量が20モル%以上60モル%以下である共重合体である。EVOH(A)は、通常、エチレン-ビニルエステル共重合体のケン化により得られる。エチレン-ビニルエステル共重合体の製造及びケン化は公知の方法により行うことができる。ビニルエステルとしては、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル、及びその他の脂肪族カルボン酸ビニルエステル等が挙げられ、酢酸ビニルが好ましい。
EVOH(A)は、エチレン単位とビニルアルコール単位とを有し、エチレン単位含有量が20モル%以上60モル%以下である共重合体である。EVOH(A)は、通常、エチレン-ビニルエステル共重合体のケン化により得られる。エチレン-ビニルエステル共重合体の製造及びケン化は公知の方法により行うことができる。ビニルエステルとしては、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル、及びその他の脂肪族カルボン酸ビニルエステル等が挙げられ、酢酸ビニルが好ましい。
EVOH(A)のエチレン単位含有量は20モル%以上であり、25モル%以上が好ましく、27モル%以上がより好ましい。EVOH(A)のエチレン単位含有量は60モル%以下であり、55モル%以下が好ましく、50モル%以下がより好ましい。エチレン単位含有量が20モル%未満では、溶融押出時の熱安定性が低下し、ゲル化しやすくなり、ストリーク、フィッシュアイ、ブツ等が発生する傾向にある。なお、ストリーク、フィッシュアイ、ブツ等の発生は、特に一般的な条件よりも高温または高速で長時間運転する際に顕著になる。エチレン単位含有量が60モル%を超えると、ガスバリア性が低下する傾向にある。
EVOH(A)のケン化度は90モル%以上が好ましく、95モル%以上がより好ましく、99モル%以上がさらに好ましい。EVOH(A)のケン化度が90モル%以上であると、本発明の樹脂組成物、及び本発明の樹脂組成物から得られる各種成形体等におけるガスバリア性、熱安定性、耐湿性等が良好となる傾向がある。また、ケン化度は100モル%以下であっても、99.97モル%以下であっても、99.94モル%以下であってもよい。
また、EVOH(A)は、本発明の目的が阻害されない範囲で、エチレン単位、ビニルアルコール単位及びビニルエステル単位以外の他の構造単位を有していてもよい。EVOH(A)が上記他の構造単位を有する場合、上記他の構造単位のEVOH(A)の全構造単位に対する含有量は30モル%以下が好ましく、20モル%以下がより好ましく、10モル%以下がさらに好ましく、5モル%以下がよりさらに好ましく、1モル%以下が特に好ましいこともある。また、EVOH(A)が上記他の構造単位を有する場合、その含有量は0.05モル%以上であっても、0.10モル%以上であってもよい。上記他の構造単位は、例えば、アクリル酸、メタクリル酸、クロトン酸、イタコン酸等の不飽和カルボン酸またはその無水物、塩、またはモノ若しくはジアルキルエステル等;アクリロニトリル、メタクリロニトリル等のニトリル;アクリルアミド、メタクリルアミド等のアミド;ビニルスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸またはその塩;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(β-メトキシ-エトキシ)シラン、γ-メタクリルオキシプロピルメトキシシラン等のビニルシラン化合物;アルキルビニルエーテル類、ビニルケトン、N-ビニルピロリドン、塩化ビニル、塩化ビニリデン等に由来する構造単位が挙げられる。
上記他の構造単位は、下記式(I)で表される構造単位(I)、下記式(II)で表される構造単位(II)、及び下記式(III)で表される構造単位(III)の少なくともいずれか一種であってもよい。
式(I)、式(II)及び式(III)中、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10及びR11は、それぞれ独立して、水素原子、炭素数1~10の脂肪族炭化水素基、炭素数3~10の脂環式炭化水素基、炭素数6~10の芳香族炭化水素基または水酸基を表す。また、R1、R2及びR3のうちの一対、R4とR5、R6とR7は結合して環構造の一部を形成していてもよい。上記炭素数1~10の脂肪族炭化水素基、炭素数3~10の脂環式炭化水素基及び炭素数6~10の芳香族炭化水素基が有する水素原子の一部または全部は、水酸基、アルコキシ基、カルボキシ基またはハロゲン原子で置換されていてもよい。式(III)中、R12及びR13は、それぞれ独立して、水素原子、ホルミル基または炭素数2~10のアルカノイル基を表す。
EVOH(A)が上記構造単位(I)、(II)または(III)を有する場合、樹脂組成物の柔軟性及び加工特性が向上し、得られる各種成形体等における延伸性及び熱成形性等が良好になる傾向がある。
上記構造単位(I)、(II)または(III)において、上記炭素数1~10の脂肪族炭化水素基としてはアルキル基、アルケニル基等が挙げられ、炭素数3~10の脂環式炭化水素基としてはシクロアルキル基、シクロアルケニル基等が挙げられ、炭素数6~10の芳香族炭化水素基としてはフェニル基等が挙げられる。
上記構造単位(I)において、上記R1、R2及びR3は、それぞれ独立に水素原子、メチル基、エチル基、水酸基、ヒドロキシメチル基又はヒドロキシエチル基であることが好ましい。これらの中でも、樹脂組成物における成形性や、得られる各種成形体等における延伸性及び熱成形性をさらに向上させることができる観点から、それぞれ独立に水素原子、メチル基、水酸基又はヒドロキシメチル基であることがより好ましい。
EVOH(A)中に上記構造単位(I)を含有させる方法は特に限定されず、例えば、上記エチレンとビニルエステルとの重合において、構造単位(I)に誘導される単量体を共重合させる方法等が挙げられる。構造単位(I)に誘導される単量体としては、例えばプロピレン、ブチレン、ペンテン、ヘキセン等のアルケン;3-ヒドロキシ-1-プロペン、3-アシロキシ-1-プロペン、3-アシロキシ-1-ブテン、4-アシロキシ-1-ブテン、3,4-ジアシロキシ-1-ブテン、3-アシロキシ-4-ヒドロキシ-1-ブテン、4-アシロキシ-3-ヒドロキシ-1-ブテン、3-アシロキシ-4-メチル-1-ブテン、4-アシロキシ-2-メチル-1-ブテン、4-アシロキシ-3-メチル-1-ブテン、3,4-ジアシロキシ-2-メチル-1-ブテン、4-ヒドロキシ-1-ペンテン、5-ヒドロキシ-1-ペンテン、4,5-ジヒドロキシ-1-ペンテン、4-アシロキシ-1-ペンテン、5-アシロキシ-1-ペンテン、4,5-ジアシロキシ-1-ペンテン、4-ヒドロキシ-3-メチル-1-ペンテン、5-ヒドロキシ-3-メチル-1-ペンテン、4,5-ジヒドロキシ-3-メチル-1-ペンテン、5,6-ジヒドロキシ-1-ヘキセン、4-ヒドロキシ-1-ヘキセン、5-ヒドロキシ-1-ヘキセン、6-ヒドロキシ-1-ヘキセン、4-アシロキシ-1-ヘキセン、5-アシロキシ-1-ヘキセン、6-アシロキシ-1-ヘキセン、5,6-ジアシロキシ-1-ヘキセン等の水酸基あるいはエステル基を有するアルケンが挙げられる。中でも、共重合反応性、及び得られる各種成形体等の加工性、ガスバリア性の観点からは、プロピレン、3-アシロキシ-1-プロペン、3-アシロキシ-1-ブテン、4-アシロキシ-1-ブテン、3,4-ジアシロキシ-1-ブテンが好ましい。なお、“アシロキシ”はアセトキシであることが好ましく、具体的には3-アセトキシ-1-プロペン、3-アセトキシ-1-ブテン、4-アセトキシ-1-ブテン及び3,4-ジアセトキシ-1-ブテンが好ましい。エステルを有するアルケンの場合は、ケン化反応の際に、上記構造単位(I)に誘導される。
上記構造単位(II)において、R4及びR5は共に水素原子であることが好ましい。特にR4及びR5が共に水素原子であり、上記R6及びR7のうちの一方が炭素数1~10の脂肪族炭化水素基、他方が水素原子であることがより好ましい。この脂肪族炭化水素基は、アルキル基及びアルケニル基が好ましい。得られる各種成形体等におけるガスバリア性を特に重視する観点からは、R6及びR7のうちの一方がメチル基またはエチル基、他方が水素原子であることがより好ましい。また上記R6及びR7のうちの一方が(CH2)hOHで表される置換基(但し、hは1~8の整数)、他方が水素原子であることがさらに好ましい。(CH2)hOHで表される置換基において、hは1~4の整数であることが好ましく、1または2であることがより好ましく、1であることがさらに好ましい。
EVOH(A)中に上記構造単位(II)を含有させる方法は特に限定されず、例えば、ケン化反応によって得られたEVOH(A)に一価エポキシ化合物を反応させることにより含有させる方法等が用いられる。一価エポキシ化合物としては、下記式(IV)~(X)で示される化合物が好適に用いられる。
上記式(IV)~(X)中、R14、R15、R16、R17及びR18は、それぞれ独立して、水素原子、炭素数1~10の脂肪族炭化水素基(アルキル基、アルケニル基等)、炭素数3~10の脂環式炭化水素基(シクロアルキル基、シクロアルケニル基等)または炭素数6~10の脂肪族炭化水素基(フェニル基等)を表す。また、i、j、k、p及びqは、それぞれ独立して、1~8の整数を表す。ただし、R17が水素原子である場合、R18は水素原子以外の基である。
上記式(IV)で表される一価エポキシ化合物としては、例えばエポキシエタン(エチレンオキサイド)、エポキシプロパン、1,2-エポキシブタン、2,3-エポキシブタン、3-メチル-1,2-エポキシブタン、1,2-エポキシペンタン、3-メチル-1,2-エポキシペンタン、1,2-エポキシヘキサン、2,3-エポキシヘキサン、3,4-エポキシヘキサン、3-メチル-1,2-エポキシヘキサン、3-メチル-1,2-エポキシヘプタン、4-メチル-1,2-エポキシヘプタン、1,2-エポキシオクタン、2,3-エポキシオクタン、1,2-エポキシノナン、2,3-エポキシノナン、1,2-エポキシデカン、1,2-エポキシドデカン、エポキシエチルベンゼン、1-フェニル-1,2-エポキシプロパン、3-フェニル-1,2-エポキシプロパン等が挙げられる。上記式(V)で表される一価エポキシ化合物としては、各種アルキルグリシジルエーテル等が挙げられる。上記式(VI)で表される一価エポキシ化合物としては、各種アルキレングリコールモノグリシジルエーテルが挙げられる。上記式(VII)で表される一価エポキシ化合物としては、各種アルケニルグリシジルエーテルが挙げられる。上記式(VIII)で表される一価エポキシ化合物としては、グリシドール等の各種エポキシアルカノールが挙げられる。上記式(IX)で表される一価エポキシ化合物としては、各種エポキシシクロアルカンが挙げられる。上記式(X)で表される一価エポキシ化合物としては、各種エポキシシクロアルケンが挙げられる。
上記一価エポキシ化合物の中では炭素数が2~8のエポキシ化合物が好ましい。特に化合物の取り扱いの容易さ、及び反応性の観点から、一価エポキシ化合物の炭素数は2~6がより好ましく、2~4がさらに好ましい。また、一価エポキシ化合物は上記式(IV)または式(V)で表される化合物であることが特に好ましい。具体的には、EVOH(A)との反応性、樹脂組成物及び得られる各種成形体等の加工性、ガスバリア性等の観点からは、1,2-エポキシブタン、2,3-エポキシブタン、エポキシプロパン、エポキシエタンまたはグリシドールが好ましく、中でもエポキシプロパンまたはグリシドールがより好ましい。
上記構造単位(III)において、R8、R9、R10及びR11は水素原子または炭素数1~5の脂肪族炭化水素基であることが好ましく、かかる脂肪族炭化水素基は、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基またはn-ペンチル基が好ましい。
EVOH(A)中に上記構造単位(III)を含有させる方法については、特に限定されず、例えば、特開2014-034647号公報に記載の方法が挙げられる。
EVOH(A)の融点の下限としては、140℃が好ましく、150℃がより好ましく、160℃がさらに好ましい。一方、この融点の上限としては、220℃が好ましく、210℃がより好ましく、200℃がさらに好ましい。EVOH(A)の融点が上記範囲内である場合、溶融成形性が向上し、溶融成形の際のネックイン及びダイビルドアップがより抑制される傾向にある。EVOH(A)の融点は、実施例に記載の方法により測定される値とすることができる。
EVOH(A)は、1種を単独で用いてもよく、2種以上を併用してもよい。
本発明の樹脂組成物におけるEVOH(A)の含有量の下限は、ガスバリア性等の観点から、50質量%であってよいが、70質量%が好ましく、80質量%がさらに好ましく、90質量%が特に好ましく、95質量%であっても、99質量%であっても、99.9質量%であってもよい。本発明の樹脂組成物を構成する樹脂が実質的にEVOH(A)のみから構成されていてもよい。一方、本発明の樹脂組成物におけるEVOH(A)の含有量の上限は、例えば99.9質量%であってよく、99質量%、95質量%又は90質量%であってもよい。なお、EVOH(A)の含有量とは、乾燥状態の樹脂組成物における含有量(含有割合)をいう。以下、樹脂組成物を基準にした含有量について同様である。
(不飽和脂肪族アルデヒド(B))
本発明の樹脂組成物はクロトンアルデヒド(B1)を含み、かつ、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)からなる群より選ばれる少なくとも1種をさらに含む。
本発明の樹脂組成物はクロトンアルデヒド(B1)を含み、かつ、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)からなる群より選ばれる少なくとも1種をさらに含む。
本発明の樹脂組成物におけるEVOH(A)に対するクロトンアルデヒド(B1)の含有量b1の下限は、0.01ppmが好ましく、0.20ppmがより好ましく、0.40ppmがさらに好ましく、0.70ppm又は1.20ppmがよりさらに好ましい場合もある。一方、含有量b1の上限は、4.0ppmが好ましく、3.5ppmがより好ましく、2.7ppmがさらに好ましく、2.0ppm又は1.5ppmがよりさらに好ましい場合もある。含有量b1が上記範囲であると、後述するb1/(b2+b3)、b1+b2+b3及びb2+2b3の値を好適な範囲に調整しやすくなる。また、含有量b1が上記範囲であると着色を抑制できる傾向となる。
本発明の樹脂組成物は、一実施形態として、2,4-ヘキサジエナール(B2)をクロトンアルデヒド(B1)に対して特定比率で含むことで、ダイビルドアップを抑制しつつ、ネックイン耐性に優れる傾向となる。本発明の樹脂組成物におけるEVOH(A)に対する2,4-ヘキサジエナール(B2)の含有量b2の下限は、0.005ppmが好ましく、0.01ppmがより好ましく、0.02ppmがさらに好ましい。一方、含有量b2の上限は、0.65ppmが好ましく、0.20ppmがより好ましく、0.10ppmがさらに好ましく、0.08ppmがよりさらに好ましく、0.06ppmが特に好ましい。含有量b2が上記範囲であると、後述するb1/(b2+b3)、b1+b2+b3及びb2+2b3の値を好適な範囲に調整しやすくなる。また、含有量b2が上記範囲であると着色を抑制できる傾向となる。
本発明の樹脂組成物は、一実施形態として、2,4,6-オクタトリエナール(B3)をクロトンアルデヒド(B1)に対して特定比率で含むことで、ダイビルドアップを抑制しつつ、ネックイン耐性に優れる傾向となる。2,4,6-オクタトリエナール(B3)は、2,4-ヘキサジエナール(B2)と比べ、添加量に対するダイビルドアップへの影響が大きい。このため、ダイビルドアップを抑制しつつ、ネックイン耐性を向上させる視点からは本発明の樹脂組成物は、2,4,6-オクタトリエナール(B3)よりは、2,4-ヘキサジエナール(B2)を含むことが好ましい。本発明の樹脂組成物におけるEVOH(A)に対する2,4,6-オクタトリエナール(B3)の含有量b3の上限は、0.325ppmが好ましく、0.23ppmがより好ましく、0.07ppmがさらに好ましく、0.04ppmが特に好ましい。含有量B3の下限は、0ppmであってもよく、0.005ppmであってもよい。含有量b3が上記範囲であると、後述するb1/(b2+b3)、b1+b2+b3及びb2+2b3の値を好適な範囲に調整しやすくなる。また、含有量b3が上記範囲であると着色を抑制できる傾向となる。
