[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018046163A - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
JP2018046163A
JP2018046163A JP2016180034A JP2016180034A JP2018046163A JP 2018046163 A JP2018046163 A JP 2018046163A JP 2016180034 A JP2016180034 A JP 2016180034A JP 2016180034 A JP2016180034 A JP 2016180034A JP 2018046163 A JP2018046163 A JP 2018046163A
Authority
JP
Japan
Prior art keywords
semiconductor
region
trench
type
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016180034A
Other languages
English (en)
Other versions
JP6801323B2 (ja
Inventor
明将 木下
Akimasa Kinoshita
明将 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2016180034A priority Critical patent/JP6801323B2/ja
Priority to US15/665,883 priority patent/US10276709B2/en
Publication of JP2018046163A publication Critical patent/JP2018046163A/ja
Priority to US16/221,272 priority patent/US10522676B2/en
Application granted granted Critical
Publication of JP6801323B2 publication Critical patent/JP6801323B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/64Double-diffused metal-oxide semiconductor [DMOS] FETs
    • H10D30/66Vertical DMOS [VDMOS] FETs
    • H10D30/668Vertical DMOS [VDMOS] FETs having trench gate electrodes, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D12/00Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
    • H10D12/01Manufacture or treatment
    • H10D12/031Manufacture or treatment of IGBTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D12/00Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
    • H10D12/01Manufacture or treatment
    • H10D12/031Manufacture or treatment of IGBTs
    • H10D12/032Manufacture or treatment of IGBTs of vertical IGBTs
    • H10D12/038Manufacture or treatment of IGBTs of vertical IGBTs having a recessed gate, e.g. trench-gate IGBTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/028Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
    • H10D30/0291Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of vertical DMOS [VDMOS] FETs
    • H10D30/0297Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of vertical DMOS [VDMOS] FETs using recessing of the gate electrodes, e.g. to form trench gate electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • H10D62/106Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]  having supplementary regions doped oppositely to or in rectifying contact with regions of the semiconductor bodies, e.g. guard rings with PN or Schottky junctions
    • H10D62/107Buried supplementary regions, e.g. buried guard rings 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/393Body regions of DMOS transistors or IGBTs 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/83Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
    • H10D62/832Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge being Group IV materials comprising two or more elements, e.g. SiGe
    • H10D62/8325Silicon carbide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/40Crystalline structures
    • H10D62/405Orientations of crystalline planes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】簡易に製造することができるとともに、耐圧を維持したまま、所定のゲート閾値電圧に設定することができる半導体装置および半導体装置の製造方法を提供すること。【解決手段】炭化珪素基板10のおもて面側に、トレンチゲート構造のMOSゲートが設けられている。トレンチゲート構造を構成するゲートトレンチ8は、n+型ソース領域6およびp型ベース領域3を貫通してn-型ドリフト領域2に達する。隣り合うゲートトレンチ8間には、ゲートトレンチ8と離して、p型ベース領域3を深さ方向に貫通してn-型ドリフト領域2に達する第1p+型領域4が設けられている。第1p+型領域4は、p++型コンタクト領域7の直下に設けられている。第1p+型領域4の幅w2は、ゲートトレンチ8の幅w1よりも狭い。ゲートトレンチ8の底部には、第2p+型領域5が設けられている。第1,2p+型領域4,5は、炭化珪素エピタキシャル成長層である。【選択図】図1

Description

この発明は、半導体装置および半導体装置の製造方法に関する。
炭化珪素(SiC)は、シリコン(Si)と比較して、バンドギャップが3倍程度広く、絶縁破壊電界強度が1桁近く大きい、および、電子の飽和ドリフト速度が大きい、という優れた物性を有する。このため、従来よりパワー半導体装置の材料としてシリコンが広く用いられているが、シリコンを用いたパワー半導体装置の性能を超えるためには、パワー半導体装置の材料として炭化珪素を用いることが有効である。
また、従来、スイッチングデバイスである縦型MOSFET(Metal Oxide Semiconductor Field Effect Transistor:絶縁ゲート型電界効果トランジスタ)では、半導体基板上に平板状にMOSゲートを設けたプレーナゲート構造と、半導体基板に形成したトレンチ内にMOSゲートを埋め込んだトレンチゲート構造と、の2種類のMOSゲート構造が広く知られている。
最近の縦型パワー半導体装置においては、トレンチゲート構造が注目されている。トレンチゲート構造では、チャネルが基板おもて面に垂直に形成されるため、チャネルが基板おもて面に平行に形成されるプレーナゲート構造よりもセル幅を縮小することができる。これによって、単位面積当たりのセル密度を増やすことができ、単位面積当たりの電流密度を増やすことができるため、コスト面で有利になるからである。
このような理由から、シリコンを用いた縦型MOSFETにおいても、プレーナゲート構造からトレンチゲート構造へと移行してきた経緯がある。このため、炭化珪素を用いた縦型MOSFETにおいても、シリコンを用いた縦型MOSFETと同様に、最終的にはトレンチゲート構造が求められる。
