[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2020075400A - Unstretched polypropylene-based resin film - Google Patents

Unstretched polypropylene-based resin film Download PDF

Info

Publication number
JP2020075400A
JP2020075400A JP2018209756A JP2018209756A JP2020075400A JP 2020075400 A JP2020075400 A JP 2020075400A JP 2018209756 A JP2018209756 A JP 2018209756A JP 2018209756 A JP2018209756 A JP 2018209756A JP 2020075400 A JP2020075400 A JP 2020075400A
Authority
JP
Japan
Prior art keywords
resin
biomass
film
polypropylene
based resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018209756A
Other languages
Japanese (ja)
Other versions
JP7193307B2 (en
Inventor
宏 緩詰
Hiroshi Yurutsume
宏 緩詰
健太郎 岡本
Kentaro Okamoto
健太郎 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futamura Chemical Co Ltd
Original Assignee
Futamura Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futamura Chemical Co Ltd filed Critical Futamura Chemical Co Ltd
Priority to JP2018209756A priority Critical patent/JP7193307B2/en
Publication of JP2020075400A publication Critical patent/JP2020075400A/en
Application granted granted Critical
Publication of JP7193307B2 publication Critical patent/JP7193307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

To provide an unstretched polypropylene-based resin film excellent in transparency or impact resistance, and having reduced load on environment.SOLUTION: The unstretched polypropylene-based rein film is provided that is composed of three layers of a substrate layer 11, an intermediate later 20, and a sealant layer 30, wherein the substrate layer is mainly composed of a polypropylene-based resin, the intermediate layer is composed of single biomass derived polyethylene -based resin, or 1 wt.% or more of the biomass-derived polyethylene-based resin and the polypropylene-based resin, and the sealant layer is mainly composed of the polypropylene-based resin.SELECTED DRAWING: Figure 1

Description

本発明は、無延伸ポリプロピレン系樹脂フィルムに関する。   The present invention relates to an unstretched polypropylene resin film.

ポリプロピレン系樹脂フィルムは、透明性、剛性、耐熱性、耐薬品性、ヒートシール性等に優れているため、包装資材として極めて便利である。ポリプロピレン系樹脂フィルムは、各種食品の充填、例えばレトルト食品用包装材のシーラントフィルムや雑貨の包装、各種工業用として広く活用されている。この種の無延伸ポリプロピレン系樹脂フィルムでは、より広範な分野にわたっての利用を可能とすることを目的として、透明性、耐熱性、耐白化性、ヒートシール性等を備えた汎用性の高い製品が提案されている(特許文献1等参照)。   The polypropylene resin film is excellent in transparency, rigidity, heat resistance, chemical resistance, heat sealability, etc., and is therefore extremely convenient as a packaging material. BACKGROUND OF THE INVENTION Polypropylene resin films are widely used for filling various foods, for example, sealant films for packaging materials for retort foods, packing miscellaneous goods, and various industrial applications. In this type of unstretched polypropylene resin film, a highly versatile product with transparency, heat resistance, whitening resistance, heat sealability, etc., for the purpose of enabling use in a wider range of fields. It has been proposed (see Patent Document 1, etc.).

近年では、再生可能資源の利用度を高めて環境負荷を軽減した循環型社会への取り組みが積極的に求められている。再生可能資源は、主に植物や植物由来の原料を加工した資源であり、バイオマス資源とも称される。バイオマス資源の場合、植物体の生育に伴い大気中の二酸化炭素は吸収される。そして、バイオマス資源として燃料等に利用されると再び水と二酸化炭素に分解される。従って、二酸化炭素の量は増えない。つまり、バイオマス資源はカーボンニュートラルの点から今後大きく取り入れる必要のある資源である。   In recent years, there has been a positive demand for efforts to create a recycling-based society in which the utilization of renewable resources is increased to reduce the environmental load. Renewable resources are mainly processed resources of plants and plant-derived raw materials, and are also called biomass resources. In the case of biomass resources, carbon dioxide in the atmosphere is absorbed as the plant grows. When it is used as a biomass resource such as a fuel, it is decomposed again into water and carbon dioxide. Therefore, the amount of carbon dioxide does not increase. In other words, the biomass resource is a resource that needs to be greatly adopted from the viewpoint of carbon neutrality.

バイオマス資源は燃料用途の他に各種樹脂製品へも利用されていることから、発明者らは鋭意検討を重ね、包装分野において多用される無延伸ポリプロピレン系樹脂フィルムにおいて、優れた透明性や耐衝撃性を備えるとともに、バイオマス資源に由来する樹脂を用いて環境負荷の低減を図ったシーラントフィルムを開発するに至った。   Since biomass resources are used not only for fuel applications but also for various resin products, the inventors have conducted extensive studies and found that they have excellent transparency and impact resistance in unstretched polypropylene resin films that are widely used in the packaging field. We have developed a sealant film that has high properties and uses a resin derived from biomass resources to reduce the environmental load.

特開2017−214530号公報JP, 2017-214530, A

本発明は、上記状況に鑑み提案されたものであり、透明性や耐衝撃性に優れるとともに、環境への負荷が低減された無延伸ポリプロピレン系樹脂フィルムを提供する。   The present invention has been proposed in view of the above circumstances, and provides an unstretched polypropylene-based resin film that is excellent in transparency and impact resistance and has a reduced environmental load.

すなわち、請求項1の発明は、基材層、中間層、シーラント層の3層からなる無延伸ポリプロピレン系樹脂フィルムであって、前記基材層はポリプロピレン系樹脂を主体とし、前記中間層はバイオマス由来ポリエチレン系樹脂単独又は前記バイオマス由来ポリエチレン系樹脂を1重量%以上とポリプロピレン系樹脂とからなり、前記シーラント層はポリプロピレン系樹脂を主体とすることを特徴とする無延伸ポリプロピレン系樹脂フィルムに係る。   That is, the invention of claim 1 is an unstretched polypropylene resin film comprising three layers of a base material layer, an intermediate layer, and a sealant layer, wherein the base material layer is mainly composed of polypropylene resin, and the intermediate layer is biomass. A non-stretched polypropylene-based resin film comprising a polyethylene-based resin alone or 1% by weight or more of the biomass-derived polyethylene-based resin and a polypropylene-based resin, and the sealant layer is mainly composed of a polypropylene-based resin.

請求項2の発明は、前記中間層のポリプロピレン系樹脂がメタロセン系触媒を用いて重合された請求項1に記載の無延伸ポリプロピレン系樹脂フィルムに係る。   The invention of claim 2 relates to the unstretched polypropylene resin film according to claim 1, wherein the polypropylene resin of the intermediate layer is polymerized using a metallocene catalyst.

請求項3の発明は、前記基材層のポリプロピレン系樹脂がメタロセン系触媒を用いて重合された請求項1または2に記載の無延伸ポリプロピレン系樹脂フィルムに係る。   The invention of claim 3 relates to the unstretched polypropylene resin film according to claim 1 or 2, wherein the polypropylene resin of the base material layer is polymerized using a metallocene catalyst.

請求項4の発明は、前記中間層のバイオマス由来ポリエチレン系樹脂が直鎖状低密度ポリエチレン系樹脂からなり、190℃において荷重2.16kgで測定されたメルトフローレートが1〜5g/10min、密度が0.91〜0.93g/cm3である請求項1ないし3のいずれか1項に記載の無延伸ポリプロピレン系樹脂フィルムに係る。 In the invention of claim 4, the biomass-derived polyethylene-based resin of the intermediate layer is a linear low-density polyethylene-based resin, and the melt flow rate measured at 190 ° C. under a load of 2.16 kg is 1 to 5 g / 10 min, and the density is Is 0.91 to 0.93 g / cm 3 , and the unstretched polypropylene resin film according to any one of claims 1 to 3.

請求項1の発明に係る無延伸ポリプロピレン系樹脂フィルムによると、基材層、中間層、シーラント層の3層からなる無延伸ポリプロピレン系樹脂フィルムであって、前記基材層はポリプロピレン系樹脂を主体とし、前記中間層はバイオマス由来ポリエチレン系樹脂単独又は前記バイオマス由来ポリエチレン系樹脂を1重量%以上とポリプロピレン系樹脂とからなり、前記シーラント層はポリプロピレン系樹脂を主体とするため、優れた透明性と耐衝撃性を備えながら、最終製品の環境負荷の低減を図ることができる。   According to the unstretched polypropylene resin film according to the invention of claim 1, the unstretched polypropylene resin film comprises three layers of a base material layer, an intermediate layer, and a sealant layer, and the base material layer is mainly composed of polypropylene resin. The intermediate layer is composed of a biomass-derived polyethylene-based resin alone or a polypropylene-based resin and 1% by weight or more of the biomass-derived polyethylene-based resin, and the sealant layer is mainly composed of a polypropylene-based resin, and thus has excellent transparency. While having impact resistance, it is possible to reduce the environmental load of the final product.

