JP2019049334A - Spacer expander - Google Patents
Spacer expander Download PDFInfo
- Publication number
- JP2019049334A JP2019049334A JP2017174600A JP2017174600A JP2019049334A JP 2019049334 A JP2019049334 A JP 2019049334A JP 2017174600 A JP2017174600 A JP 2017174600A JP 2017174600 A JP2017174600 A JP 2017174600A JP 2019049334 A JP2019049334 A JP 2019049334A
- Authority
- JP
- Japan
- Prior art keywords
- spacer expander
- less
- oil
- spacer
- side rail
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 125000006850 spacer group Chemical group 0.000 title claims abstract description 74
- 239000013078 crystal Substances 0.000 claims description 19
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims description 14
- 238000000576 coating method Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 7
- 150000004767 nitrides Chemical class 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims description 2
- 239000010802 sludge Substances 0.000 abstract description 33
- 230000007774 longterm Effects 0.000 abstract description 2
- 239000003921 oil Substances 0.000 description 57
- 230000000052 comparative effect Effects 0.000 description 14
- 238000012360 testing method Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 229910000831 Steel Inorganic materials 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 210000005069 ears Anatomy 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000010705 motor oil Substances 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002559 palpation Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001709 polysilazane Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J9/00—Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
- F16J9/06—Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction using separate springs or elastic elements expanding the rings; Springs therefor ; Expansion by wedging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J9/00—Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
- F16J9/26—Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
Abstract
Description
本発明は、内燃機関のピストンに装着され、一対の円環状のサイドレールと組合せてオイルコントロールリングに使用されるスペーサエキスパンダに関する。 The present invention relates to a spacer expander that is mounted on a piston of an internal combustion engine and used in an oil control ring in combination with a pair of annular side rails.
自動車エンジンにおいては、長時間の運転に伴い、エンジンオイルが加熱され、ブローバイガスに曝されることにより、エンジンオイル中に炭化水素の未燃焼物質やオイル添加剤の変性物が混在する状態となる。また、ディーゼルエンジンでは、さらにカーボンの微粒子も混在する状態となる。このような炭化水素の未燃焼物質、オイル添加剤変性物及びカーボン微粒子を、総じて「オイルスラッジ」という。オイルスラッジがエンジン部品に付着・堆積すると、部品を摩耗させたり、潤滑油の通路を塞いだりして、オイルコントロールリング(以下、特に意図しない限り「オイルリング」という。)等のエンジン部品の機能に支障を来すことがある。オイルリングでは、特にひどい場合、スペーサエキスパンダとサイドレールが固着し、互いに離間し独立した一対のサイドレールの動きを阻害してオイルコントロール機能を充分に発揮することができなくなる。 In an automobile engine, the engine oil is heated and exposed to blow-by gas as the engine is operated for a long time, so that the engine oil is mixed with hydrocarbon unburned substances and modified oil additives. . Further, in the diesel engine, carbon particles are also mixed. Such hydrocarbon unburned substances, modified oil additives and fine carbon particles are collectively referred to as “oil sludge”. When oil sludge adheres to and accumulates on engine parts, it wears parts or blocks the passage of lubricating oil, and functions of engine parts such as oil control rings (hereinafter referred to as “oil rings” unless otherwise specified). May cause problems. In the oil ring, particularly in a severe case, the spacer expander and the side rail are fixed, and the movement of the pair of independent side rails that are separated from each other is hindered so that the oil control function cannot be sufficiently exerted.
オイルリングへのオイルスラッジの付着及び堆積防止法として、従来技術には、スペーサエキスパンダやサイドレールの表面に固着防止のためのコーティングを施す方法や、スペーサエキスパンダを構造的にオイルスラッジが堆積しにくい形状にすることが開示されている。 As a method for preventing oil sludge from adhering to the oil ring and preventing it from accumulating, the conventional techniques include a method of coating the surface of the spacer expander and the side rail to prevent adhesion, and oil sludge is structurally deposited on the spacer expander. It is disclosed to make it difficult to form.
例えば、特許文献1や特許文献2には、フッ素系の樹脂被膜又はフッ素系樹脂を含有する樹脂被膜、特許文献3には、フルオロアルキル基置換アルコキシドを含む被膜、特許文献4には、無機ポリシラザンを含む前駆体ポリマーの親水性被膜、特許文献5には、表面自由エネルギーと水素結合力が低い金属被膜をコーティングする方法が開示されている。これらの被膜は、撥水撥油性、若しくはそれらと反対に親水性の被膜、又はオイルスラッジの付着力に着目して検討された固着防止方法である。 For example, Patent Document 1 and Patent Document 2 include a fluorine-based resin film or a resin film containing a fluorine-based resin, Patent Document 3 includes a film containing a fluoroalkyl group-substituted alkoxide, and Patent Document 4 includes an inorganic polysilazane. Patent Document 5 discloses a method of coating a metal film having a low surface free energy and a low hydrogen bonding force. These coatings are water and oil repellency or, on the contrary, hydrophilic coatings, or anti-adhesion methods that have been studied by paying attention to the adhesion of oil sludge.