しかしながら、炭化珪素を用いた縦型MOSFETでは、チャネル付近の残留炭素(C)の悪影響や、トレンチゲート構造の加工の難しさから、トレンチゲート構造を採用した場合、シリコンを用いた縦型MOSFETよりもチャネル移動度が大きく低下する。このため、チャネル抵抗が高くなり、シリコンに対する優位性が低下する。チャネル抵抗を低下させるためには、チャネル長を短くしたり、ベース領域の、チャネルが形成されるトレンチ側壁に沿った部分の不純物濃度を低くしてチャネルの極性が反転されやすくするなどの対策を行うことが挙げられる。しかしながら、チャネル長を短くした場合、ドリフト領域とソース領域との距離が近づくため、パンチスルー(ゲート電圧を印加しない状態でドレイン−ソース間に電流が流れる現象)しやすくなり、耐圧(耐電圧)低下が懸念される。
また、ベース領域の不純物濃度を低くした場合、ゲート電圧印加時にゲート絶縁膜とベース領域との境界からベース領域内に多数キャリアの空乏層(チャネル)が広がりやすくなる。これにより、チャネルにかかる電界強度が弱くなるため、チャネル内の少数キャリア密度が上がりにくく、チャネル内の少数キャリア密度を増やしてチャネルの極性を反転させるために高いゲート電圧を印加する必要があり、ベース領域の不純物濃度を低くすることによって得られるゲート閾値電圧を低くする効果は小さい。すなわち、ゲート閾値電圧を基準にすると、ゲート閾値電圧を上げたい場合はベース領域の不純物濃度を十分に上げる必要があるためチャネル抵抗が上がりすぎ、ゲート閾値電圧を下げたい場合はベース領域の不純物濃度を必要以上に下げることになり、耐圧低下が懸念される。耐圧とは、アバランシェ降伏が起こる電圧である。
炭化珪素を用いたトレンチゲート構造の縦型MOSFETとして、トレンチ内壁に沿って電子移動度の大きいn型領域を設けることで、チャネル抵抗を低減させたnチャネル型MOSFETが提案されている(例えば、下記特許文献1(第0032段落、第1図)参照。)。下記特許文献1では、p型ベース領域の、ゲート閾値電圧を決定する因子であるトレンチ側壁に沿った部分をn型化することで、チャネル抵抗を低減している。
また、炭化珪素を用いたトレンチゲート構造の別の縦型MOSFETとして、半導体材料として炭化珪素を用い、隣り合うトレンチ間に挟まれたp型ベース領域の幅を狭くし、かつ不純物濃度を低くした装置が提案されている(例えば、下記特許文献2(第0033〜0034段落、第1〜3図)参照。)。下記特許文献2では、p型ベース領域の幅を狭くすることで多数キャリアの空乏層の広がりを抑制し、耐圧低下を抑制している。
特許第4678902号公報 特開2011−023675号公報
しかしながら、p型ベース領域の、トレンチ側壁に沿った部分を、低不純物濃度としたり、上記特許文献1のようにn型化した構造をイオン注入で形成する場合、基板おもて面に垂直な方向からのn型不純物のイオン注入では、トレンチ側壁へのn型不純物の注入量が少なかったり、n型不純物の注入深さが浅くなるという問題がある。このため、n型不純物の注入量および注入深さを確保するためには、基板おもて面に対して斜めの方向からトレンチ側壁にn型不純物をイオン注入する必要があるが、トレンチの側壁ごとに注入角度を変えてイオン注入を行う必要があるため、イオン注入回数が増えるという新たな問題が生じる。
また、上記特許文献1では、トレンチ底部に沿ってn型領域が設けられていることで、トレンチ底部におけるn型不純物濃度が高くなる。このため、MOSFETのオフ時にトレンチ底部への電界集中が強くなり、トレンチ底部に沿った部分でゲート絶縁膜の絶縁破壊による耐圧低下の虞がある。上記特許文献2では、トレンチ間隔を狭くする部分で、MOSゲート構造の形成が困難である。また、トレンチ底部がベース領域とドリフト領域との間のpn接合よりもドレイン側に位置するため、MOSFETのオフ時にトレンチ底部への電界集中が強くなり、トレンチ底部においてゲート絶縁膜の絶縁破壊による耐圧低下の虞がある。
この発明は、上述した従来技術による問題点を解消するため、簡易に製造することができるとともに、耐圧を維持したまま、所定のゲート閾値電圧に設定することができる半導体装置および半導体装置の製造方法を提供することを目的とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、次の特徴を有する。シリコンよりもバンドギャップの広い半導体からなる半導体基板のおもて面に、第1導電型の第1半導体層が設けられている。前記第1半導体層の、前記半導体基板側に対して反対側の表面に、第2導電型の第2半導体層が設けられている。前記第2半導体層の内部に、第1導電型の第1半導体領域が選択的に設けられている。トレンチは、前記第1半導体領域および前記第2半導体層を深さ方向に貫通して前記第1半導体層に達する。前記トレンチの内部に、ゲート絶縁膜を介してゲート電極が設けられている。前記トレンチと離して、前記第2半導体層を深さ方向に貫通して前記第1半導体層に達する第2導電型の第2半導体領域が設けられている。前記第2半導体領域は、前記第2半導体層よりも不純物濃度が高い。前記第1半導体層の内部に、前記第2半導体層および前記第2半導体領域と離して、第2導電型の第3半導体領域が設けられている。前記第3半導体領域は、前記トレンチの底部を覆う。前記第3半導体領域は、前記第2半導体層よりも不純物濃度が高い。第1電極は、前記第1半導体領域および前記第2半導体層に電気的に接続されている。第2電極は、前記半導体基板の裏面に設けられている。
また、この発明にかかる半導体装置は、上述した発明において、前記第2半導体領域の幅は、前記トレンチの幅よりも狭いことを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第2半導体領域の前記第2電極側の端部は、前記トレンチの底部よりも前記第2電極側に位置することを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第2半導体層の内部に選択的に設けられた第2導電型の第4半導体領域をさらに備える。前記第4半導体領域は、前記第2半導体領域よりも不純物濃度が高い。前記第1電極は、前記第1半導体領域および前記第4半導体領域に接する。前記第2半導体領域は、前記第4半導体領域の前記第2電極側に設けられ、前記第4半導体領域に接することを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第1半導体層の内部において、前記第2半導体領域の前記第2電極側に設けられた第2導電型の第5半導体領域をさらに備えることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第5半導体領域の幅は、前記第2半導体領域の幅よりも広いことを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第5半導体領域は、前記第2半導体領域の前記第2電極側の端部を覆うことを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記トレンチは、前記半導体基板のおもて面に平行に延びる直線状のレイアウトに設けられている。前記第2半導体領域および前記第5半導体領域は、前記トレンチが直線状に延びる方向に平行な直線状のレイアウトに設けられていることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記トレンチは、前記半導体基板のおもて面に平行に延びる直線状のレイアウトに設けられている。前記第2半導体領域は、前記トレンチが直線状に延びる方向に平行な直線状のレイアウトに設けられている。前記第5半導体領域は、前記第2半導体領域が直線状に延びる方向に所定の間隔で複数配置されていることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第5半導体領域の不純物濃度は、前記第2半導体領域の不純物濃度よりも高いことを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第2半導体領域は、エピタキシャル成長層であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第3半導体領域は、エピタキシャル成長層であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、シリコンよりもバンドギャップの広い半導体は炭化珪素であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第2半導体層の、前記第1半導体層側に対して反対側の面は(0001)面であり、前記トレンチの側壁は{1−100}面であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第2半導体層は、最も不純物濃度の高い位置から深さ方向に高低差をもつガウス分布状の第2導電型不純物濃度プロファイルを有することを特徴とする。