請求項2の発明に係る無延伸ポリプロピレン系樹脂フィルムによると、請求項1の発明において、前記中間層のポリプロピレン系樹脂がメタロセン系触媒を用いて重合されたため、より優れた透明性が得られる。   According to the unstretched polypropylene-based resin film according to the invention of claim 2, in the invention of claim 1, the polypropylene-based resin of the intermediate layer is polymerized by using a metallocene-based catalyst, so that more excellent transparency is obtained.

請求項3の発明に係る無延伸ポリプロピレン系樹脂フィルムによると、請求項1または2の発明において、前記基材層のポリプロピレン系樹脂がメタロセン系触媒を用いて重合されたため、より優れた透明性が得られる。   According to the unstretched polypropylene resin film according to the invention of claim 3, in the invention of claim 1 or 2, since the polypropylene resin of the base material layer is polymerized using a metallocene catalyst, more excellent transparency is obtained. can get.

請求項4の発明に係る無延伸ポリプロピレン系樹脂フィルムによると、請求項1ないし3のいずれか1項の発明において、前記中間層のバイオマス由来ポリエチレン系樹脂が直鎖状低密度ポリエチレン系樹脂からなり、190℃において荷重2.16kgで測定されたメルトフローレートが1〜5g/10min、密度が0.91〜0.93g/cm3であるため、透明性や耐衝撃性がより高められる。 According to the unstretched polypropylene resin film according to the invention of claim 4, in the invention of any one of claims 1 to 3, the biomass-derived polyethylene resin of the intermediate layer is a linear low-density polyethylene resin. Since the melt flow rate measured at 190 ° C. under a load of 2.16 kg is 1 to 5 g / 10 min and the density is 0.91 to 0.93 g / cm 3 , transparency and impact resistance are further enhanced.

本発明の一実施例に係る無延伸ポリプロピレン系樹脂フィルムの概略断面図である。It is a schematic sectional drawing of the unstretched polypropylene resin film which concerns on one Example of this invention.

図1は、本発明の一実施例に係る無延伸ポリプロピレン系樹脂フィルム10の概略断面図である。この樹脂フィルム10は、基材層11と、中間層20と、シーラント層30とからなる積層フィルムである。この樹脂フィルム10は、各層の原料樹脂が溶融されてTダイ等から所定の厚さで吐出されるTダイ法等の公知の製造方法により製造される。当該樹脂フィルム10は、生鮮食品、加工食品、菓子類等の食品包装資材、洗剤、化粧品、その他薬剤等の包装資材等に好適に使用される。この他、適宜工業用等のフィルム製品にも使用することができる。   FIG. 1 is a schematic cross-sectional view of an unstretched polypropylene resin film 10 according to an example of the present invention. The resin film 10 is a laminated film including a base material layer 11, an intermediate layer 20, and a sealant layer 30. The resin film 10 is manufactured by a known manufacturing method such as the T-die method in which the raw material resins of the respective layers are melted and discharged from the T-die or the like to a predetermined thickness. The resin film 10 is suitably used for food packaging materials such as fresh foods, processed foods and confectionery, packaging materials for detergents, cosmetics, other drugs and the like. In addition, it can be appropriately used for industrial film products.

基材層11は、ポリプロピレン系樹脂を主体として構成される層である。ポリプロピレン系樹脂は、プロピレンの単独重合体(ホモポリプロピレン)や、プロピレンとエチレンやブテン等の他のオレフィンとの共重合体(プロピレンコポリマー)等のプロピレンを主体とする重合体から選択される。特に、ポリプロピレン系樹脂は、メタロセン系触媒を用いて重合された重合体が好ましい。メタロセン系触媒を用いることにより、優れた透明性が得られる。基材層11には、必要に応じてアンチブロッキング剤、帯電防止剤、酸化防止剤、中和剤、着色剤等の添加剤が添加される。   The base material layer 11 is a layer mainly composed of polypropylene resin. The polypropylene resin is selected from a propylene-based polymer such as a propylene homopolymer (homopolypropylene) or a copolymer of propylene and another olefin such as ethylene or butene (propylene copolymer). In particular, the polypropylene resin is preferably a polymer polymerized by using a metallocene catalyst. Excellent transparency can be obtained by using a metallocene catalyst. Additives such as an antiblocking agent, an antistatic agent, an antioxidant, a neutralizing agent, and a coloring agent are added to the base material layer 11 as needed.

中間層20は、基材層11に積層された層であり、バイオマス由来ポリエチレン系樹脂単独、またはバイオマス由来ポリエチレン系樹脂を1重量%以上とポリプロピレン系樹脂とからなる。中間層20は、樹脂フィルム10に占める厚さが3分の1以上、好ましくは過半数以上である。   The intermediate layer 20 is a layer laminated on the base material layer 11, and is composed of a biomass-derived polyethylene resin alone, or a biomass-derived polyethylene resin of 1% by weight or more and a polypropylene resin. The intermediate layer 20 has a thickness occupied by the resin film 10 of 1/3 or more, preferably a majority.

バイオマス由来ポリエチレン系樹脂は、植物原料を加工して得られたポリエチレン系樹脂である。具体的には、サトウキビ等の植物原料から抽出された糖液から酵母によるアルコール発酵を経てエタノールを生成し、エチレン化したのち公知の樹脂化の工程でポリエチレンを製造する。このバイオマス由来ポリエチレン系樹脂は、最終製品の環境負荷の低減に寄与する。そこで、樹脂フィルム10の多くを占める中間層20においてバイオマス由来ポリエチレン系樹脂の重量配合割合が増すことにより、環境負荷の低減への寄与が高められる。   The biomass-derived polyethylene-based resin is a polyethylene-based resin obtained by processing a plant raw material. Specifically, ethanol is produced from a sugar solution extracted from a plant raw material such as sugar cane through alcohol fermentation with yeast, and after ethylene is formed, polyethylene is produced by a known resinification step. This biomass-derived polyethylene resin contributes to reducing the environmental load of the final product. Therefore, by increasing the weight blending ratio of the biomass-derived polyethylene-based resin in the intermediate layer 20 occupying most of the resin film 10, the contribution to the reduction of environmental load is enhanced.

実施例のバイオマス由来ポリエチレン系樹脂は、直鎖状低密度ポリエチレン系樹脂からなり、190℃において荷重2.16kgで測定されたメルトフローレート(MFR)が1〜5g/10min、密度が0.91〜0.93g/cm3である。これにより、透明性や耐衝撃性がより高められる。 The biomass-derived polyethylene-based resin of the example is composed of a linear low-density polyethylene-based resin, has a melt flow rate (MFR) measured at 190 ° C. under a load of 2.16 kg of 1 to 5 g / 10 min, and a density of 0.91. Is about 0.93 g / cm 3 . As a result, transparency and impact resistance are further enhanced.

中間層20に含まれるポリプロピレン系樹脂は、プロピレンの単独重合体(ホモポリプロピレン)や、プロピレンとエチレンやブテン等の他のオレフィンとの共重合体(プロピレンコポリマー)等のプロピレンを主体とする重合体から選択される。特に、透明性の観点から、メタロセン系触媒を用いて重合された分子量分布が狭くポリエチレン系樹脂と相溶性の高いポリプロピレン系樹脂が好ましい。   The polypropylene-based resin contained in the mid layer 20 is a propylene-based polymer such as a homopolymer of propylene (homopolypropylene) or a copolymer of propylene and other olefins such as ethylene and butene (propylene copolymer). Selected from. In particular, from the viewpoint of transparency, a polypropylene resin having a narrow molecular weight distribution polymerized using a metallocene catalyst and having a high compatibility with a polyethylene resin is preferable.

シーラント層30は、ポリプロピレン系樹脂を主体として構成されたヒートシール性能を備えた層であり、中間層20の基材層11と反対側に積層される。ポリプロピレン系樹脂は、プロピレンの単独重合体(ホモポリプロピレン)や、プロピレンとエチレンやブテン等の他のオレフィンとの共重合体(プロピレンコポリマー)等のプロピレンを主体とする重合体から選択される。特に、ポリプロピレン系樹脂は、メタロセン系触媒を用いて重合された重合体が好ましい。メタロセン系触媒を用いることにより、優れた透明性が得られる。   The sealant layer 30 is a layer mainly composed of polypropylene resin and having a heat-sealing property, and is laminated on the side of the intermediate layer 20 opposite to the base material layer 11. The polypropylene resin is selected from a propylene-based polymer such as a propylene homopolymer (homopolypropylene) or a copolymer of propylene and another olefin such as ethylene or butene (propylene copolymer). In particular, the polypropylene resin is preferably a polymer polymerized by using a metallocene catalyst. Excellent transparency can be obtained by using a metallocene catalyst.