一方、構造上の対策として、特許文献6には、スペーサエキスパンダの山部及び谷部の各中央部分(中手部)に鉛化合物等の異物を通過させるに十分な大きさの穴を波形の立ち上がり部にまでは及ばないように穿設したオイルリング、特許文献7や特許文献8には、中手部に径方向に溝が形成されオイルの流出口として耳部に当該溝と連通する貫通孔が形成された構造のスペーサエキスパンダ、特許文献9には、山部と谷部を結ぶ脚部の軸方向からの傾斜角度θを15°以上として、山部と谷部の円周方向長さを短くすることによって、中手部とサイドレールの間の隙間にオイルスラッジが堆積しにくい構造としたスペーサエキスパンダ、特許文献10及び11には、円周方向のオイルの流れを生じさせる中手部が略円周方向に凸形状とした構造のスペーサエキスパンダが開示されている。 On the other hand, as a structural measure, Patent Document 6 corrugates holes that are large enough to allow foreign matters such as lead compounds to pass through the central part (middle part) of the peak and valley of the spacer expander. In the oil ring, Patent Document 7 and Patent Document 8, which are drilled so as not to reach the rising part, a groove is formed in the middle hand part in the radial direction and communicates with the groove in the ear part as an oil outlet. A spacer expander having a structure in which a through-hole is formed, Patent Document 9 discloses that the inclination angle θ from the axial direction of the leg portion connecting the peak portion and the valley portion is 15 ° or more, and the circumferential direction of the peak portion and the valley portion By shortening the length, spacer expanders that have a structure in which oil sludge is unlikely to accumulate in the gap between the middle hand part and the side rail, Patent Documents 10 and 11 generate a circumferential oil flow. Spacer with a structure in which the middle hand is convex in the circumferential direction Kisupanda have been disclosed.
しかしながら、特許文献1〜5のコーティングを施す方法では余計な工程が増えてコストアップに繋がり、特許文献6の穿設する方法でも加工が難しく高価なものとなってしまう。また、特許文献7〜8のような中手部に溝を形成する方法では、エンジン停止時にはオイルが溝部に滞留することからオイルスラッジが堆積しやすく、エンジンの運転停止を繰り返すような運転パターンでは耐久性が充分であるとはいえない。 However, the methods of applying Patent Documents 1 to 5 increase the number of extra steps and increase the cost, and the method of Patent Document 6 is difficult and expensive to process. Also, in the method of forming a groove in the middle part as in Patent Documents 7 to 8, oil stays in the groove part when the engine is stopped, so oil sludge is likely to accumulate, and in an operation pattern in which the engine operation is repeatedly stopped. It cannot be said that the durability is sufficient.
本発明は、上記問題を解決するためになされたものであり、オイルスラッジの堆積及び固着しにくい表面形態を見出し、長期間のエンジン運転においても、スペーサエキスパンダとサイドレール間の固着が発生することなく、優れたオイルコントロール機能を維持し得る組合せオイルコントロールリング用のスペーサエキスパンダを提供することを課題とする。 The present invention has been made in order to solve the above-described problems, and finds a surface form in which oil sludge is hard to accumulate and adhere, and the spacer expander and the side rail are stuck even during long-term engine operation. It is an object of the present invention to provide a spacer expander for a combined oil control ring that can maintain an excellent oil control function.
本発明者は、結晶粒径の異なる帯状鋼線素材から塑性加工によってスペーサエキスパンダを成形したときに、スペーサエキスパンダの平坦な部分の粗さ曲線が結晶粒径に依存し、特にオイルスラッジの付着・堆積が、粗さ曲線の最大谷深さRvと密接に関係していることを発見し、本発明のスペーサエキスパンダに想到することができた。 When the present inventors formed a spacer expander by plastic working from a strip steel wire material having a different crystal grain size, the roughness curve of the flat portion of the spacer expander depends on the crystal grain size. It was discovered that the adhesion / deposition is closely related to the maximum valley depth Rv of the roughness curve, and the spacer expander of the present invention could be conceived.
すなわち、本発明のスペーサエキスパンダは、一対の円環状のサイドレールと組合せてオイルコントロールリングに使用されるスペーサエキスパンダであって、前記スペーサエキスパンダの前記サイドレールの上側面又は下側面に対向する平坦な部分の粗さ曲線の最大谷深さRvが2.5 μm以下であることを特徴とする。 That is, the spacer expander of the present invention is a spacer expander used for an oil control ring in combination with a pair of annular side rails, and is opposed to the upper side surface or the lower side surface of the side rail of the spacer expander. The maximum valley depth Rv of the roughness curve of the flat portion is 2.5 μm or less.