本発明の樹脂組成物においては、クロトンアルデヒド(B1)の含有量b1(ppm)に対する2,4-ヘキサジエナール(B2)の含有量b2(ppm)と2,4,6-オクタトリエナール(B3)の含有量b3(ppm)との合計の比率(b1/(b2+b3))の値が2.0以上150.0未満であることでネックイン耐性に優れる。かかるネックイン耐性は、不飽和脂肪族アルデヒド(B)のいずれかの化合物を単独で用いた場合には見られない効果であり、b1/(b2+b3)が特定範囲となることで初めて奏される効果である。b1/(b2+b3)の下限は、4.0が好ましく、8.0がより好ましい。一方、b1/(b2+b3)の上限は、60.0が好ましく、25.0がより好ましく、13.0がさらに好ましい。b1/(b2+b3)を上記範囲内とすることで、ネックインをより十分に抑制することができる。
本発明の樹脂組成物においては、2,4-ヘキサジエナール(B2)の含有量b2(ppm)と2,4,6-オクタトリエナール(B3)の含有量b3(ppm)の2倍量との合計(b2+2b3)の上限は、0.65ppm以下であり、0.50ppmが好ましく、0.30ppmがより好ましく、0.10ppmがさらに好ましい。b2+2b3が上記上限を超えると、ダイビルドアップの発生を抑制できない。b2+2b3は、0.005ppm以上であってもよく、0.01ppm以上であってもよい。
本発明の樹脂組成物において、EVOH(A)に対するクロトンアルデヒド(B1)、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)の含有量の合計(b1+b2+b3)の上限は、7.0ppmが好ましく、4.0ppmがより好ましく、3.5ppmがさらに好ましく、3.0ppmがよりさらに好ましく、1.5ppmがよりさらに好ましく、1.0ppmが特に好ましい場合もある。b1+b2+b3を上記上限以下とすることで、樹脂組成物の着色を十分に抑えることができる。一方、b1+b2+b3の下限としては、0.01ppmが好ましく、0.10ppmがより好ましく、0.30ppm又は0.50ppmがさらに好ましい場合もある。
(酸化防止剤(G))
本発明の樹脂組成物は、得られる成形体等の耐酸化劣化性等を改善するため、さらに酸化防止剤(G)を含有する。当該樹脂組成物が酸化防止剤をさらに含む場合、当該樹脂組成物から形成されるパイプ等の成形体を長期間高温で使用した場合などのクラックの発生を抑制することができる。
本発明の樹脂組成物は、得られる成形体等の耐酸化劣化性等を改善するため、さらに酸化防止剤(G)を含有する。当該樹脂組成物が酸化防止剤をさらに含む場合、当該樹脂組成物から形成されるパイプ等の成形体を長期間高温で使用した場合などのクラックの発生を抑制することができる。
酸化防止剤(G)は、酸化防止能を有する化合物である。酸化防止剤(G)の融点は必ずしも限定されるものではないが、170℃以下であることが好ましい。酸化防止剤(G)の融点が170℃以下である場合、溶融混合により樹脂組成物を製造する際に、押出機内で溶融し易くなる。このため、酸化防止剤(G)が樹脂組成物中に局在化して高濃度部分が着色することを抑制することができる。また、酸化防止剤(G)の融点は、50℃以上が好ましく、100℃以上がより好ましい場合もある。酸化防止剤(G)の融点が50℃以上である場合、得られた成形体(パイプ等)の表面に酸化防止剤がブリードアウトして外観が不良となることを抑制することができる。
酸化防止剤(G)の分子量は300以上であることが好ましい。酸化防止剤(G)の分子量が300以上である場合、本発明の樹脂組成物から成形体を得た際に、表面に酸化防止剤がブリードアウトして成形体の外観が不良となることを抑制でき、また、樹脂組成物の熱安定性も高まる。上記分子量は400以上がより好ましく、500以上が特に好ましい。一方、酸化防止剤(G)の分子量の上限は特に限定されないが、分散性の観点から、8000以下が好ましく、6000以下がより好ましく、4000以下がさらに好ましく、2000以下が特に好ましい。
酸化防止剤(G)としては、ヒンダードフェノール基を有する化合物が好適に用いられる。ヒンダードフェノール基を有する化合物は、それ自身が熱安定性に優れる一方で、酸化劣化の原因である酸素ラジカルを捕捉する能力があり、酸化防止剤として樹脂組成物に配合した場合、酸化劣化を防止する効果に優れるものである。
ヒンダードフェノール基を有する化合物としては、通常市販されているものを用いることができ、例えば、以下の製品が挙げられる。
(1)BASF社製「IRGANOX 1010」:融点110-125℃、分子量1178、ペンタエリスリトールテトラキス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕
(2)BASF社製「IRGANOX 1076」:融点50-55℃、分子量531、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート
(3)BASF社製「IRGANOX 1098」:融点156-161℃、分子量637、N,N’-(ヘキサン-1,6-ジイル)ビス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオンアミド〕
(4)BASF社製「IRGANOX 245」:融点76-79℃、分子量587、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]
(5)BASF社製「IRGANOX 259」:融点104-108℃、分子量639、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]
(6)住友化学工業株式会社製「Sumilizer MDP-s」:融点約128℃、分子量341、2,2’-メチレン-ビス(4-メチル-6-tert-ブチルフェノール)
(7)住友化学工業株式会社製「Sumilizer GM」:融点約128℃、分子量395、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート
(8)住友化学工業株式会社製「Sumilizer GA-80」:融点約110℃、分子量741、3,9-ビス〔2-{3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル〕-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン
(1)BASF社製「IRGANOX 1010」:融点110-125℃、分子量1178、ペンタエリスリトールテトラキス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕
(2)BASF社製「IRGANOX 1076」:融点50-55℃、分子量531、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート
(3)BASF社製「IRGANOX 1098」:融点156-161℃、分子量637、N,N’-(ヘキサン-1,6-ジイル)ビス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオンアミド〕
(4)BASF社製「IRGANOX 245」:融点76-79℃、分子量587、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]
(5)BASF社製「IRGANOX 259」:融点104-108℃、分子量639、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]
(6)住友化学工業株式会社製「Sumilizer MDP-s」:融点約128℃、分子量341、2,2’-メチレン-ビス(4-メチル-6-tert-ブチルフェノール)
(7)住友化学工業株式会社製「Sumilizer GM」:融点約128℃、分子量395、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート
(8)住友化学工業株式会社製「Sumilizer GA-80」:融点約110℃、分子量741、3,9-ビス〔2-{3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル〕-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン
酸化防止剤(G)として、ヒンダードアミン基を有する化合物も好適に用いられる。ヒンダードアミン基を有する化合物は、酸化防止剤(G)として樹脂組成物に配合した場合、EVOH(A)の熱劣化を防止するのみにとどまらず、EVOH(A)の熱分解により生成するアルデヒドを捕捉する効果もあり、分解ガスの発生を低減することで成形時のボイドあるいは気泡の発生を抑制することができる。また、アルデヒドを捕捉する事により、本発明の樹脂組成物を食品包装容器として用いた際に、アルデヒドによる臭気が内容物の味覚を損ねる点も改善される。
ヒンダードアミン基を有する化合物として好ましいものは、ピペリジン誘導体であり、特に4位に置換基を有する2,2,6,6-テトラアルキルピペリジン誘導体が好ましい。その4位の置換基としては、カルボキシル基、アルコキシ基、アルキルアミノ基が挙げられる。
また、ヒンダードアミン基のN位にはアルキル基が置換していてもよいが、水素原子が結合しているものを用いる方が熱安定効果に優れ好ましい。
ヒンダードアミン基を有する化合物としては、通常市販されているものを用いることができ、例えば、以下の製品を挙げることができる。
(9)BASF社製「TINUVIN 770」:融点81-85℃、分子量481、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート
(10)BASF社製「TINUVIN 765」:液状化合物、分子量509、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート及び1,2,2,6,6-ペンタメチル-4-ピペリジルセバケート(混合物)
(11)BASF社製「TINUVIN 622LD」:融点55-70℃、分子量3100-4000、コハク酸ジメチル・1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物
(12)BASF社製「CHIMASSORB 119FL」:融点130-140℃、分子量2000以上、N,N’-ビス(3-アミノプロピル)エチレンジアミン・2,4-ビス〔N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ〕-6-クロロ-1,3,5-トリアジン縮合物
(13)BASF社製「CHIMASSORB 944LD」:融点100-135℃、分子量2000-3100、ポリ〔〔6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル〕(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕ヘキサメチレン(2,2,6,6-テトラメチル-4-ピペジリル)イミノ〕〕
(14)BASF社製「TINUVIN 144」:融点146-150℃、分子量685、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)〔〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドリキシフェニル〕メチル〕ブチルマロネート
(15)BASF社製「UVINUL 4050H」:融点157℃、分子量450、N,N’-1,6-ヘキサンジイルビス{N-(2,2,6,6-テトラメチル-4-ピペリジニル)-ホルムアミド}
(16)BASF社製「UVINUL 5050H」:融点104-112℃、分子量約3500、下記構造式を有する化合物
(9)BASF社製「TINUVIN 770」:融点81-85℃、分子量481、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート
(10)BASF社製「TINUVIN 765」:液状化合物、分子量509、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート及び1,2,2,6,6-ペンタメチル-4-ピペリジルセバケート(混合物)
(11)BASF社製「TINUVIN 622LD」:融点55-70℃、分子量3100-4000、コハク酸ジメチル・1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物
(12)BASF社製「CHIMASSORB 119FL」:融点130-140℃、分子量2000以上、N,N’-ビス(3-アミノプロピル)エチレンジアミン・2,4-ビス〔N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ〕-6-クロロ-1,3,5-トリアジン縮合物
(13)BASF社製「CHIMASSORB 944LD」:融点100-135℃、分子量2000-3100、ポリ〔〔6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル〕(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕ヘキサメチレン(2,2,6,6-テトラメチル-4-ピペジリル)イミノ〕〕
(14)BASF社製「TINUVIN 144」:融点146-150℃、分子量685、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)〔〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドリキシフェニル〕メチル〕ブチルマロネート
(15)BASF社製「UVINUL 4050H」:融点157℃、分子量450、N,N’-1,6-ヘキサンジイルビス{N-(2,2,6,6-テトラメチル-4-ピペリジニル)-ホルムアミド}
(16)BASF社製「UVINUL 5050H」:融点104-112℃、分子量約3500、下記構造式を有する化合物
これらのヒンダードフェノール基又はヒンダードアミン基を有する化合物は単独で使用しても、また、2種以上を併用してもよい。
本発明の樹脂組成物における酸化防止剤(G)の含有量gの下限は、0.01質量%であり、0.1質量%が好ましく、0.3質量%がより好ましい。酸化防止剤(G)の含有量gの上限は、5質量%であり、3質量%が好ましく、1質量%がより好ましい。酸化防止剤(G)の含有量gが上記範囲であると、酸化防止剤(G)が良好に分散し、本発明の樹脂組成物から成形体等を得た場合に外観に優れ、かつ良好な耐酸化劣化性、耐熱性等を発揮できる傾向にある。
(共役ポリエン化合物(C))
本発明の樹脂組成物は、共役ポリエン化合物(C)をさらに含むことが好ましい。共役ポリエン化合物(C)は、溶融成形時のEVOH(A)の酸化劣化による色調悪化を抑制することができる。ここで、共役ポリエン化合物(C)とは、炭素-炭素二重結合と炭素-炭素単結合とが交互に繋がってなる構造を有し炭素-炭素二重結合の数が2個以上である、いわゆる共役二重結合を有する化合物である。但し、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)は、共役ポリエン化合物(C)には該当しないものとする。共役ポリエン化合物(C)は、共役二重結合を2個有する共役ジエン、3個有する共役トリエン、又はそれ以上の数を有する共役ポリエンであってもよい。また、共役二重結合の構造が1分子中に複数組あってもよい。例えば、桐油のように共役トリエン構造が同一分子内に3個ある化合物も共役ポリエン化合物(C)に含まれる。共役ポリエン化合物(C)の共役二重結合の数の上限としては、7個が好ましい。当該樹脂組成物は、共役二重結合を8個以上有する共役ポリエン化合物(C)を含有すると、ペレットひいては成形体の着色が起こる可能性が高くなる。
本発明の樹脂組成物は、共役ポリエン化合物(C)をさらに含むことが好ましい。共役ポリエン化合物(C)は、溶融成形時のEVOH(A)の酸化劣化による色調悪化を抑制することができる。ここで、共役ポリエン化合物(C)とは、炭素-炭素二重結合と炭素-炭素単結合とが交互に繋がってなる構造を有し炭素-炭素二重結合の数が2個以上である、いわゆる共役二重結合を有する化合物である。但し、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)は、共役ポリエン化合物(C)には該当しないものとする。共役ポリエン化合物(C)は、共役二重結合を2個有する共役ジエン、3個有する共役トリエン、又はそれ以上の数を有する共役ポリエンであってもよい。また、共役二重結合の構造が1分子中に複数組あってもよい。例えば、桐油のように共役トリエン構造が同一分子内に3個ある化合物も共役ポリエン化合物(C)に含まれる。共役ポリエン化合物(C)の共役二重結合の数の上限としては、7個が好ましい。当該樹脂組成物は、共役二重結合を8個以上有する共役ポリエン化合物(C)を含有すると、ペレットひいては成形体の着色が起こる可能性が高くなる。