[フィルムの作製]
試作例1〜22のフィルムについて、後述の材料配合割合(重量%)に基づいて各材料を混練、溶融してTダイ法により共押出し、フィルムを製膜した。なお、以下の各使用材料において、MFRはJIS K 7210(2014)に準拠し、ポリエチレン系樹脂は190℃、ポリプロピレン系樹脂は230℃で測定されたメルトフローレートである。
[Production of film]
With respect to the films of Prototype Examples 1 to 22, each material was kneaded, melted and coextruded by the T-die method based on the later-described material blending ratio (% by weight) to form a film. In each of the materials used below, MFR is a melt flow rate measured at 190 ° C. for a polyethylene resin and 230 ° C. for a polypropylene resin in accordance with JIS K 7210 (2014).

[基材層の使用材料]
基材層では、ポリプロピレン系樹脂として下記の樹脂PP1,樹脂PP2、バイオマス由来ポリエチレン系樹脂として下記の樹脂PE1を使用した。
・樹脂PP1:メタロセン触媒を用いて重合されたポリプロピレンランダム共重合体(日本ポリプロ株式会社製,商品名「WFW4M」,MFR:7.0g/10min,密度:0.9g/cm3
・樹脂PP2:チーグラー触媒を用いて重合されたポリプロピレン(日本ポリプロ株式会社製,商品名「FW4BT」,MFR:6.5g/10min,密度:0.9g/cm3
・樹脂PE1:直鎖状低密度ポリエチレン(ブラスケム社製,商品名「SLH118」,MFR:1.0g/10min,密度:0.916g/cm3
[Materials used for the base layer]
In the base material layer, the following resins PP1 and PP2 were used as the polypropylene resin, and the following resin PE1 was used as the biomass-derived polyethylene resin.
Resin PP1: polypropylene random copolymer polymerized using a metallocene catalyst (manufactured by Nippon Polypro Co., Ltd., trade name “WFW4M”, MFR: 7.0 g / 10 min, density: 0.9 g / cm 3 ).
Resin PP2: polypropylene polymerized using a Ziegler catalyst (manufactured by Nippon Polypro Co., Ltd., trade name “FW4BT”, MFR: 6.5 g / 10 min, density: 0.9 g / cm 3 ).
Resin PE1: Linear low-density polyethylene (manufactured by Braschem, trade name “SLH118”, MFR: 1.0 g / 10 min, density: 0.916 g / cm 3 ).

[中間層の使用材料]
中間層では、バイオマス由来ポリエチレン系樹脂として下記の樹脂PE1〜PE5、バイオマス由来ではないポリエチレン系樹脂として下記の樹脂PE6、ポリプロピレン系樹脂として前記の樹脂PP1,樹脂PP2をそれぞれ使用した。
・樹脂PE1:直鎖状低密度ポリエチレン(ブラスケム社製,商品名「SLH118」,MFR:1.0g/10min,密度:0.916g/cm3
・樹脂PE2:直鎖状低密度ポリエチレン(ブラスケム社製,商品名「SLH218」,MFR:2.3g/10min,密度:0.916g/cm3
・樹脂PE3:直鎖状低密度ポリエチレン(ブラスケム社製,商品名「SLL318」,MFR:2.7g/10min,密度:0.918g/cm3
・樹脂PE4:低密度ポリエチレン(ブラスケム社製,商品名「STN7006」,MFR:0.6g/10min,密度:0.924g/cm3
・樹脂PE5:高密度ポリエチレン(ブラスケム社製,商品名「SGE7252」,MFR:2.2g/10min,密度:0.953g/cm3
・樹脂PE6:直鎖状低密度ポリエチレン(宇部丸善ポリエチレン株式会社製,商品名「ユメリット2040FC」,MFR:5.0g/10min,密度:0.919g/cm3
[Materials used for the intermediate layer]
In the intermediate layer, the following resins PE1 to PE5 were used as the biomass-derived polyethylene-based resin, the following resin PE6 was used as the non-biomass-derived polyethylene-based resin, and the above-mentioned resins PP1 and PP2 were used as the polypropylene-based resin.
Resin PE1: Linear low-density polyethylene (manufactured by Braschem, trade name “SLH118”, MFR: 1.0 g / 10 min, density: 0.916 g / cm 3 ).
Resin PE2: linear low density polyethylene (Braskem Co., Ltd. under the trade name "SLH218", MFR: 2.3g / 10min, density: 0.916g / cm 3)
Resin PE3: linear low density polyethylene (Braskem Co., Ltd. under the trade name "SLL318", MFR: 2.7g / 10min, density: 0.918g / cm 3)
Resin PE4: low-density polyethylene (Braskem Co., Ltd. under the trade name "STN7006", MFR: 0.6g / 10min, density: 0.924g / cm 3)
Resin PE5: high-density polyethylene (manufactured by Braschem, trade name “SGE7252”, MFR: 2.2 g / 10 min, density: 0.953 g / cm 3 ).
Resin PE6: linear low density polyethylene (Ube Maruzen Polyethylene Co., Ltd., trade name "UMERIT 2040FC", MFR: 5.0g / 10min, density: 0.919g / cm 3)

[シーラント層の使用材料]
シーラント層では、ポリプロピレン系樹脂として前記の樹脂PP1、ポリエチレン系樹脂として前記の樹脂PE2(バイオマス由来),樹脂PE6(バイオマス由来ではない)をそれぞれ使用した。
[Material used for sealant layer]
In the sealant layer, the above resin PP1 was used as the polypropylene resin, and the above resin PE2 (derived from biomass) and the resin PE6 (not derived from biomass) were used as the polyethylene resin.

[試作例1]
試作例1は、基材層がポリプロピレン系樹脂(樹脂PP1)100重量%、中間層がバイオマス由来ポリエチレン系樹脂(樹脂PE2)5重量%とポリプロピレン系樹脂(樹脂PP1)95重量%、シーラント層がポリプロピレン系樹脂(樹脂PP1)100重量%からなり、基材層と中間層とシーラント層の膜厚の比率が1:3:1とされたフィルムである。試作例1のフィルムは、密度が0.900g/cm3、バイオマス由来ポリエチレン系樹脂の割合が3.0%である。
[Prototype example 1]
In prototype example 1, the base material layer was 100% by weight of polypropylene resin (resin PP1), the intermediate layer was 5% by weight of biomass-derived polyethylene resin (resin PE2) and 95% by weight of polypropylene resin (resin PP1), and the sealant layer was The film is made of 100% by weight of a polypropylene resin (resin PP1), and the film thickness ratio of the base material layer, the intermediate layer and the sealant layer is 1: 3: 1. The film of Prototype Example 1 has a density of 0.900 g / cm 3 and a biomass-derived polyethylene resin ratio of 3.0%.

[試作例2]
試作例2は、中間層がバイオマス由来ポリエチレン系樹脂(樹脂PE2)10重量%とポリプロピレン系樹脂(樹脂PP1)90重量%とされ、それ以外は試作例1と同一に形成されたフィルムである。試作例2のフィルムは、密度が0.901g/cm3、バイオマス由来ポリエチレン系樹脂の割合が6.0%である。
[Prototype example 2]
Prototype Example 2 is a film formed in the same manner as in Prototype Example 1 except that the intermediate layer is 10% by weight of biomass-derived polyethylene-based resin (resin PE2) and 90% by weight of polypropylene-based resin (resin PP1). The film of Prototype Example 2 has a density of 0.901 g / cm 3 and a proportion of biomass-derived polyethylene-based resin of 6.0%.

[試作例3]
試作例3は、中間層がバイオマス由来ポリエチレン系樹脂(樹脂PE2)20重量%とポリプロピレン系樹脂(樹脂PP1)80重量%とされ、それ以外は試作例1と同一に形成されたフィルムである。試作例3のフィルムは、密度が0.902g/cm3、バイオマス由来ポリエチレン系樹脂の割合が12.0%である。
[Prototype example 3]
Prototype Example 3 is a film formed in the same manner as in Prototype Example 1 except that the intermediate layer is made of biomass-derived polyethylene resin (resin PE2) 20% by weight and polypropylene resin (resin PP1) 80% by weight. The film of prototype example 3 has a density of 0.902 g / cm 3 and a biomass-derived polyethylene resin ratio of 12.0%.