また、前記スペーサエキスパンダの母材は平均結晶粒径25 μm以下のオーステナイト系ステンレス鋼からなることが好ましい。前記オーステナイト系ステンレス鋼は、Feに加えて、質量%で、C:0.15%以下、Si:1.0%以下、Mn:3.0%以下、Ni:7〜11.0%、Cr:17.0〜21.0%、を含むことが好ましい。あるいは、Feに加えて、C:0.15%以下、Si:1.0%以下、Mn:5.0〜10.0%、Ni:3.0〜6.5%、Cr:15.5〜20.0%、を含むことが好ましい。 The base material of the spacer expander is preferably made of austenitic stainless steel having an average crystal grain size of 25 μm or less. The austenitic stainless steel contains, in addition to Fe, by mass, C: 0.15% or less, Si: 1.0% or less, Mn: 3.0% or less, Ni: 7 to 11.0%, Cr: 17.0 to 21.0% It is preferable. Alternatively, in addition to Fe, it is preferable that C: 0.15% or less, Si: 1.0% or less, Mn: 5.0 to 10.0%, Ni: 3.0 to 6.5%, Cr: 15.5 to 20.0%.
また、前記スペーサエキスパンダの前記サイドレールの上側面又は下側面に対向する前記平坦な部分の粗さ曲線の最大山高さRpは2.0 μm以下であることが好ましい。 Moreover, it is preferable that the maximum peak height Rp of the roughness curve of the flat portion facing the upper side surface or the lower side surface of the side rail of the spacer expander is 2.0 μm or less.
また、前記スペーサエキスパンダは、固着防止被膜を有することが好ましい。さらに、前記スペーサエキスパンダは、少なくとも耳部のサイドレール押圧面に窒化層を有することが好ましい。 The spacer expander preferably has an anti-adhesion coating. Furthermore, it is preferable that the spacer expander has a nitride layer on at least the side rail pressing surface of the ear.
本発明のスペーサエキスパンダは、サイドレールの上側面又は下側面に対向する平坦な部分において粗さ曲線の最大谷深さRvが2.5 μm以下で、平坦部分の凹みが浅く小さいので、粘性の高いオイルスラッジが溜まる面積が少ない。また、流動するオイルによってオイルスラッジが凹みから排出されやすく、オイルスラッジの付着・堆積が生じ難くなり、スペーサエキスパンダとサイドレール間の固着発生という重大な問題を回避することが可能となる。従来の固着防止コーティングやオイルスラッジの堆積しにくい構造と組み合わせれば、さらに長期間に亘って固着発生を回避しることが可能となる。 The spacer expander of the present invention has a high viscosity because the maximum valley depth Rv of the roughness curve is 2.5 μm or less in the flat part facing the upper side or the lower side of the side rail, and the dent in the flat part is shallow and small. The area where oil sludge accumulates is small. Further, the oil sludge is easily discharged from the dent by the flowing oil, so that the oil sludge is hardly attached and accumulated, and it is possible to avoid a serious problem of occurrence of sticking between the spacer expander and the side rail. When combined with a conventional anti-adhesion coating or a structure in which oil sludge is difficult to deposit, it becomes possible to avoid the occurrence of adhesion over a longer period of time.
本発明のスペーサエキスパンダ(1)は、図1に示すように、リング軸方向波形に山部(2)、谷部(3)、及び山部(2)と谷部(3)を繋ぐ脚部(4)とからなる。山部(2)及び谷部(3)の内周側には耳部(5a、5b)、外周側には突起部(6a、6b)、耳部(5a、5b)と突起部(6a、6b)の間に窪んだ中手部(7a、7b)が形成されている。このスペーサエキスパンダ(1)を一対の円環状のサイドレール(20a、20b)と組合せたとき、耳部(5a、5b)はサイドレールを径方向外方に押圧し、突起部(6a、6b)は、サイドレールを支持する役割を担う。また、図2に示すように、耳部(5a、5b)、突起部(6a、6b)、中手部(7a、7b)、及びサイドレール(20a、20b)の間に隙間(8a、8b)が形成される。本発明の課題に関係するオイルスラッジは、上記の隙間(8a、8b)に堆積しやすく、特に、軸方向幅寸法(h1)を小さくした薄幅オイルリングでは、この隙間が非常に狭いため、堆積したオイルスラッジによってサイドレール(20a、20b)がスペーサエキスパンダ(1)に固着する可能性が高くなる。本発明のスペーサエキスパンダ(1)のサイドレール(20a、20b)の上側面又は下側面に対向する平坦な部分とは、中手部(7a、7b)表面と突起部(6a、6b)表面を意味しており、本発明は、この部分の粗さ曲線の最大谷深さRvを2.5 μm以下とすることを特徴としている。 As shown in FIG. 1, the spacer expander (1) of the present invention has a peak (2), a valley (3), and a leg connecting the peak (2) and the valley (3) in the ring axial direction waveform. Part (4). Ear (5a, 5b) on the inner peripheral side of the peak (2) and valley (3), the protrusion (6a, 6b) on the outer peripheral side, the ear (5a, 5b) and the protrusion (6a, A hollow middle portion (7a, 7b) is formed between 6b). When this spacer expander (1) is combined with a pair of annular side rails (20a, 20b), the ears (5a, 5b) press the side rails radially outward, and the protrusions (6a, 6b) ) Is responsible for supporting the side rails. Also, as shown in FIG. 2, gaps (8a, 8b) between the ears (5a, 5b), the protrusions (6a, 6b), the middle hands (7a, 7b), and the side rails (20a, 20b) ) Is formed. Oil sludge related to the subject of the present invention is likely to accumulate in the gaps (8a, 8b), and particularly in a thin oil ring with a reduced axial width dimension (h1), the gap is very narrow, The accumulated oil sludge increases the possibility that the side rails (20a, 20b) are fixed to the spacer expander (1). The flat portion facing the upper side or lower side of the side rails (20a, 20b) of the spacer expander (1) of the present invention is the surface of the middle hand (7a, 7b) and the surface of the protrusion (6a, 6b). The present invention is characterized in that the maximum valley depth Rv of the roughness curve of this portion is 2.5 μm or less.