共役ポリエン化合物(C)は、共役二重結合に加えて、カルボキシ基及びその塩、水酸基、エステル基、エーテル基、アミノ基、イミノ基、アミド基、シアノ基、ジアゾ基、ニトロ基、スルホン基及びその塩、スルホニル基、スルホキシド基、スルフィド基、チオール基、リン酸基及びその塩、フェニル基、ハロゲン原子、二重結合、三重結合等のその他の官能基を有していてもよい。
共役ポリエン化合物(C)の炭素数の下限としては、4が好ましい。また、共役ポリエン化合物(C)の炭素数の上限としては、30が好ましく、10がより好ましい。
共役ポリエン化合物(C)としては、例えばイソプレン、2,3-ジメチル-1,3-ブタジエン、2,3-ジエチル-1,3-ブタジエン、2-t-ブチル-1,3-ブタジエン、1,3-ペンタジエン、2,3-ジメチル-1,3-ペンタジエン、2,4-ジメチル-1,3-ペンタジエン、3,4-ジメチル-1,3-ペンタジエン、3-エチル-1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、4-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、2,4-ヘキサジエン、2,5-ジメチル-2,4-ヘキサジエン、1,3-オクタジエン、1,3-シクロペンタジエン、1,3-シクロヘキサジエン、1-フェニル-1,3-ブタジエン、1,4-ジフェニル-1,3-ブタジエン、1-メトキシ-1,3-ブタジエン、2-メトキシ-1,3-ブタジエン、1-エトキシ-1,3-ブタジエン、2-エトキシ-1,3-ブタジエン、2-ニトロ-1,3-ブタジエン、クロロプレン、1-クロロ-1,3-ブタジエン、1-ブロモ-1,3-ブタジエン、2-ブロモ-1,3-ブタジエン、オシメン、フェランドレン、ミルセン、ファルネセン、ソルビン酸、ソルビン酸エステル、ソルビン酸塩等の共役ジエン化合物;1,3,5-ヘキサトリエン、2,4,6-オクタトリエン-1-カルボン酸、エレオステアリン酸、桐油、コレカルシフェロール、フルベン、トロポン等の共役トリエン化合物;シクロオクタテトラエン、2,4,6,8-デカテトラエン-1-カルボン酸、レチノール、レチノイン酸等が挙げられる。
共役ポリエン化合物(C)としては、ソルビン酸、ソルビン酸エステル、ソルビン酸塩、ミルセンまたはこれらのうちの2以上の混合物が好ましく、ソルビン酸、ソルビン酸塩(ソルビン酸ナトリウム、ソルビン酸カリウム等)またはこれらの混合物がより好ましい。ソルビン酸、ソルビン酸塩またはこれらの混合物は、高温での酸化劣化の抑制効果が高く、また食品添加剤としても広く工業的に使用されているため衛生性や入手性の観点からも好ましい。
共役ポリエン化合物(C)の分子量としては、通常1,000以下であり、500以下が好ましく、300以下がより好ましい。共役ポリエン化合物(C)の分子量が上記上限以下である場合、樹脂組成物中への共役ポリエン化合物(C)の分散状態が良好になり、溶融成形後の外観が高まる傾向にある。共役ポリエン化合物(C)の分子量の下限は例えば54であり、60であってもよく、80であってもよい。
本発明の樹脂組成物におけるEVOH(A)に対する共役ポリエン化合物(C)の含有量cの下限は、1ppmが好ましく、3ppmがより好ましい。また、本発明の樹脂組成物におけるEVOH(A)に対する共役ポリエン化合物(C)の含有量cは300ppm未満が好ましく、100ppm以下がより好ましく、70ppm以下がさらに好ましく、30ppm以下がよりさらに好ましく、20ppm以下、10ppm以下が特に好ましい場合もある。共役ポリエン化合物(C)の含有量cが上記範囲であると溶融成形時の色相の悪化をより抑制できる傾向となる。
(熱可塑性エラストマー(F))
本発明の樹脂組成物は、該樹脂組成物から得られる成形体等の耐屈曲性等を改善するため、さらに熱可塑性エラストマー(F)を含有しても良い。
本発明の樹脂組成物は、該樹脂組成物から得られる成形体等の耐屈曲性等を改善するため、さらに熱可塑性エラストマー(F)を含有しても良い。
熱可塑性エラストマー(F)としては特に限定されず、ポリエステル系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー等を用いることができる。これらは、一種又は二種以上を組み合わせても良い。中でも、耐屈曲性を向上させる観点から、熱可塑性エラストマー(F)は、ポリスチレン系熱可塑性エラストマー及びポリオレフィン系熱可塑性エラストマーからなる群から選択される少なくとも1種であることが好ましい。
熱可塑性エラストマー(F)は、変性熱可塑性エラストマーであることが好ましい。変性熱可塑性エラストマーとしては、不飽和カルボン酸又はその誘導体で変性されていることが好ましく、不飽和カルボン酸又はその誘導体としては、マレイン酸、フマル酸、イタコン酸、無水マレイン酸、無水イタコン酸、マレイン酸モノメチルエステル、マレイン酸モノエチルエステル、マレイン酸ジエチルエステル、フマル酸モノメチルエステル等が挙げられる。中でも無水マレイン酸変性熱可塑性エラストマーであることがより好ましい。熱可塑性エラストマー(F)が変性熱可塑性エラストマーであると、EVOH(A)との相溶性が高まり、ガスバリア性、透明性、柔軟性及び剥離性がより向上するため好ましい。
上記ポリエステル系熱可塑性エラストマー(以下、TPEEと称することがある)としては、分子中のハードセグメントとしてポリエステルを、ソフトセグメントとしてガラス転移温度(Tg)の低いポリエーテル又はポリエステルを備えるマルチブロックコポリマーが挙げられる。TPEEは、分子構造の違いによって以下のタイプに分けることができ、中でもポリエステル・ポリエーテル型TPEEとポリエステル・ポリエステル型TPEEが好ましい。
(1)ポリエステル・ポリエーテル型TPEE
一般には、ハードセグメントとして芳香族系結晶性ポリエステルを、ソフトセグメントとしてポリエーテルを用いた熱可塑性エラストマーである。
(2)ポリエステル・ポリエステル型TPEE
ハードセグメントとして芳香族系結晶性ポリエステルを、ソフトセグメントとして脂肪族系ポリエステルを用いた熱可塑性エラストマーである。
(3)液晶性TPEE
ハードセグメントとして剛直な液晶分子を、ソフトセグメントとして脂肪族系ポリエステルを用いた熱可塑性エラストマーである。
(1)ポリエステル・ポリエーテル型TPEE
一般には、ハードセグメントとして芳香族系結晶性ポリエステルを、ソフトセグメントとしてポリエーテルを用いた熱可塑性エラストマーである。
(2)ポリエステル・ポリエステル型TPEE
ハードセグメントとして芳香族系結晶性ポリエステルを、ソフトセグメントとして脂肪族系ポリエステルを用いた熱可塑性エラストマーである。
(3)液晶性TPEE
ハードセグメントとして剛直な液晶分子を、ソフトセグメントとして脂肪族系ポリエステルを用いた熱可塑性エラストマーである。
上記ポリエステルセグメントとしては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸;1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;コハク酸、アジピン酸等の脂肪族ジカルボン酸等のジカルボン酸成分と、エチレングリコール、1,2-プロピレングリコール、1,4-ブタンジオール等の脂肪族ジオール;シクロヘキサン-1,4-ジメタノール等の脂環式ジオール等のジオール成分とからなるポリエステルセグメントが挙げられる。上記ポリエーテルセグメントとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等の脂肪族ポリエーテルセグメントが挙げられる。上記ポリエステル系熱可塑性エラストマーは変性ポリエステル系熱可塑性エラストマーであることが好ましく、無水マレイン酸変性ポリエステル系熱可塑性エラストマーであることがより好ましい。
上記ポリスチレン系熱可塑性エラストマーとしては、特に限定されないが、通常、ハードセグメントとしてスチレンモノマー重合体ブロック(Hb)を、ソフトセグメントとして共役ジエン化合物重合体ブロック又はその水添ブロック(Sb)を備える。このスチレン系熱可塑性エラストマーの構造としては、Hb-Sbで表されるジブロック構造、Hb-Sb-Hb若しくはSb-Hb-Sbで表されるトリブロック構造、Hb-Sb-Hb-Sbで表されるテトラブロック構造、又はHbとSbとが計5個以上直鎖状に結合しているポリブロック構造であってもよい。
上記スチレンモノマー重合体ブロック(Hb)に使用されるスチレン系モノマーとしては、特に限定されず、スチレン及びその誘導体等を挙げることができる。具体的には、スチレン、α―メチルスチレン、2-メチルスチレン、4-メチルスチレン、4-プロピルスチレン、4-t-ブチルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、2,4,6-トリメチルスチレン、モノフルオロスチレン、ジフルオロスチレン、モノクロロスチレン、ジクロロスチレン、メトキシスチレン、t-ブトキシスチレン等のスチレン類;1-ビニルナフタレン、2-ビニルナフタレン等のビニルナフタレン類等のビニル基含有芳香族化合物;インデン、アセナフチレン等のビニレン基含有芳香族化合物等が挙げられる。中でもスチレンが好ましい。スチレン系モノマーは1種のみでも良く、2種以上であっても良い。
上記共役ジエン化合物重合体ブロック又はその水添ブロック(Sb)に使用される共役ジエン化合物も、特に限定されず、例えば、ブタジエン、イソプレン、2,3-ジメチルブタジエン、ペンタジエン、ヘキサジエン等を挙げることができる。中でも、ブタジエンが好ましい。共役ジエン化合物は1種のみでも良く、2種以上であっても良い。さらに、他の共単量体、例えば、エチレン、プロピレン、ブチレン、スチレンを共重合することもできる。また、共役ジエン化合物重合体ブロックは、部分的又は完全に水素添加されている水素添加体であっても良い。
ポリスチレン系熱可塑性エラストマーの具体例としては、スチレン-イソプレンジブロック共重合体(SI)、スチレン-ブタジエンジブロック共重合体(SB)、スチレン-イソプレン-スチレントリブロック共重合体(SIS)、スチレン-ブタジエン/イソプレン-スチレントリブロック共重合体(SB/IS)、及びスチレン-ブタジエン-スチレントリブロック共重合体(SBS)並びにその水素添加体が挙げられる。中でも、スチレン-イソプレンジブロック共重合体の水素添加体(SEP)、スチレン-ブタジエンジブロック共重合体の水素添加体(SEB)、スチレン-イソプレン-スチレントリブロック共重合体の水素添加体(SEPS)、スチレン-ブタジエン/イソプレン-スチレントリブロック共重合体の水素添加体(SEEPS)、及びスチレン-ブタジエン-スチレントリブロック共重合体の水素添加体(SEBS)からなる群から選択される少なくとも1種が好ましい。上記ポリスチレン系熱可塑性エラストマーは変性ポリスチレン系熱可塑性エラストマーであることが好ましく、無水マレイン酸変性ポリスチレン系熱可塑性エラストマーであることがより好ましい。
上記ポリオレフィン系熱可塑性エラストマーには、ハードセグメントとしてポリプロピレンやポリエチレン等のポリオレフィンブロックを、ソフトセグメントとしてエチレン-プロピレン-ジエン共重合体等のゴムブロックを備える熱可塑性エラストマー等が含まれる。なお、かかる熱可塑性エラストマーには、ブレンド型とインプラント化型がある。また、変性ポリオレフィン系熱可塑性エラストマーとしては、無水マレイン酸変性エチレン-ブテン-1共重合体、無水マレイン酸変性エチレン-プロピレン共重合体、ハロゲン化ブチル系ゴム、変性ポリプロピレン、変性ポリエチレン等を挙げることもできる。上記ポリオレフィン系熱可塑性エラストマーは変性ポリオレフィン系熱可塑性エラストマーであることが好ましく、無水マレイン酸変性ポリオレフィン系熱可塑性エラストマーであることがより好ましい。
本発明の樹脂組成物における熱可塑性エラストマー(F)のEVOH(A)に対する質量比(F/A)の下限は、5/95が好ましく、8/92がより好ましく、12/88がさらに好ましく、15/85又は25/75がさらに好ましい場合もある。質量比(F/A)を上記下限以上とすることで、得られる成形体等の耐屈曲性等を高めることができる。一方、この質量比(F/A)の上限としては、35/65が好ましく、30/70がより好ましく、25/75がさらに好ましい場合もある。質量比(F/A)を上記上限以下とすることで、ガスバリア性等をより高めることができる。
(相分離構造)
本発明の樹脂組成物において、EVOH(A)のマトリックス中に熱可塑性エラストマー(F)の粒子が分散していることが好ましい。すなわち、本発明の樹脂組成物は、海島構造を有し、海相が主にEVOH(A)からなり、島相が主に熱可塑性エラストマー(F)からなる海島構造であることが好ましい。このように、海相が主にEVOH(A)からなることで、ガスバリア性を保ちつつ、柔軟性が向上する。
本発明の樹脂組成物において、EVOH(A)のマトリックス中に熱可塑性エラストマー(F)の粒子が分散していることが好ましい。すなわち、本発明の樹脂組成物は、海島構造を有し、海相が主にEVOH(A)からなり、島相が主に熱可塑性エラストマー(F)からなる海島構造であることが好ましい。このように、海相が主にEVOH(A)からなることで、ガスバリア性を保ちつつ、柔軟性が向上する。
本発明の樹脂組成物が海島構造を有し、海相が主にEVOH(A)からなり、島相が主に熱可塑性エラストマー(F)からなる場合、透明性を向上させる観点から、熱可塑性エラストマー(F)からなる島相の平均粒子径は4.5μm以下が好ましく、3.5μm以下がより好ましく、3.0μm以下がさらに好ましく、2.5μm以下が特に好ましく、2.0μm以下が最も好ましい。熱可塑性エラストマー(F)の平均粒子径は0.1μm以上であってもよい。熱可塑性エラストマー(F)からなる島相の平均粒子径が上記範囲であると、ガスバリア性及び透明性を保ちつつ、柔軟性が向上し、さらに剥離性が向上するため好ましい。熱可塑性エラストマー(F)の平均粒子径は、混錬強度の調整、及びEVOH(A)と熱可塑性エラストマー(F)との組成比により調整できる。
本発明の樹脂組成物において、EVOH(A)と熱可塑性エラストマー(F)との屈折率差は0.05以下が好ましく、0.04以下がより好ましく、0.03以下がさらに好ましい。該屈折率差は、0.005以上であってもよい。該屈折率差が上記範囲であると、本発明の樹脂組成物の透明性がより良好になるため好ましい。
(その他の任意成分)
本発明の樹脂組成物は、EVOH(A)、不飽和脂肪族アルデヒド(B)、酸化防止剤(G)、共役ポリエン化合物(C)及び熱可塑性エラストマー(F)以外のその他の任意成分として、ホウ素化合物、カルボン酸類、リン化合物、金属イオン、紫外線吸収剤、可塑剤、帯電防止剤、滑剤、着色剤、充填剤、熱安定剤、EVOH(A)及び熱可塑性エラストマー(F)以外の他の樹脂、高級脂肪族カルボン酸の金属塩等を含んでいてもよい。本発明の樹脂組成物は、これらの成分を2種以上含有してもよい。本発明の樹脂組成物が、その他の任意成分を含む場合、その合計含有量の上限は1質量%が好ましく、0.5質量%が好ましい場合もある。
本発明の樹脂組成物は、EVOH(A)、不飽和脂肪族アルデヒド(B)、酸化防止剤(G)、共役ポリエン化合物(C)及び熱可塑性エラストマー(F)以外のその他の任意成分として、ホウ素化合物、カルボン酸類、リン化合物、金属イオン、紫外線吸収剤、可塑剤、帯電防止剤、滑剤、着色剤、充填剤、熱安定剤、EVOH(A)及び熱可塑性エラストマー(F)以外の他の樹脂、高級脂肪族カルボン酸の金属塩等を含んでいてもよい。本発明の樹脂組成物は、これらの成分を2種以上含有してもよい。本発明の樹脂組成物が、その他の任意成分を含む場合、その合計含有量の上限は1質量%が好ましく、0.5質量%が好ましい場合もある。