[試作例4]
試作例4は、中間層がバイオマス由来ポリエチレン系樹脂(樹脂PE2)30重量%とポリプロピレン系樹脂(樹脂PP1)70重量%とされ、それ以外は試作例1と同一に形成されたフィルムである。試作例4のフィルムは、密度が0.903g/cm3、バイオマス由来ポリエチレン系樹脂の割合が18.0%である。
[Prototype example 4]
Prototype Example 4 is a film formed in the same manner as in Prototype Example 1 except that the intermediate layer is made of 30% by weight of biomass-derived polyethylene resin (resin PE2) and 70% by weight of polypropylene resin (resin PP1), and otherwise. The film of Prototype Example 4 has a density of 0.903 g / cm 3 and a biomass-derived polyethylene-based resin ratio of 18.0%.

[試作例5]
試作例5は、中間層がバイオマス由来ポリエチレン系樹脂(樹脂PE2)40重量%とポリプロピレン系樹脂(樹脂PP1)60重量%とされ、それ以外は試作例1と同一に形成されたフィルムである。試作例5のフィルムは、密度が0.904g/cm3、バイオマス由来ポリエチレン系樹脂の割合が24.0%である。
[Prototype example 5]
Prototype Example 5 is a film formed in the same manner as in Prototype Example 1 except that the intermediate layer is made of biomass-derived polyethylene resin (resin PE2) 40% by weight and polypropylene resin (resin PP1) 60% by weight. The film of Prototype Example 5 has a density of 0.904 g / cm 3 and a proportion of biomass-derived polyethylene resin of 24.0%.

[試作例6]
試作例6は、中間層がバイオマス由来ポリエチレン系樹脂(樹脂PE2)50重量%とポリプロピレン系樹脂(樹脂PP1)50重量%とされ、それ以外は試作例1と同一に形成されたフィルムである。試作例6のフィルムは、密度が0.905g/cm3、バイオマス由来ポリエチレン系樹脂の割合が30.0%である。
[Prototype Example 6]
Prototype Example 6 is a film formed in the same manner as in Prototype Example 1 except that the intermediate layer is 50% by weight of biomass-derived polyethylene resin (resin PE2) and 50% by weight of polypropylene resin (resin PP1). The film of Prototype Example 6 has a density of 0.905 g / cm 3 and a biomass-derived polyethylene resin ratio of 30.0%.

[試作例7]
試作例7は、中間層がバイオマス由来ポリエチレン系樹脂(樹脂PE2)75重量%とポリプロピレン系樹脂(樹脂PP1)25重量%とされ、それ以外は試作例1と同一に形成されたフィルムである。試作例7のフィルムは、密度が0.907g/cm3、バイオマス由来ポリエチレン系樹脂の割合が45.0%である。
[Prototype example 7]
Prototype Example 7 is a film formed in the same manner as in Prototype Example 1 except that the intermediate layer contains 75% by weight of the biomass-derived polyethylene-based resin (resin PE2) and 25% by weight of the polypropylene-based resin (resin PP1). The film of Prototype Example 7 has a density of 0.907 g / cm 3 and a biomass-derived polyethylene resin ratio of 45.0%.

[試作例8]
試作例8は、中間層がバイオマス由来ポリエチレン系樹脂(樹脂PE2)100重量%とされ、それ以外は試作例1と同一に形成されたフィルムである。試作例8のフィルムは、密度が0.910g/cm3、バイオマス由来ポリエチレン系樹脂の割合が60.0%である。
[Prototype Example 8]
Prototype Example 8 is a film formed in the same manner as in Prototype Example 1 except that the biomass-derived polyethylene-based resin (resin PE2) was 100% by weight in the intermediate layer. The film of Prototype Example 8 has a density of 0.910 g / cm 3 and a biomass-derived polyethylene resin ratio of 60.0%.

[試作例9]
試作例9は、基材層と中間層とシーラント層の膜厚の比率が1.5:2:1とされ、それ以外は試作例8と同一に形成されたフィルムである。試作例9のフィルムは、密度が0.907g/cm3、バイオマス由来ポリエチレン系樹脂の割合が44.4%である。
[Prototype Example 9]
Prototype Example 9 is a film formed in the same manner as Prototype Example 8 except that the film thickness ratio of the base material layer, the intermediate layer, and the sealant layer is 1.5: 2: 1. The film of Prototype Example 9 has a density of 0.907 g / cm 3 and a proportion of the biomass-derived polyethylene-based resin of 44.4%.

[試作例10]
試作例10は、基材層と中間層とシーラント層の膜厚の比率が1:1:1とされ、それ以外は試作例8と同一に形成されたフィルムである。試作例10のフィルムは、密度が0.905g/cm3、バイオマス由来ポリエチレン系樹脂の割合が33.3%である。
[Prototype Example 10]
Prototype Example 10 is a film formed in the same manner as Prototype Example 8 except that the film thickness ratio of the base material layer, the intermediate layer, and the sealant layer was 1: 1: 1. The film of Prototype Example 10 has a density of 0.905 g / cm 3 and a biomass-derived polyethylene resin ratio of 33.3%.

[試作例11]
試作例11は、基材層と中間層とシーラント層の膜厚の比率が1:6:1とされ、それ以外は試作例8と同一に形成されたフィルムである。試作例11のフィルムは、密度が0.912g/cm3、バイオマス由来ポリエチレン系樹脂の割合が75.0%である。
[Prototype Example 11]
Prototype Example 11 is a film formed in the same manner as Prototype Example 8 except that the film thickness ratio of the base material layer, the intermediate layer, and the sealant layer is 1: 6: 1. The film of Prototype Example 11 has a density of 0.912 g / cm 3 and a proportion of biomass-derived polyethylene resin of 75.0%.

[試作例12]
試作例12は、中間層がバイオマス由来ポリエチレン系樹脂(樹脂PE1)30重量%とポリプロピレン系樹脂(樹脂PP1)70重量%とされ、それ以外は試作例1と同一に形成されたフィルムである。試作例12のフィルムは、密度が0.903g/cm3、バイオマス由来ポリエチレン系樹脂の割合が18.0%である。
[Prototype Example 12]
Prototype Example 12 is a film formed in the same manner as in Prototype Example 1 except that the intermediate layer is made of 30% by weight of biomass-derived polyethylene-based resin (resin PE1) and 70% by weight of polypropylene-based resin (resin PP1). The film of Prototype Example 12 has a density of 0.903 g / cm 3 and a biomass-derived polyethylene resin ratio of 18.0%.

[試作例13]
試作例13は、中間層がバイオマス由来ポリエチレン系樹脂(樹脂PE3)30重量%とポリプロピレン系樹脂(樹脂PP1)70重量%とされ、それ以外は試作例1と同一に形成されたフィルムである。試作例13のフィルムは、密度が0.903g/cm3、バイオマス由来ポリエチレン系樹脂の割合が18.0%である。
[Prototype Example 13]
Prototype Example 13 is a film formed in the same manner as in Prototype Example 1 except that the intermediate layer is made of 30% by weight of biomass-derived polyethylene-based resin (resin PE3) and 70% by weight of polypropylene-based resin (resin PP1). The film of Prototype Example 13 has a density of 0.903 g / cm 3 and a biomass-derived polyethylene resin ratio of 18.0%.

[試作例14]
試作例14は、中間層がバイオマス由来ポリエチレン系樹脂(樹脂PE4)30重量%とポリプロピレン系樹脂(樹脂PP1)70重量%とされ、それ以外は試作例1と同一に形成されたフィルムである。試作例14のフィルムは、密度が0.904g/cm3、バイオマス由来ポリエチレン系樹脂の割合が18.0%である。
[Prototype Example 14]
Prototype Example 14 is a film formed in the same manner as in Prototype Example 1 except that the intermediate layer is made of biomass-derived polyethylene resin (resin PE4) 30% by weight and polypropylene resin (resin PP1) 70% by weight. The film of prototype 14 has a density of 0.904 g / cm 3 and a biomass-derived polyethylene-based resin ratio of 18.0%.

[試作例15]
試作例15は、中間層がバイオマス由来ポリエチレン系樹脂(樹脂PE5)30重量%とポリプロピレン系樹脂(樹脂PP1)70重量%とされ、それ以外は試作例1と同一に形成されたフィルムである。試作例15のフィルムは、密度が0.909g/cm3、バイオマス由来ポリエチレン系樹脂の割合が18.0%である。
[Prototype Example 15]
Prototype Example 15 is a film formed in the same manner as in Prototype Example 1 except that the intermediate layer is made of 30% by weight of biomass-derived polyethylene resin (resin PE5) and 70% by weight of polypropylene resin (resin PP1), and otherwise. The film of Prototype Example 15 has a density of 0.909 g / cm 3 and a biomass-derived polyethylene resin ratio of 18.0%.