粗さ曲線の最大谷深さRv(JIS B 0601:2001)が2.5 μmを超えると、オイルスラッジの付着量が増大するため、スペーサエキスパンダとサイドレールの固着が生じやすくなって、好ましくない。最大谷深さRvは2.2 μm以下が好ましく、2.0 μm以下がより好ましい。最大谷深さRvの下限は、オイルスラッジ付着量の観点では小さいほど好ましいが、例えば、1 μm、1.2 μm又は1.4 μmを下限とすることにより、例えば、新たな研磨工程等を検討する必要性がなくなり、製造コストの観点で好ましくなる。 When the maximum valley depth Rv (JIS B 0601: 2001) of the roughness curve exceeds 2.5 μm, the amount of oil sludge adhering increases, so that the spacer expander and the side rail are likely to adhere to each other, which is not preferable. The maximum valley depth Rv is preferably 2.2 μm or less, and more preferably 2.0 μm or less. The lower limit of the maximum valley depth Rv is preferably as small as possible from the viewpoint of the amount of oil sludge attached. This is preferable from the viewpoint of manufacturing cost.
スペーサエキスパンダの平坦な部分の粗さ曲線は、帯状鋼線素材から塑性加工によってスペーサエキスパンダを成形したときに決定される。図3は帯状の鋼線材からスペーサエキスパンダが成形される形状変化を模式的に示しているが、まず第1の成形工程(1段ギア成形機)で、山部(12)と谷部(13)と脚部(14)を有する波状の素材に成形され、次に第2の成形工程(2段ギア成形機)で、山部(12、図1では2)及び谷部(13、図1では3)の左側(リング状にコイリング後は内周側となる)に耳部(5a、5b)、右側(リング状にコイリング後は外周側となる)に突起部(6a、6b)、耳部(5a、5b)と突起部(6a、6b)の間に中手部(7a、7b)が形成される。このように成形された素材は、コイリング(コイル状に成形)され、内部応力除去の熱処理を施した後、切断及び研磨により合口が形成されて、スペーサエキスパンダとなる。スペーサエキスパンダに使用される帯状鋼線素材としては、曲げ加工性に優れたオーステナイト系ステンレス鋼が好ましい。 The roughness curve of the flat portion of the spacer expander is determined when the spacer expander is formed from a strip steel wire material by plastic working. Fig. 3 schematically shows the shape change in which a spacer expander is formed from a strip-shaped steel wire. First, in the first forming step (one-stage gear forming machine), a peak (12) and a trough ( 13) and legs (14) are formed into a wavy material, and then in the second forming step (two-stage gear forming machine), peaks (12, 2 in FIG. 1) and valleys (13, FIG. In 1), the ears (5a, 5b) are on the left side of 3) (after coiling in the ring shape), and the protrusions (6a, 6b) are on the right side (outer side after coiling in the ring shape), Middle hands (7a, 7b) are formed between the ears (5a, 5b) and the protrusions (6a, 6b). The material formed in this way is coiled (formed in a coil shape), subjected to heat treatment for removing internal stress, and then cut and polished to form a joint, thereby forming a spacer expander. As the strip-shaped steel wire material used for the spacer expander, austenitic stainless steel excellent in bending workability is preferable.