ホウ素化合物は、溶融成形時のゲル化を抑制すると共に押出成形機等のトルク変動(加熱時の粘度変化)を抑制するものである。上記ホウ素化合物としては、例えばオルトホウ酸、メタホウ酸、四ホウ酸等のホウ酸類;ホウ酸トリエチル、ホウ酸トリメチル等のホウ酸エステル;上記ホウ酸類のアルカリ金属塩又はアルカリ土類金属塩、ホウ砂等のホウ酸塩;水素化ホウ素類などが挙げられる。これらの中でも、ホウ酸類が好ましく、オルトホウ酸(以下、「ホウ酸」ともいう)がより好ましい。EVOH(A)に対するホウ素化合物の含有量の下限としては、100ppmが好ましく、500ppmがより好ましい。また、EVOH(A)に対するホウ素化合物の含有量の上限としては、5,000ppmが好ましく、3,000ppmがより好ましく、1,000ppmがさらに好ましい。ホウ素化合物の含有量を上記下限以上とすることで、押出成形機等のトルク変動を十分に抑制することができる。一方、ホウ素化合物の含有量を上記上限以下とすることで、溶融成形時にゲル化が起こりにくくなり樹脂組成物ひいては成形体の外観が向上する。なお、ホウ素化合物の含有量は、ホウ素化合物のオルトホウ酸換算含有量である。
カルボン酸類は、樹脂組成物ひいては成形体の着色を防止すると共に溶融成形時のゲル化を抑制するものである。カルボン酸類としては、ギ酸、酢酸、プロピオン酸、酪酸、乳酸、これらの塩等が挙げられる。カルボン酸類としては、炭素数4以下のカルボン酸類又は飽和カルボン酸類が好ましく、酢酸類がより好ましい。この酢酸類は、酢酸及び酢酸塩を含む。酢酸類としては、酢酸及び酢酸塩を併用することが好ましく、酢酸及び酢酸ナトリウムを併用することがより好ましい。EVOH(A)に対するカルボン酸類の含有量の下限としては、50ppmが好ましく、100ppmがより好ましく、150ppmがさらに好ましい。また、EVOH(A)に対するカルボン酸類の含有量の上限としては、1,000ppmが好ましく、500ppmがより好ましく、400ppmがさらに好ましい。カルボン酸類の含有量を上記下限以上とすることで、十分な着色抑制効果が得られ、黄変の発生を十分に抑制することができる。一方、カルボン酸類の含有量を上記上限以下とすることで、溶融成形時、特に長時間に及ぶ溶融成形時にゲル化が生じにくくなり、成形体等の外観が良好になる。
リン化合物は、ストリーク、フィッシュアイ等の欠陥の発生及び着色を抑制すると共に、ロングラン性を向上させるものである。このリン化合物としては、例えばリン酸、亜リン酸等のリン酸塩等が挙げられる。上記リン酸塩としては、第一リン酸塩、第二リン酸塩及び第三リン酸塩のいずれの形でもよい。また、リン酸塩のカチオン種についても特に限定されるものではないが、アルカリ金属塩及びアルカリ土類金属塩が好ましく、これらのうちリン酸二水素ナトリウム、リン酸二水素カリウム、リン酸水素二ナトリウム及びリン酸水素二カリウムがより好ましく、リン酸二水素ナトリウム及びリン酸水素二カリウムがさらに好ましい。EVOH(A)に対するリン化合物の含有量の下限としては、1ppmが好ましく、10ppmがより好ましく、20ppmがさらに好ましく、30ppmが特に好ましい。EVOH(A)に対するリン化合物の含有量の上限としては、200ppmが好ましく、150ppmがより好ましく、100ppmがさらに好ましい。リン化合物の含有量を上記下限以上とすること、又は上記上限以下とすることで、熱安定性が向上し、長時間にわたる溶融成形を行なう際のゲル状ブツの発生、着色等が生じにくくなる。
金属イオンとしては、一価金属イオン、二価金属イオン、その他遷移金属イオンが挙げられ、これらは1種又は複数種からなっていてもよい。中でも一価金属イオン及び二価金属イオンが好ましい。一価金属イオンとしては、アルカリ金属イオンが好ましく、例えばリチウム、ナトリウム、カリウム、ルビジウム及びセシウムのイオンが挙げられ、工業的な入手容易性の点からはナトリウム又はカリウムのイオンが好ましい。また、アルカリ金属イオンを与えるアルカリ金属塩としては、例えば脂肪族カルボン酸塩、芳香族カルボン酸塩、炭酸塩、塩酸塩、硝酸塩、硫酸塩、リン酸塩及び金属錯体が挙げられる。中でも、脂肪族カルボン酸塩及びリン酸塩が入手容易である点から好ましく、具体的には、酢酸ナトリウム、酢酸カリウム、リン酸ナトリウム及びリン酸カリウムが好ましい。金属イオンとして二価金属イオンを含むことが好ましい場合もある。金属イオンが二価金属イオンを含むと、例えばトリムを回収して再利用した際のEVOHの熱劣化が抑制され、得られる成形体のゲル及びブツの発生が抑制される場合がある。二価金属イオンとしては、例えばベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム及び亜鉛のイオンが挙げられるが、工業的な入手容易性の点からはマグネシウム、カルシウム又は亜鉛のイオンが好ましい。また、二価金属イオンを与える二価金属塩としては、例えばカルボン酸塩、炭酸塩、塩酸塩、硝酸塩、硫酸塩、リン酸塩及び金属錯体が挙げられカルボン酸塩が好ましい。カルボン酸塩を構成するカルボン酸としては、炭素数1~30のカルボン酸が好ましく、具体的には、酢酸、プロピオン酸、酪酸、ステアリン酸、ラウリン酸、モンタン酸、ベヘン酸、オクチル酸、セバシン酸、リシノール酸、ミリスチン酸、パルミチン酸等が挙げられ、中でも、酢酸及びステアリン酸が好ましい。EVOH(A)に対する金属イオンの含有量の下限は1ppmが好ましく、100ppmがより好ましく、150ppmがさらに好ましい。一方、金属イオンの含有量の上限は1,000ppmが好ましく、400ppmがより好ましく、350ppmがさらに好ましい。EVOH(A)に対する金属イオンの含有量が1ppm以上であると、得られる積層体の層間接着性が良好となる傾向となる。一方、金属イオンの含有量が1,000ppm以下であると、着色耐性が良好となる傾向となる。
可塑剤としては、例えばフタル酸ジメチル、フタル酸ジエチル、フタル酸ジオクチル、ワックス、流動パラフィン、リン酸エステル等が挙げられる。帯電防止剤としては、例えばペンタエリスリットモノステアレート、ソルビタンモノパルミテート、硫酸化ポリオレフィン類、ポリエチレンオキシド、ポリエチレングリコール(商品名:カーボワックス)等が挙げられる。
滑剤としては、例えばエチレンビスステアロアミド、ブチルステアレート等が挙げられる。着色剤としては、例えばカーボンブラック、フタロシアニン、キナクリドン、インドリン、アゾ系顔料、ベンガラ等が挙げられる。充填剤としては、例えばグラスファイバー、ウォラストナイト、ケイ酸カルシウム、タルク、モンモリロナイト等が挙げられる。熱安定剤としては、例えばヒンダードフェノール系化合物、ヒンダードアミン系化合物等が挙げられる。
EVOH(A)及び熱可塑性エラストマー(F)以外の他の樹脂としては、例えばポリアミド、ポリオレフィン等が挙げられる。高級脂肪族カルボン酸の金属塩としては、例えばステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸カルシウム、ステアリン酸マグネシウム等が挙げられる。
本発明の樹脂組成物において、EVOH(A)、不飽和脂肪族アルデヒド(B)(クロトンアルデヒド(B1)、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3))及び酸化防止剤(G)の合計含有量は、90質量%以上が好ましく、95質量%以上がより好ましく、98質量%以上がさらに好ましく、99質量%以上が特に好ましい。本発明の樹脂組成物は実質的にEVOH(A)、不飽和脂肪族アルデヒド(B)及び酸化防止剤(G)のみから構成されていてもよく、本発明の樹脂組成物はEVOH(A)、不飽和脂肪族アルデヒド(B)及び酸化防止剤(G)のみから構成されていてもよい。なお、本明細書において「実質的に~のみからなる」とは、本発明の効果に影響を与えない範囲で任意成分の含有を許容するものであり、本明細書において「のみからなる」とは、不可避的に含まれてしまう不純物以外の任意成分を除外するものである。
本発明の樹脂組成物の210℃、2,160g荷重下でのメルトフローレート(MFR)の下限としては、0.5g/10分が好ましく、1g/10分がより好ましい。一方、このMFRの上限としては、30g/10分が好ましく、20g/10分がより好ましい。本発明の樹脂組成物のMFRが上記範囲であることで、溶融成形性等を高めることができる。また、本発明の樹脂組成物のMFRが上記範囲であると、ネックイン耐性がより良好となる傾向となる。
<樹脂組成物の調製方法>
本発明の樹脂組成物の製造方法は、EVOH(A)と不飽和脂肪族アルデヒド(B)とを含む樹脂組成物を製造した後、この樹脂組成物と酸化防止剤(G)とを混合する方法、EVOH(A)、不飽和脂肪族アルデヒド(B)及び酸化防止剤(G)を一括して混合する方法などが挙げられる。当該製造方法は、例えば、
(1)エチレンとビニルエステルとを共重合させる工程、及び
(2)工程(1)により得られた共重合体をケン化する工程
を備える樹脂組成物の製造方法であって、上記樹脂組成物中に所定量及び所定比率の不飽和脂肪族アルデヒド(B)及び酸化防止剤(G)を含有させることを特徴とする製造方法等が挙げられる。
本発明の樹脂組成物の製造方法は、EVOH(A)と不飽和脂肪族アルデヒド(B)とを含む樹脂組成物を製造した後、この樹脂組成物と酸化防止剤(G)とを混合する方法、EVOH(A)、不飽和脂肪族アルデヒド(B)及び酸化防止剤(G)を一括して混合する方法などが挙げられる。当該製造方法は、例えば、
(1)エチレンとビニルエステルとを共重合させる工程、及び
(2)工程(1)により得られた共重合体をケン化する工程
を備える樹脂組成物の製造方法であって、上記樹脂組成物中に所定量及び所定比率の不飽和脂肪族アルデヒド(B)及び酸化防止剤(G)を含有させることを特徴とする製造方法等が挙げられる。
樹脂組成物中に不飽和脂肪族アルデヒド(B)を含有させる方法としては、特に限定されないが、例えば、上記工程(1)において不飽和脂肪族アルデヒド(B)を添加する方法、上記工程(2)において不飽和脂肪族アルデヒド(B)を添加する方法、上記工程(2)により得られたEVOH(A)に、不飽和脂肪族アルデヒド(B)を添加する方法等が挙げられる。なお、上記工程(1)において不飽和脂肪族アルデヒド(B)を添加する方法、又は上記工程(2)において不飽和脂肪族アルデヒド(B)を添加する方法を採用する場合には、得られる樹脂組成物中に所望量の不飽和脂肪族アルデヒド(B)を含有させるために、上記工程(1)における重合反応、上記工程(2)におけるケン化反応で消費される量を考慮して添加量を多くする必要がある。したがって、重合反応やケン化反応工程で不飽和脂肪族アルデヒド(B)を添加する場合は消費される不飽和脂肪族アルデヒド(B)の量を加算して添加することが好ましい。一方、上記工程(2)より得られたEVOH(A)に不飽和脂肪族アルデヒド(B)を添加する方法は工程内での消費を考慮せずに添加できるため、操作性に優れている。
EVOH(A)に不飽和脂肪族アルデヒド(B)を添加する方法としては、例えば1)不飽和脂肪族アルデヒド(B)を予めEVOH(A)に配合してペレットを造粒する方法、2)エチレン-ビニルエステル共重合体のケン化後にペーストを析出させる工程で析出させたストランドに不飽和脂肪族アルデヒド(B)を含浸させる方法、3)析出させたストランドをカットした後に不飽和脂肪族アルデヒド(B)を含浸させる方法、4)乾燥樹脂組成物のチップを再溶解したものに不飽和脂肪族アルデヒド(B)を添加する方法、5)EVOH(A)及び不飽和脂肪族アルデヒド(B)の各成分をブレンドしたものを溶融混練する方法、6)押出機の途中からEVOH(A)溶融物に不飽和脂肪族アルデヒド(B)をフィードし含有させる方法、7)不飽和脂肪族アルデヒド(B)をEVOH(A)の一部に高濃度で配合して造粒したマスターバッチを作成しEVOH(A)とドライブレンドして溶融混練する方法等が挙げられる。
これらのうち、EVOH(A)中に微量の不飽和脂肪族アルデヒド(B)を均一性高く分散することができる観点から、1)の不飽和脂肪族アルデヒド(B)を予めEVOH(A)に配合してペレットを造粒する方法が好ましい。具体的には、EVOH(A)を水/メタノール混合溶媒等の良溶媒に溶解させた溶液に、不飽和脂肪族アルデヒド(B)を添加し、その混合溶液をノズル等から貧溶媒中に押出して析出及び/又は凝固させ、それを洗浄及び/又は乾燥することにより、EVOH(A)に不飽和脂肪族アルデヒド(B)が均一性高く混合された樹脂組成物ペレットを得ることができる。
EVOH(A)及び不飽和脂肪族アルデヒド(B)を含む樹脂組成物と、酸化防止剤(G)とを混合する方法としては、溶融混練等の公知の方法によって行うことができる。この際、さらに他の成分を加えて溶融混練等してもよい。EVOH(A)、不飽和脂肪族アルデヒド(B)及び酸化防止剤(G)を一括して混合する方法としては、上記混合物を製造する4)、5)、6)又は7)の方法において、不飽和脂肪族アルデヒド(B)と共に、酸化防止剤(G)をドライブレンド又は添加する方法が挙げられる。この際、同様に、さらに他の成分をドライブレンド又は添加してもよい。なお、その他成分の混合には、リボンブレンダー、高速ミキサーコニーダー、ミキシングロール、押出機、インテンシブミキサー等を用いることができる。
本発明の樹脂組成物は、ペレット形状であることが、取扱性が容易である点から好ましい。本発明の樹脂組成物のペレットの形状は特に限定されるものではないが、円柱状、角柱状、球状、略球状(lenticular)などが挙げられ、中でも、ペレットの搬送安定性、取扱性、生産性等の観点から、円柱状、球状または略球状(lenticular)が好ましい。円柱状の場合、直径は1mm以上10mm以下が好ましく、2mm以上8mm以下がより好ましく、高さは1mm以上10mm以下が好ましく、2mm以上8mm以下がより好ましく、3mm以上5mm以下がさらに好ましい。球状または略球状(lenticular)である場合、短手方向の長さは1mm以上10mm以下が好ましく、2mm以上8mm以下がより好ましく、長手方向の長さは1mm以上10mm以下が好ましく、2mm以上8mm以下がより好ましい。
<成形体>
本発明の樹脂組成物は、溶融成形等により、フィルム、シート、チューブ、袋、ボトル等の成形体に形成できる。本発明の樹脂組成物からなる部分を有する成形体は、ネックイン及びダイビルドアップを抑制できるため、本発明の成形体は、生産性が高い。なお、本発明の成形体は、本発明の樹脂組成物から形成された部分を有すればよい。すなわち、本発明の成形体は、本発明の樹脂組成物のみからなる成形体であってもよいし、本発明の樹脂組成物のみからなる部分と、他の部分とから構成される成形体であってもよい。本明細書においてフィルムとは通常300μm未満の厚みを有するものをいい、シートとは通常300μm以上の厚みを有するものをいう。溶融成形の方法としては、例えば、押出成形、キャスト成形、インフレーション押出成形、ブロー成形、溶融紡糸、射出成形、射出ブロー成形、共押出ブロー成形等が挙げられる。溶融成形温度はEVOH(A)の融点等により異なるが、150~270℃程度が好ましい。これらの成形体は再使用の目的で粉砕し再度成形することも可能である。また、フィルム、シート等を一軸または二軸延伸することも可能である。
本発明の樹脂組成物は、溶融成形等により、フィルム、シート、チューブ、袋、ボトル等の成形体に形成できる。本発明の樹脂組成物からなる部分を有する成形体は、ネックイン及びダイビルドアップを抑制できるため、本発明の成形体は、生産性が高い。なお、本発明の成形体は、本発明の樹脂組成物から形成された部分を有すればよい。すなわち、本発明の成形体は、本発明の樹脂組成物のみからなる成形体であってもよいし、本発明の樹脂組成物のみからなる部分と、他の部分とから構成される成形体であってもよい。本明細書においてフィルムとは通常300μm未満の厚みを有するものをいい、シートとは通常300μm以上の厚みを有するものをいう。溶融成形の方法としては、例えば、押出成形、キャスト成形、インフレーション押出成形、ブロー成形、溶融紡糸、射出成形、射出ブロー成形、共押出ブロー成形等が挙げられる。溶融成形温度はEVOH(A)の融点等により異なるが、150~270℃程度が好ましい。これらの成形体は再使用の目的で粉砕し再度成形することも可能である。また、フィルム、シート等を一軸または二軸延伸することも可能である。
(フィルム及びシート)
本発明の樹脂組成物から形成されるフィルム及びシート(以下、「フィルム等」と略記する場合がある。)は、ネックイン及びダイビルドアップの発生が抑制されているため、生産性が高い。かかるフィルム等としては、単層のフィルム等及び多層のフィルム等が含まれる。当該フィルム等は、各種包装材料等として用いることができる。
本発明の樹脂組成物から形成されるフィルム及びシート(以下、「フィルム等」と略記する場合がある。)は、ネックイン及びダイビルドアップの発生が抑制されているため、生産性が高い。かかるフィルム等としては、単層のフィルム等及び多層のフィルム等が含まれる。当該フィルム等は、各種包装材料等として用いることができる。