[試作例16]
試作例16は、中間層がバイオマス由来ポリエチレン系樹脂(樹脂PE6)30重量%とポリプロピレン系樹脂(樹脂PP1)70重量%とされ、それ以外は試作例1と同一に形成されたフィルムである。試作例16のフィルムは、密度が0.903g/cm3、バイオマス由来ポリエチレン系樹脂の割合が0.0%である。
[Prototype Example 16]
Prototype Example 16 is a film formed in the same manner as in Prototype Example 1 except that the intermediate layer was made of biomass-derived polyethylene resin (resin PE6) 30% by weight and polypropylene resin (resin PP1) 70% by weight. The film of Prototype Example 16 has a density of 0.903 g / cm 3 and a biomass-derived polyethylene resin ratio of 0.0%.

[試作例17]
試作例17は、中間層がバイオマス由来ポリエチレン系樹脂(樹脂PE2)30重量%とポリプロピレン系樹脂(樹脂PP2)70重量%とされ、それ以外は試作例1と同一に形成されたフィルムである。試作例17のフィルムは、密度が0.903g/cm3、バイオマス由来ポリエチレン系樹脂の割合が18.0%である。
[Prototype Example 17]
Prototype Example 17 is a film formed in the same manner as in Prototype Example 1 except that the intermediate layer is made of 30% by weight of biomass-derived polyethylene resin (resin PE2) and 70% by weight of polypropylene resin (resin PP2). The film of Prototype Example 17 has a density of 0.903 g / cm 3 and a biomass-derived polyethylene resin ratio of 18.0%.

[試作例18]
試作例18は、基材層がポリプロピレン系樹脂(樹脂PP2)100重量%とされ、それ以外は試作例4と同一に形成されたフィルムである。試作例18のフィルムは、密度が0.903g/cm3、バイオマス由来ポリエチレン系樹脂の割合が18.0%である。
[Prototype Example 18]
Prototype Example 18 is a film formed in the same manner as in Prototype Example 4 except that the base material layer was made of polypropylene resin (resin PP2) 100% by weight. The film of Prototype Example 18 has a density of 0.903 g / cm 3 and a biomass-derived polyethylene resin ratio of 18.0%.

[試作例19]
試作例19は、シーラント層がポリプロピレン系樹脂(樹脂PP1)70重量%とポリエチレン系樹脂(樹脂PE6)30重量%とされ、それ以外は試作例4と同一に形成されたフィルムである。試作例19のフィルムは、密度が0.904g/cm3、バイオマス由来ポリエチレン系樹脂の割合が18.0%である。
[Prototype Example 19]
Prototype Example 19 is a film formed in the same manner as in Prototype Example 4 except that the sealant layer is composed of 70% by weight of polypropylene resin (resin PP1) and 30% by weight of polyethylene resin (resin PE6). The film of Prototype Example 19 has a density of 0.904 g / cm 3 and a biomass-derived polyethylene resin ratio of 18.0%.

[試作例20]
試作例20は、中間層がバイオマス由来ポリエチレン系樹脂を含まずにポリプロピレン系樹脂(樹脂PP1)100重量%とされ、それ以外は試作例1と同一に形成されたフィルムである。試作例20のフィルムは、密度が0.900g/cm3、バイオマス由来ポリエチレン系樹脂の割合が0.0%である。
[Prototype Example 20]
Prototype Example 20 is a film formed in the same manner as in Prototype Example 1 except that the intermediate layer contains 100% by weight of polypropylene resin (resin PP1) without containing biomass-derived polyethylene resin. The film of Prototype Example 20 has a density of 0.900 g / cm 3 and a proportion of the biomass-derived polyethylene-based resin of 0.0%.

[試作例21]
試作例21は、シーラント層がポリエチレン系樹脂(樹脂PE2)100重量%とされ、それ以外は試作例4と同一に形成されたフィルムである。試作例21のフィルムは、密度が0.906g/cm3、バイオマス由来ポリエチレン系樹脂の割合が38.0%である。
[Prototype Example 21]
Prototype Example 21 is a film formed in the same manner as in Prototype Example 4 except that the sealant layer is 100% by weight of polyethylene resin (resin PE2). The film of Prototype Example 21 has a density of 0.906 g / cm 3 and a proportion of the biomass-derived polyethylene-based resin of 38.0%.

[試作例22]
試作例22は、基材層がポリエチレン系樹脂(樹脂PE1)100重量%とされ、それ以外は試作例4と同一に形成されたフィルムである。試作例22のフィルムは、密度が0.906g/cm3、バイオマス由来ポリエチレン系樹脂の割合が38.0%である。
[Prototype Example 22]
Prototype Example 22 is a film formed in the same manner as in Prototype Example 4 except that the base material layer was 100% by weight of polyethylene resin (resin PE1). The film of Prototype Example 22 has a density of 0.906 g / cm 3 and a biomass-derived polyethylene resin ratio of 38.0%.

[ラミネートフィルムの作製]
試作例1〜22について、さらに他のフィルムを積層(ラミネート)して、実際の製品を想定したラミネートフィルムを作製した。ラミネートフィルムは、積層用のフィルムの表面にドライラミネート用に調製した接着剤(東洋モートン株式会社製,主剤:TM−329,硬化剤:CAT−8B,溶剤:酢酸エチル)を約3g/m2塗布し、いったん接着剤を乾燥させた後、試作例1〜22のフィルムの表面に積層用のフィルムを貼り合わせ、順次ローラを通して両フィルム同士を密着させて得た。なお、積層用のフィルムには、二軸延伸ポリプロピレンフィルム(フタムラ化学株式会社製,「FOR」,厚さ20μm)を使用した。
[Production of laminated film]
For Prototype Examples 1 to 22, other films were further laminated (laminated) to produce laminated films assuming actual products. About 3 g / m 2 of an adhesive agent (manufactured by Toyo Morton Co., Ltd., main agent: TM-329, curing agent: CAT-8B, solvent: ethyl acetate) prepared for dry lamination on the surface of the laminating film was used as the laminating film. After coating and once drying the adhesive, a film for lamination was attached to the surface of the film of Prototype Examples 1 to 22, and both films were sequentially passed through a roller to be brought into close contact with each other. A biaxially oriented polypropylene film (“FOR” manufactured by Futamura Chemical Co., Ltd., thickness 20 μm) was used as the film for lamination.

[フィルムの性能の評価]
試作例1〜22のフィルムに関し、ヘーズ、ダート衝撃強さ、引張弾性率、ヒートシール温度、ヒートシール強度の各項目についてそれぞれ測定した。また、各試作例1〜22のフィルムを用いたラミネートフィルムのヘーズを測定するとともに破袋試験を行った。総合評価では、後述の各項目における評価のすべてで良好な結果が得られた場合に「良(○)」、いずれかで好ましくない結果が1つ以上得られた場合やバイオマス由来の樹脂が含まれない(配合割合が0%)場合に「不可(×)」とした。その結果を後述の表1〜表4に示した。
[Evaluation of film performance]
With respect to the films of Prototype Examples 1 to 22, the haze, the dart impact strength, the tensile elastic modulus, the heat seal temperature, and the heat seal strength were measured. In addition, the haze of the laminated film using the films of Prototype Examples 1 to 22 was measured and a bag breaking test was performed. In the comprehensive evaluation, “good (○)” is given when all of the evaluations in each of the items described below are good, and one or more unfavorable results are obtained, or the resin derived from biomass is included. If not (the blending ratio is 0%), it is determined as "impossible (x)". The results are shown in Tables 1 to 4 below.

[ヘーズの測定]
ヘーズ(%)の測定は、透明性の指標であって、JIS K 7136(2000)に準拠し、ヘーズメーター(日本電色工業株式会社製,NDH−4000)を使用して測定を行った。試作例1〜22のフィルムでは、測定結果が8%以下を良品とした。また、試作例1〜22のフィルムを用いたラミネートフィルムでは、測定結果が9%以下を良品とした。
[Measurement of haze]
The haze (%) is an index of transparency, and was measured using a haze meter (NDH-4000 manufactured by Nippon Denshoku Industries Co., Ltd.) according to JIS K 7136 (2000). In the films of Prototype Examples 1 to 22, a measurement result of 8% or less was regarded as a good product. In addition, in the laminated film using the films of Prototype Examples 1 to 22, the measurement result was 9% or less as a non-defective product.

[ダート衝撃強さの測定]
ダート衝撃強さ(J)の測定は、耐衝撃性の指標であって、JIS K 7124(1999)に準拠し、低温槽付ダートインパクトテスター(東洋精機製作所製)を使用して、0℃と23℃の温度条件で貫通破壊に要した仕事量をそれぞれ測定した。試作例1〜22のフィルムでは、測定結果が0℃の場合に0.1J以上、23℃の場合に0.2J以上をそれぞれ良品とした。
[Measurement of dirt impact strength]
The measurement of the dirt impact strength (J) is an index of impact resistance and conforms to JIS K 7124 (1999), using a dirt impact tester with a low temperature tank (manufactured by Toyo Seiki Seisakusho) at 0 ° C. The amount of work required for penetration failure was measured under the temperature condition of 23 ° C. In the films of Prototype Examples 1 to 22, 0.1 J or more when the measurement result was 0 ° C. and 0.2 J or more when the measurement result was 23 ° C. were regarded as good products, respectively.