スペーサエキスパンダの平坦部の凹凸は上記成形工程において出現し、帯状鋼線素材として使用するオーステナイト系ステンレス鋼の結晶粒径が大きいほど粗くなる。すなわち、平坦部の粗さ曲線の最大谷深さRvはオーステナイト系ステンレス鋼の結晶粒径が大きいほど大きくなる。この現象は、上記成形工程におけるオーステナイト系ステンレス鋼を構成する結晶の変形が、異なる方位をもつ各結晶粒で異なることに関係している。最大谷深さRvが2.5 μm以下になるようにするには、平均結晶粒径dが25 μm以下のオーステナイト系ステンレス鋼を使用することが好ましく、一方、結晶粒径を小さくしていくと塑性加工性(変形能)が悪化するため、下限は9 μm以上であることが好ましい。平均結晶粒径dの上限は22 μm以下であることがより好ましく、20 μm以下であることがさらに好ましい。また、平均結晶粒径dの下限は10 μmであることがより好ましく、11 μmであることがさらに好ましい。 The unevenness of the flat portion of the spacer expander appears in the forming step, and becomes rougher as the crystal grain size of the austenitic stainless steel used as the strip steel wire material increases. That is, the maximum valley depth Rv of the roughness curve of the flat portion increases as the crystal grain size of the austenitic stainless steel increases. This phenomenon is related to the fact that the deformation of crystals constituting the austenitic stainless steel in the forming step is different for each crystal grain having a different orientation. In order to make the maximum valley depth Rv 2.5 μm or less, it is preferable to use an austenitic stainless steel having an average crystal grain size d of 25 μm or less. On the other hand, as the crystal grain size decreases, the plasticity increases. Since processability (deformability) deteriorates, the lower limit is preferably 9 μm or more. The upper limit of the average crystal grain size d is more preferably 22 μm or less, and further preferably 20 μm or less. Further, the lower limit of the average crystal grain size d is more preferably 10 μm, and even more preferably 11 μm.
本発明に使用されるオーステナイト系ステンレス鋼は、Feに加えて、質量%で、C:0.15%以下、Si:1.0%以下、Mn:3.0%以下、Ni:7.0〜11.0%、Cr:17.0〜21.0%を含むことが好ましい。さらに、Moを0.5%以下含むことも好ましい。また、前記オーステナイト系ステンレス鋼は、質量%で、C:0.15%以下、Si:1.0%以下、Mn:3.0%以下、Ni:7.0〜11.0%、Cr:17.0〜21.0%、残部がFe及び不可避的不純物からなることが好ましい。さらに、前記オーステナイト系ステンレス鋼は、質量%で、C:0.15%以下、Si:1.0%以下、Mn:5.0〜10.0%、Ni:3.0〜6.5%、Cr:15.5〜20.0%、残部がFe及び不可避的不純物からなることが好ましい。 The austenitic stainless steel used in the present invention is, in addition to Fe, in mass%, C: 0.15% or less, Si: 1.0% or less, Mn: 3.0% or less, Ni: 7.0 to 11.0%, Cr: 17.0 to It is preferable to contain 21.0%. Furthermore, it is also preferable that Mo is contained at 0.5% or less. The austenitic stainless steel is in mass%, C: 0.15% or less, Si: 1.0% or less, Mn: 3.0% or less, Ni: 7.0 to 11.0%, Cr: 17.0 to 21.0%, the balance being Fe and inevitable Preferably, it consists of a general impurity. Further, the austenitic stainless steel is, by mass%, C: 0.15% or less, Si: 1.0% or less, Mn: 5.0 to 10.0%, Ni: 3.0 to 6.5%, Cr: 15.5 to 20.0%, the balance being Fe and It is preferable to consist of inevitable impurities.
本発明のスペーサエキスパンダは、第1の成形工程で成形した山部(12)と谷部(13)と脚部(14)からなる波状の素材の山部(12)と谷部(13)を、第2の成形工程である2段ギア成形で押し潰し、中手部(7a、7b)と突起部(6a、6b)を形成する。このとき、第1の成形工程で形成された凹凸の凸部は押し潰され、最終的に最大谷深さRvに比べて小さな最大山高さRpが計測される。最大山高さRpに注目した場合、本発明では、スペーサエキスパンダの平坦な部分の粗さ曲線の最大山高さRpが2.0 μm以下であることが好ましい。最大山高さRpは、1.6 μm以下であることがより好ましく、1.4 μm以下であることがさらに好ましい。 The spacer expander of the present invention is a ridge (12) and a trough (13) of a corrugated material composed of a crest (12), a trough (13) and a leg (14) molded in the first molding step. These are crushed by two-stage gear molding, which is the second molding step, to form the middle hands (7a, 7b) and the protrusions (6a, 6b). At this time, the concavo-convex convex portion formed in the first forming step is crushed, and finally a maximum peak height Rp smaller than the maximum valley depth Rv is measured. When attention is paid to the maximum peak height Rp, in the present invention, the maximum peak height Rp of the roughness curve of the flat portion of the spacer expander is preferably 2.0 μm or less. The maximum peak height Rp is more preferably 1.6 μm or less, and further preferably 1.4 μm or less.
本発明のスペーサエキスパンダは、スペーサエキスパンダの表面に固着防止被膜を有していることが好ましい。固着防止被膜は特許文献1〜5に示された被膜を含み、その他のNiめっき等の公知の被膜も含まれる。また、少なくとも、サイドレールを径方向外方に押圧するスペーサエキスパンダの耳部表面に、塩浴窒化やガス窒化による窒化層を有していても良い。 The spacer expander of the present invention preferably has an anti-adhesion coating on the surface of the spacer expander. The anti-adhesion coating includes the coatings disclosed in Patent Documents 1 to 5, and includes other known coatings such as Ni plating. In addition, a nitride layer formed by salt bath nitriding or gas nitriding may be provided at least on the surface of the ear portion of the spacer expander that presses the side rail radially outward.