フィルム等は、上述の成形体を製造する方法として示したものと同様の方法で製造できる。中でも、本発明の樹脂組成物をキャスティングロール上に溶融押出するキャスト成形工程、本発明の樹脂組成物から得られる無延伸フィルムを延伸する工程(一軸延伸工程、逐次二軸工程、同時二軸延伸工程、インフレーション成形工程等)を備える方法が好ましい。かかるフィルム等の製造方法によれば、これらの工程を備えることで、耐破断性を向上できる。
<積層体>
本発明の積層体は、本発明の樹脂組成物からなる層(以下、「バリア層」又は「EVOH層」ともいう)を少なくとも1層有し、他の成分からなる層をさらに有する。積層体は、単層構造の成形体に比べて、機能向上などの利点がある。また、本発明の積層体は、ネックイン及びダイビルドアップが抑制された樹脂組成物を用いて製造されているため、連続生産性が高い。積層体の層数の下限は、2層であってもよく、3層であってもよい。積層体の層数の上限としては、1000層であってもよく、100層であってもよく、10層であってもよい。また、本発明の積層体は、樹脂以外の成分から形成される層、例えば紙から形成される層、金属層等をさらに有していてもよい。
本発明の積層体は、本発明の樹脂組成物からなる層(以下、「バリア層」又は「EVOH層」ともいう)を少なくとも1層有し、他の成分からなる層をさらに有する。積層体は、単層構造の成形体に比べて、機能向上などの利点がある。また、本発明の積層体は、ネックイン及びダイビルドアップが抑制された樹脂組成物を用いて製造されているため、連続生産性が高い。積層体の層数の下限は、2層であってもよく、3層であってもよい。積層体の層数の上限としては、1000層であってもよく、100層であってもよく、10層であってもよい。また、本発明の積層体は、樹脂以外の成分から形成される層、例えば紙から形成される層、金属層等をさらに有していてもよい。
他の成分からなる層としては、熱可塑性樹脂から形成される熱可塑性樹脂層が好ましい。本発明の積層体の層構造は特に限定されず、バリア層をE、接着性樹脂から得られる層をAd、熱可塑性樹脂から得られる層をT、直接積層されていることを「/」で表わす場合、例えばT/E/T、E/Ad/T、T/Ad/E/Ad/T、E/Ad/T/Ad/E、E/Ad/T/Ad/E/Ad/T/Ad/E等の構造が挙げられる。これらの各層は単層であっても多層であってもよい。なお、接着性樹脂から得られる層Adは、熱可塑性樹脂から形成される熱可塑性樹脂層に含まれる場合もある。
熱可塑性樹脂としては、例えば直鎖状低密度ポリエチレン、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-プロピレン共重合体、ポリプロピレン、プロピレン-α-オレフィン(炭素数4~20のα-オレフィン)共重合体、ポリブテン、ポリペンテン等のオレフィンの単独またはその共重合体;ポリエチレンテレフタレート等のポリエステル;ポリエステルエラストマー;ナイロン-6、ナイロン-66等のポリアミド;ポリスチレン;ポリ塩化ビニル、ポリ塩化ビニリデン、アクリル系樹脂、ビニルエステル系樹脂、ポリウレタンエラストマー、ポリカーボネート、塩素化ポリエチレン、塩素化ポリプロピレン等が挙げられる。中でも、ポリプロピレン、ポリエチレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、ポリアミド、ポリスチレン及びポリエステルが好ましく用いられる。
接着性樹脂としては、ガスバリア層及び他の成分からなる層との接着性を有していれば特に限定されないが、カルボン酸変性ポリオレフィンを含有する接着性樹脂が好ましい。カルボン酸変性ポリオレフィンとしては、オレフィン系重合体にエチレン性不飽和カルボン酸、そのエステルまたはその無水物を化学的に結合させたカルボキシル基を含有する変性オレフィン系重合体が好ましい。ここでオレフィン系重合体とは、ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン、ポリブテン等のポリオレフィン、及びオレフィンと他のモノマーとの共重合体を意味する。中でも、直鎖状低密度ポリエチレン、エチレン-酢酸ビニル共重合体及びエチレン-アクリル酸エチル共重合体が好ましく、直鎖状低密度ポリエチレン及びエチレン-酢酸ビニル共重合体が特に好ましい。
本発明の積層体はダイビルドアップが抑制される観点から、最外層にバリア層を備える態様も好適に用いられる。最外層にバリア層を備える場合、本発明の積層体は共押出成形にて作製されることが好ましく、その後、かかる積層体のバリア層上に無機蒸着層を形成してもよいし、他の成分からなる層をラミネートしてもよい。EVOHは無機蒸着層、特にアルミニウムまたは酸化アルミニウムの蒸着層との親和性が高いため、バリア層と無機蒸着層との層間接着性が良好となる傾向となる。最外層にバリア層を備える層構成としては、バリア層をE、接着性樹脂から得られる層をAd、熱可塑性樹脂から得られる層をT、直接積層されていることを「/」で表わす場合、E/Ad/T、E/Ad/T/Ad/E、E/Ad/T/Ad/E/Ad/T/Ad/E等が挙げられる。なお、最外層にバリア層を備える積層体である場合、リサイクル性を良好にする観点からTはポリオレフィンであることが好ましい。
本発明の積層体を製造する方法は特に限定されず、例えば本発明の樹脂組成物からなる成形体(フィルム、シート等)に他の成分を溶融押出する方法、本発明の樹脂組成物と他の成分を共押出する方法、本発明の樹脂組成物と他の成分を共射出成形する方法、本発明の樹脂組成物からなるバリア層と他の成分からなる層とを有機チタン化合物、イソシアネート化合物、ポリエステル系化合物等の公知の接着剤を用いてラミネートする方法等が挙げられる。
本発明の樹脂組成物と他の成分の共押出の方法は特に限定されず、マルチマニホールド合流方式Tダイ法、フィードブロック合流方式Tダイ法、インフレーション法等を挙げることができる。
本発明の積層体が、多層のフィルム又はシートである場合、平均厚さは特に限定されず、下限は例えば1μm、5μm又は10μmであってよい。一方、平均厚さの上限は例えば3mm、1mm、300μm又は100μmであってもよい。当該積層体の形状は積層構造を有するものであれば特に限定されるものではない。多層の熱成形容器、多層のブロー成形容器、多層のパイプ、蒸着フィルム等も当該積層体の形態に含まれる。
本発明の成形体、積層体等は、フィルム状又はシート状であってよく、様々な形状に成形されてもよい。本発明の成形体、積層体等は、包装材料、容器、チューブ等に用いることができ、また、熱成形容器等の熱成形用の材料としても好適に用いることができる。本発明の積層体から得られる熱成形体は、スジ等の欠陥が少なく、外観性に優れる。かかる熱成形体も本発明の成形体、積層体等の一実施形態である。さらに、本発明の成形体、積層体等においては、バリア層(EVOH層)に酸化防止剤が含有されていることにより、長期間高温で使用した場合であっても、バリア層(EVOH層)に酸化劣化によるクラックが発生しにくい。このため、屋外で使用される日用品、包装材、機械部品等に好適である。上記成形体、積層体等の特徴が特に効果的に発揮される用途の例としては、飲食品用包装材、容器用パッキング材、フィルム、農業用フィルム、ジオメンブレン、医療用輸液バッグ材、高圧タンク材、ガソリンタンク材、燃料容器、タイヤ用チューブ材、靴用クッション材、バッグインボックス用内袋材、有機液体貯蔵用タンク材、パイプ(有機液体輸送用パイプ材、暖房用温水パイプ材(床暖房用温水パイプ材等)等)、樹脂製壁紙、植物培地等が挙げられる。特に、屋外で使用され、熱や光による劣化が生じ易く、EVOH層が積層体の最外層として共押出されたフィルム、パイプ、農業用フィルム、植物培地及びジオメンブレンとして、本発明の成形体及び積層体等が好適に用いられる。
<パイプ>
本発明のパイプは、本発明の樹脂組成物からなる層を有する。当該パイプは、溶融成形時のスジ等の欠陥が少なく、外観性に優れ、同じEVOHを用いたものと比較して長期間高温で使用した場合の安定性が改善されている。
本発明のパイプは、本発明の樹脂組成物からなる層を有する。当該パイプは、溶融成形時のスジ等の欠陥が少なく、外観性に優れ、同じEVOHを用いたものと比較して長期間高温で使用した場合の安定性が改善されている。
また、当該パイプが有する、本発明の樹脂組成物からなる層においては、この樹脂組成物が所定量の不飽和脂肪族アルデヒド(B)及び酸化防止剤(G)を含有している。これにより、欠点が少ない成形体となることによって、クラックの発生等が抑制され、長期間使用することなどが可能となる。
当該パイプは、単層パイプであってもよく、多層パイプであってもよい。当該パイプが多層パイプである場合、この層構造は、上述した本発明の積層体と同様の層構造の例を挙げることができる。例えば、当該多層パイプの層構造は、本発明の樹脂組成物からなる層をE、接着層をAd、他の熱可塑性樹脂から得られる層をTで表わす場合、T/E/T、E/Ad/T、T/Ad/E/Ad/T等の構造が挙げられる。これらの各層は単層であっても多層であってもよい。接着層及び他の熱可塑性樹脂から得られる層に用いられる樹脂の具体例としては、本発明の積層体におけるこれらの層に用いられる樹脂と同様のものが挙げられる。また、当該パイプの製造方法も特に限定されず、本発明の樹脂組成物を溶融成形する方法として例示した各種成形方法を採用することができる。
当該パイプの用途は特に限定されず、例えば温水循環用パイプ、断熱多層パイプ、燃料用パイプ、ガス用パイプ等として使用することができる。
本発明のパイプが多層パイプであり、この多層パイプが温水循環用パイプとして用いられる場合には、上記樹脂組成物からなる層を最外層とするT/Ad/Eの3層構成が一般的に採用される。これは、既存の架橋ポリオレフィンなど単層パイプの製造ラインに、本発明の樹脂組成物と接着性樹脂の共押出コーティング設備を付加する事により、容易に多層パイプの製造ラインに転用でき、実際に多くのパイプメーカーがこの構成を採用しているためである。
本発明の樹脂組成物からなる層の両側にポリオレフィン層などを設けて、該樹脂組成物層を中間層として使用することは、該樹脂組成物層の傷付き防止などに有効である。しかしながら、多層パイプを床暖房パイプなどの温水循環用パイプとして用いる場合には、通常床下に埋設されるため、物理的な衝撃による本発明の樹脂組成物からなる層の傷付きなどのリスクは比較的小さい。従って、むしろガスバリア性の観点から、該樹脂組成物層を最外層に配することが望ましい。一般的にEVOH(A)のガスバリア性は大きな湿度依存性を示し、高湿度条件下ではバリア性が低下する。そこで、本発明の樹脂組成物からなる層を最外層に配することにより、主としてEVOH(A)から構成される本発明の樹脂組成物からなる層が水と接触するパイプ内表面より最も遠い場所に位置することとなり、多層パイプのバリア性能面からは最も有利な層構成となる。一方で、一般的にEVOH層を最外層に配する場合、空気と直接接触するため、酸化劣化の影響を受けやすい。このような環境下において、高温下でも酸化劣化しにくい本発明の樹脂組成物からなる層を最外層に配することにより、良好なバリア性を有しつつ酸化劣化によるクラックの発生を低減した多層パイプを提供するという効果がより有効に発揮される。
また、本発明のパイプが地域冷暖房などの断熱多層パイプに用いられる場合には、本発明の樹脂組成物からなる層を熱可塑性樹脂層より内側に配するT/Ad/Eの3層構成(以下、積層体1と略称することがある)、もしくは該樹脂組成物層の傷付き防止の観点からT/Ad/E/Ad/Tの5層構成(以下、積層体2と略称することがある)を有することが好ましい。
地域冷暖房などの断熱多層パイプの構成は特に限定されないが、例えば、内側から、内管、内管の周りを覆う断熱発泡体層、そして外層として本発明の樹脂組成物からなる層を有する上記積層体1又は2の順で配置されることが好ましい。
内管に使われるパイプの種類(素材)、形状及び大きさは、ガスや液体などの熱媒体を輸送できるものであれば特に限定はなく、熱媒体の種類や、配管材の用途及び使用形態等に応じて適宜選択することができる。具体的には、鋼、ステンレス、アルミニウム等の金属、ポリオレフィン(ポリエチレン、架橋ポリエチレン(PEX)、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテンなど)、及び本発明の樹脂組成物からなる層を有する上記積層体1又は2などが挙げられ、これらの中でも架橋ポリエチレン(PEX)が好適に用いられる。
断熱発泡体層を構成する断熱発泡体には、ポリウレタンフォーム、ポリエチレンフォーム、ポリスチレンフォーム、フェノールフォーム、ポリイソシアヌレートフォームを用いることができ、断熱性能向上の観点から、ポリウレタンフォームが好適に用いられる。
断熱発泡体の発泡剤としてはフロンガス、各種代替フロン、水、塩化炭化水素、炭化水素、二酸化炭素等が用いられるが、発泡効果、環境への影響の観点から炭化水素、具体的にはn-ペンタン又はシクロペンタンが好適に用いられる。
断熱多層パイプの製造方法としては、例えば、熱媒体を輸送する内管を、パイプ状の外層の中に入れて内管をスペーサーで固定し二重管とした後、内管と外層の間隙部に各種発泡体原液を注入し、発泡及び固化させる方法が挙げられる。上記スペーサーの素材は特に限定されないが、スペーサーによる内管及び外層への傷を減らすため、ポリエチレン又はポリウレタンであることが好ましい。
本発明のパイプが燃料用パイプに用いられる場合には、本発明の樹脂組成物からなる層は、熱可塑性エラストマー(F)をさらに含有することがより好ましい。熱可塑性エラストマー(F)を含有することにより、パイプの耐クラック性等がより高まる。
燃料用パイプに用いられる場合には、最内側層は導電性であるように形成される。そのために、最内側層の熱可塑性樹脂に、それ自体は知られている導電性添加物、例えば、カーボンブラック、グラファイト繊維等が混合される。
<パイプ等の製造方法>
以下、パイプの一例として多層パイプの製造方法について説明するが、この製造方法の一部又は全部は他の成形体(フィルム、シート等)の製造方法にも適用することができる。多層パイプは、上述のように架橋ポリオレフィンなどの単層パイプの上に本発明の樹脂組成物と接着性樹脂を共押出コーティングすることにより製造することができる。単層パイプ上に本発明の樹脂組成物と接着性樹脂の共押出コーティングを実施する際は、単純に単層パイプ上に本発明の樹脂組成物と接着性樹脂の溶融したフィルムをコートしても良いが、単層パイプとコート層の間の接着力が不十分な場合があり、長期間の使用中にコート層が剥離してガスバリア性を失う可能性がある。その対策としては、コート前にコートするパイプの表面をフレーム処理及び/又はコロナ放電処理することが有効である。
以下、パイプの一例として多層パイプの製造方法について説明するが、この製造方法の一部又は全部は他の成形体(フィルム、シート等)の製造方法にも適用することができる。多層パイプは、上述のように架橋ポリオレフィンなどの単層パイプの上に本発明の樹脂組成物と接着性樹脂を共押出コーティングすることにより製造することができる。単層パイプ上に本発明の樹脂組成物と接着性樹脂の共押出コーティングを実施する際は、単純に単層パイプ上に本発明の樹脂組成物と接着性樹脂の溶融したフィルムをコートしても良いが、単層パイプとコート層の間の接着力が不十分な場合があり、長期間の使用中にコート層が剥離してガスバリア性を失う可能性がある。その対策としては、コート前にコートするパイプの表面をフレーム処理及び/又はコロナ放電処理することが有効である。
多層パイプを製造するためのその他の多層成形方法としては、樹脂層の種類に対応する数の押出機を使用し、この押出機内で溶融された樹脂の流れを重ねあわせた層状態で同時押出成形する、いわゆる共押出成形により実施する方法が挙げられる。また、ドライラミネーションなどの多層成形方法も採用され得る。
多層パイプの製造方法は、成形直後に10~70℃の水で冷却を行う工程を含むとよい。すなわち、溶融成形後、本発明の樹脂組成物からなる層が固化する前に10~70℃の水で冷却することにより、該樹脂組成物層を固化させることが望ましい。冷却水の温度が低すぎると、続く二次加工工程において多層パイプを屈曲させる場合に、屈曲部の本発明の樹脂組成物からなる層に歪みによるクラックが生じやすい。歪みによるクラックが生じやすくなる原因の詳細は明らかでないが、成形物中の残留応力が影響しているものと推測される。この観点から、冷却水の温度は15℃以上がより好ましく、20℃以上がさらに好ましい。一方、冷却水の温度が高すぎても、二次加工の際に屈曲部の本発明の樹脂組成物からなる層に歪みによるクラックを生じやすい。この原因の詳細も十分に解明されていないが、本発明の樹脂組成物からなる層の結晶化度が大きくなりすぎるためと推定される。この観点より冷却水の温度は60℃以下がより好ましく、50℃以下がさらに好ましい。