[引張弾性率の測定]
引張弾性率(GPa)の測定は、加工適性の指標の1つであって、JIS K 7127(1999)に準拠し、引張試験機(株式会社オリエンテック製,RTF−1310)を使用して測定した。試作例1〜22のフィルムでは、測定結果が0.2GPa以上を良品とした。
[Measurement of tensile modulus]
The measurement of the tensile elastic modulus (GPa) is one of the indexes of processability, and is measured by using a tensile tester (RTF-1310 manufactured by Orientec Co., Ltd.) according to JIS K 7127 (1999). did. In the films of Prototype Examples 1 to 22, a measurement result of 0.2 GPa or more was regarded as a good product.

[ヒートシール温度の測定]
ヒートシール温度(℃)は、加工適性の指標の1つであって、JIS Z 1713(2009)に準拠して測定した。このとき、フィルムを50mm×250mm(フィルムの幅方向×長さ方向)の長方形の試験片(ヒートシール用)に裁断した。2枚の試験片のシーラント層同士を重ね、ヒートシール試験機(株式会社東洋精機製作所製,熱傾斜試験機)を使用し、ヒートシール圧力を0.4MPa、ヒートシール時間を1秒とした。そして、5℃ずつ温度を傾斜(昇温)する条件にてヒートシールした。このとき、ヒートシーラーの熱板と試験片フィルムの間に融着防止用のセロファンフィルムを挟んだ。ヒートシールにより融着した試験片を180°に開き、小型卓上試験機(株式会社島津製作所製,EZ−SX)により未シール部分をチャックに挟み、シール部分をT字剥離した。そして、ヒートシール強度が3Nに到達する温度を内挿して求めた。試作例1〜22のフィルムでは、測定結果が165℃以下を良品とした。
[Measurement of heat seal temperature]
The heat-sealing temperature (° C) is one of the indexes of processability and was measured according to JIS Z 1713 (2009). At this time, the film was cut into rectangular test pieces (for heat sealing) of 50 mm × 250 mm (width direction × length direction of film). The sealant layers of the two test pieces were overlapped with each other, and a heat seal tester (manufactured by Toyo Seiki Seisakusho Co., Ltd., a heat gradient tester) was used to set the heat seal pressure to 0.4 MPa and the heat seal time to 1 second. Then, heat sealing was performed under the condition that the temperature was inclined (increased) by 5 ° C. At this time, a cellophane film for fusion prevention was sandwiched between the heat plate of the heat sealer and the test piece film. The test piece fused by heat sealing was opened to 180 °, and the unsealed portion was sandwiched between the chucks by a small bench tester (manufactured by Shimadzu Corporation, EZ-SX), and the sealed portion was peeled off in a T shape. Then, the temperature at which the heat seal strength reached 3 N was obtained by interpolation. In the films of Prototype Examples 1 to 22, the measurement results of 165 ° C. or less were regarded as non-defective products.

[ヒートシール強度の測定]
ヒートシール強度(N/15mm)の測定は、加工適性の指標の1つであって、JIS Z 0238(1998)に準拠して測定した。このとき、フィルムを50mm×250mm(フィルムの幅方向×長さ方向)の長方形の試験片(ヒートシール用)に裁断した。2枚の試験片のシーラント層同士を重ね、ヒートシール試験機(株式会社東洋精機製作所製,熱傾斜試験機)を使用し、ヒートシール圧力を0.4MPa、ヒートシール時間を1秒とした。そして、前述のヒートシール温度の測定で求めたヒートシール温度よりも15℃高い温度でヒートシールした。このとき、ヒートシーラーの熱板と試験片フィルムの間に融着防止用のセロファンフィルムを挟んだ。ヒートシールにより融着した試験片を180°に開き、小型卓上試験機(株式会社島津製作所製,EZ−SX)により未シール部分をチャックに挟み、シール部分をT字剥離し、ヒートシール強度を求めた。試作例1〜22のフィルムでは、測定結果が6N/15mm以上を良品とした。
[Measurement of heat seal strength]
The measurement of heat seal strength (N / 15 mm) is one of the indexes of processability, and was measured according to JIS Z 0238 (1998). At this time, the film was cut into rectangular test pieces (for heat sealing) of 50 mm × 250 mm (width direction × length direction of film). The sealant layers of the two test pieces were overlapped with each other, and a heat seal tester (manufactured by Toyo Seiki Seisakusho Co., Ltd., a heat gradient tester) was used to set the heat seal pressure to 0.4 MPa and the heat seal time to 1 second. Then, heat sealing was performed at a temperature 15 ° C. higher than the heat sealing temperature obtained by the measurement of the heat sealing temperature described above. At this time, a cellophane film for fusion prevention was sandwiched between the heat plate of the heat sealer and the test piece film. The test piece fused by heat sealing is opened to 180 °, and the unsealed portion is sandwiched by a chuck with a small bench tester (EZ-SX manufactured by Shimadzu Corporation), and the sealed portion is peeled off in a T shape to improve heat sealing strength. I asked. In the films of Prototype Examples 1 to 22, a measurement result of 6 N / 15 mm or more was regarded as a good product.

[破袋試験]
破袋試験(回目)では、ラミネートフィルムを袋の内面が無延伸ポリプロピレンフィルムとなるように、サイズ130mm×180mmの3方袋を作成し、この中に水道水150mLを注入し、残りの開口部をインパルスシーラー(富士インパルス株式会社製,VG−400)により封止(1.0sec)して、サンプル袋とした。1mの高さからサンプル袋の平面部から着地させる水平落下をサンプル袋が破袋するまで実施し、破袋した時点の実施回数を試験結果とした。各試作例1〜22のフィルムを用いたラミネートフィルムでは、試験結果が10回目以上を良品とした。
[Bag break test]
In the bag breaking test (the second time), a laminated film was made into a three-sided bag with a size of 130 mm × 180 mm so that the inner surface of the bag was an unstretched polypropylene film, 150 mL of tap water was poured into the bag, and the remaining opening Was sealed (1.0 sec) with an impulse sealer (VG-400 manufactured by Fuji Impulse Co., Ltd.) to give a sample bag. A horizontal drop of landing from a flat surface of the sample bag from a height of 1 m was carried out until the sample bag was broken, and the number of times the bag was broken was taken as the test result. In the laminated film using the films of Prototype Examples 1 to 22, the test result was judged to be non-defective when it was the 10th time or more.

Figure 2020075400
Figure 2020075400

Figure 2020075400
Figure 2020075400

Figure 2020075400
Figure 2020075400

Figure 2020075400
Figure 2020075400

[結果と考察]
表1〜表4に示すように、総合評価が「不可(×)」となったのは試作例16,20,21,22であった。試作例16はフィルムの性能面では良好な結果が得られたが、バイオマス由来の樹脂が含まれないため、総合評価を「不可(×)」とした。試作例20は、バイオマス由来の樹脂が含まれず、さらにダート衝撃強さや破袋試験の耐衝撃性で良好な結果が得られなかった。耐衝撃性で十分な性能が得られなかったのは、中間層にポリエチレン系樹脂が含まれていないためだと考えられる。試作例21,22は、フィルム単体とラミネートフィルムの双方のヘーズで良好な結果が得られなかった。これは、基材層またはシーラント層がポリエチレン系樹脂のみで構成されているためだと考えられる。
[Results and discussion]
As shown in Tables 1 to 4, it was Prototype Examples 16, 20, 21, and 22 that the comprehensive evaluation was “impossible (x)”. In Prototype Example 16, good results were obtained in terms of film performance, but since the resin derived from biomass was not included, the comprehensive evaluation was set to “impossible (x)”. In Prototype Example 20, no resin derived from biomass was included, and good results were not obtained in terms of dirt impact strength and impact resistance in the bag breaking test. The reason why sufficient impact resistance could not be obtained is considered to be because the intermediate layer did not contain a polyethylene resin. In Prototype Examples 21 and 22, good results could not be obtained for both the haze of the film alone and the laminate film. It is considered that this is because the base material layer or the sealant layer is composed only of the polyethylene resin.