実施例1〜3、比較例1〜3
質量%で、C:0.051%、Si:0.55%、Mn:1.06%、P:0.021%、S:0.007%、Cr:18.48%、Ni:9.53%、残部がFeからなる鋼材を、複数回の伸線処理、圧延処理、固溶化処理を経て得た1.9 mm×0.25 mmのフープ線材から、組合せオイルリングの呼び径(d1)71 mm、組合せ呼び幅(h1)2.0 mm、組合せ厚さ(a1)2.3 mmとなる組合せオイルリング用のスペーサエキスパンダを作製した。ここで、スペーサエキスパンダの母材のオーステナイト系ステンレス鋼の平均結晶粒径dは、固溶化処理温度を変えて変化させている。スペーサエキスパンダの山部(谷部)から山部(谷部)へのピッチは2.7 mmとし、中手部の高さ(l)は0.8 mm、突起部の高さ(m)は0.5 mmとした。
Examples 1-3, Comparative Examples 1-3
In mass%, C: 0.051%, Si: 0.55%, Mn: 1.06%, P: 0.021%, S: 0.007%, Cr: 18.48%, Ni: 9.53%, the balance being Fe. From a 1.9 mm x 0.25 mm hoop wire obtained through wire drawing, rolling, and solution treatment, nominal diameter of combined oil ring (d1) 71 mm, combined nominal width (h1) 2.0 mm, combined thickness (a1 ) A spacer expander for a combined oil ring of 2.3 mm was produced. Here, the average crystal grain size d of the austenitic stainless steel as the base material of the spacer expander is changed by changing the solution treatment temperature. The pitch from the peak (valley) to the peak (valley) of the spacer expander is 2.7 mm, the height (l) of the middle hand is 0.8 mm, and the height (m) of the protrusion is 0.5 mm. did.
[1] 平均結晶粒径の測定
実施例1〜3及び比較例1〜3のスペーサエキスパンダの断面は鏡面研磨され、腐食液(マーブル試薬や王水など)や硝酸中での電解腐食法でエッチングした後、光学顕微鏡で観察された。平均結晶粒径dは、JIS G 0551に準じ、画像解析ソフトにて切断法により粒径を算出した。実施例1〜3及び比較例1〜3の平均結晶粒径dは、実施例1が21 μm、実施例2が14 μm、実施例3が11 μm、比較例1が64 μm、比較例2が42 μm、比較例3が32 μmであった。
[1] Measurement of average crystal grain size The cross sections of the spacer expanders in Examples 1 to 3 and Comparative Examples 1 to 3 are mirror-polished and subjected to electrolytic corrosion in a corrosive liquid (such as marble reagent or aqua regia) or nitric acid. After etching, it was observed with an optical microscope. The average crystal grain size d was calculated by a cutting method using image analysis software according to JIS G 0551. The average crystal grain sizes d of Examples 1 to 3 and Comparative Examples 1 to 3 are 21 μm in Example 1, 14 μm in Example 2, 11 μm in Example 3, 64 μm in Comparative Example 1, and Comparative Example 2. Was 42 μm, and Comparative Example 3 was 32 μm.
[2] 最大谷深さRv、最大山高さRpの測定
実施例1〜3及び比較例1〜3のスペーサエキスパンダの中手部の粗さ曲線のデータが取れるように固定し、触診式表面粗さ試験機を用いて、触診を径方向に移動させてJIS B 0601: 2001に規定される粗さ曲線の最大谷深さRvと最大山高さRpを測定した。但し、径方向の長さが0.8 mmであり、JIS B 0601:2001に規定される評価長さ1.25 mmを満たすことができないので、評価長さ0.6 mmで測定した。図4は実施例1のスペーサエキスパンダの中手部の粗さ曲線を示す。山部が第2の成形工程で潰されて扁平な形状の傾向にあり、RpがRvよりも小さく測定されている様子が分かる。実施例1〜3及び比較例1〜3の評価結果は後述する表1に示す。
[2] Measurement of maximum valley depth Rv and maximum peak height Rp The surface of the spacer expander of Examples 1 to 3 and Comparative Examples 1 to 3 was fixed so that the roughness curve data could be taken, and the palpated surface Using a roughness tester, palpation was moved in the radial direction, and the maximum valley depth Rv and the maximum peak height Rp of the roughness curve defined in JIS B 0601: 2001 were measured. However, since the length in the radial direction is 0.8 mm and the evaluation length of 1.25 mm specified in JIS B 0601: 2001 cannot be satisfied, the measurement was performed at an evaluation length of 0.6 mm. FIG. 4 shows a roughness curve of the middle part of the spacer expander of Example 1. It can be seen that the crest is crushed in the second molding step and tends to have a flat shape, and Rp is measured smaller than Rv. The evaluation results of Examples 1 to 3 and Comparative Examples 1 to 3 are shown in Table 1 described later.