また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置の製造方法は、次の特徴を有する。まず、シリコンよりもバンドギャップの広い半導体からなる半導体基板のおもて面に、第1導電型の第1半導体層をエピタキシャル成長させる第1工程を行う。次に、前記第1半導体層の上に、第2導電型の第2半導体層をエピタキシャル成長させる第2工程を行う。次に、前記第2半導体層を深さ方向に貫通して前記第1半導体層に達する第1トレンチと、前記第2半導体層を深さ方向に貫通して前記第1半導体層に達する、前記第1トレンチよりも幅の狭い第2トレンチと、を互いに離して形成する第3工程を行う。次に、前記第2半導体層の表面および前記第1トレンチの内壁に沿って、前記第2半導体層よりも不純物濃度の高い第2導電型の第3半導体層をエピタキシャル成長させるとともに、前記第2トレンチの内部を前記第3半導体層で完全に埋める第4工程を行う。次に、前記第3半導体層の、前記第1トレンチの側壁の部分を除去して、前記第1トレンチの側壁に前記第1半導体層および前記第2半導体層を露出させる第5工程を行う。次に、隣り合う前記第1トレンチ間に残る前記第3半導体層に、前記第1トレンチの側壁に露出し、かつ前記第2半導体層に達する第1導電型の第1半導体領域を選択的に形成する第6工程を行う。次に、前記第1トレンチの底部に残る前記第3半導体層の表面および前記第1トレンチの側壁に沿ってゲート絶縁膜を形成する第7工程を行う。次に、前記第1トレンチの内部において、前記ゲート絶縁膜上にゲート電極を形成する第8工程を行う。次に、前記第1半導体領域および前記第3半導体層に電気的に接続する第1電極を形成する第9工程を行う。次に、前記半導体基板の裏面に第2電極を形成する第10工程を行う。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第3工程では、前記半導体基板のおもて面よりも酸化速度の早い結晶面を側壁とする前記第1トレンチを形成する。前記第5工程では、前記第3半導体層の、前記第1トレンチの側壁の部分を酸化して酸化膜を形成し、当該酸化膜を除去することで前記第1トレンチの側壁に前記第1半導体層および前記第2半導体層を露出させることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、(0001)面をおもて面とする前記半導体基板を用いる。前記第3工程では、{1−100}面を側壁とする前記第1トレンチを形成することを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第5工程の後、前記第7工程の前に、隣り合う前記第1トレンチ間に残る前記第3半導体層に、前記第2半導体層に達する、第2導電型の第4半導体領域を選択的に形成する第11工程を行う。前記第11工程では、前記第3半導体層の、前記第2トレンチに深さ方向に対向する位置に前記第4半導体領域を形成する。前記第9工程では、前記第1半導体領域および前記第4半導体領域に接する前記第1電極を形成することを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第1工程の後、前記第2工程の前に、前記第1半導体層の表面層に、第2導電型の第5半導体領域を選択的に形成する第12工程を行う。そして、前記第3工程では、前記第2半導体層を深さ方向に貫通して前記第5半導体領域に達する前記第2トレンチを形成することを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第5半導体領域の幅は、前記第2トレンチの幅よりも広いことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、シリコンよりもバンドギャップの広い半導体は炭化珪素であることを特徴とする。
上述した発明によれば、ゲート電圧印加時にチャネルの伸びが抑制されるため、ベース領域(第2半導体層)の不純物濃度に応じた所定のゲート閾値電圧を適宜設定することができる。また、ゲートトレンチ間の第2半導体領域と、ゲートトレンチ底部の第3半導体領域と、で、ゲートトレンチ底部の電界を緩和させることができる。また、上述した発明によれば、イオン注入を用いずに、結晶性の高い第2,3半導体領域を容易に形成することができる。
本発明にかかる半導体装置および半導体装置の製造方法によれば、簡易に製造することができるとともに、耐圧を維持したまま、所定のゲート閾値電圧に設定することができるという効果を奏する。
実施の形態1にかかる半導体装置の構造を示す断面図である。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態2にかかる半導体装置の構造を示す断面図である。
以下に添付図面を参照して、この発明にかかる半導体装置および半導体装置の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。本明細書では、ミラー指数の表記において、“−”はその直後の指数につくバーを意味しており、指数の前に“−”を付けることで負の指数を表している。
(実施の形態1)
本発明にかかる半導体装置は、半導体材料としてシリコン(Si)よりもバンドギャップの広い半導体(以下、ワイドバンドギャップ半導体とする)を用いて構成される。ここでは、ワイドバンドギャップ半導体として炭化珪素(SiC)を用いて作製(製造)されたエンハンスメント(ノーマリオフ)型の縦型MOSFET(以下、SiC−縦型MOSFETとする)を例に、図1に示す実施の形態1にかかる半導体装置の構造について説明する。図1は、実施の形態1にかかる半導体装置の構造を示す断面図である。
図1に示す実施の形態1にかかる半導体装置は、炭化珪素基板(半導体チップ)10のおもて面側にトレンチゲート構造のMOSゲートを備えたSiC−縦型MOSFETである。炭化珪素基板10は、n+型出発基板(半導体基板)1のおもて面上に所定の導電型および不純物濃度を有する各炭化珪素層(第1〜3半導体層)21〜23を順にエピタキシャル成長させてなるエピタキシャル基板である。n+型出発基板1は、n+型ドレイン領域である。n-型炭化珪素層21は、n-型ドリフト領域2である。p型炭化珪素層22は、p型ベース領域3である。
図1には、活性領域の2つの単位セル(素子の機能単位)20を示し、当該単位セルに隣接する他の単位セルや、活性領域の周囲を囲むエッジ終端領域を図示省略する。活性領域は、オン状態のときに電流が流れる領域である。エッジ終端領域は、活性領域とチップ端部との間の領域であり、炭化珪素基板10のおもて面(以下、基板おもて面とする)側の電界を緩和して耐圧を保持する。エッジ終端領域には、ガードリング、接合終端(JTE:Junction Termination Extension)構造、リサーフ、およびフィールドプレート等の耐圧構造が配置される。
活性領域において、基板おもて面(炭化珪素層23側の面)側には、単位セル20のMOSゲートが設けられている。単位セル20のMOSゲートは、p型ベース領域3、第1,2p+型領域(第2,3半導体領域)4,5、n+型ソース領域(第1半導体領域)6、p++型コンタクト領域(第4半導体領域)7、トレンチ(以下、ゲートトレンチとする)8、ゲート絶縁膜9およびゲート電極11で構成される。p型ベース領域3は、上述したようにn-型炭化珪素層21上にエピタキシャル成長されたp型炭化珪素層22である。p型ベース領域3には、p型不純物のイオン注入により形成された深さ方向にガウス分布状(p型不純物濃度が最大となる深さ位置から深さ方向に高低差を有する)のp型不純物濃度プロファイルを有していてもよい。
p型炭化珪素層22上には、後述するように第1,2p+型領域4,5を形成するためにp+型炭化珪素層23がエピタキシャル成長される。このp+型炭化珪素層23の内部に、n+型ソース領域6およびp++型コンタクト領域7がそれぞれ選択的に設けられている。n+型ソース領域6およびp++型コンタクト領域7は、p+型炭化珪素層23を深さ方向(基板おもて面から基板裏面に向かう方向:縦方向)に貫通してp型炭化珪素層22に達する。n+型ソース領域6およびp++型コンタクト領域7は、互いに接する。p++型コンタクト領域7は、ソース電極(第1電極)13とのコンタクト抵抗を低減する機能を有する。
ゲートトレンチ8は、n+型ソース領域6およびp型ベース領域3を貫通してn-型ドリフト領域2に達する。ゲートトレンチ8間の部分(メサ部)の中心間が1つの単位セル20である。ゲート絶縁膜9は、ゲートトレンチ8の内壁に沿って設けられている。ゲート電極11は、ゲートトレンチ8の内部において、ゲート絶縁膜9上に設けられている。ゲート電極11は、ゲートトレンチ8の側壁のゲート絶縁膜9を挟んでn+型ソース領域6、p型ベース領域3およびn-型ドリフト領域2に対向する。ゲート電極11は、ゲート絶縁膜9によりn-型ドリフト領域2、p型ベース領域3、第2p+型領域5およびn+型ソース領域6と電気的に絶縁されている。ゲート電極11の基板おもて面側の端部は、ゲートトレンチ8の外側に突出していてもよい。
ゲート電極11(すなわちゲートトレンチ8)は、例えば、基板おもて面に平行に延びるストライプ(直線)状の平面レイアウトに配置されている。この場合、隣り合うゲートトレンチ8間の各領域(p型ベース領域3、第1p+型領域4、n+型ソース領域6およびp++型コンタクト領域7)や、ゲートトレンチ8の直下(ドレイン側)の第2p+型領域5も、ゲート電極11がストライプ状に延びる方向(図1の奥行き方向)に平行な直線状の平面レイアウトに配置される。平面レイアウトとは、炭化珪素基板10のおもて面側から見た各部の平面形状および配置構成である。
第1p+型領域4は、基板おもて面側から深さ方向にp型炭化珪素層22を貫通してn-型ドリフト領域2に達する。また、第1p+型領域4は、p++型コンタクト領域7の直下に設けられている。第1p+型領域4は、p++型コンタクト領域7に接していることが好ましい。第1p+型領域4は、n+型ソース領域6と接していてもよい。また、第1p+型領域4は、ゲートトレンチ8と離して配置される。第1p+型領域4は、隣り合うゲートトレンチ8間の例えば中心付近に配置されてもよい。第1p+型領域4の幅w2は、ゲートトレンチ8の幅w1よりも狭い(w2<w1)。幅w1,w2とは、ゲートトレンチ8がストライプ状に伸びる方向と直交する方向(短手方向)の幅である(セル幅、後述する幅w3,w4も同様)。