これに対し、総合評価が「良(○)」となったのは試作例1〜15,17,18,19であった。これらの試作例は、基材層とシーラント層がポリプロピレン系樹脂を主体として構成され、中間層がバイオマス由来ポリエチレン系樹脂を含むように構成される。特に、試作例1〜8から理解されるように、中間層において、バイオマス由来ポリエチレン系樹脂を微量(配合割合5重量%)に含んで構成される場合も、単独(配合割合100重量%)で構成される場合も、フィルムの品質が良好であることがわかった。従って、中間層のバイオマス由来ポリエチレン系樹脂は、単独または1重量%以上含まれていればよいと考えられる。   On the other hand, it was Prototype Examples 1 to 15, 17, 18, and 19 that the overall evaluation was “good (◯)”. In these prototypes, the base material layer and the sealant layer are mainly composed of polypropylene resin, and the intermediate layer is composed to contain the biomass-derived polyethylene resin. In particular, as can be understood from Prototype Examples 1 to 8, even when the intermediate layer is configured to contain a small amount of the biomass-derived polyethylene-based resin (mixing ratio 5% by weight), it is used alone (mixing ratio 100% by weight) The film quality was also found to be good when constructed. Therefore, it is considered that the biomass-derived polyethylene resin in the intermediate layer may be contained alone or in an amount of 1% by weight or more.

また、試作例1〜8から理解されるように、ヘーズやヒートシール温度に関しては、中間層におけるバイオマス由来ポリエチレン系樹脂の配合割合は影響しなかった。一方、ダート衝撃強さ及び破袋試験の耐衝撃性は、中間層におけるバイオマス由来ポリエチレン系樹脂の配合割合が増加するほど増加する傾向があり、引張弾性率及びヒートシール強度の加工適性は、中間層におけるバイオマス由来ポリエチレン系樹脂の配合割合が増加するほど低下する傾向があることがわかった。そこで、耐衝撃性と加工適性とのバランスの観点から、中間層のバイオマス由来ポリエチレン系樹脂の好ましい配合割合は5〜75重量%、より好ましくは10〜50重量%である。   Further, as can be understood from Prototype Examples 1 to 8, the blending ratio of the biomass-derived polyethylene resin in the intermediate layer did not affect the haze and the heat sealing temperature. On the other hand, the impact resistance of the dirt impact strength and the bag breaking test tend to increase as the blending ratio of the biomass-derived polyethylene-based resin in the intermediate layer increases, and the processability of the tensile elastic modulus and heat seal strength is intermediate. It was found that the higher the blending ratio of the biomass-derived polyethylene-based resin in the layer, the lower the tendency. Therefore, from the viewpoint of the balance between impact resistance and processability, the preferable blending ratio of the biomass-derived polyethylene resin in the intermediate layer is 5 to 75% by weight, more preferably 10 to 50% by weight.

試作例4,12〜16から理解されるように、中間層に含まれるポリエチレン系樹脂の種類(PE1〜PE6)がいずれであっても、フィルムの品質は良好であった。従って、中間層のポリエチレン系樹脂は、MFRが1〜5g/10min、密度が0.91〜0.93g/cm3が好ましいと考えられる。また特に、試作例4,12,13,14,15から理解されるように、中間層のポリエチレン系樹脂に低密度ポリエチレンまたは高密度ポリエチレンを使用した試作例14,15と比較して、直鎖状低密度ポリエチレンを使用した試作例4,12,13のヘーズが良好であった。従って、中間層のバイオマス由来ポリエチレン系樹脂に直鎖状低密度ポリエチレン系樹脂を使用することで、優れた透明性が得られた。 As can be understood from Prototype Examples 4 and 12 to 16, the quality of the film was good regardless of the type of polyethylene resin (PE1 to PE6) contained in the intermediate layer. Therefore, it is considered that the polyethylene resin of the intermediate layer preferably has an MFR of 1 to 5 g / 10 min and a density of 0.91 to 0.93 g / cm 3 . Further, in particular, as understood from Prototype Examples 4, 12, 13, 14, and 15, as compared with Prototype Examples 14 and 15 in which low-density polyethylene or high-density polyethylene is used for the polyethylene resin of the intermediate layer, Of Prototype Examples 4, 12, and 13 using the low-density polyethylene was good. Therefore, excellent transparency was obtained by using the linear low-density polyethylene-based resin for the biomass-derived polyethylene-based resin of the intermediate layer.

試作例8,9,10,11から理解されるように、中間層の膜厚の比率が他層の膜厚の比率より高くなるほどダート衝撃強さが増加する傾向がみられた。従って、中間層の膜厚を増加させることにより、耐衝撃性が高まることがわかった。   As can be understood from Prototype Examples 8, 9, 10, and 11, the dirt impact strength tended to increase as the film thickness ratio of the intermediate layer became higher than that of the other layers. Therefore, it was found that the impact resistance is enhanced by increasing the thickness of the intermediate layer.

試作例4,17,18から理解されるように、基材層または中間層にメタロセン触媒を使用しないポリプロピレン系樹脂を含む試作例17,18と比較して、メタロセン触媒を使用したポリプロピレン系樹脂を含む試作例4のヘーズが良好であった。従って、基材層または中間層にポリプロピレン系樹脂が含まれる場合、メタロセン触媒を使用したポリプロピレン系樹脂を使用することで、優れた透明性が得られた。   As can be understood from Prototype Examples 4, 17 and 18, as compared with Prototype Examples 17 and 18 in which the base material layer or the intermediate layer contains a polypropylene resin that does not use a metallocene catalyst, a polypropylene resin using a metallocene catalyst is used. The haze of Prototype Example 4 including was good. Therefore, when the base material layer or the intermediate layer contains a polypropylene resin, excellent transparency was obtained by using the polypropylene resin using the metallocene catalyst.

試作例4,19から理解されるように、シーラント層にポリエチレン系樹脂を含む試作例19と比較して、ポリプロピレン系樹脂単独の試作例4のヘーズが良好であった。従って、シーラント層はポリプロピレン系樹脂を主体とする(ポリエチレン系樹脂の割合が少ない)ことで、より優れた透明性が得られると考えられる。   As can be understood from Prototype Examples 4 and 19, as compared with Prototype Example 19 in which the sealant layer contains the polyethylene resin, the haze of Prototype Example 4 using the polypropylene resin alone was good. Therefore, it is considered that when the sealant layer is mainly composed of polypropylene resin (the proportion of polyethylene resin is small), more excellent transparency can be obtained.

以上説明したとおり、本発明の無延伸ポリプロピレン系樹脂フィルムは、ポリプロピレン系樹脂を主体とする基材層と、バイオマス由来ポリエチレン系樹脂単独またはバイオマス由来ポリエチレン系樹脂を1重量%以上とポリプロピレン系樹脂とからなる中間層と、ポリプロピレン系樹脂を主体とするシーラント層の3層からなる。特にバイオマス由来ポリエチレン系樹脂を含むことにより、優れた透明性と耐衝撃性を備えながら、最終製品の環境負荷の低減を図ることができる。   As described above, the unstretched polypropylene-based resin film of the present invention comprises a base material layer mainly composed of polypropylene-based resin, a biomass-derived polyethylene-based resin alone or a biomass-derived polyethylene-based resin of 1% by weight or more and a polypropylene-based resin. And a sealant layer mainly composed of polypropylene resin. In particular, by including the biomass-derived polyethylene resin, it is possible to reduce the environmental load of the final product while having excellent transparency and impact resistance.

本発明の無延伸ポリプロピレン系樹脂フィルムは、バイオマス由来ポリエチレン系樹脂を含むことにより、優れた透明性と耐衝撃性を備えて、最終製品の環境負荷の低減を図ることができる。従って、新たなシーラントフィルム等への活用が期待できるとともに、バイオマス資源の活用に有利となる。   Since the unstretched polypropylene resin film of the present invention contains the biomass-derived polyethylene resin, it has excellent transparency and impact resistance, and can reduce the environmental load of the final product. Therefore, it can be expected to be used for a new sealant film and the like, and it will be advantageous for utilizing biomass resources.

10 無延伸ポリプロピレン系樹脂フィルム
11 基材層
20 中間層
30 シーラント層
10 Unstretched polypropylene resin film 11 Base material layer 20 Intermediate layer 30 Sealant layer

Claims (4)

基材層、中間層、シーラント層の3層からなる無延伸ポリプロピレン系樹脂フィルムであって、
前記基材層はポリプロピレン系樹脂を主体とし、
前記中間層はバイオマス由来ポリエチレン系樹脂単独又は前記バイオマス由来ポリエチレン系樹脂を1重量%以上とポリプロピレン系樹脂とからなり、
前記シーラント層はポリプロピレン系樹脂を主体とする
ことを特徴とする無延伸ポリプロピレン系樹脂フィルム。
An unstretched polypropylene-based resin film comprising a base layer, an intermediate layer, and a sealant layer,
The base material layer is mainly made of polypropylene resin,
The intermediate layer comprises a biomass-derived polyethylene-based resin alone, or 1% by weight or more of the biomass-derived polyethylene-based resin and a polypropylene-based resin,
The sealant layer is mainly made of polypropylene resin, which is an unstretched polypropylene resin film.
前記中間層のポリプロピレン系樹脂がメタロセン系触媒を用いて重合された請求項1に記載の無延伸ポリプロピレン系樹脂フィルム。   The unstretched polypropylene resin film according to claim 1, wherein the polypropylene resin of the intermediate layer is polymerized by using a metallocene catalyst. 前記基材層のポリプロピレン系樹脂がメタロセン系触媒を用いて重合された請求項1または2に記載の無延伸ポリプロピレン系樹脂フィルム。   The unstretched polypropylene resin film according to claim 1, wherein the polypropylene resin of the base material layer is polymerized by using a metallocene catalyst. 前記中間層のバイオマス由来ポリエチレン系樹脂が直鎖状低密度ポリエチレン系樹脂からなり、190℃において荷重2.16kgで測定されたメルトフローレートが1〜5g/10min、密度が0.91〜0.93g/cm3である請求項1ないし3のいずれか1項に記載の無延伸ポリプロピレン系樹脂フィルム。 The biomass-derived polyethylene-based resin of the intermediate layer is a linear low-density polyethylene-based resin, and has a melt flow rate measured at 190 ° C. under a load of 2.16 kg of 1 to 5 g / 10 min and a density of 0.91 to 0. The unstretched polypropylene resin film according to any one of claims 1 to 3, which has a weight of 93 g / cm 3 .
JP2018209756A 2018-11-07 2018-11-07 Unstretched polypropylene resin film Active JP7193307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018209756A JP7193307B2 (en) 2018-11-07 2018-11-07 Unstretched polypropylene resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018209756A JP7193307B2 (en) 2018-11-07 2018-11-07 Unstretched polypropylene resin film

Publications (2)

Publication Number Publication Date
JP2020075400A true JP2020075400A (en) 2020-05-21
JP7193307B2 JP7193307B2 (en) 2022-12-20

Family

ID=70723250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018209756A Active JP7193307B2 (en) 2018-11-07 2018-11-07 Unstretched polypropylene resin film

Country Status (1)

Country Link
JP (1) JP7193307B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021025039A1 (en) * 2019-08-07 2021-02-11 大倉工業株式会社 Packaging laminate film and heat-shrinkable laminate film
JP2022057257A (en) * 2020-09-30 2022-04-11 三井化学東セロ株式会社 Thermally bonding laminated film
WO2022107576A1 (en) 2020-11-19 2022-05-27 東洋紡株式会社 Polyolefin-based resin film, and laminate in which same is used
WO2022107575A1 (en) 2020-11-19 2022-05-27 東洋紡株式会社 Polyolefin resin film and mulilayer body using same
JP7545648B2 (en) 2019-10-24 2024-09-05 大日本印刷株式会社 Resin film, laminate and bag
WO2024214407A1 (en) * 2023-04-13 2024-10-17 東洋紡株式会社 Laminated sealant film
JP7575291B2 (en) 2020-04-22 2024-10-29 フタムラ化学株式会社 Non-oriented polypropylene film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005935A (en) * 2008-06-27 2010-01-14 Toray Advanced Film Co Ltd Composite film
JP2014124818A (en) * 2012-12-26 2014-07-07 Suntox Co Ltd Polyolefin-based non-oriented multilayer film
JP2016027172A (en) * 2015-10-27 2016-02-18 大日本印刷株式会社 Polyolefin resin film
WO2017018282A1 (en) * 2015-07-24 2017-02-02 Dic株式会社 Laminate film and packaging material
JP2017214530A (en) * 2016-06-02 2017-12-07 フタムラ化学株式会社 Non-stretched polypropylene film
WO2018163836A1 (en) * 2017-03-07 2018-09-13 Dic株式会社 Laminated film and food packaging bag
WO2018163835A1 (en) * 2017-03-07 2018-09-13 Dic株式会社 Laminated film and food packaging bag

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005935A (en) * 2008-06-27 2010-01-14 Toray Advanced Film Co Ltd Composite film
JP2014124818A (en) * 2012-12-26 2014-07-07 Suntox Co Ltd Polyolefin-based non-oriented multilayer film
WO2017018282A1 (en) * 2015-07-24 2017-02-02 Dic株式会社 Laminate film and packaging material
JP2016027172A (en) * 2015-10-27 2016-02-18 大日本印刷株式会社 Polyolefin resin film
JP2017214530A (en) * 2016-06-02 2017-12-07 フタムラ化学株式会社 Non-stretched polypropylene film
WO2018163836A1 (en) * 2017-03-07 2018-09-13 Dic株式会社 Laminated film and food packaging bag
WO2018163835A1 (en) * 2017-03-07 2018-09-13 Dic株式会社 Laminated film and food packaging bag

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021025039A1 (en) * 2019-08-07 2021-02-11 大倉工業株式会社 Packaging laminate film and heat-shrinkable laminate film
JPWO2021025039A1 (en) * 2019-08-07 2021-09-27 大倉工業株式会社 Laminated film for packaging and heat-shrinkable laminated film
JP7545648B2 (en) 2019-10-24 2024-09-05 大日本印刷株式会社 Resin film, laminate and bag
JP7575291B2 (en) 2020-04-22 2024-10-29 フタムラ化学株式会社 Non-oriented polypropylene film
JP2022057257A (en) * 2020-09-30 2022-04-11 三井化学東セロ株式会社 Thermally bonding laminated film
JP7497802B2 (en) 2020-09-30 2024-06-11 アールエム東セロ株式会社 Heat-sealable laminated film
WO2022107576A1 (en) 2020-11-19 2022-05-27 東洋紡株式会社 Polyolefin-based resin film, and laminate in which same is used
WO2022107575A1 (en) 2020-11-19 2022-05-27 東洋紡株式会社 Polyolefin resin film and mulilayer body using same
KR20230105683A (en) 2020-11-19 2023-07-11 도요보 가부시키가이샤 Polyolefin-based resin film and laminate using the same
KR20230109154A (en) 2020-11-19 2023-07-19 도요보 가부시키가이샤 Polyolefin-based resin film and laminate using the same
WO2024214407A1 (en) * 2023-04-13 2024-10-17 東洋紡株式会社 Laminated sealant film

Also Published As

Publication number Publication date
JP7193307B2 (en) 2022-12-20

Similar Documents

Publication Publication Date Title
JP7193307B2 (en) Unstretched polypropylene resin film
EP3256317B1 (en) Laminated structure and stand up pouch made thereof
JP6107002B2 (en) Sealant film, and packaging material and packaging bag using the same
CN111757809A (en) Polypropylene composite film and packaging material using same
JP6350589B2 (en) Sealant film for packaging material, laminated film for packaging material, and packaging bag using plant-derived polyethylene
JP6798967B2 (en) Sealant film, and packaging materials and packaging bags using it
JP2015160374A (en) Easily tearable multilayer film and packaging material
JP2015006923A (en) Sealant film for packaging material using plant-originated polyethylene, laminated film for packaging material and packaging bag
JP2017105197A (en) Sealant film, and packaging material and packaging bag using the same
JP6299653B2 (en) Sealant film for packaging material, laminated film for packaging material, and packaging bag using plant-derived polyethylene
JP2017013504A (en) Sealant film, and packaging material using the same and packaging bag
JP6743932B2 (en) Sealant film, packaging material and packaging bag using the same
WO2023210278A1 (en) Sealant film, packaging material, and package
JP7575291B2 (en) Non-oriented polypropylene film
JP6504225B2 (en) Sealant film and packaging material and packaging bag using the same
JP6933282B2 (en) Sealant film, and packaging materials and packaging bags using it
JP6443432B2 (en) Sealant film for packaging material, laminated film for packaging material, and packaging bag using plant-derived polyethylene
JP7464034B2 (en) Multilayer film, packaging material and packaging body
JP4495602B2 (en) Biaxially oriented polypropylene multilayer film
JP6822198B2 (en) Sealant adhesive and easy-to-peel film
JP6197820B2 (en) Sealant film for packaging material, laminated film for packaging material, and packaging bag using plant-derived polyethylene
JP7537235B2 (en) Polypropylene multi-layer film, packaging material and package using same
JP2019034794A (en) Sealant film for packaging medium using plant-derived polyethylene, laminated film for packaging medium, and packaging bag
US20240343026A1 (en) Multilayer film, packaging material, and package
JP2022152666A (en) Monolayer body, manufacturing method, laminate, and molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221017

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221208

R150 Certificate of patent or registration of utility model

Ref document number: 7193307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150