[3] オイルスラッジ付着試験
油温80℃に調整した劣化オイル槽と、炉内温度を190℃に調整した縦型電気炉を垂直に配置し、試料が劣化オイル槽と電気炉を垂直に繰り返し移動できる移動機構を備えた装置を組み立て、オイルスラッジ付着試験を行った。劣化オイルとしては、実際のエンジン運転によりオイルスラッジの混在したものを使用した。オイルスラッジ付着試験は、実施例1〜3、比較例1〜3のスペーサエキスパンダから切り出し予め質量を測定した試料を移動機構の移動部に固定して、オイル槽への浸漬(1分間)と電気炉中での熱処理(4分間)のサイクルを35時間繰り返すことによって行った。試験終了後、試料はアセトンで洗浄後、電気炉中120℃で1時間乾燥し、デシケータ中で室温まで冷却して試料の質量を測定した。オイルスラッジ付着試験前後の質量の差より、各試料のオイルスラッジ付着量を求めた。結果を表1に示す。各試料のオイルスラッジ付着量は、35時間試験後の比較例1の単位面積当たりのオイルスラッジ付着量を100として、相対値で表した。なお、各試料の平均結晶粒径d、中手部の粗さ曲線の最大谷深さRv及び最大山高さRpについても表1に示した。
[3] Oil sludge adhesion test A deteriorated oil tank adjusted to an oil temperature of 80 ° C and a vertical electric furnace adjusted to a furnace temperature of 190 ° C are arranged vertically, and the sample repeats the deteriorated oil tank and the electric furnace vertically. A device equipped with a movable mechanism was assembled and an oil sludge adhesion test was conducted. As the deteriorated oil, oil sludge mixed by actual engine operation was used. The oil sludge adhesion test is performed by fixing a sample, which has been cut out from the spacer expanders of Examples 1 to 3 and Comparative Examples 1 to 3 and measured in advance, to the moving part of the moving mechanism, and immersed in the oil tank (for 1 minute). The cycle of heat treatment (4 minutes) in an electric furnace was repeated for 35 hours. After completion of the test, the sample was washed with acetone, dried in an electric furnace at 120 ° C. for 1 hour, cooled to room temperature in a desiccator, and the mass of the sample was measured. From the mass difference before and after the oil sludge adhesion test, the oil sludge adhesion amount of each sample was determined. The results are shown in Table 1. The amount of oil sludge attached to each sample was expressed as a relative value with the amount of oil sludge attached per unit area of Comparative Example 1 after the 35 hour test as 100. Table 1 also shows the average crystal grain size d of each sample, the maximum valley depth Rv and the maximum peak height Rp of the roughness curve of the middle portion.
図5は実施例1、図6は比較例1のスラッジ付着試験後の表面状態を示す。比較例1のほうが比較的大きな凹部(黒い部分)が観察され、オイルスラッジ付着量の結果と併せると、オイルスラッジが付着・堆積しやすい傾向があることが理解できる。 FIG. 5 shows the surface condition after the sludge adhesion test of Example 1 and FIG. In Comparative Example 1, a relatively large concave portion (black portion) is observed, and it can be understood that oil sludge tends to adhere and accumulate when combined with the result of the oil sludge adhesion amount.
実施例4〜6及び比較例4
質量%で、C:0.09%、Si:0.40%、Mn:6.2%、P:0.025%、S:0.002%、Cr:17.4%、Ni:4.8%、残部がFeからなる鋼材から、実施例1と同様にしてスペーサエキスパンダを作製し、実施例1と同様にして平均結晶粒径d、最大谷深さRv及び最大山高さRpを測定し、並びにオイルスラッジ付着試験を行った。結果を表2に示す。ここで、実施例4〜6及び比較例4は、それぞれ固溶化処理温度を変えて各平均結晶粒径dを変化させている。
Examples 4 to 6 and Comparative Example 4
From a steel material comprising, in mass%, C: 0.09%, Si: 0.40%, Mn: 6.2%, P: 0.025%, S: 0.002%, Cr: 17.4%, Ni: 4.8%, the balance being Fe, Example 1 A spacer expander was prepared in the same manner as in Example 1, and the average crystal grain size d, the maximum valley depth Rv, and the maximum peak height Rp were measured in the same manner as in Example 1, and an oil sludge adhesion test was performed. The results are shown in Table 2. Here, in Examples 4 to 6 and Comparative Example 4, each average crystal grain size d is changed by changing the solution treatment temperature.