第1p+型領域4のドレイン側の端部は、ゲートトレンチ8の底部よりもドレイン側に位置していればよく、例えば第2p+型領域5のドレイン側の端部よりもドレイン側に位置していてもよい。図1には、第1,2p+型領域4,5のドレイン側の端部の深さ位置が同じ場合を示す。第1p+型領域4のドレイン側の端部がゲートトレンチ8の底部よりもドレイン側に位置していることで、MOSFETのオフ時に、ゲートトレンチ8の底部よりも第1p+型領域4のドレイン側の端部に電界が集中しやすくなり、耐圧(耐電圧)が維持される。
第1p+型領域4は、例えばエピタキシャル成長層(p+型炭化珪素層23)で構成される。第1p+型領域4の不純物濃度は、p型ベース領域3の不純物濃度よりも高い。第1p+型領域4の不純物濃度は、例えばp型ベース領域3の不純物濃度よりも1桁程度高い不純物濃度に設定され、エピタキシャル成長層で実現可能な不純物濃度の範囲内(例えば1×1018以下程度)で設定可能である。第1p+型領域4の不純物濃度をp型ベース領域3の不純物濃度よりも高くすることで、p型ベース領域3の不純物濃度によりゲート閾値電圧を調整することができる。
具体的には、第1p+型領域4は、ソース電極13に対して正電圧がドレイン電極(第2電極)15に印加された状態で、ゲート電極11にゲート閾値電圧以上の電圧が印加されたときに、ゲート絶縁膜9とp型ベース領域3との境界からp型ベース領域3内に広がる多数キャリア(正孔)の空乏層の伸びを抑制する機能を有する。この正孔の空乏層(正孔が空乏化した領域)は、p型ベース領域3の、ゲートトレンチ8の側壁に沿った部分に形成されるチャネルである。ゲート電圧を印加していない熱平衡状態において、チャネルは、少数キャリア(電子)を少ししか含んでおらず、導電性が極めて低い状態になっている。
このチャネルは正のゲート電圧印加時にp型ベース領域3内に広がるが、その伸びは第1p+型領域4により抑制される。これにより、第1p+型領域4を設けない従来構造よりも、チャネルにかかる電界強度が強くなり、MOSゲートの半導体表面(p型ベース領域3のチャネル部分)の伝導帯下端がフェルミ準位に近づきやすいため、チャネル内の電子密度が上がりやすく、チャネルの導電性が高まりやすい(チャネルの極性がn型に反転しやすい)。したがって、p型ベース領域3の不純物濃度を低くしても、p型ベース領域3の不純物濃度で理論上得られるゲート閾値電圧でチャネルの極性をn型に反転させることができる。
このように、ゲート閾値電圧は、p型ベース領域3の不純物濃度で適宜設定することができる。例えばp型ベース領域3の不純物濃度を低くしたとしても、上述したように第1p+型領域4により、かつ後述するように第2p+型領域5により、耐圧低下を防止することができる。このため、耐圧を維持したまま、上述したようにp型ベース領域3の不純物濃度を適宜設定して所定のゲート閾値電圧に設定可能である。具体的には、ゲート閾値電圧は、例えば、p型ベース領域3の不純物濃度と、第1p+型領域4の不純物濃度と、ゲートトレンチ8の側壁から第1p+型領域4までの幅w3と、ゲート絶縁膜の厚さと、で決定される。
第2p+型領域5は、n-型ドリフト領域2の内部に設けられ、ゲートトレンチ8の底部全面を覆う。また、第2p+型領域5は、p型ベース領域3および第1p+型領域4と離して配置されている。第2p+型領域5は、部分的にp型ベース領域3に接していてもよい。第2p+型領域5は、例えばエピタキシャル成長層(p+型炭化珪素層23)で構成される。第2p+型領域5の不純物濃度は、p型ベース領域3の不純物濃度よりも高い。第2p+型領域5の不純物濃度は、例えば第1p+型領域4の不純物濃度と同程度に設定される。第2p+型領域5は、MOSFETのオフ時に、ゲートトレンチ8の底部にかかる電界を緩和させて、耐圧を維持する機能を有する。
層間絶縁膜12は、活性領域からエッジ終端領域にわたって基板おもて面全面に設けられ、ゲート電極11を覆う。ソース電極13は、層間絶縁膜12に開口されたコンタクトホールを介してn+型ソース領域6およびp++型コンタクト領域7に接し、p型ベース領域3、第1p+型領域4、n+型ソース領域6およびp++型コンタクト領域7と電気的に接続されている。ソース電極13は、層間絶縁膜12によりゲート電極11と電気的に絶縁されている。ソース電極13は、コンタクトホールの内部にのみ設けられていてもよい。
ソースパッド(電極パッド)14は、コンタクトホールの内部を埋め込むように、層間絶縁膜12およびソース電極13上に設けられている。ソースパッド14は、すべての単位セル20のソース電極13を電気的に接続する。炭化珪素基板10の裏面(n+型出発基板1の裏面)全体にわたって、ドレイン電極15が設けられている。ドレイン電極15の表面には、ドレインパッド(電極パッド)16が設けられている。
次に、実施の形態1にかかる半導体装置の製造方法について説明する。図2〜6は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。まず、n+型出発基板(出発ウエハ)1として、例えば窒素(N)などのn型不純物をドーピングしたn+型単結晶基板を用意する。n+型出発基板1のおもて面は、例えば(0001)面、いわゆるSi面であってもよい。次に、n+型出発基板1のおもて面に、例えば窒素などのn型不純物をドープしたn-型炭化珪素層21をエピタキシャル成長させる。n-型炭化珪素層21の厚さは、例えば10μmであってもよい。
次に、n-型炭化珪素層21の表面に、例えばアルミニウム(Al)などのp型不純物をドープしたp型炭化珪素層22をエピタキシャル成長させる。p型炭化珪素層22の厚さおよび不純物濃度は、それぞれ、例えば1.5μm程度および5×1015/cm3程度であってもよい。ここまでの状態が図2に示されている。
次に、フォトリソグラフィ技術により、p型炭化珪素層22の表面に、ゲートトレンチ8および第1p+型領域4の形成領域に対応する部分を開口した図示省略するエッチング用マスクを形成する。このエッチング用マスクとして、例えば酸化膜(SiO2)マスクを用いてもよい。次に、このエッチング用マスクをマスクとしてエッチングを行い、p型炭化珪素層22を深さ方向に貫通してn-型炭化珪素層21に達する第1,2トレンチ31,32を形成する。このエッチングは、例えばドライエッチングであってもよい。n-型炭化珪素層21の、第1,2トレンチ31,32以外の部分がn-型ドリフト領域2となる。p型炭化珪素層22の、第1,2トレンチ31,32以外の部分がp型ベース領域3となる。
これら第1,2トレンチ31,32は、基板おもて面に平行な方向(横方向)に交互に繰り返し、かつ互いに離して配置される。第1トレンチ31の幅w11は、ゲートトレンチ8の幅w1と同じであり、例えば1.5μm程度であってもよい。第2トレンチ32の幅w12は、第1p+型領域4の幅w2と同じであり、例えば0.5μm程度であってもよい。また、第1,2トレンチ31,32は、例えば側壁にm面が露出されるように形成される。m面とは、(000−1)面、いわゆるC面に垂直な{1−100}面の総称である。具体的には、m面とは、(10−10)面、(−1010)面、(1−100)面、(−1100)面、(01−10)面および(0−110)面である。そして、第1,2トレンチ31,32の形成に用いたエッチング用マスクを除去する。ここまでの状態が図3に示されている。
次に、p型炭化珪素層22の表面および第1トレンチ31の内壁に沿って、例えばアルミニウムなどのp型不純物をドープしたp+型炭化珪素層23をエピタキシャル成長させる。このとき、p+型炭化珪素層23の厚さt1を第2トレンチ32の幅w12の半分以上とすることで(w12/2≦t1)、第2トレンチ32の内部をp+型炭化珪素層23で完全に埋め込む。p+型炭化珪素層23の厚さt1および不純物濃度は、それぞれ、例えば0.3μm程度および5×1017/cm3程度であってもよい。ここまでの工程で、n+型出発基板1のおもて面上にn-型炭化珪素層21、p型炭化珪素層22およびp+型炭化珪素層23を順に積層した炭化珪素基板(半導体ウエハ)10が作製される。ここまでの状態が図4に示されている。
次に、炭化珪素の結晶面に依存して酸化速度が異なるという特長を利用して、p+型炭化珪素層23を選択的に酸化する。具体的には、例えばウェット酸化により、p+型炭化珪素層23の、第1トレンチ31の側壁(m面)の部分を完全に酸化する。p+型炭化珪素層23の、第2トレンチ32の内部に埋め込まれた部分はウェット酸化で用いる例えば水(H2O)を含む雰囲気(水蒸気)に曝されないため、酸化されない。p+型炭化珪素層23の、p型炭化珪素層22の表面上の部分および第1トレンチ31の底面上の部分は、結晶面(Si面)の酸化速度に応じて酸化されるが、炭化珪素においてはm面の酸化はSi面の酸化よりも高速に進むため、Si面上には酸化されていないp+型炭化珪素層23が残る。
次に、例えばエッチングにより、p+型炭化珪素層23の酸化された部分(すなわち酸化膜)を除去する。これにより、p型炭化珪素層22の表面上、第1トレンチ31の底面上および第2トレンチ32の内部にのみp+型炭化珪素層23が残る。p+型炭化珪素層23の、第1トレンチ31の底面上に残る部分が第1p+型領域4である。p+型炭化珪素層23の、第1トレンチ31の底面上に残る部分が第2p+型領域5である。かつ、第1トレンチ31の側壁には、n-型ドリフト領域2およびp型ベース領域3が露出される。第2p+型領域5の表面がゲートトレンチ8の底面となり、第1トレンチ31の露出された側壁がゲートトレンチ8の側壁となる。
次に、フォトリソグラフィ技術により、炭化珪素基板10のおもて面(p+型炭化珪素層23の表面)上に、n+型ソース領域6の形成領域に対応する部分を開口した図示省略するイオン注入用マスクを形成する。第1トレンチ31の内部には、イオン注入用マスクが埋め込まれる。イオン注入用マスクとして、例えば酸化膜マスクを用いてもよい。次に、このイオン注入用マスクをマスクとして例えばリン(P)などのn型不純物をイオン注入する。このとき、このイオン注入のn型不純物のドーズ量をp+型炭化珪素層23のp型不純物濃度よりも高く設定し、p+型炭化珪素層23の一部の導電型をn型に打ち返す。イオン注入のn型不純物の注入深さは、p+型炭化珪素層23の、p型炭化珪素層22の表面上に残る部分の厚さt1以上の深さとする。これにより、p+型炭化珪素層23の、p型炭化珪素層22の表面上に残る部分に、n+型ソース領域6が選択的に形成される。そして、n+型ソース領域6の形成に用いたイオン注入用マスクを除去する。
次に、フォトリソグラフィ技術により、炭化珪素基板10のおもて面(p+型炭化珪素層23の表面)上に、p++型コンタクト領域7の形成領域に対応する部分を開口した図示省略するイオン注入用マスクを形成する。第1トレンチ31の内部には、イオン注入用マスクが埋め込まれる。イオン注入用マスクとして、例えば酸化膜マスクを用いてもよい。次に、このイオン注入用マスクをマスクとして例えばアルミニウムなどのp型不純物をイオン注入する。このとき、イオン注入のp型不純物の注入深さは、p+型炭化珪素層23の、p型炭化珪素層22の表面上に残る部分の厚さt1以上の深さとする。p+型炭化珪素層23にさらにp型不純物がイオン注入されるため、p+型炭化珪素層23の一部のp型不純物濃度が高くなる。これにより、p+型炭化珪素層23の、p型炭化珪素層22の表面上に残る部分に、p++型コンタクト領域7が選択的に形成される。そして、p++型コンタクト領域7の形成に用いたイオン注入用マスクを除去する。n+型ソース領域6およびp++型コンタクト領域7を形成する順序は入れ換え可能である。
次に、熱処理により、n+型ソース領域6およびp++型コンタクト領域7を活性化させる(活性化アニール)。この熱処理は、例えば、温度を1700℃程度とし、熱処理時間を2分程度としてもよい。イオン注入を行うごとに、活性化アニールを行ってもよい。ここまでの状態が図5に示されている。
次に、炭化珪素基板10のおもて面(n+型ソース領域6およびp++型コンタクト領域7の表面)、および、ゲートトレンチ8の内壁(第2p+型領域5の表面および第1トレンチ31の側壁)に沿って、ゲート絶縁膜9を形成する。ゲート絶縁膜9は、例えば、酸素(O2)雰囲気中において1000℃程度の温度の熱処理による熱酸化によって形成されてもよい。また、ゲート絶縁膜9は、例えば、高温酸化(HTO:High Temperature Oxide)等の化学反応によって堆積した堆積酸化膜であってもよい。
次に、ゲート絶縁膜9上に、ゲートトレンチ8の内部に埋め込むように、例えばリンなどのn型不純物をドープした多結晶シリコン(poly−Si)層を堆積する。次に、フォトリソグラフィ技術により多結晶シリコン層をパターニングして、多結晶シリコン層のゲート電極11となる部分をゲートトレンチ8の内部に残す。ゲート電極11の一部がゲートトレンチ8の外側(上方)に突出していてもよい。
次に、ゲート絶縁膜9およびゲート電極11を覆うように層間絶縁膜12を形成する。層間絶縁膜12は、例えば、PSG(Phospho Silicate Glass)や、BPSG(Boro Phospho Silicate Glass)、あるいはそれらの組み合わせで形成される。層間絶縁膜12の、ゲート電極11上の部分の厚さt2は、例えば1μmであってもよい。
次に、フォトリソグラフィ技術により層間絶縁膜12およびゲート絶縁膜9をパターニングしてコンタクトホールを形成し、コンタクトホールにn+型ソース領域6およびp++型コンタクト領域7を露出させる。次に、熱処理(リフロー)により、層間絶縁膜12を平坦化する。
次に、例えばスパッタリングにより、層間絶縁膜12の表面およびコンタクトホールに沿ってソース電極13となる金属膜を形成する。ソース電極13となる金属膜は、例えばニッケル(Ni)膜であってもよい。次に、フォトリソグラフィおよびエッチングにより金属膜を選択的に除去して、例えばコンタクトホール内にのみソース電極13を残す。
次に、炭化珪素基板10の裏面(n+型出発基板1の裏面)に、ドレイン電極15となる例えばニッケル(Ni)膜を形成する。次に、熱処理により、炭化珪素基板10とその両面の金属膜とを反応させて、炭化珪素基板10にオーミック接触するソース電極13およびドレイン電極15を形成する。ここまでの状態が図6に示されている。
次に、例えばスパッタリングにより、ソース電極13および層間絶縁膜12を覆うように、ソースパッド14となる例えばアルミニウム膜を5μm程度の厚さに堆積する。次に、アルミニウム膜を選択的に除去して、ソースパッド14となる部分を残す。
ソースパッド14を形成するととともに、アルミニウム膜の一部を図示省略するゲートパッド(電極パッド)として残してもよい。ゲートパッドには、単位セル20の各ゲート電極11が電気的に接続される。
次に、例えばスパッタリングにより、ドレイン電極15の表面に、例えばチタン(Ti)膜、ニッケル膜および金(Au)膜を順に積層してドレインパッド16を形成する。その後、半導体ウエハをダイシング(切断)してチップ状に個片化することで、図1に示すSiC−縦型MOSFETが完成する。
以上、説明したように、実施の形態1にかかる半導体装置によれば、ゲートトレンチと離して、p型ベース領域を深さ方向に貫通する第1p+型領域を設けることで、正のゲート電圧印加時に、ゲート絶縁膜とp型ベース領域との境界からp型ベース領域内に広がる正孔の空乏層(チャネル)の伸びが抑制される。このため、例えばチャネル抵抗を低下させるためにp型ベース領域の不純物濃度を低くしたとしても、第1p+型領域を設けない従来構造よりもチャネルの極性が反転されやすく、p型ベース領域の不純物濃度で理論上得られるゲート閾値電圧でMOSFETをオン状態にすることができる。したがって、p型ベース領域の不純物濃度に依存する所定のゲート閾値電圧を適宜設定するとともに、オン抵抗を低減させることができる。
また、実施の形態1にかかる半導体装置によれば、ゲート閾値電圧を所定値(例えば5V程度)に設定するために、p型ベース領域の不純物濃度が低くなったとしても、第1p+型領域が設けられていることで、ベース領域の実効的な不純物濃度が高くなる。このため、短チャネル効果(劣化現象)によるパンチスルーや漏れ電流を防止し、耐圧低下を抑制することができる。また、実施の形態1にかかる半導体装置によれば、第1p+型領域のドレイン側の端部がゲートトレンチの底部よりもドレイン側に位置することや、ゲートトレンチの底部に第2p+型領域が設けられていることで、MOSFETのオフ時に、ゲートトレンチの底部での電界集中を抑制することができる。これにより、耐圧低下を防止することができる。
また、実施の形態1にかかる半導体装置の製造方法によれば、ゲートトレンチ間の第1p+型領域と、ゲートトレンチ底部の第2p+型領域と、をエピタキシャル成長層で形成することができる。このため、イオン注入で形成する場合よりも、これらの第1,2p+型領域の不純物濃度分布を一様にすることができる。また、実施の形態1にかかる半導体装置の製造方法によれば、第2トレンチの内部にp+型エピタキシャル成長層を埋め込むことで第1p+型領域を形成するため、イオン注入で形成する場合よりも、第1p+型領域の幅を狭くすることができる。例えば、第1p+型領域の幅を1μm以下にすることができる。これにより、各セル幅を狭くすることができるため、電流能力の向上または半導体チップの小型化を図ることができる。
また、仮に第1,2p+型領域をイオン注入で形成する場合、n-型ドリフト領域となるn-型炭化珪素層へのイオン注入により第1p+型領域の一部および第2p+型領域を形成する。次に、n-型炭化珪素層上にp型ベース領域となるp型炭化珪素層をエピタキシャル成長させて、当該p型炭化珪素層へのイオン注入により第1p+型領域の残りの部分を形成する。第1p+型領域の残りの部分の形成では、炭化珪素へのイオン注入深さに対してp型ベース領域が厚いため、p型炭化珪素層のエピタキシャル成長と、イオン注入と、を一組とする工程を少なくとも2回繰り返す。その後、ゲートトレンチを形成するためのエッチングを行う。このため、第1,2p+型領域およびゲートトレンチを形成するために、2回のp型炭化珪素層のエピタキシャル成長、3回のイオン注入、およびゲートトレンチの形成、の計6工程を要する。
それに対して、実施の形態1にかかる半導体装置の製造方法によれば、イオン注入を用いずに、結晶性の高い第1,2p+型領域を容易に形成することができる。具体的には、p型ベース領域となるp型炭化珪素層のエピタキシャル成長、第1,2トレンチの形成、第1,2p+型領域となるp+型炭化珪素層のエピタキシャル成長、および、p+型炭化珪素層の一部を除去する工程を行う。このため、第1,2p+型領域をイオン注入で形成する場合よりも工程数を低減することができる。また、第2トレンチの幅を第1トレンチの幅よりも狭くし、かつ第1トレンチの側壁に基板おもて面よりも酸化速度の速い結晶面を露出させることで、高速酸化および酸化膜除去のみでp+型炭化珪素層の一部を除去することができ、第1,2トレンチ内の所定箇所にそれぞれ第2,1p+型領域となるp+型炭化珪素層を容易に残すことができる。
(実施の形態2)
次に、実施の形態2にかかる半導体装置の構造について説明する。図7は、実施の形態2にかかる半導体装置の構造を示す断面図である。実施の形態2にかかる半導体装置が実施の形態1にかかる半導体装置と異なる点は、n-型ドリフト領域2の内部において、第1p+型領域4の直下に、第2p+型領域5と離して第3p+型領域(第5半導体領域)41を設けた点である。
具体的には、第3p+型領域41は、第1p+型領域4の直下に設けられている。第3p+型領域41は、第1p+型領域4に接していることが好ましく、第1p+型領域4に接している部分が多いほどよい。より好適には、p+型領域41は、第1p+型領域4のドレイン側の端部を覆うことがよい。第3p+型領域41は、p型ベース領域3に接していてもよい。第3p+型領域41の、第1p+型領域4直下の部分の厚さt3は、例えば0.1μm以上1.0μm以下程度であってもよい。
第1p+型領域4の直下に第3p+型領域41を設けることで、第2p+型領域5での耐圧が第1p+型領域4のドレイン側の端部での耐圧よりも高くなる。このため、第1p+型領域4のドレイン側の端部でアバランシェ降伏が発生しやすくなり、ゲートトレンチ8の底部におけるアバランシェ降伏の発生を抑制することができる。
また、第3p+型領域41のドレイン側の端部は、第2p+型領域5のドレイン側の端部よりもドレイン側に位置することが好ましい。これにより、MOSFETのオフ時に、第2p+型領域5への電界集中よりも第3p+型領域41への電界集中が強くなるため、ゲートトレンチ8の底部におけるアバランシェ降伏の発生をさらに抑制することができる。
また、第3p+型領域41の不純物濃度は、第1p+型領域4の不純物濃度よりも高いことが好ましい。これにより、第3p+型領域41とn-型ドリフト領域2との間のpn接合から第3p+型領域41内に広がる空乏層の伸びが抑制されるため、第1p+型領域4のドレイン側の端部の耐圧がさらに低くなる。このため、ゲートトレンチ8の底部におけるアバランシェ降伏の発生をさらに抑制することができる。
第3p+型領域41の幅w4は、第1p+型領域4の幅w2よりも広いことが好ましい(w4>w2)。その理由は、第1,3p+型領域4,41の形成時にマスクパターンの位置ずれが生じたとしても、第3p+型領域41により第1p+型領域4のドレイン側の端部を確実に覆うことができるからである。
また、第3p+型領域41は、第1p+型領域4が直線状に延びる方向(図7の奥行き方向)に平行な直線状の平面レイアウトに例えば均一の厚さt3で配置される。すなわち、第3p+型領域41は、第1p+型領域4のドレイン側の端部全体を覆う。
また、第3p+型領域41は、第1p+型領域4が直線状に延びる方向に、所定の間隔で複数点在して配置されてもよい。すなわち、第1p+型領域4のドレイン側の端部が第3p+型領域41に部分的に覆われた状態であってもよい。
次に、実施の形態2にかかる半導体装置の製造方法について説明する。まず、実施の形態1と同様に、n+型出発基板(出発ウエハ)1を用意し、n+型出発基板1のおもて面上にn-型炭化珪素層21をエピタキシャル成長させる。次に、フォトリソグラフィ技術により、n-型炭化珪素層21の表面に、第3p+型領域41の形成領域に対応する部分を開口した図示省略するイオン注入用マスクを形成する。イオン注入用マスクとして、例えば酸化膜マスクを用いてもよい。
次に、このイオン注入用マスクをマスクとして例えばアルミニウムなどのp型不純物をイオン注入する。このとき、イオン注入のp型不純物の注入深さは、後の工程で形成される第1トレンチ31の底部の位置よりも深くする。これにより、n-型炭化珪素層21の表面層に第3p+型領域41が選択的に形成される。このとき、第3p+型領域41の深さは、n-型炭化珪素層21の表面から例えば0.5μm程度であってもよい。そして、第3p+型領域41の形成に用いたイオン注入用マスクを除去する。
その後、実施の形態1と同様に、p型炭化珪素層22のエピタキシャル成長以降の工程を順に行う。このとき、第1,2トレンチ31,32(図3参照)の形成時においては、第2トレンチ32の底部が第3p+型領域41の内部に位置するように、第1,2トレンチ31,32を形成すればよい。p型炭化珪素層22を深さ方向に貫通して第3p+型領域41に達する第2トレンチ32を形成すればよい。これにより、図7に示すSiC−縦型MOSFETが完成する。
以上、説明したように、実施の形態2によれば、実施の形態1と同様の効果を得ることができる。また、実施の形態2によれば、第1p+型領域のドレイン側の端部に離して第3p+型領域を設けることで、さらにゲートトレンチの底部の電界集中を緩和することができる。
以上において本発明は、上述した各実施の形態に限らず、本発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、上述した各実施の形態にかかる製造方法では、炭化珪素基板のおもて面をSi面とした場合を例に説明しているが、第2p+型領域が形成される第1トレンチの側壁に、炭化珪素基板のおもて面よりも酸化速度の速い結晶面が露出されればよい。このため、例えば、炭化珪素基板のおもて面をm面とし、第1,2p+型領域が形成される第2,1トレンチの側壁をC面としてもよい。また、第1,2トレンチの幅が底部から開口側に向かうにしたがって広くなるように、第1,2トレンチの側壁が基板おもて面に対して斜度を有していてもよい。
また、上述した各実施の形態にかかる製造方法では、第2p+型領域となるp+型炭化珪素層の、第1トレンチの側壁の部分を他の部分より高速に酸化して除去する場合を例に説明したが、第2p+型領域となるp+型炭化珪素層の、第1トレンチの側壁の部分を選択的にエッチングすることで除去してもよい。この場合、炭化珪素基板のおもて面をC面としてもよい。上述した各実施の形態では、MOSFETを例に説明しているが、これに限らず、本発明は例えばIGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)などのMOS型半導体装置にも適用可能である。
また、上述した各実施の形態では、ワイドバンドギャップ半導体として炭化珪素を用いた場合を例に説明しているが、炭化珪素以外の例えば窒化ガリウム(GaN)などのワイドバンドギャップ半導体にも適用可能である。また、本発明は、導電型(n型、p型)を反転させても同様に成り立つ。
以上のように、本発明にかかる半導体装置および半導体装置の製造方法は、ワイドバンドギャップ半導体を用いたトレンチゲート構造の縦型のMOS型半導体装置に有用であり、特に炭化珪素層を用いた縦型MOSFETに適している。
1 n+型出発基板
2 n-型ドリフト領域
3 p型ベース領域
4 第1p+型領域(ゲートトレンチ間のp+型領域)
5 第2p+型領域(ゲートトレンチ底部のp+型領域)
41 第3p+型領域(第1p+型領域のドレイン側端部を覆うp+型領域)
6 n+型ソース領域
7 p++型コンタクト領域
8 ゲートトレンチ
9 ゲート絶縁膜
10 炭化珪素基板
11 ゲート電極
12 層間絶縁膜
13 ソース電極
14 ソースパッド
15 ドレイン電極
16 ドレインパッド
20 単位セル
21〜23 炭化珪素層(エピタキシャル成長層)
31,32 トレンチ
w1 ゲートトレンチの幅
w2 第1p+型領域の幅
w3 ゲートトレンチの側壁から第1p+型領域までの幅
w4 第3p+型領域の幅
w11,12 トレンチの幅

Claims (22)

  1. シリコンよりもバンドギャップの広い半導体からなる半導体基板と、
    前記半導体基板のおもて面に設けられた第1導電型の第1半導体層と、
    前記第1半導体層の、前記半導体基板側に対して反対側の表面に設けられた第2導電型の第2半導体層と、
    前記第2半導体層の内部に選択的に設けられた第1導電型の第1半導体領域と、
    前記第1半導体領域および前記第2半導体層を深さ方向に貫通して前記第1半導体層に達するトレンチと、
    前記トレンチの内部にゲート絶縁膜を介して設けられたゲート電極と、
    前記トレンチと離して設けられ、前記第2半導体層を深さ方向に貫通して前記第1半導体層に達する、前記第2半導体層よりも不純物濃度の高い第2導電型の第2半導体領域と、
    前記第1半導体層の内部に、前記第2半導体層および前記第2半導体領域と離して設けられ、前記トレンチの底部を覆う、前記第2半導体層よりも不純物濃度の高い第2導電型の第3半導体領域と、
    前記第1半導体領域および前記第2半導体層に電気的に接続された第1電極と、
    前記半導体基板の裏面に設けられた第2電極と、
    を備えることを特徴とする半導体装置。
  2. 前記第2半導体領域の幅は、前記トレンチの幅よりも狭いことを特徴とする請求項1に記載の半導体装置。
  3. 前記第2半導体領域の前記第2電極側の端部は、前記トレンチの底部よりも前記第2電極側に位置することを特徴とする請求項1または2に記載の半導体装置。
  4. 前記第2半導体層の内部に選択的に設けられた、前記第2半導体領域よりも不純物濃度の高い第2導電型の第4半導体領域をさらに備え、
    前記第1電極は、前記第1半導体領域および前記第4半導体領域に接し、
    前記第2半導体領域は、前記第4半導体領域の前記第2電極側に設けられ、前記第4半導体領域に接することを特徴とする請求項1〜3のいずれか一つに記載の半導体装置。
  5. 前記第1半導体層の内部において、前記第2半導体領域の前記第2電極側に設けられた第2導電型の第5半導体領域をさらに備えることを特徴とする請求項1〜4のいずれか一つに記載の半導体装置。
  6. 前記第5半導体領域の幅は、前記第2半導体領域の幅よりも広いことを特徴とする請求項5に記載の半導体装置。
  7. 前記第5半導体領域は、前記第2半導体領域の前記第2電極側の端部を覆うことを特徴とする請求項5または6に記載の半導体装置。
  8. 前記トレンチは、前記半導体基板のおもて面に平行に延びる直線状のレイアウトに設けられ、
    前記第2半導体領域および前記第5半導体領域は、前記トレンチが直線状に延びる方向に平行な直線状のレイアウトに設けられていることを特徴とする請求項5〜7のいずれか一つに記載の半導体装置。
  9. 前記トレンチは、前記半導体基板のおもて面に平行に延びる直線状のレイアウトに設けられ、
    前記第2半導体領域は、前記トレンチが直線状に延びる方向に平行な直線状のレイアウトに設けられ、
    前記第5半導体領域は、前記第2半導体領域が直線状に延びる方向に所定の間隔で複数配置されていることを特徴とする請求項5〜7のいずれか一つに記載の半導体装置。
  10. 前記第5半導体領域の不純物濃度は、前記第2半導体領域の不純物濃度よりも高いことを特徴とする請求項5〜9のいずれか一つに記載の半導体装置。
  11. 前記第2半導体領域は、エピタキシャル成長層であることを特徴とする請求項1〜10のいずれか一つに記載の半導体装置。
  12. 前記第3半導体領域は、エピタキシャル成長層であることを特徴とする請求項1〜11のいずれか一つに記載の半導体装置。
  13. シリコンよりもバンドギャップの広い半導体は炭化珪素であることを特徴とする請求項1〜12のいずれか一つに記載の半導体装置。
  14. 前記第2半導体層の、前記第1半導体層側に対して反対側の面は(0001)面であり、
    前記トレンチの側壁は{1−100}面であることを特徴とする請求項1〜13のいずれか一つに記載の半導体装置。
  15. 前記第2半導体層は、最も不純物濃度の高い位置から深さ方向に高低差をもつガウス分布状の第2導電型不純物濃度プロファイルを有することを特徴とする請求項1〜14のいずれか一つに記載の半導体装置。
  16. シリコンよりもバンドギャップの広い半導体からなる半導体基板のおもて面に、第1導電型の第1半導体層をエピタキシャル成長させる第1工程と、
    前記第1半導体層の上に、第2導電型の第2半導体層をエピタキシャル成長させる第2工程と、
    前記第2半導体層を深さ方向に貫通して前記第1半導体層に達する第1トレンチと、前記第2半導体層を深さ方向に貫通して前記第1半導体層に達する、前記第1トレンチよりも幅の狭い第2トレンチと、を互いに離して形成する第3工程と、
    前記第2半導体層の表面および前記第1トレンチの内壁に沿って、前記第2半導体層よりも不純物濃度の高い第2導電型の第3半導体層をエピタキシャル成長させるとともに、前記第2トレンチの内部を前記第3半導体層で完全に埋める第4工程と、
    前記第3半導体層の、前記第1トレンチの側壁の部分を除去して、前記第1トレンチの側壁に前記第1半導体層および前記第2半導体層を露出させる第5工程と、
    隣り合う前記第1トレンチ間に残る前記第3半導体層に、前記第1トレンチの側壁に露出し、かつ前記第2半導体層に達する第1導電型の第1半導体領域を選択的に形成する第6工程と、
    前記第1トレンチの底部に残る前記第3半導体層の表面および前記第1トレンチの側壁に沿ってゲート絶縁膜を形成する第7工程と、
    前記第1トレンチの内部において、前記ゲート絶縁膜上にゲート電極を形成する第8工程と、
    前記第1半導体領域および前記第3半導体層に電気的に接続する第1電極を形成する第9工程と、
    前記半導体基板の裏面に第2電極を形成する第10工程と、
    を含むことを特徴とする半導体装置の製造方法。
  17. 前記第3工程では、前記半導体基板のおもて面よりも酸化速度の早い結晶面を側壁とする前記第1トレンチを形成し、
    前記第5工程では、前記第3半導体層の、前記第1トレンチの側壁の部分を酸化して酸化膜を形成し、当該酸化膜を除去することで前記第1トレンチの側壁に前記第1半導体層および前記第2半導体層を露出させることを特徴とする請求項16に記載の半導体装置の製造方法。
  18. (0001)面をおもて面とする前記半導体基板を用い、
    前記第3工程では、{1−100}面を側壁とする前記第1トレンチを形成することを特徴とする請求項17に記載の半導体装置の製造方法。
  19. 前記第5工程の後、前記第7工程の前に、隣り合う前記第1トレンチ間に残る前記第3半導体層に、前記第2半導体層に達する、第2導電型の第4半導体領域を選択的に形成する第11工程をさらに含み、
    前記第11工程では、前記第3半導体層の、前記第2トレンチに深さ方向に対向する位置に前記第4半導体領域を形成し、
    前記第9工程では、前記第1半導体領域および前記第4半導体領域に接する前記第1電極を形成することを特徴とする請求項16〜18のいずれか一つに記載の半導体装置の製造方法。
  20. 前記第1工程の後、前記第2工程の前に、前記第1半導体層の表面層に、第2導電型の第5半導体領域を選択的に形成する第12工程をさらに含み、
    前記第3工程では、前記第2半導体層を深さ方向に貫通して前記第5半導体領域に達する前記第2トレンチを形成することを特徴とする請求項16〜19のいずれか一つに記載の半導体装置の製造方法。
  21. 前記第5半導体領域の幅は、前記第2トレンチの幅よりも広いことを特徴とする請求項20に記載の半導体装置の製造方法。
  22. シリコンよりもバンドギャップの広い半導体は炭化珪素であることを特徴とする請求項16〜21のいずれか一つに記載の半導体装置の製造方法。
JP2016180034A 2016-09-14 2016-09-14 半導体装置および半導体装置の製造方法 Active JP6801323B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016180034A JP6801323B2 (ja) 2016-09-14 2016-09-14 半導体装置および半導体装置の製造方法
US15/665,883 US10276709B2 (en) 2016-09-14 2017-08-01 Semiconductor device and method of manufacturing semiconductor device
US16/221,272 US10522676B2 (en) 2016-09-14 2018-12-14 Semiconductor device and method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016180034A JP6801323B2 (ja) 2016-09-14 2016-09-14 半導体装置および半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2018046163A true JP2018046163A (ja) 2018-03-22
JP6801323B2 JP6801323B2 (ja) 2020-12-16

Family

ID=61559381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016180034A Active JP6801323B2 (ja) 2016-09-14 2016-09-14 半導体装置および半導体装置の製造方法

Country Status (2)

Country Link
US (2) US10276709B2 (ja)
JP (1) JP6801323B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019208074A (ja) * 2015-10-16 2019-12-05 富士電機株式会社 半導体装置
JP2019212836A (ja) * 2018-06-07 2019-12-12 株式会社豊田中央研究所 窒化物半導体装置の製造方法
JP2020092208A (ja) * 2018-12-06 2020-06-11 トヨタ自動車株式会社 トレンチゲート型半導体装置の製造方法
JP2021044518A (ja) * 2019-09-13 2021-03-18 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
US11201210B2 (en) 2019-08-02 2021-12-14 Kabushiki Kaisha Toshiba Semiconductor device, inverter circuit, drive device, vehicle, and elevator
JP2022138962A (ja) * 2021-03-11 2022-09-26 株式会社東芝 半導体装置
JP7616920B2 (ja) 2021-03-16 2025-01-17 株式会社デンソー 半導体装置および半導体装置の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6802454B2 (ja) * 2016-08-05 2020-12-16 富士電機株式会社 半導体装置およびその製造方法
JP6827433B2 (ja) * 2018-03-02 2021-02-10 株式会社東芝 半導体装置
JP7030665B2 (ja) * 2018-09-15 2022-03-07 株式会社東芝 半導体装置
JP7125339B2 (ja) * 2018-12-26 2022-08-24 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP7196000B2 (ja) * 2019-04-02 2022-12-26 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
CN114678418A (zh) * 2020-12-24 2022-06-28 珠海格力电器股份有限公司 一种功率半导体、制备方法及其应用
CN114695519B (zh) * 2022-03-28 2023-04-28 电子科技大学 屏蔽层状态自动切换的沟槽型碳化硅igbt器件及制备方法
CN114678425A (zh) * 2022-04-24 2022-06-28 湖北九峰山实验室 碳化硅半导体器件及其制作方法
DE102023210713A1 (de) 2023-10-30 2025-04-30 Robert Bosch Gesellschaft mit beschränkter Haftung Power-FinFETs mit alternierenden Abschirmgebieten und einteiligen Steuerelektroden und Verfahren zum Herstellen derselben

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108962A (ja) * 2006-10-26 2008-05-08 Toshiba Corp 半導体装置
JP2009117593A (ja) * 2007-11-06 2009-05-28 Denso Corp 炭化珪素半導体装置およびその製造方法
JP2009141243A (ja) * 2007-12-10 2009-06-25 Toshiba Corp 半導体装置
US20140264562A1 (en) * 2013-03-13 2014-09-18 Cree, Inc. Field Effect Transistor Devices with Regrown P-Layers
WO2015049815A1 (ja) * 2013-10-04 2015-04-09 三菱電機株式会社 炭化珪素半導体装置およびその製造方法
JP2015072999A (ja) * 2013-10-02 2015-04-16 株式会社デンソー 炭化珪素半導体装置
JP2015192028A (ja) * 2014-03-28 2015-11-02 国立研究開発法人産業技術総合研究所 炭化珪素半導体装置およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678902B2 (ja) 1999-09-02 2011-04-27 富士電機システムズ株式会社 炭化けい素umos半導体素子およびその製造方法
US7453119B2 (en) * 2005-02-11 2008-11-18 Alphs & Omega Semiconductor, Ltd. Shielded gate trench (SGT) MOSFET cells implemented with a schottky source contact
US8022472B2 (en) * 2007-12-04 2011-09-20 Rohm Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
JP5617175B2 (ja) * 2008-04-17 2014-11-05 富士電機株式会社 ワイドバンドギャップ半導体装置とその製造方法
JP5586887B2 (ja) 2009-07-21 2014-09-10 株式会社日立製作所 半導体装置及びその製造方法
DE102010039258B4 (de) * 2010-08-12 2018-03-15 Infineon Technologies Austria Ag Transistorbauelement mit reduziertem Kurzschlussstrom
US9024379B2 (en) * 2012-02-13 2015-05-05 Maxpower Semiconductor Inc. Trench transistors and methods with low-voltage-drop shunt to body diode
JP5893172B2 (ja) * 2012-12-28 2016-03-23 三菱電機株式会社 炭化珪素半導体装置およびその製造方法
JP6472776B2 (ja) * 2016-02-01 2019-02-20 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108962A (ja) * 2006-10-26 2008-05-08 Toshiba Corp 半導体装置
JP2009117593A (ja) * 2007-11-06 2009-05-28 Denso Corp 炭化珪素半導体装置およびその製造方法
JP2009141243A (ja) * 2007-12-10 2009-06-25 Toshiba Corp 半導体装置
US20140264562A1 (en) * 2013-03-13 2014-09-18 Cree, Inc. Field Effect Transistor Devices with Regrown P-Layers
JP2015072999A (ja) * 2013-10-02 2015-04-16 株式会社デンソー 炭化珪素半導体装置
WO2015049815A1 (ja) * 2013-10-04 2015-04-09 三菱電機株式会社 炭化珪素半導体装置およびその製造方法
JP2015192028A (ja) * 2014-03-28 2015-11-02 国立研究開発法人産業技術総合研究所 炭化珪素半導体装置およびその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019208074A (ja) * 2015-10-16 2019-12-05 富士電機株式会社 半導体装置
JP2019212836A (ja) * 2018-06-07 2019-12-12 株式会社豊田中央研究所 窒化物半導体装置の製造方法
JP7056390B2 (ja) 2018-06-07 2022-04-19 株式会社豊田中央研究所 窒化物半導体装置の製造方法
JP2020092208A (ja) * 2018-12-06 2020-06-11 トヨタ自動車株式会社 トレンチゲート型半導体装置の製造方法
US11201210B2 (en) 2019-08-02 2021-12-14 Kabushiki Kaisha Toshiba Semiconductor device, inverter circuit, drive device, vehicle, and elevator
JP2021044518A (ja) * 2019-09-13 2021-03-18 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
JP7278914B2 (ja) 2019-09-13 2023-05-22 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
JP2022138962A (ja) * 2021-03-11 2022-09-26 株式会社東芝 半導体装置
JP7513553B2 (ja) 2021-03-11 2024-07-09 株式会社東芝 半導体装置
US12278263B2 (en) 2021-03-11 2025-04-15 Kabushiki Kaisha Toshiba Semiconductor device
JP7616920B2 (ja) 2021-03-16 2025-01-17 株式会社デンソー 半導体装置および半導体装置の製造方法

Also Published As

Publication number Publication date
US10522676B2 (en) 2019-12-31
US10276709B2 (en) 2019-04-30
JP6801323B2 (ja) 2020-12-16
US20180076316A1 (en) 2018-03-15
US20190131449A1 (en) 2019-05-02

Similar Documents

Publication Publication Date Title
JP6801323B2 (ja) 半導体装置および半導体装置の製造方法
US10217858B2 (en) Semiconductor device and method of manufacturing semiconductor device
US10403749B2 (en) Method of manufacturing semiconductor device
US10403713B2 (en) Method of manufacturing semiconductor device
JP6848316B2 (ja) 半導体装置および半導体装置の製造方法
JP7643621B2 (ja) 半導体装置
JP7279394B2 (ja) 半導体装置および半導体装置の製造方法
WO2012127821A1 (ja) 半導体装置およびその製造方法
JP6705155B2 (ja) 半導体装置および半導体装置の製造方法
JP2018110164A (ja) 半導体装置
JP2023001343A (ja) 半導体装置
US10651270B2 (en) Semiconductor device having a trench structure
US10256338B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2024111301A (ja) 炭化珪素半導体装置
WO2012105170A1 (ja) 半導体装置およびその製造方法
JP6651801B2 (ja) 半導体装置および半導体装置の製造方法
JP5059989B1 (ja) 半導体装置とその製造方法
JP7106882B2 (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R150 Certificate of patent or registration of utility model

Ref document number: 6801323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250