上記の方法で得られた多層パイプを二次加工することにより、各種成形体を得ることができる。二次加工法としては、特に限定されず、公知の二次加工法を適宜用いることができるが、例えば、多層パイプを80~160℃に加熱した後所望の形に変形させた状態で、1分~2時間固定することにより加工する方法が挙げられる。
また、本発明のパイプが単層パイプである場合も、本発明の樹脂組成物を溶融成形する方法として上述した公知の成形方法により製造することができる。
以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
[評価方法]
(1)エチレン単位含有量及びケン化度の測定
合成例で得られたEVOHの粗乾燥物について、真空乾燥機にて120℃で12時間乾燥した。真空乾燥したEVOHを、内部標準物質としてテトラメチルシラン(TMS)、添加剤としてトリフルオロ酢酸(TFA)を含む重ジメチルスルホキシド(DMSO-d6)に溶解し、500MHzの1H-NMR(日本電子株式会社製「GX-500」)を用いて80℃で測定し、エチレン単位、ビニルアルコール単位、ビニルエステル単位のピーク強度比よりエチレン単位含有量及びケン化度を求めた。
(1)エチレン単位含有量及びケン化度の測定
合成例で得られたEVOHの粗乾燥物について、真空乾燥機にて120℃で12時間乾燥した。真空乾燥したEVOHを、内部標準物質としてテトラメチルシラン(TMS)、添加剤としてトリフルオロ酢酸(TFA)を含む重ジメチルスルホキシド(DMSO-d6)に溶解し、500MHzの1H-NMR(日本電子株式会社製「GX-500」)を用いて80℃で測定し、エチレン単位、ビニルアルコール単位、ビニルエステル単位のピーク強度比よりエチレン単位含有量及びケン化度を求めた。
(2)ナトリウムイオン含有量、リン酸含有量及びホウ酸含有量
参考例及び参考比較例で得られた乾燥樹脂組成物ペレット0.5gをテフロン(登録商標)製圧力容器に入れ、ここに濃硝酸5mLを加えて室温で30分間分解させた。30分後に蓋をし、湿式分解装置(株式会社アクタック製「MWS-2」)を用いて150℃で10分間、次いで180℃で5分間加熱することで分解させ、その後室温まで冷却した。この処理液を50mLのメスフラスコ(TPX(登録商標)製)に移し純水でメスアップした。この溶液について、ICP発光分光分析装置(パーキンエルマー社製「OPTIMA4300DV」)で含有金属の分析を行い、ナトリウムイオン(ナトリウム元素)、リン酸及びホウ酸の含有量を測定した。リン酸の含有量に関してはリン酸根換算値として、ホウ酸の含有量についてはオルトホウ酸換算値として算出した。なお、定量に際しては、それぞれ市販の標準液を使用して作成した検量線を用いた。
参考例及び参考比較例で得られた乾燥樹脂組成物ペレット0.5gをテフロン(登録商標)製圧力容器に入れ、ここに濃硝酸5mLを加えて室温で30分間分解させた。30分後に蓋をし、湿式分解装置(株式会社アクタック製「MWS-2」)を用いて150℃で10分間、次いで180℃で5分間加熱することで分解させ、その後室温まで冷却した。この処理液を50mLのメスフラスコ(TPX(登録商標)製)に移し純水でメスアップした。この溶液について、ICP発光分光分析装置(パーキンエルマー社製「OPTIMA4300DV」)で含有金属の分析を行い、ナトリウムイオン(ナトリウム元素)、リン酸及びホウ酸の含有量を測定した。リン酸の含有量に関してはリン酸根換算値として、ホウ酸の含有量についてはオルトホウ酸換算値として算出した。なお、定量に際しては、それぞれ市販の標準液を使用して作成した検量線を用いた。
(3)酢酸含有量
参考例及び参考比較例で得られた乾燥樹脂組成物ペレット20gをイオン交換水100mLに投入し、95℃で6時間加熱抽出した。フェノールフタレインを指示薬として、1/50規定のNaOHで抽出液を中和滴定し、酢酸含有量を定量した。
参考例及び参考比較例で得られた乾燥樹脂組成物ペレット20gをイオン交換水100mLに投入し、95℃で6時間加熱抽出した。フェノールフタレインを指示薬として、1/50規定のNaOHで抽出液を中和滴定し、酢酸含有量を定量した。
(4)メルトフローレート(MFR)
参考例及び参考比較例で得られた乾燥樹脂組成物ペレットを、メルトインデクサーL244(宝工業株式会社製)の内径9.55mm、長さ162mmのシリンダーに充填し、210℃で溶融した後、溶融した樹脂組成物に対して、質量2,160g、直径9.48mmのプランジャーを使用して均等に荷重をかけた。シリンダーの中央に設けた径2.1mmのオリフィスより単位時間当たりに押出される樹脂組成物量(g/10分)を測定し、これをMFRとした。
参考例及び参考比較例で得られた乾燥樹脂組成物ペレットを、メルトインデクサーL244(宝工業株式会社製)の内径9.55mm、長さ162mmのシリンダーに充填し、210℃で溶融した後、溶融した樹脂組成物に対して、質量2,160g、直径9.48mmのプランジャーを使用して均等に荷重をかけた。シリンダーの中央に設けた径2.1mmのオリフィスより単位時間当たりに押出される樹脂組成物量(g/10分)を測定し、これをMFRとした。
(5)クロトンアルデヒド、2,4-ヘキサジエナール及び2,4,6-オクタトリエナールの定量
参考例、参考比較例、実施例及び比較例で得られた乾燥樹脂組成物ペレット0.50gを凍結粉砕して得られたサンプルを、加熱脱着ガスクロマトグラフ質量分析装置用ガラスチューブに50.0mg秤量し、サンプルチューブを作成した。下記の加熱脱着ガスクロマトグラフ質量分析装置を用い、下記条件にてサンプルを加熱して揮発性ガスをサンプルから吸着管に一度全量吸着させた後、吸着管から再放出されるガスをカラムで分離し、成分毎のピークを検出した。クロトンアルデヒド、2,4-ヘキサジエナール及び2,4,6-オクタトリエナールの標準サンプルのピーク面積から検量線を作成し、絶対検量線法により、それぞれ定量した。なお、標準サンプルを測定する際は、吸着管(Tenax(登録商標)/Carboxen(登録商標)製)に標準サンプルを染み込ませ、サンプルチューブの代わりに標準サンプルを染み込ませた吸着管を用い、サンプル吸着後の放出時の温度について、サンプルチューブの温度170℃から吸着管の温度260℃に変更した以外は、サンプルチューブの測定の場合と同様の方法で測定した。
(加熱脱着部)
装置:TurboMatrix-ATD (パーキンエルマージャパン社製)
吸着管へサンプルを吸着する時の温度:170℃(サンプルチューブ)、-30℃(吸着管)、250℃(バルブ)、260℃(トランスファーライン)
吸着管への吸着時間:10分
サンプル吸着後の放出時の温度:170℃(サンプルチューブ)、260℃(吸着管)、250℃(バルブ)、260℃(トランスファーライン)
吸着管放出時間:35分
キャリアガス:ヘリウムカラムへのキャリアガスの流速:1.0ml/min
圧力:120kPa
(ガスクロマトグラフ質量分析部)
装置:7890B GC System, 7977B MSD (アジレント・テクノロジー社製)
カラム:DB-WAX UI (長さ:30m、内径:0.25mm、膜厚:0.50μm)
カラムオーブン温度:40℃で5分保持後10℃/minの昇温速度で240℃まで温調後10分保持(合計測定温度35分)
トランスファーライン(接続部)温度:240℃
イオン化条件:EI+
検出イオン質量範囲:m/z=29-600
検出方法:SCAN
(標準サンプル)
クロトンアルデヒド:Aldrich社製
2,4-ヘキサジエナール:Aldrich社製
2,4,6-オクタトリエナール:ナード研究所製
参考例、参考比較例、実施例及び比較例で得られた乾燥樹脂組成物ペレット0.50gを凍結粉砕して得られたサンプルを、加熱脱着ガスクロマトグラフ質量分析装置用ガラスチューブに50.0mg秤量し、サンプルチューブを作成した。下記の加熱脱着ガスクロマトグラフ質量分析装置を用い、下記条件にてサンプルを加熱して揮発性ガスをサンプルから吸着管に一度全量吸着させた後、吸着管から再放出されるガスをカラムで分離し、成分毎のピークを検出した。クロトンアルデヒド、2,4-ヘキサジエナール及び2,4,6-オクタトリエナールの標準サンプルのピーク面積から検量線を作成し、絶対検量線法により、それぞれ定量した。なお、標準サンプルを測定する際は、吸着管(Tenax(登録商標)/Carboxen(登録商標)製)に標準サンプルを染み込ませ、サンプルチューブの代わりに標準サンプルを染み込ませた吸着管を用い、サンプル吸着後の放出時の温度について、サンプルチューブの温度170℃から吸着管の温度260℃に変更した以外は、サンプルチューブの測定の場合と同様の方法で測定した。
(加熱脱着部)
装置:TurboMatrix-ATD (パーキンエルマージャパン社製)
吸着管へサンプルを吸着する時の温度:170℃(サンプルチューブ)、-30℃(吸着管)、250℃(バルブ)、260℃(トランスファーライン)
吸着管への吸着時間:10分
サンプル吸着後の放出時の温度:170℃(サンプルチューブ)、260℃(吸着管)、250℃(バルブ)、260℃(トランスファーライン)
吸着管放出時間:35分
キャリアガス:ヘリウムカラムへのキャリアガスの流速:1.0ml/min
圧力:120kPa
(ガスクロマトグラフ質量分析部)
装置:7890B GC System, 7977B MSD (アジレント・テクノロジー社製)
カラム:DB-WAX UI (長さ:30m、内径:0.25mm、膜厚:0.50μm)
カラムオーブン温度:40℃で5分保持後10℃/minの昇温速度で240℃まで温調後10分保持(合計測定温度35分)
トランスファーライン(接続部)温度:240℃
イオン化条件:EI+
検出イオン質量範囲:m/z=29-600
検出方法:SCAN
(標準サンプル)
クロトンアルデヒド:Aldrich社製
2,4-ヘキサジエナール:Aldrich社製
2,4,6-オクタトリエナール:ナード研究所製
(6)ソルビン酸及びミルセンの定量
参考例、参考比較例、実施例及び比較例で得られた乾燥樹脂組成物ペレットを凍結粉砕し、粉砕物22gをソックスレー抽出器に充填し、クロロホルム100mLを用いて16時間抽出処理した。得られたクロロホルム抽出液中のソルビン酸及びミルセンの量を高速液体クロマトグラフィーにて定量分析して、樹脂組成物中のソルビン酸及びミルセンの含有量を定量した。なお、定量に際しては、ソルビン酸及びミルセンの標品を用いて作成した検量線を使用した。
参考例、参考比較例、実施例及び比較例で得られた乾燥樹脂組成物ペレットを凍結粉砕し、粉砕物22gをソックスレー抽出器に充填し、クロロホルム100mLを用いて16時間抽出処理した。得られたクロロホルム抽出液中のソルビン酸及びミルセンの量を高速液体クロマトグラフィーにて定量分析して、樹脂組成物中のソルビン酸及びミルセンの含有量を定量した。なお、定量に際しては、ソルビン酸及びミルセンの標品を用いて作成した検量線を使用した。
(7)ダイビルドアップ評価
参考例、参考比較例、実施例及び比較例で得られた乾燥樹脂組成物ペレットを下記条件で、押出機から吐出させ、60分後のダイス周辺(ダイリップ)のダイビルドアップ(目ヤニ)を目視で確認し、以下の基準で評価した。A~Dの場合、ダイビルドアップが抑制できていると判断した。
(押出機条件)
・装置:20mmφ単軸押出機(D2020、東洋精機製作所社製)
・L/D:20
・スクリュー:フルフライト
・スクリーンメッシュ:50メッシュ/100メッシュ/50メッシュ
・ダイス:φ1mm、1穴
・設定温度:C1/C2/C3/D=180℃/220℃/220℃/220℃
・吐出量:1.44kg/h
・回転数:100rpm
(評価:判断基準)
A(良好):目ヤニは付着していない。
B(やや良好):目ヤニがごくわずかに付着している。
C(可):少量の目ヤニが付着している。
D(やや不良):明確な目ヤニが付着している。
E(不良):大粒の目ヤニがダイホール全周にわたって付着している。
参考例、参考比較例、実施例及び比較例で得られた乾燥樹脂組成物ペレットを下記条件で、押出機から吐出させ、60分後のダイス周辺(ダイリップ)のダイビルドアップ(目ヤニ)を目視で確認し、以下の基準で評価した。A~Dの場合、ダイビルドアップが抑制できていると判断した。
(押出機条件)
・装置:20mmφ単軸押出機(D2020、東洋精機製作所社製)
・L/D:20
・スクリュー:フルフライト
・スクリーンメッシュ:50メッシュ/100メッシュ/50メッシュ
・ダイス:φ1mm、1穴
・設定温度:C1/C2/C3/D=180℃/220℃/220℃/220℃
・吐出量:1.44kg/h
・回転数:100rpm
(評価:判断基準)
A(良好):目ヤニは付着していない。
B(やや良好):目ヤニがごくわずかに付着している。
C(可):少量の目ヤニが付着している。
D(やや不良):明確な目ヤニが付着している。
E(不良):大粒の目ヤニがダイホール全周にわたって付着している。
(8)色相評価
参考例、参考比較例、実施例及び比較例で得られた乾燥樹脂組成物ペレットのイエローインデックス(YI)値をHunter社製LAB Scan XEを用いて、JIS K7373:2006に従って測定、算出した。数値が小さいほど黄変が抑制されており、色相に優れていると判断した。
参考例、参考比較例、実施例及び比較例で得られた乾燥樹脂組成物ペレットのイエローインデックス(YI)値をHunter社製LAB Scan XEを用いて、JIS K7373:2006に従って測定、算出した。数値が小さいほど黄変が抑制されており、色相に優れていると判断した。
(9)製膜時のネックイン耐性評価
参考例、参考比較例、実施例及び比較例で得られた乾燥樹脂組成物ペレットを用いて、下記の条件にて一軸押出機より樹脂組成物を押出し、乾燥樹脂組成物ペレットを投入して10分後のTダイから吐き出される溶融樹脂(メルトカーテン)の、リップ(Tダイの吐出口)から100mmの位置での幅を測定した。溶融樹脂の幅を、下記基準で評価した。A~Cの場合、ネックインを抑制できていると判断した。
(押出機条件)
・押出機:L/D=26、40mmφの一軸押出機
・スクリュー:フルフライト
・スクリュー回転数:50rpm
・スクリーンメッシュ:50メッシュ/100メッシュ/50メッシュ
・ダイス形状:T型、リップ幅550mm、リップ間隔0.7mm
・設定温度:C1/C2/C3/D=170℃/240℃/260℃/260℃
(評価:判断基準)
A(良好):リップ幅の85%以上
B(やや良好):リップ幅の82.5%以上85%未満
C(やや不良):リップ幅の80%以上82.5%未満
D(不良):リップ幅の80%未満
参考例、参考比較例、実施例及び比較例で得られた乾燥樹脂組成物ペレットを用いて、下記の条件にて一軸押出機より樹脂組成物を押出し、乾燥樹脂組成物ペレットを投入して10分後のTダイから吐き出される溶融樹脂(メルトカーテン)の、リップ(Tダイの吐出口)から100mmの位置での幅を測定した。溶融樹脂の幅を、下記基準で評価した。A~Cの場合、ネックインを抑制できていると判断した。
(押出機条件)
・押出機:L/D=26、40mmφの一軸押出機
・スクリュー:フルフライト
・スクリュー回転数:50rpm
・スクリーンメッシュ:50メッシュ/100メッシュ/50メッシュ
・ダイス形状:T型、リップ幅550mm、リップ間隔0.7mm
・設定温度:C1/C2/C3/D=170℃/240℃/260℃/260℃
(評価:判断基準)
A(良好):リップ幅の85%以上
B(やや良好):リップ幅の82.5%以上85%未満
C(やや不良):リップ幅の80%以上82.5%未満
D(不良):リップ幅の80%未満
(10)融点測定
合成例で得られたEVOHの粗乾燥物について、真空乾燥機にて120℃で12時間乾燥した。真空乾燥したEVOHについてTA Instruments製の示差走査型熱量計「Q2000」を用い、30℃から250℃までを10℃/分の速度で昇温し、50℃/分で冷却したのち、二次昇温で測定されるピーク温度より融点を求めた。
合成例で得られたEVOHの粗乾燥物について、真空乾燥機にて120℃で12時間乾燥した。真空乾燥したEVOHについてTA Instruments製の示差走査型熱量計「Q2000」を用い、30℃から250℃までを10℃/分の速度で昇温し、50℃/分で冷却したのち、二次昇温で測定されるピーク温度より融点を求めた。
(11)耐酸化劣化性
[単層フィルムの作製]
実施例及び比較例で得られた各樹脂組成物ペレットを下記条件で製膜し、厚さ20μmの単層フィルムを得た。
・装置:20mmφ単軸押出機(D2020、東洋精機製作所社製)
・L/D:20
・スクリュー:フルフライト
・ダイス幅:30cm
・引取りロール温度:80℃
・スクリュー回転数:40rpm
・引取りロール速度:3.0~3.5m/分
・設定温度:C1/C2/C3/D=180℃/210℃/210℃/210℃
[単層フィルムの作製]
実施例及び比較例で得られた各樹脂組成物ペレットを下記条件で製膜し、厚さ20μmの単層フィルムを得た。
・装置:20mmφ単軸押出機(D2020、東洋精機製作所社製)
・L/D:20
・スクリュー:フルフライト
・ダイス幅:30cm
・引取りロール温度:80℃
・スクリュー回転数:40rpm
・引取りロール速度:3.0~3.5m/分
・設定温度:C1/C2/C3/D=180℃/210℃/210℃/210℃
上記で得られた各単層フィルムについて、以下の評価条件にて加熱処理時間を変えた複数のサンプルを測定することで、引張強伸度の経時変化を評価した。破断伸度が加熱処理を行っていないサンプルの1/4になる時間を求め、耐酸化劣化性の指標とした。
(評価条件)
所定の時間、140℃に設定した熱風乾燥機内で処理した後、取り出した。その後、20℃の水中に5日間浸漬し、表面水を拭き取って、20℃-65%RHの室内に2週間静置してから、以下の条件で引張強伸度測定を行った。
(測定条件)
サンプル幅15mm
チャック間隔30mm
引張スピード50mm/分
測定雰囲気20℃-65%RH
(評価条件)
所定の時間、140℃に設定した熱風乾燥機内で処理した後、取り出した。その後、20℃の水中に5日間浸漬し、表面水を拭き取って、20℃-65%RHの室内に2週間静置してから、以下の条件で引張強伸度測定を行った。
(測定条件)
サンプル幅15mm
チャック間隔30mm
引張スピード50mm/分
測定雰囲気20℃-65%RH
上記評価において、破断伸度が1/4以下になると酸化劣化によるクラックの発生に起因するEVOH層のガスバリア性の悪化が顕著になることから、破断伸度が1/4になる時間を、EVOHの高温での酸化劣化による寿命の指標の一つとして考えることができる。破断伸度が1/4になる時間はアレニウス型の温度依存性を示し、80℃において破断伸度が1/4になる時間(寿命)を100年以上にしようとすると、140℃において破断伸度が1/4になる時間を210時間以上にする必要がある。
(12)パイプのガスバリア性評価
(多層パイプの作製)
高密度ポリエチレン(三菱油化株式会社製「ユカロンハードBX-50」、密度0.952g/cc、MFR0.5g/10分)100質量部、アセトンに溶解したビニルトリメトキシシラン2質量部及びジクミルパーオキサイド0.2質量部を混合した。その混合物を、一軸スクリューを用いて230℃でストランド状に押し出し、ビニルシランが1.5質量%付加された変性ポリエチレンのペレットを得た。次に、このペレット100質量部に対して、ジブチルスズラウレートを2質量%の割合で配合した上記高密度ポリエチレン5質量部を配合したものを1台目の押出機に、実施例又は比較例で得られた各樹脂組成物ペレットを2台目の押出機に、更に接着性樹脂として三井化学株式会社製「アドマーNF408E」を3台目の押出機に入れ、3種3層の円形ダイを用いて、外径20mmの多層パイプを押出成形し、直後に40℃に調整した冷却水槽を通して冷却して固化させた。多層パイプの層構成は樹脂組成物層が最外層であり、樹脂組成物層/接着性樹脂層/高密度ポリエチレン層=100μm/100μm/2000μmであった。得られた多層パイプを1mに切断し、140℃の熱風乾燥機に10分間入れて加熱した後、中央付近を外径150mmのステンレスパイプに沿わせて90°折り曲げて5分間固定して折り曲げ加工を行った。
(多層パイプの作製)
高密度ポリエチレン(三菱油化株式会社製「ユカロンハードBX-50」、密度0.952g/cc、MFR0.5g/10分)100質量部、アセトンに溶解したビニルトリメトキシシラン2質量部及びジクミルパーオキサイド0.2質量部を混合した。その混合物を、一軸スクリューを用いて230℃でストランド状に押し出し、ビニルシランが1.5質量%付加された変性ポリエチレンのペレットを得た。次に、このペレット100質量部に対して、ジブチルスズラウレートを2質量%の割合で配合した上記高密度ポリエチレン5質量部を配合したものを1台目の押出機に、実施例又は比較例で得られた各樹脂組成物ペレットを2台目の押出機に、更に接着性樹脂として三井化学株式会社製「アドマーNF408E」を3台目の押出機に入れ、3種3層の円形ダイを用いて、外径20mmの多層パイプを押出成形し、直後に40℃に調整した冷却水槽を通して冷却して固化させた。多層パイプの層構成は樹脂組成物層が最外層であり、樹脂組成物層/接着性樹脂層/高密度ポリエチレン層=100μm/100μm/2000μmであった。得られた多層パイプを1mに切断し、140℃の熱風乾燥機に10分間入れて加熱した後、中央付近を外径150mmのステンレスパイプに沿わせて90°折り曲げて5分間固定して折り曲げ加工を行った。
(OTR(酸素透過度)測定)
作製した多層パイプの一端をシリコンゴム栓および接着剤を用いて密閉し、もう一端を酸素透過量測定装置(モダンコントロール社製OX-TRAN-10/50A)に接続することにより、20℃/65%RHの条件下で加熱処理前の酸素透過度を測定した。
作製した多層パイプの一端をシリコンゴム栓および接着剤を用いて密閉し、もう一端を酸素透過量測定装置(モダンコントロール社製OX-TRAN-10/50A)に接続することにより、20℃/65%RHの条件下で加熱処理前の酸素透過度を測定した。
次いで、多層パイプを100℃の熱風乾燥機に入れ、216時間加熱処理を行った。加熱処理後の多層パイプを用いて上記方法で加熱処理後の酸素透過度を測定した。
(13)パイプダイビルドアップ評価
上記(12)パイプのガスバリア性評価における多層パイプ作製時の60分後のダイス周辺(ダイリップ)のダイビルドアップ(目ヤニ)を目視で確認し、以下の基準で評価した。A~Dの場合、ダイビルドアップが抑制できていると判断した。
(評価:判断基準)
A(良好):目ヤニは付着していない。
B(やや良好):目ヤニがごくわずかに付着している。
C(可):少量の目ヤニが付着している。
D(やや不良):明確な目ヤニが付着している。
E(不良):大粒の目ヤニがダイホール全周にわたって付着している。
上記(12)パイプのガスバリア性評価における多層パイプ作製時の60分後のダイス周辺(ダイリップ)のダイビルドアップ(目ヤニ)を目視で確認し、以下の基準で評価した。A~Dの場合、ダイビルドアップが抑制できていると判断した。
(評価:判断基準)
A(良好):目ヤニは付着していない。
B(やや良好):目ヤニがごくわずかに付着している。
C(可):少量の目ヤニが付着している。
D(やや不良):明確な目ヤニが付着している。
E(不良):大粒の目ヤニがダイホール全周にわたって付着している。
<合成例1>
ジャケット、撹拌機、窒素導入口、エチレン導入口及び開始剤添加口を備えた200L加圧反応槽に、酢酸ビニル(以下、VAcと称することがある)を75.0kg、メタノール(以下、MeOHと称することがある。)を7.2kg仕込み、30分間窒素バブリングして反応槽内を窒素置換した。次いで、反応槽内の温度を65℃に調整した後、反応槽圧力(エチレン圧力)が4.13MPaとなるようにエチレンを導入し、重合開始剤として9.4gの2,2’-アゾビス(2,4-ジメチルバレロニトリル)(富士フィルム和光純薬工業株式会社製「V-65」)を添加し、重合を開始した。重合中はエチレン圧力を4.13MPaに、重合温度を65℃に維持した。4時間後にVAcの転化率(VAc基準の重合率)が49.7%となったところで冷却するとともに、酢酸銅0.2gを20kgのメタノールに溶解させた溶液を容器内に投入して重合を停止した。反応槽を開放して脱エチレンした後、窒素ガスをバブリングして脱エチレンを完全に行った。次いで重合液を容器から抜き取り、20LのMeOHで希釈した。この液を塔型容器の塔頂よりフィードし、塔底よりMeOHの蒸気をフィードして、重合液内に残る未反応モノマーをMeOH蒸気と共に除去して、エチレン-酢酸ビニル共重合体(以下、EVAcと称することがある。)のMeOH溶液を得た。
ジャケット、撹拌機、窒素導入口、エチレン導入口及び開始剤添加口を備えた200L加圧反応槽に、酢酸ビニル(以下、VAcと称することがある)を75.0kg、メタノール(以下、MeOHと称することがある。)を7.2kg仕込み、30分間窒素バブリングして反応槽内を窒素置換した。次いで、反応槽内の温度を65℃に調整した後、反応槽圧力(エチレン圧力)が4.13MPaとなるようにエチレンを導入し、重合開始剤として9.4gの2,2’-アゾビス(2,4-ジメチルバレロニトリル)(富士フィルム和光純薬工業株式会社製「V-65」)を添加し、重合を開始した。重合中はエチレン圧力を4.13MPaに、重合温度を65℃に維持した。4時間後にVAcの転化率(VAc基準の重合率)が49.7%となったところで冷却するとともに、酢酸銅0.2gを20kgのメタノールに溶解させた溶液を容器内に投入して重合を停止した。反応槽を開放して脱エチレンした後、窒素ガスをバブリングして脱エチレンを完全に行った。次いで重合液を容器から抜き取り、20LのMeOHで希釈した。この液を塔型容器の塔頂よりフィードし、塔底よりMeOHの蒸気をフィードして、重合液内に残る未反応モノマーをMeOH蒸気と共に除去して、エチレン-酢酸ビニル共重合体(以下、EVAcと称することがある。)のMeOH溶液を得た。
次いで、ジャケット、撹拌機、窒素導入口、還流冷却器及び溶液添加口を備えた300L反応槽にEVAcの20質量%MeOH溶液150kgを仕込んだ。この溶液に窒素ガスを吹き込みながら60℃に昇温し、水酸化ナトリウムの濃度が2規定のMeOH溶液を450mL/分の速度で2時間添加した。水酸化ナトリウムMeOH溶液の添加を終えた後、系内の温度を60℃に保ち、反応槽外にMeOH及びケン化反応で生成した酢酸メチルを流出させながら、2時間撹拌してケン化反応を進行させた。その後酢酸を8.7kg添加してケン化反応を停止した。
その後、80℃で加熱攪拌しながら、イオン交換水120Lを添加し、反応槽外にMeOHを流出させ、EVOHを析出させた。デカンテーションで析出したEVOHを収集し、粉砕機で粉砕した。得られたEVOH粉末を1g/Lの酢酸水溶液(浴比20:粉末1kgに対して水溶液20Lの割合)に投入して2時間攪拌洗浄した。これを脱液し、さらに1g/Lの酢酸水溶液(浴比20)に投入して2時間攪拌洗浄した。これを脱液したものを、イオン交換水(浴比20)に投入して攪拌洗浄を2時間行い脱液する操作を3回繰り返して精製を行った。洗浄液の電気伝導度は、3μS/cm(東亜電波工業株式会社の「CM-30ET」で測定)であった。次いで、得られた精製物を酢酸0.5g/L及び酢酸ナトリウム0.1g/Lを含有する水溶液250Lに4時間攪拌浸漬してから脱液し、これを60℃で16時間乾燥させることでEVOHの粗乾燥物を16.1kg得た。
上記のEVOHの合成に係る操作を再度行い、EVOHの粗乾燥物を15.9kg得ることで、合計32.0kgのEVOH(A1)の粗乾燥物を得た。EVOH(A1)の粗乾燥物について、上記評価方法(1)及び(10)に記載の方法にしたがって、エチレン単位含有量、ケン化度及び融点を測定した。結果を表2に示す。
<合成例2~8>
加圧反応槽のサイズ、VAc及びMeOHの仕込量、エチレン圧力、重合開始剤の添加量、反応槽内温度(重合時の温度)、反応時間、VAcの転化率、ケン化工程におけるEVAcのMeOH溶液の仕込量、並びに水酸化ナトリウムMeOH溶液の添加速度を表1に示す通りとし、合成を1回のみとした以外は合成例1と同様にして各EVOH(A2)~EVOH(A8)の粗乾燥物を得た。EVOH(A2)~EVOH(A8)の粗乾燥物について、上記評価方法(1)及び(10)に記載の方法にしたがって、エチレン単位含有量、ケン化度及び融点を測定した。結果を表2に示す。
加圧反応槽のサイズ、VAc及びMeOHの仕込量、エチレン圧力、重合開始剤の添加量、反応槽内温度(重合時の温度)、反応時間、VAcの転化率、ケン化工程におけるEVAcのMeOH溶液の仕込量、並びに水酸化ナトリウムMeOH溶液の添加速度を表1に示す通りとし、合成を1回のみとした以外は合成例1と同様にして各EVOH(A2)~EVOH(A8)の粗乾燥物を得た。EVOH(A2)~EVOH(A8)の粗乾燥物について、上記評価方法(1)及び(10)に記載の方法にしたがって、エチレン単位含有量、ケン化度及び融点を測定した。結果を表2に示す。
<参考例1>
ジャケット、撹拌機及び還流冷却器を備えた60L撹拌槽に、合成例1で得たEVOH(A1)の粗乾燥物2kg、水0.8kg及びMeOH2.2kgを仕込み、60℃で5時間攪拌し完全に溶解させた。得られた溶液に、ソルビン酸、クロトンアルデヒド、2,4-ヘキサジエナール及び2,4,6-オクタトリエナールを添加した。この溶液を径4mmの金板を通して-5℃に冷却した水/MeOH=90/10の混合液中に押し出してストランド状に析出させ、このストランドをストランドカッターでペレット状にカットすることでEVOHの含水ペレットを得た。得られたEVOHの含水ペレットの含水率をメトラー社製ハロゲン水分計「HR73」で測定したところ、52質量%であった。
ジャケット、撹拌機及び還流冷却器を備えた60L撹拌槽に、合成例1で得たEVOH(A1)の粗乾燥物2kg、水0.8kg及びMeOH2.2kgを仕込み、60℃で5時間攪拌し完全に溶解させた。得られた溶液に、ソルビン酸、クロトンアルデヒド、2,4-ヘキサジエナール及び2,4,6-オクタトリエナールを添加した。この溶液を径4mmの金板を通して-5℃に冷却した水/MeOH=90/10の混合液中に押し出してストランド状に析出させ、このストランドをストランドカッターでペレット状にカットすることでEVOHの含水ペレットを得た。得られたEVOHの含水ペレットの含水率をメトラー社製ハロゲン水分計「HR73」で測定したところ、52質量%であった。
得られたEVOHの含水ペレットを1g/Lの酢酸水溶液(浴比20)に投入して2時間撹拌洗浄した。これを脱液し、さらに1g/Lの酢酸水溶液(浴比20)に投入して2時間撹拌洗浄した。脱液後、酢酸水溶液を更新し同様の操作を行った。酢酸水溶液で洗浄してから脱液したものを、イオン交換水(浴比20)に投入して撹拌洗浄を2時間行い脱液する操作を3回繰り返して、洗浄液の電気伝導度が、3μS/cm以下(東亜電波工業株式会社の「CM-30ET」で測定)となるまで精製を行い、ケン化反応時の触媒残渣が除去されたEVOHの含水ペレットを得た。
得られた含水ペレットを酢酸ナトリウム濃度0.510g/L、酢酸濃度0.8g/L、及びリン酸濃度0.04g/Lである水溶液(浴比20)に投入し、定期的に撹拌しながら4時間浸漬させ化学処理を行った。このペレットを脱液し、酸素濃度1体積%以下の窒素気流下80℃で3時間、及び105℃で16時間乾燥させることで、EVOH(A1)、酢酸、リン酸、ナトリウムイオン(ナトリウム塩)、クロトンアルデヒド、2,4-ヘキサジエナール、2,4,6-オクタトリエナール及びソルビン酸を含有した、円柱状(平均直径2.8mm、平均高さ3.2mm)の乾燥樹脂組成物ペレットを得た。得られた乾燥樹脂組成物ペレットについて、上記評価方法(2)~(9)に記載の方法に従って評価した。乾燥樹脂組成物ペレット中のナトリウムイオン含有量は100ppm、リン酸含有量はリン酸根換算値で40ppm、酢酸含有量は200ppmであった。EVOH以外の各成分の含有量は、いずれもEVOHの含有量を基準とした量である。その他の評価結果は表3に示す。なお、クロトンアルデヒド、2,4-ヘキサジエナール、2,4,6-オクタトリエナール及びソルビン酸の各成分の含有量が表3に記載の通りとなるように、各成分の添加量を調整した。
[参考例2~61、参考比較例1~4、6~24]
EVOH(A)の種類、不飽和脂肪族アルデヒド(B)の種類及び含有量、共役ポリエン化合物(C)の種類及び含有量、並びにホウ酸の含有量を表3~表10に示した通りとなるように調整した以外は、参考例1と同様にして乾燥樹脂組成物ペレットを作製し、評価した。なお、ホウ酸を800ppm含む場合は、酢酸ナトリウム等を含む水溶液(浴比20)をホウ酸濃度0.25g/Lとなるように調整した水溶液を用い、ホウ酸を1800ppm含む場合は、酢酸ナトリウム等を含む水溶液(浴比20)をホウ酸濃度0.57g/Lとなるように調整した水溶液を用いた。それぞれの乾燥樹脂組成物ペレット中のEVOHのナトリウムイオン含有量は100ppm、リン酸含有量はリン酸根換算値で40ppm、酢酸含有量は200ppmであった。その他の評価結果は表3~表10に示す。EVOH以外の各成分の含有量は、いずれもEVOHの含有量を基準とした量である。
EVOH(A)の種類、不飽和脂肪族アルデヒド(B)の種類及び含有量、共役ポリエン化合物(C)の種類及び含有量、並びにホウ酸の含有量を表3~表10に示した通りとなるように調整した以外は、参考例1と同様にして乾燥樹脂組成物ペレットを作製し、評価した。なお、ホウ酸を800ppm含む場合は、酢酸ナトリウム等を含む水溶液(浴比20)をホウ酸濃度0.25g/Lとなるように調整した水溶液を用い、ホウ酸を1800ppm含む場合は、酢酸ナトリウム等を含む水溶液(浴比20)をホウ酸濃度0.57g/Lとなるように調整した水溶液を用いた。それぞれの乾燥樹脂組成物ペレット中のEVOHのナトリウムイオン含有量は100ppm、リン酸含有量はリン酸根換算値で40ppm、酢酸含有量は200ppmであった。その他の評価結果は表3~表10に示す。EVOH以外の各成分の含有量は、いずれもEVOHの含有量を基準とした量である。
<参考比較例5>
クロトンアルデヒド、2,4-ヘキサジエナール及び2,4,6-オクタトリエナールを添加せず、ケン化反応時の触媒残渣が除去されたEVOHの含水ペレットをメタノール中(浴比10)に投入して撹拌洗浄を2時間行い脱液する操作を2回繰り返し、得られたペレットをイオン交換水(浴比20)に投入して撹拌洗浄を2時間行い脱液する操作を3回繰り返す操作を追加で行った以外は、参考例1と同様にして乾燥樹脂組成物ペレットを作製し、評価した。乾燥樹脂組成物ペレット中のナトリウムイオン含有量は100ppm、リン酸含有量はリン酸根換算値で40ppm、酢酸含有量は200ppmであった。EVOH以外の各成分の含有量は、いずれもEVOHの含有量を基準とした量である。その他の評価結果は表3に示す。なお、クロトンアルデヒド、2,4-ヘキサジエナール、2,4,6-オクタトリエナール及びソルビン酸の各成分の含有量は検出限界以下であった。
クロトンアルデヒド、2,4-ヘキサジエナール及び2,4,6-オクタトリエナールを添加せず、ケン化反応時の触媒残渣が除去されたEVOHの含水ペレットをメタノール中(浴比10)に投入して撹拌洗浄を2時間行い脱液する操作を2回繰り返し、得られたペレットをイオン交換水(浴比20)に投入して撹拌洗浄を2時間行い脱液する操作を3回繰り返す操作を追加で行った以外は、参考例1と同様にして乾燥樹脂組成物ペレットを作製し、評価した。乾燥樹脂組成物ペレット中のナトリウムイオン含有量は100ppm、リン酸含有量はリン酸根換算値で40ppm、酢酸含有量は200ppmであった。EVOH以外の各成分の含有量は、いずれもEVOHの含有量を基準とした量である。その他の評価結果は表3に示す。なお、クロトンアルデヒド、2,4-ヘキサジエナール、2,4,6-オクタトリエナール及びソルビン酸の各成分の含有量は検出限界以下であった。
参考例及び参考比較例から、b1/(b2+b3)が2.0以上150.0未満であるとネックイン耐性が良好であり、b1+b2+b3が小さいほどYIが低く、共役ポリエン化合物(C)の含有量cが少量であるとYIが低く、b2+2b3が0.65ppm以下であるとダイビルドアップが抑制されていることがわかる。
表3に基づいてより詳細に考察すれば、以下の通りである。不飽和脂肪族アルデヒド(B)が含有されない参考比較例5及び不飽和脂肪族アルデヒド(B)の各種を単独で含有している参考比較例1~3、6~9は、ネックインが抑制されていない。また、b1/(b2+b3)の値が2.0未満である参考比較例10でもネックインが抑制されていない。一方で参考例からわかるようにb1/(b2+b3)の値が2.0以上150.0未満の範囲にあるとネックインが抑制され、特に参考例4、5、13、14、21及び24のようにb1/(b2+b3)の値が10付近(例えば、8.0以上13.0以下)であると最もネックインが抑制される。また、b2+2b3が0.65ppmを超える参考比較例4はダイビルドアップが抑制されないのに対し、参考例からわかるようにb2+2b3が0.65ppm以下である場合はダイビルドアップが抑制され、特にb2+2b3が0.10ppm以下である場合に、よりダイビルドアップが抑制されている。また、クロトンアルデヒド(B1)、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)の合計含有量b1+b2+b3については、参考比較例4、参考例1~7、12~26等から読み取れるように、合計含有量が低いほど色相に優れることが分かる。さらに、参考例6、9~11より共役ポリエン化合物の含有量が少量である方が色相に優れることがわかる。
<酸化防止剤(G)を含む樹脂組成物の調製>
[実施例1]
参考例5で得られた乾燥樹脂組成物ペレット100質量部及び酸化防止剤としてN,N’-(ヘキサン-1,6-ジイル)ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオンアミド](BASFジャパン社製「Irganox1098」、分子量:637)0.5質量部をドライブレンドし、30mmφの同方向二軸押出機(株式会社日本製鋼所製「TEX-30N」)を用いて220℃の押出温度、窒素雰囲気下で押出すことで樹脂組成物ペレットを得た。
[実施例1]
参考例5で得られた乾燥樹脂組成物ペレット100質量部及び酸化防止剤としてN,N’-(ヘキサン-1,6-ジイル)ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオンアミド](BASFジャパン社製「Irganox1098」、分子量:637)0.5質量部をドライブレンドし、30mmφの同方向二軸押出機(株式会社日本製鋼所製「TEX-30N」)を用いて220℃の押出温度、窒素雰囲気下で押出すことで樹脂組成物ペレットを得た。
[実施例2、4~7、比較例1~3]
用いた乾燥樹脂組成物ペレット及び酸化防止剤の配合量を表11に示す通りとした以外は実施例1と同様にして、実施例2、4~7及び比較例1~3の各樹脂組成物ペレットを得た。
用いた乾燥樹脂組成物ペレット及び酸化防止剤の配合量を表11に示す通りとした以外は実施例1と同様にして、実施例2、4~7及び比較例1~3の各樹脂組成物ペレットを得た。
[実施例3]
参考例48で得られた乾燥樹脂組成物ペレット90質量部、熱可塑性エラストマー(F-1)として「タフマー(登録商標)MH7020」(三井化学株式会社製、無水マレイン酸変性エチレン-ブテン共重合体)10質量部、及び上記酸化防止剤(Irganox1098)0.5質量部をドライブレンドした後、以下の条件で押出すことで樹脂組成物ペレットを得た。
(押出機条件)
・装置:30mmφ二軸押出機
・L/D:45.5
・スクリュー:同方向完全噛合型
・押出し温度(℃):220℃
・回転数:200rpm
・吐出量:20kg/hr
参考例48で得られた乾燥樹脂組成物ペレット90質量部、熱可塑性エラストマー(F-1)として「タフマー(登録商標)MH7020」(三井化学株式会社製、無水マレイン酸変性エチレン-ブテン共重合体)10質量部、及び上記酸化防止剤(Irganox1098)0.5質量部をドライブレンドした後、以下の条件で押出すことで樹脂組成物ペレットを得た。
(押出機条件)
・装置:30mmφ二軸押出機
・L/D:45.5
・スクリュー:同方向完全噛合型
・押出し温度(℃):220℃
・回転数:200rpm
・吐出量:20kg/hr
得られた実施例及び比較例の各乾燥樹脂組成物ペレットを用いて上記評価方法(5)~(9)、(11)~(13)に記載の方法に従って評価した。評価結果を表11、12に示す。
表11、12に示されるように、実施例1~7の各樹脂組成物は、ネックイン及びダイビルドアップが抑制されており、得られる成形体の耐酸化劣化性等も優れたものであった。実施例の各樹脂組成物からは、長期間高温で使用可能な成形体等が得られることが確認できた。b2+2b3が0.65ppm以下ではない比較例1の樹脂組成物は、ダイビルドアップが抑制できず、b1/(b2+b3)が2.0以上150.0未満ではない比較例2の樹脂組成物は、ネックイン耐性が悪かった。所定量の酸化防止剤を含有しない比較例3の樹脂組成物は、得られる成形体(単層フィルム又はパイプ)における耐酸化劣化性及び加熱処理後のガスバリア性が低かった。
なお、各参考例の結果から、b1/(b2+b3)が2.0以上150.0未満であるとネックイン耐性が良好であり、b2+2b3が0.65ppm以下であるとダイビルドアップが抑制されることがわかる。従って、各参考例の樹脂組成物に対して所定量の酸化防止剤を含有して得られるいずれの樹脂組成物においても、実施例1~7の各樹脂組成物と同様の効果が奏されると推測できる。
なお、各参考例の結果から、b1/(b2+b3)が2.0以上150.0未満であるとネックイン耐性が良好であり、b2+2b3が0.65ppm以下であるとダイビルドアップが抑制されることがわかる。従って、各参考例の樹脂組成物に対して所定量の酸化防止剤を含有して得られるいずれの樹脂組成物においても、実施例1~7の各樹脂組成物と同様の効果が奏されると推測できる。
Claims (15)
- エチレン単位含有量が20モル%以上60モル%以下であるエチレン-ビニルアルコール共重合体(A)、クロトンアルデヒド(B1)及び酸化防止剤(G)を含み、
2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)からなる群より選ばれる少なくとも1種をさらに含み、
下記式(1)及び(2)を満たし、
酸化防止剤(G)の含有量gが、0.01質量%以上5質量%以下である、樹脂組成物。
2.0≦b1/(b2+b3)<150.0 ・・・(1)
b2+2b3≦0.65 ・・・(2)
上記式(1)及び(2)中、b1は、エチレン-ビニルアルコール共重合体(A)に対するクロトンアルデヒド(B1)の含有量(ppm)であり、b2は、エチレン-ビニルアルコール共重合体(A)に対する2,4-ヘキサジエナール(B2)の含有量(ppm)であり、b3は、エチレン-ビニルアルコール共重合体(A)に対する2,4,6-オクタトリエナール(B3)の含有量(ppm)である。 - エチレン-ビニルアルコール共重合体(A)に対するクロトンアルデヒド(B1)、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)の含有量の合計(b1+b2+b3)が0.01ppm以上7.0ppm以下である、請求項1に記載の樹脂組成物。
- クロトンアルデヒド(B1)の含有量b1が0.01ppm以上4.0ppm以下である、請求項1又は2に記載の樹脂組成物。
- 2,4-ヘキサジエナール(B2)の含有量b2が0.005ppm以上0.65ppm以下である、請求項1又は2に記載の樹脂組成物。
- 2,4,6-オクタトリエナール(B3)の含有量b3が0.325ppm以下である、請求項1又は2に記載の樹脂組成物。
- 共役ポリエン化合物(C)をさらに含み、エチレン-ビニルアルコール共重合体(A)に対する共役ポリエン化合物(C)の含有量cが1ppm以上300ppm未満である、請求項1又は2に記載の樹脂組成物。
- 共役ポリエン化合物(C)がソルビン酸である、請求項6に記載の樹脂組成物。
- 熱可塑性エラストマー(F)をさらに含有し、
熱可塑性エラストマー(F)のエチレン-ビニルアルコール共重合体(A)に対する質量比(F/A)が5/95以上35/65以下である、請求項1又は2に記載の樹脂組成物。 - 熱可塑性エラストマー(F)が、ポリエステル系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー及びポリオレフィン系熱可塑性エラストマーからなる群より選ばれる少なくとも1種である、請求項8に記載の樹脂組成物。
- 請求項1又は2に記載の樹脂組成物からなる部分を有する成形体。
- 請求項1又は2に記載の樹脂組成物からなる層を少なくとも1層有する積層体。
- 請求項1又は2に記載の樹脂組成物からなる層を有するパイプ。
- 請求項12に記載のパイプからなる温水循環用パイプ。
- 断熱発泡体層をさらに有する請求項12に記載のパイプからなる断熱多層パイプ。
- 請求項12に記載のパイプからなる燃料用パイプ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022005282 | 2022-01-17 | ||
JP2022005282 | 2022-01-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023104870A true JP2023104870A (ja) | 2023-07-28 |
Family
ID=87379119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022164090A Pending JP2023104870A (ja) | 2022-01-17 | 2022-10-12 | 樹脂組成物、成形体、積層体、パイプ、温水循環用パイプ、断熱多層パイプ、及び燃料用パイプ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2023104870A (ja) |
-
2022
- 2022-10-12 JP JP2022164090A patent/JP2023104870A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6113723B2 (ja) | エチレン−ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材 | |
JP6148669B2 (ja) | エチレン−ビニルアルコール樹脂組成物、多層シート、包装材及び容器 | |
EP2407508B1 (en) | Resin composition and multilayered structure using the same | |
EP2275481B1 (en) | Resin composition and multilayer structure using same | |
WO2011125739A1 (ja) | 多層構造体、積層体及びその製造方法 | |
WO2021166276A1 (ja) | 樹脂組成物、成形体、積層体、熱成形容器、ブロー成形容器、フィルム、農業用フィルム、植物培地及びパイプ | |
JPWO2008032743A1 (ja) | 酸素吸収性樹脂組成物 | |
JP4304147B2 (ja) | 酸素吸収性樹脂組成物 | |
US9074088B2 (en) | Adhesive resin composition, and laminate using the same | |
JP7421426B2 (ja) | 樹脂組成物、成形体、多層構造体、包装材、縦製袋充填シール袋、バッグインボックス用内容器、積層剥離容器、多層管及びブロー成形容器 | |
JP2023104870A (ja) | 樹脂組成物、成形体、積層体、パイプ、温水循環用パイプ、断熱多層パイプ、及び燃料用パイプ | |
JP6473563B2 (ja) | 樹脂組成物、多層シート、包装材及び容器 | |
JP5787740B2 (ja) | 樹脂組成物並びにこれを用いた多層構造体及び成形品 | |
JPH0641197B2 (ja) | 加熱延伸多層構造体 | |
JP7339020B2 (ja) | エチレン-ビニルアルコール共重合体を含む樹脂組成物、成形体及び多層構造体 | |
JP7569629B2 (ja) | 樹脂組成物、成形体及び多層パイプ | |
JP7444712B2 (ja) | 樹脂組成物、成形体、積層体、パイプ、温水循環用パイプ、断熱多層パイプ、及び燃料用パイプ | |
JP7126387B2 (ja) | 層構造体、成形体及びその製造方法 | |
JP6454464B2 (ja) | エチレン−ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材 | |
WO2023054506A1 (ja) | 樹脂組成物、成形体、多層構造体、熱成形容器、ブロー成形容器及び蒸着フィルム | |
JP2023084664A (ja) | 樹脂組成物、単層フィルム及び積層体 | |
JP2023058468A (ja) | 樹脂組成物、その製造方法、成形体、及び多層構造体 | |
JP2023053942A (ja) | 樹脂組成物、多層構造体、一軸延伸多層構造体、二軸延伸多層構造体、包装材及び容器 | |
JP5715515B2 (ja) | 樹脂組成物並びにこれを用いた成形体、多層構造体及びバッグインボックス用内容器 | |
JP2023084665A (ja) | 蒸着フィルム、包装材及び真空断熱体 |