表1及び表2より、平均結晶粒径dが大きくなると、平坦部の粗さ曲線の最大谷深さRvと最大山高さも大きくなることが観察され、最大谷深さRv及び最大山高さRpが大きくなるとオイルスラッジ付着量も大きくなる傾向が観察された。さらに、Rvが2.5 μm近傍、Rpが2.0 μm近傍を超えるとオイルスラッジ付着量が急激に増加することも観察された。 From Tables 1 and 2, it is observed that the maximum valley depth Rv and the maximum peak height Rp of the roughness curve of the flat portion increase as the average grain size d increases, and the maximum valley depth Rv and the maximum peak height Rp are It was observed that the oil sludge adhesion amount increased as the value increased. Furthermore, it was observed that the amount of oil sludge adheringly increased when Rv exceeded 2.5 μm and Rp exceeded 2.0 μm.
1 スペーサエキスパンダ
2, 12 山部
3, 13 谷部
4, 14 脚部
5a, 5b 耳部
6a, 6b 突起部
7a, 7b 中手部
8a, 8b 隙間
20a, 20b サイドレール
1 Spacer expander
2, 12 Yamabe
3, 13 Tanibe
4, 14 legs
5a, 5b ear
6a, 6b Projection
7a, 7b Middle hand
8a, 8b clearance
20a, 20b side rail
Claims (8)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017174600A JP6957280B2 (en) | 2017-09-12 | 2017-09-12 | Spacer expander |
PCT/JP2018/033561 WO2019054355A1 (en) | 2017-09-12 | 2018-09-11 | Spacer expander |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017174600A JP6957280B2 (en) | 2017-09-12 | 2017-09-12 | Spacer expander |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019049334A true JP2019049334A (en) | 2019-03-28 |
JP6957280B2 JP6957280B2 (en) | 2021-11-02 |
Family
ID=65722693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017174600A Active JP6957280B2 (en) | 2017-09-12 | 2017-09-12 | Spacer expander |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6957280B2 (en) |
WO (1) | WO2019054355A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7462123B1 (en) | 2023-09-29 | 2024-04-04 | 株式会社リケン | Oil Control Ring |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003027208A (en) * | 2001-07-06 | 2003-01-29 | Riken Corp | Partial nitriding method and spacer expander |
JP2006275269A (en) * | 2005-03-30 | 2006-10-12 | Nippon Piston Ring Co Ltd | Combined sliding member |
WO2011043364A1 (en) * | 2009-10-06 | 2011-04-14 | 株式会社リケン | Oil ring for internal combustion engine |
-
2017
- 2017-09-12 JP JP2017174600A patent/JP6957280B2/en active Active
-
2018
- 2018-09-11 WO PCT/JP2018/033561 patent/WO2019054355A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003027208A (en) * | 2001-07-06 | 2003-01-29 | Riken Corp | Partial nitriding method and spacer expander |
JP2006275269A (en) * | 2005-03-30 | 2006-10-12 | Nippon Piston Ring Co Ltd | Combined sliding member |
WO2011043364A1 (en) * | 2009-10-06 | 2011-04-14 | 株式会社リケン | Oil ring for internal combustion engine |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7462123B1 (en) | 2023-09-29 | 2024-04-04 | 株式会社リケン | Oil Control Ring |
Also Published As
Publication number | Publication date |
---|---|
JP6957280B2 (en) | 2021-11-02 |
WO2019054355A1 (en) | 2019-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2014059062A (en) | Metallic flat gasket and manufacturing method | |
JP5463364B2 (en) | Oil ring for internal combustion engine | |
JP5135479B2 (en) | PRESS MOLD AND METHOD FOR PRODUCING PROTECTIVE FILM FOR PRESS MOLD | |
KR20120005473A (en) | Titanium plate and method for manufacturing titanium plates | |
WO2015023002A1 (en) | Pressure ring | |
EP2693085A1 (en) | Multi-piece oil ring | |
WO2013180065A1 (en) | Combined oil control ring | |
JP2019049334A (en) | Spacer expander | |
JP7182097B2 (en) | Oil ring for internal combustion engine | |
JP5269435B2 (en) | Roll in bath for hot metal plating | |
JP6228452B2 (en) | Combination oil control ring | |
JP5479658B1 (en) | piston ring | |
JP2006300224A (en) | Three-piece combination oil ring | |
JP6457856B2 (en) | Manufacturing method for continuous wave products | |
JP4323456B2 (en) | Spacer expander and manufacturing method thereof | |
WO2016163498A1 (en) | Combined oil control ring | |
WO2016163497A1 (en) | Combined oil control ring | |
JP2015057516A (en) | Pressure ring | |
JP2016194373A (en) | Combination oil control ring | |
JP6584243B2 (en) | Piston ring and manufacturing method thereof | |
JP2008095722A (en) | Sliding method | |
JP2009036035A (en) | Multi-piece steel oil ring for internal combustion engine | |
JP2023051683A (en) | sliding member | |
RU38376U1 (en) | REINFORCED GASKET MATERIAL AND GASKET EXECUTED FROM THIS MATERIAL | |
DE102009042743A1 (en) | Mold or crucible and method for coating heat exchanger surfaces of a mold or crucible |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200820 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210727 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210921 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211005 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211006 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6957280 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |