[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017199611A - 車載燃料電池システム - Google Patents

車載燃料電池システム Download PDF

Info

Publication number
JP2017199611A
JP2017199611A JP2016090777A JP2016090777A JP2017199611A JP 2017199611 A JP2017199611 A JP 2017199611A JP 2016090777 A JP2016090777 A JP 2016090777A JP 2016090777 A JP2016090777 A JP 2016090777A JP 2017199611 A JP2017199611 A JP 2017199611A
Authority
JP
Japan
Prior art keywords
cooling water
fuel cell
heat
temperature
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016090777A
Other languages
English (en)
Inventor
善仁 嘉田
Yoshihito Kata
善仁 嘉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016090777A priority Critical patent/JP2017199611A/ja
Publication of JP2017199611A publication Critical patent/JP2017199611A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

【課題】燃料電池システム1において、電動駆動系装置30を冷却する冷却性能を向上する。【解決手段】燃料電池システム1は、燃料電池50を冷却する第1冷却水から放熱させるラジエータ10A、10Bを有し、ラジエータ10A、10Bおよび燃料電池50の間で第1冷却水を循環させる冷却回路81と、電動駆動系装置30を冷却する第2冷却水と第1冷却水とを熱交換させて第2冷却水から第1冷却水に放熱させる熱交換器20A、20Bとを備える。これにより、熱交換器20A、20Bにおいて、第2冷却水から第1冷却水に放熱させることができる。【選択図】図1

Description

本発明は、車載燃料電池システムに関するものである。
従来、車載燃料電池システムでは、燃料電池を冷却する熱媒体を循環させる主ループと、電気機器を冷却する熱媒体を循環させる補助ループとを備えるものがある(例えば、特許文献1参照)。
このものにおいては、主ループには熱媒体を冷却する主ラジエータが設けられ、補助ループには、熱媒体を冷却する補助ラジエータが設けられている。
主ループおよび補助ループは、熱媒体が通過し、かつ主ループおよび補助ループに共通部分を形成している。この共通部分には、主ループと補助ループとに熱媒体を循環させる共通のポンプが設けられている。
特開2002−233004号公報
上記車載燃料電池システムでは、主ループおよび補助ループは、共通部分を形成している。このため、燃料電池および電気機器の負荷が高く燃料電池および電気機器が熱媒体に多くの熱量を放熱された場合には、燃料電池および電気機器を流れる熱媒体の温度が上昇する。
しかし、燃料電池を流れる熱媒体の温度の上限値よりも電気機器を流れる熱媒体の温度の上限値は低い。このため、燃料電池および電気機器の作動状況によっては、電気機器を流れる熱媒体の温度がその上限値を超える恐れがある。
本発明は上記点に鑑みて、燃料電池および電気機器を熱媒体によって冷却する燃料電池システムにおいて、熱媒体によって電気機器を冷却する冷却性能を向上することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、酸素を含む酸化剤ガスと水素を含む燃料ガスとを電気化学反応させて電力を発生させる燃料電池(50)と、燃料電池から発生される電力により作動する電気機器(30)とを備える自動車に適用される燃料電池システムであって、
燃料電池を冷却する第1熱媒体から放熱させる燃料電池用熱交換器(10A、10B)を有し、燃料電池用熱交換器および燃料電池の間で第1熱媒体を循環させる冷却回路(81)と、
電気機器を冷却する第2熱媒体と第1熱媒体とを熱交換させて第2熱媒体から第1熱媒体に放熱させる電気機器用熱交換器(20A、20B)と、を備える。
請求項1に記載の発明によれば、電気機器用熱交換器において、第2熱媒体から第1熱媒体に放熱させることができるので、第2熱媒体によって電気機器を冷却する冷却性能を向上することができる。
但し、熱媒体は、熱を移動させるための媒体である。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
本発明の一実施形態における車載燃料電池システムの全体構成を示す図である。 図1中の熱交換器の正面図である。 図1中の熱交換器の上面図である。 図2A中II−II断面図である。 図1中電子制御装置の制御処理を示すフローチャートである。 図1中電子制御装置の制御処理を示すフローチャートである。 (a)は、自動車が走る道路の標高と車速との関係を示すタイミングチャート、(b)は、比較例における第1冷却水(燃料電池系の冷却水)の温度、および第2冷却水(電動駆動系の冷却水)の温度を示すタイミングチャート、(c)は、上記実施形態における第1冷却水(燃料電池系の冷却水)の温度、および第2冷却水(電動駆動系の冷却水)の温度を示すタイミングチャート、(d)は、第1、第2ラジエータを流れる第1冷却水の流量を示すタイミングチャート、第1、第2ラジエータに内蔵される熱交換器を流れる第2冷却水の流量を示すタイミングチャート、(e)は、菱形プロットが、第1、第2ラジエータに流れる第1冷却水の流量と第1、第2ラジエータの放熱量の合計との関係を示すグラフ、三角形プロットが、第1、第2ラジエータに流れる第1冷却水の流量と第1ラジエータの出口側の冷却水温度との関係を示すグラフ、四角形プロットが、第1、第2ラジエータに流れる第1冷却水の流量と第2ラジエータの出口側の冷却水温度との関係を示すグラフである。 (a)は、自動車が走る道路の標高と車速との関係を示すタイミングチャート、(b)は、比較例における第1冷却水(燃料電池系の冷却水)の温度、および第2冷却水(電動駆動系の冷却水)の温度を示すタイミングチャート、(c)は、上記実施形態における第1冷却水(燃料電池系の冷却水)の温度、および第2冷却水(電動駆動系の冷却水)の温度を示すタイミングチャート、(d)は、第1、第2ラジエータを流れる第1冷却水の流量を示すタイミングチャート、第1、第2ラジエータに内蔵される熱交換器を流れる第2冷却水の流量を示すタイミングチャート、(e)では、一点鎖線が、第1、第2ラジエータの放熱量の合計に第2ラジエータ内蔵熱交換器の放熱量を加味した放熱量と第1、第2ラジエータに流れる第1冷却水の流量との関係を示すグラフ、菱形プロットが、第1、第2ラジエータに流れる第1冷却水の流量と第1、第2ラジエータの放熱量の合計との関係を示すグラフ、三角形プロットが、第1、第2ラジエータに流れる第1冷却水の流量と第1ラジエータの出口側の冷却水温度との関係を示すグラフ、四角形プロットが、第1、第2ラジエータに流れる第1冷却水 (a)は、自動車が走る道路の標高と車速との関係を示すタイミングチャート、(b)は、比較例における第1冷却水(燃料電池系の冷却水)の温度、および第2冷却水(電動駆動系の冷却水)の温度を示すタイミングチャート、(c)は、上記実施形態における第1冷却水(燃料電池系の冷却水)の温度、および第2冷却水(電動駆動系の冷却水)の温度を示すタイミングチャート、(d)は、第1、第2ラジエータを流れる第1冷却水の流量を示すタイミングチャート、第1、第2ラジエータに内蔵される熱交換器を流れる第2冷却水の流量を示すタイミングチャート、(e)では、菱形プロットが、第1、第2ラジエータに流れる第1冷却水の流量と第1、第2ラジエータの放熱量の合計との関係を示すグラフ、三角形プロットが、第1、第2ラジエータに流れる第1冷却水の流量と第1ラジエータの出口側の冷却水温度との関係を示すグラフ、四角形プロットが、第1、第2ラジエータに流れる第1冷却水の流量と第2ラジエータの出口側の冷却水温度との関係を示すグラフである。
以下、本発明に係る燃料電池システム1の一実施形態について図に基づいて説明する。
本実施形態の燃料電池システム1は、自動車に搭載されるものであって、第1ラジエータ10A、第2ラジエータ10B、熱交換器20A、20B、電動駆動系装置(図1中電気駆動駆動系と記す)30、ポンプ40A、40B、および燃料電池50を備える。
第1ラジエータ10Aは、電動ファン10Cによって発生される空気流と第1冷却水との間で熱交換して第1冷却水から空気流に放熱させる熱交換器である。第2ラジエータ10Bは、電動ファン10Cによって発生される空気流と第1冷却水との間で熱交換して第1冷却水から空気流に放熱させる熱交換器である。
第1、第2ラジエータ10A、10Bは、フロントエンジンルーム内において、フロントグリル開口部および電動ファン10Cの間に配置されている。フロントエンジンルームは、自動車のうち客室に対して車両進行方向前側に配置されて走行用モータや燃料電池等を収納する領域である。第1ラジエータ10Aは、第2ラジエータ10Bに対して車両前後方向前側に配置されている。
第1ラジエータ10A、および第2ラジエータ10Bは、燃料電池50を通過する第1冷却水の流れに対して並列に配置されている。なお、以下、第1ラジエータ10A、および第2ラジエータ10Bを総称して、第1、第2ラジエータ10A、10Bという。
電動ファン10Cは、第1、第2ラジエータ10A、10Bに対して車両進行方向後側に配置されている。電動ファン10Cは、自動車の車両進行方向前側からフロントグリル開口部、第1ラジエータ10A、および第2ラジエータ10Bを通過する空気流を吸い込んで吹き出す送風機である。このことにより、第1ラジエータ10Aは、第2ラジエータ10Bに対して空気流の流れ方向上流側に配置されていることになる。
熱交換器20Aは、第2冷却水および第1冷却水の間で熱交換させて第2冷却水から第1冷却水に放熱させる熱交換器である。熱交換器20Bは、第2冷却水および第1冷却水の間で熱交換させて第2冷却水から第1冷却水に放熱させる熱交換器である。
本実施形態において、第1冷却水および第2冷却水は、熱を移動させるための熱媒体である。
本実施形態の熱交換器20Aは、第1ラジエータ10Aに内蔵されている。熱交換器20Bは、第2ラジエータ10Bに内蔵されている。なお、熱交換器20A、20B、第1ラジエータ10A、および第2ラジエータ10Bの構造については後述する。
熱交換器20A、20Bは、電動駆動系装置30を通過する第2冷却水の流れに対して並列に配置されている。
制御弁(図1中制御弁60Aと記す)60は、電動駆動系装置30を通過した第2冷却水を熱交換器20A、20Bに分配して、電動駆動系装置30から熱交換器20Aに流れる第2冷却水の流量Haと熱交換器20Bに流れる第2冷却水の流量Hbとの比率を調整する調整弁である。
具体的には、制御弁60は、電動駆動系装置30を通過した第2冷却水の流量のうち熱交換器20Aに流れる第2冷却水の流量Haと熱交換器20Bに流れる第2冷却水の流量Hbとの比率を調整する弁体と、弁体を駆動する電動アクチュエータとを備える。制御弁60の電動アクチュエータとしては、例えば、電磁ソレノイドや電動モータ等が用いられる。
電動駆動系装置30は、燃料電池50から発生される電力によって作動する電気機器と、第2冷却水と電気機器とを熱交換させて第2冷却水によって電気機器を冷却する熱交換器とを含んでいる。
本実施形態の電気機器は、燃料電池50から出力される電力に基づいて三相交流電流を流すことにより走行用電動モータを駆動するモータ駆動回路としてのインバータ回路である。走行用電動モータは、自動車の駆動輪に駆動力を出力する三相電動モータである。
ポンプ40Aは、第1、第2ラジエータ10A、10B、燃料電池50、および制御弁(図1中制御弁Bと記す)70とともに、冷却回路81を構成する。冷却回路81は、第1、第2ラジエータ10A、10Bおよび燃料電池50の間において第1冷却水を循環させる回路である。ポンプ40Aは、第1、第2ラジエータ10A、10Bおよび燃料電池50の間で循環させる第1冷却水の流れを発生させる電動ポンプである。
ポンプ40Bは、電動駆動系装置30、熱交換器20A、20B、制御弁(図1中制御弁Aと記す)60とともに、第2冷却水を循環させる冷却回路80を構成する。ポンプ40Bは、電動駆動系装置30および熱交換器20A、20Bの間で循環する第2冷却水の流れを発生させる電動ポンプである。冷却回路81、80は、それぞれ独立して冷却水を循環させる回路を構成している。
燃料電池50は、水素ガスを含む燃料ガスと酸素ガスを含む酸化剤ガス(例えば、空気)といった反応ガスの電気化学反応を利用して直流電力を発生する燃料電池スタックと、燃料電池スタックと第1冷却水とを熱交換して燃料電池スタックを第1冷却水によって冷却する熱交換器を含んでいる。
制御弁(図1中制御弁Bと記す)70は、燃料電池50からの第1冷却水を第1、第2ラジエータ10A、10Bに分配するとともに、燃料電池50を通過した第1冷却水のうち第1ラジエータ10Aに流れる流量Gaと第2ラジエータ10Bに流れる流量Gbとの比率を調整する調整弁である。
具体的には、制御弁70は、燃料電池50を通過した第1冷却水のうち第1ラジエータ10Aに流れる流量Gaと第2ラジエータ10Bに流れる流量Gbとの比率を調整する弁体と、弁体を駆動する電動アクチュエータとを備える。制御弁70の電動アクチュエータとしては、例えば、電磁ソレノイドや電動モータ等が用いられる。
なお、本実施形態の制御弁70としては、“いわゆる”絞り弁の各種の弁体を用いることができる。
次に、本実施形態の第1、第2ラジエータ10A、10B、および熱交換器20A、20Bの構造について図2A〜図2Cを参照して説明する。
第1ラジエータ10Aは、タンク11a、11bおよび熱交換コア11cを備える。熱交換コア11cは、複数本のチューブ11dと、複数本のチューブ11dの外側に接合されている熱交換フィンとから構成されている。タンク11aは、複数本のチューブ11dを通過した第1冷却水を集合させてポンプ40Bの入口に導く第2タンクである。
タンク11bは、燃料電池50から制御弁(図1中制御弁Bと記す)70を通して供給される第1冷却水を複数本のチューブ11dのそれぞれに分配する第1タンクである。第1ラジエータ10Aは、複数本のチューブ11dの外側を流れる空気流が複数本のチューブ11d内を流れる第1冷却水との間で熱交換して第1冷却水を冷却する。
熱交換器20Aは、第1ラジエータ10Aのタンク11a内に配置されている。熱交換器20Aは、放熱容器20aと、この放熱容器20a内の内部に配置されているインナーフィンとを備える。
放熱容器20aは、制御弁60から入口21aを通して導かれる第2冷却水を流通させる冷却水流路を形成し、この冷却水流路を通過した第2冷却水を出口21bからポンプ40Bに導く。インナーフィンは、放熱容器20a内の第2冷却水および放熱容器20aの外側の第1冷却水の間の熱交換を促進させる。
熱交換器20Aは、放熱容器20a内を流通する第2冷却水と放熱容器20aの外側に流れる第1冷却水との間で熱交換させて第1冷却水によって第2冷却水を冷却する。
第2ラジエータ10Bは、第1ラジエータ10Aと同様、タンク11a、11b、および熱交換コア11cを備える。このため、第2ラジエータ10Bの構造の詳細の説明を省略する。
熱交換器20Bは、第2ラジエータ10Bのタンク11a内に配置されている。熱交換器20Bは、熱交換器20Aと同様に、放熱を促進する形状に形成されて第2冷却水を流通させる流路を形成する放熱容器20aと、この放熱容器20a内の内部に配置されているインナーフィンとを備える。熱交換器20Bは、放熱容器20a内を流通する第2冷却水と放熱容器20aの外側に流れる第1冷却水との間で熱交換させて第1冷却水によって第2冷却水を冷却する。
次に、本実施形態の燃料電池システム1の電気的構成について図1を参照して説明する。
燃料電池システム1は、電子制御装置90、および温度センサ91、92、93を備える。
電子制御装置90は、マイクロコンピュータやメモリ等から構成され、温度調整制御処理を実行する。電子制御装置90は、温度調整制御処理の実行に伴って温度センサ91、92、93の出力信号に基づいて制御弁60、70を制御する。
温度調整制御処理は、第1冷却水および第2冷却水をそれぞれ管理水温未満にするために実行される処理である。第1冷却水の管理水温は、燃料電池50を正常に作動させるのに必要である第1冷却水の上限温度である。第2冷却水の管理水温は、電動駆動系装置30を正常に作動させるのに必要である第2冷却水の上限温度である。
本実施形態の第1冷却水の管理水温として、95℃が設定されている。第2冷却水の管理水温として、70℃が設定されている。
温度センサ(図1中温度センサ1と記す)91は、電動駆動系装置30を通過した第2冷却水の温度を検出する温度センサである。本実施形態の温度センサ91は、電動駆動系装置30に内蔵される熱交換器を通過する第2冷却水の温度を検出する。
温度センサ(図1中温度センサ2と記す)92は、燃料電池50を通過した第2冷却水の温度を検出する温度センサである。本実施形態の温度センサ92は、燃料電池50の冷却水出口と制御弁70の冷却水入口との間を流れる第2冷却水の温度を検出する。
温度センサ(図1中温度センサ3と記す)93は、第1ラジエータ10Aのタンク11aを通過した第1冷却水の温度を検出する温度センサである。本実施形態の温度センサ93は、第1ラジエータ10Aのタンク11aの冷却水出口とポンプ40Bの冷却水入口との間を流れる第1冷却水の温度を検出する。
次に、本実施形態の燃料電池システム1の作動について説明する。
ポンプ40Bは、熱交換器20A、20Bから電動駆動系装置30の熱交換器に流れる第2冷却水の流れを発生させる。
このため、電動駆動系装置30の熱交換器を流れる第2冷却水は、モータ駆動回路から吸熱して、この吸熱した第2冷却水は、制御弁70に流れる。
制御弁60は、電動駆動系装置30を通過した第2冷却水を熱交換器20A、20Bに分配して、電動駆動系装置30を通過した第2冷却水の流量のうち熱交換器20Aに流れる第2冷却水の流量Haと熱交換器20Bに流れる第2冷却水の流量Hbとの比率(以下、流量比率Hxという)を調整する。制御弁70の流量比率Hxは、電子制御装置90によって制御される。
このように制御弁60から熱交換器20Aに流れる第2冷却水は、第1ラジエータ10Aのタンク11a内の第1冷却水によって冷却される。
一方、制御弁60から熱交換器20Bに流れる第2冷却水は、第2ラジエータ10Bのタンク11a内の第1冷却水によって冷却される。
このように第1ラジエータ10Aのタンク11a内の第1冷却水によって冷却された第2冷却水と、第2ラジエータ10Bのタンク11a内の第1冷却水によって冷却された第2冷却水とが合流されてポンプ40Bに流れる。
また、ポンプ40Aは、第1、第2ラジエータ10A、10Bから燃料電池50に向けて流れる第1冷却水の流れを発生する。
燃料電池50は、燃料ガスと酸化剤ガスといった反応ガスの電気化学反応を利用して直流電圧を出力する。この出力される直流電圧は、DC−DCコンバータ等を通して電動駆動系装置30のモータ駆動回路に出力する。
この際、燃料電池50の燃料電池スタックは熱を発生する。このため、燃料電池50を流通する第1冷却水は、燃料電池スタックから吸熱する。つまり、燃料電池50を流通する第1冷却水は、燃料電池スタックを冷却する。この燃料電池スタックを冷却した第1冷却水は、制御弁70に流れる。
制御弁70は、燃料電池50を通過した第1冷却水のうち第1、第2ラジエータ10A、10Bに分配して、燃料電池50を通過した第1冷却水のうち第1ラジエータ10Aに流れる流量Gaと第2ラジエータ10Bに流れる流量Gbとの比率(以下、流量比率Ghという)を調整する。制御弁70の流量比率Ghは、電子制御装置90によって制御される。
ここで、制御弁70から第1ラジエータ10Aのタンク11bに流れる第1冷却水は、タンク11bから複数本のチューブ11dのそれぞれに分配される。この分配された第1冷却水が複数本のチューブ11dのそれぞれを流通する。
この際に、複数本のチューブ11d内の第1冷却水は、複数本のチューブ11dの外側に流れる空気流に放熱する。その後、この空気流に放熱した第1冷却水は、複数本のチューブ11dを通過してからタンク11bで集合されてポンプ40Bに流れる。
一方、制御弁70から第2ラジエータ10Bのタンク11bに流れる第1冷却水は、タンク11bから複数本のチューブ11dのそれぞれに分配される。この分配された第1冷却水が複数本のチューブ11dのそれぞれを流通する。
この際に、複数本のチューブ11d内の第1冷却水は、複数本のチューブ11dの外側に流れる空気流に放熱する。その後、この空気流に放熱した第1冷却水は、複数本のチューブ11dを通過してタンク11bで集合されてポンプ40Bに流れる。
このように第1ラジエータ10Aで空気流に放熱した第1冷却水と、第2ラジエータ10Bで空気流に放熱した第1冷却水とが合流してポンプ40Aに流れる。
このとき、電子制御装置90は、第1冷却水および第2冷却水をそれぞれ管理水温未満にするために温度調整制御処理を実行する。温度調整制御処理は、図3の第1制御処理と図4の第2制御処理とから構成されている。電子制御装置90は、図3の第1制御処理と図4の第2制御処理とを交互に時分割に実行する。図3は第1制御処理を示すフローチャートである。図4は第2制御処理を示すフローチャートである。電子制御装置90は、図3、図4のフローチャートにしたがって、コンピュータプログラムを実行する。
以下、図3の第1制御処理と図4の第2制御処理とを別々に説明する。
(図3の第1制御処理)
まず、ステップ100において、第1ラジエータ10Aの冷却水出口側の第1冷却水の温度(図3中第1ラジ出口温度と記す)が、電動駆動系装置30内を流通する第2冷却水の温度(図3中温度センサ1温度と記す)よりも高いか否かについて温度センサ91、93の検出値に基づいて判定する。
このとき、第1ラジエータ10Aの冷却水出口側の第1冷却水の温度が、電動駆動系装置30内を流通する第2冷却水の温度よりも高いときには、ステップ100においてYESと判定する。
これに伴い、ステップ110において、電動駆動系装置30内を流通する第2冷却水の温度が第2冷却水の管理温度(すなわち、70℃)よりも高いか否かについて温度センサ(図3中温度センサ)91の検出値に基づいて判定する。
このとき、電動駆動系装置30内を流通する第2冷却水の温度が第2冷却水の管理温度(すなわち、70℃)よりも低いときには、ステップ110においてNOと判定して、ステップ100に戻る。
その後、第1ラジエータ10Aの冷却水出口側の第1冷却水の温度が、電動駆動系装置30内を流通する第2冷却水の温度よりも高く、かつ電動駆動系装置30内を流通する第2冷却水の温度が第2冷却水の管理温度よりも低い状態が継続すると、ステップ110のYES判定、ステップ110のNO判定を繰り返す。
次に、電動駆動系装置30から放出される放熱量が増大して、電動駆動系装置30内を流通する第2冷却水の温度が第2冷却水の管理温度よりも高くなり、ステップ110においてYESと判定する。このとき、第1ラジエータ10A内の第1冷却水により電動駆動系装置30内を通過した第2冷却水を冷却できない状態であると判定する。その後、ステップ120(第2放熱量制御部)に進む。
このとき、制御弁(図3中制御弁B)70を制御して第1ラジエータ10Aに流れる流量Gaを減らして、第2ラジエータ10Bに流れる流量Gbを増大させる。これに加えて、制御弁(図3中制御弁Aと記す)60を制御して、熱交換器20Aに流れる第2冷却水の流量Ha(図3中第2内蔵熱交換器流量と記す)を増大させて、熱交換器20B(図3中第1内蔵熱交換器流量と記す)に流れる第2冷却水の流量Hbを減らす。
これにより、熱交換器20A内の第2冷却水から第1ラジエータ10A内の第1冷却水に放熱させることができる。つまり、第1ラジエータ10A内の第1冷却水により電動駆動系装置30内を通過した第2冷却水を冷却できる状態になる。その後、ステップ100に戻る。
このため、第1ラジエータ10Aの冷却水出口側の第1冷却水の温度が、電動駆動系装置30内の第2冷却水の温度よりも高く、かつ電動駆動系装置30内の第2冷却水の温度が第2冷却水の管理温度よりも高い状態が継続すると、ステップ100のYES判定、ステップ110のYES判定、およびステップ120の制御弁制御処理を繰り返す。
その後、第1ラジエータ10Aの冷却水出口側の第1冷却水の温度が、電動駆動系装置30内の第2冷却水の温度以下になると、ステップ130に進んで、電動駆動系装置30内を流通する第2冷却水の温度が第2冷却水の管理温度(すなわち、70℃)よりも高いか否かを判定する。
このとき、第1ラジエータ10Aの冷却水出口側の第1冷却水の温度が、電動駆動系装置30内を流通する第2冷却水の温度よりも高いときには、ステップ130においてYESと判定して、ステップ140に進む。
このとき、制御弁(図3中制御弁A)60を制御して、熱交換器20Aに流れる第2冷却水の流量Ha(図3第1内蔵熱交換器流量)を増大させて、熱交換器20Bに流れる第2冷却水の流量Hbを減らす。このため、熱交換器20A内の第2冷却水から第1ラジエータ10Aのタンク11b内の第1冷却水に放熱される放熱量が増加する。その後、ステップ100に戻る。
その後、第1ラジエータ10Aの冷却水出口側の第1冷却水の温度が、電動駆動系装置30内の第2冷却水の温度以下であり、かつ電動駆動系装置30内の第2冷却水の温度が第2冷却水の管理温度よりも高い状態が継続すると、ステップ100のNO判定、ステップ130のYES判定、およびステップ140の制御弁制御処理の実行を繰り返す。
次に、電動駆動系装置30内の第2冷却水の温度が第2冷却水の管理温度よりも低くなると、ステップ130においてNOと判定して、ステップ100に戻る。
このように、電動駆動系装置30内の第2冷却水の温度が第2冷却水の管理温度よりも高い場合には、電子制御装置90が制御弁60、70を制御することにより、電動駆動系装置30内の第2冷却水の温度が第2冷却水の管理温度よりも低くすることができる。
(図4の第2制御処理)
まず、ステップ200において、燃料電池50を流通する第2冷却水の温度(図4中温度センサ2温度と記す)が第2冷却水の管理温度(95℃)よりも高いか否かについて温度センサ92の検出値に基づいて判定する。
このとき、燃料電池50を流通する第2冷却水の温度が第2冷却水の管理温度(95℃)よりも高いときには、ステップ200においてYESと判定する。
これに伴い、ステップ210において、電動駆動系装置30内を流通する第2冷却水の温度(図4中温度センサ)が第2冷却水の管理温度(すなわち、70℃)よりも低いか否かについて温度センサ91の検出値に基づいて判定する。
このとき、電動駆動系装置30内を流通する第2冷却水の温度が第2冷却水の管理温度(70℃)以上であるときには、ステップ210においてNOと判定する。
これに伴い、ステップ230(第1放熱量制御部)において、制御弁(図4中制御弁B)70を制御して、第1ラジエータ10Aから空気流に放熱される放熱量Faと第2ラジエータ10Bから空気流に放熱される放熱量Fbとの合計(Fa+Fb)を高放熱量にする。高放熱量とは、第1、第2ラジエータ10A、10Bの放熱量Fa、Fbの合計において、最大放熱量未満で、かつ最小放熱量よりも高い放熱量である。
これに加えて、ステップ230において、制御弁(図4中制御弁A)60を制御して、熱交換器20B(図4中第2内蔵熱交換器流量と記す)に流れる第2冷却水の流量Hbよりも、熱交換器20Aに流れる第2冷却水の流量Ha(図4第1内蔵熱交換器流量)を多くする。
この際、第1、第2ラジエータ10A、10B内の第1冷却水から空気流に多くの熱が移動する。さらに、熱交換器20Aに流れる第2冷却水から第1ラジエータ10Aのタンク11b内の第1冷却水に多くの熱が放熱される。その後、ステップ200に戻る。
このため、燃料電池50を流通する第2冷却水の温度が第2冷却水の管理温度(95℃)よりも高く、かつ電動駆動系装置30内を流通する第2冷却水の温度が第2冷却水の管理温度(70℃)よりも高い状態が維持されると、ステップ200のYES判定、ステップ210のNO判定、およびステップ230の制御弁の制御処理を繰り返す。
その後、燃料電池50を流通する第1冷却水の温度が第1冷却水の管理温度(95℃)よりも高く、かつ電動駆動系装置30内を流通する第2冷却水の温度が第2冷却水の管理温度(70℃)よりも低い状態に移行する。すると、ステップ210においてYESと判定する。
これに伴い、ステップ220(第1放熱量制御部)において、制御弁(図4中制御弁B)70を制御して、第1ラジエータ10Aから空気流に放熱される放熱量Faと第2ラジエータ10Bから空気流に放熱される放熱量Fbとの合計(Fa+Fb)を最大放熱量に近づける。この際、第1ラジエータ10Aに流れる流量Gaが第2ラジエータ10Bに流れる流量Gbよりも少なくなる。
これに加えて、制御弁(図4中制御弁A)60を制御して、熱交換器20Aに流れる第2冷却水の流量Ha(図4第1内蔵熱交換器流量)よりも、熱交換器20B(図4中第2内蔵熱交換器流量と記す)に流れる第2冷却水の流量Hbを多くさせる。
この際に、第1、第2ラジエータ10A、10Bのタンク11b内の第1冷却水から空気流に多くの熱が放熱される。これに加えて、第2ラジエータ10Bのタンク11b内の第1冷却水から熱交換器20B内の第2冷却水に対して多くの熱が放熱される。
このことにより、第1、第2ラジエータ10A、10B内の第1冷却水が熱交換器20B内の第2冷却水や空気流によって冷却されることになる。その後、ステップ200に戻る。
このため、燃料電池50を流通する第2冷却水の温度が第2冷却水の管理温度(95℃)よりも高く、かつ電動駆動系装置30内を流通する第2冷却水の温度が第2冷却水の管理温度(70℃)よりも低い状態が維持されると、ステップ200のYES判定、ステップ210のYES判定、およびステップ220の制御弁の制御処理を繰り返す。
その後、燃料電池50を流通する第2冷却水の温度が第2冷却水の管理温度(95℃)よりも低くなると、ステップ200でNOと判定して、ステップ200に戻る。
次に、本実施形態の具体的な作動について図5、図6、図7を参照して説明する。
図5(a)は、縦軸を本実施形態の燃料電池車が位置する標高、および車速として、横軸を時間として、燃料電池車の標高、車速の変化を示すタイミングチャートである。図5(a)は、図中左側から右側に向かうほど時間が経過していることを示している。本実施形態の燃料電池車とは、燃料電池システム1を搭載する自動車のことである。図6(a)、図7(a)は、図5(a)と同様である。
図5(b)は、比較例における第1冷却水(図中燃料電池系と記す)の温度、および第2冷却水(図中電動駆動系と記す)を示すタイミングチャートである。図6(b)、図7(b)は、図5(b)と同様である。
図5(c)は、本実施形態における第1冷却水(図中燃料電池系と記す)の温度、および第2冷却水(図中電動駆動系と記す)を示すタイミングチャートである。図6(c)、図7(c)は、図5(c)と同様である。
図5(d)は、本実施形態における第1ラジエータ10Aを流れる第1冷却水の水量のタイミングチャート、第2ラジエータ10Bを流れる第1冷却水の水量のタイミングチャート、熱交換器20A(第1ラジエータ内蔵熱交換器)を流れる第2冷却水の水量のタイミングチャート、および熱交換器20B(第2ラジエータ内蔵熱交換器)を流れる第2冷却水の水量のタイミングチャートである。
図5(e)、図6(e)、図7(e)において、横軸を第1、第2ラジエータ10A、10Bを流れる第1冷却水の水量(或いは、流量比率)、縦軸を放熱量、第1冷却水の温度(図中液冷媒出口温度と記す)として、菱形プロットは、第1ラジエータ10Aの放熱量Faと第2ラジエータ10Bの放熱量Fbとの合計(図中ラジ放熱量)を示すグラフ、三角形プロットは、第1ラジエータ10Aから流れ出る第1冷却水の温度を示すグラフ、四角形プロットは、第2ラジエータ10Bから流れ出る第1冷却水の温度を示すグラフである。
図6(e)において、一点鎖線は、第1、第2ラジエータ10A、10Bの放熱量Faに熱交換器20B(第2ラジエータ10Bに内蔵される熱交換器)の放熱量Fcを加味した放熱量(=Fa+Fc)を示すグラフである。
例えば、本実施形態の燃料電池システム1を搭載する自動車(以下、燃料電池車という)が標高の高い高所から低い低所に坂道を下る場合(図5(a)参照)には、燃料電池車の速度(以下、車速という)が徐々に上昇する。これによって、燃料電池50の発熱量が上昇して燃料電池50の発熱量と電動駆動系装置30の発熱量とが高い状態となる。これに伴い、第1冷却水の温度(図5中燃料電池系と記す)および第2冷却水の温度(図5中電動駆動系と記す)がそれぞれ徐々に上昇する。
このとき、第1ラジエータ10Aから排出される第1冷却水の温度が電動駆動系装置30内を流通する第2冷却水の温度(すなわち、温度センサ(温度センサ1)91の検出値)よりも高くなる。このため、電子制御装置90は、第1ラジエータ10A内の第1冷却水によって第2冷却水を冷却できない状態であるとして、ステップ100、110のそれぞれでYESと判定して、ステップ120の制御弁の制御処理を実施する。
具体的には、電子制御装置90は、制御弁70を制御して第1ラジエータ10Aに流れる流量Gaを減らして、第2ラジエータ10Bに流れる流量Gbを増大させる。これに加えて、電子制御装置90は、制御弁60を制御して、熱交換器20Aに流れる第2冷却水の流量Haを増大させて、熱交換器20Bに流れる第2冷却水の流量Hbを減らす。
このため、熱交換器20A内の第2冷却水に含まれる熱量が第1ラジエータ10Aのタンク11b内の第1冷却水に含まれる熱量よりも多くなる。これに伴い、熱交換器20A内の第2冷却水から第1ラジエータ10Aのタンク11b内の第1冷却水に熱が移動する。つまり、熱交換器20A内の第2冷却水が第1ラジエータ10Aのタンク11b内の第1冷却水によって冷却される。これにより、電動駆動系装置30が第2冷却水によって冷却される。
このとき、図5(c)に示すように、第2冷却水(図中電動駆動系と記す)の温度が低下して、第1冷却水(図中燃料電池系と記す)の温度が上昇する。
この場合、図5(e)中符号Aに示すように、第1ラジエータ10Aを通過する第1冷却水の流量(図中ラジ液冷媒流量と記す)の方が第2ラジエータ10Bを通過する第1冷却水の流量よりも少ない状態で、燃料電池50が第1冷却水によって冷却され、電動駆動系装置30が第2冷却水によって冷却されることになる。
このとき、第1ラジエータ10Aから流れ出る第1冷却水の温度(図5(e)中第1ラジ出口温度と記す)が、第2ラジエータ10Bから流れ出る第1冷却水の温度(図5(e)中第2ラジ出口温度と記す)よりも低い状態となる。
その後、燃料電池車が坂道を下った後に(図6(a)参照)、燃料電池50の発熱量が上昇して、燃料電池50を流通する第2冷却水の温度が第2冷却水の管理温度(95℃)よりも高く、かつ電動駆動系装置30内を流通する第2冷却水の温度が第2冷却水の管理温度(すなわち、70℃)よりも低い状態になると、ステップ200、210のそれぞれでYESと判定して、ステップ220の制御弁の制御を実施する。
具体的には、電子制御装置90が制御弁70を制御して、第1ラジエータ10Aから空気流に放熱される放熱量Faと第2ラジエータ10Bから空気流に放熱される放熱量Fbとの合計(Fa+Fb)を最大放熱量に近づける。この際、第1ラジエータ10Aに流れる流量Gaよりも第2ラジエータ10Bに流れる流量Gbが増大する。
これに加えて、電子制御装置90が制御弁60を制御して、熱交換器20Aに流れる第2冷却水の流量Haよりも、熱交換器20Bに流れる第2冷却水の流量Hbを多くさせる。
この際に、第1、第2ラジエータ10A、10B内の第1冷却水から空気流へ放熱させつつ、第2ラジエータ10B内の第1冷却水から熱交換器20B内の第2冷却水に多くの熱を放熱される。これにより、第1冷却水を第2冷却水および空気流によって冷却することができる。
この場合、図6(e)中符号Bに示すように、第1ラジエータ10Aを通過する第1冷却水の流量(図中ラジ液冷媒流量と記す)の方が第2ラジエータ10Bを通過する第1冷却水の流量よりも少ない状態で、燃料電池50が第1冷却水および第2冷却水によって冷却され、電動駆動系装置30が第2冷却水によって冷却される。
その後、燃料電池車が走行中にて、電動駆動系装置30内を流通する第2冷却水の温度が第2冷却水の管理温度(すなわち、70℃)よりも高く、かつ燃料電池50を流通する第2冷却水の温度が第2冷却水の管理温度(95℃)よりも高くなると、ステップ200でYESと判定してからステップ210でNOと判定して、ステップ230の制御弁の制御を実施する。
具体的には、電子制御装置90が制御弁70を制御して、第1、第2ラジエータ10A、10Bの放熱量Fa、Fbとの合計(Fa+Fb)を高放熱量とする。この際、第1ラジエータ10Aに流れる流量Gaの方が第2ラジエータ10Bに流れる流量Gbよりも少なくなる。
これに加えて、電子制御装置90が制御弁60を制御して、熱交換器20Bに流れる第2冷却水の流量Hbよりも、熱交換器20Aに流れる第2冷却水の流量Haを多くさせる。
この際に、図7(e)中符号Cに示すように、第1ラジエータ10Aを通過する第1冷却水の流量(図中ラジ液冷媒流量と記す)の方が第2ラジエータ10Bを通過する第1冷却水の流量よりも少ない状態で、第1、第2ラジエータ10A、10Bにおいて第1冷却水から空気流に多くの熱が放熱される。これに加えて、熱交換器20Aにおいて、第2冷却水から第1ラジエータ10Aのタンク11b内の第1冷却水に多くの熱が放熱される。このため、第1冷却水が空気流によって冷却されつつ、第2冷却水が第1冷却水によって冷却される。
以上説明した本実施形態によれば、燃料電池システム1は、酸素を含む酸化剤ガスと水素を含む燃料ガスとを電気化学反応させて電力を発生させる燃料電池50と、燃料電池50から発生される電力により作動する電動駆動系装置30とを備える自動車に適用される。
燃料電池システム1は、燃料電池50を冷却する第1冷却水から放熱させるラジエータ10A、10Bを有し、ラジエータ10A、10Bおよび燃料電池50の間で第1冷却水を循環させる冷却回路81と、電動駆動系装置30を冷却する第2冷却水と第1冷却水とを熱交換させて第2冷却水から第1冷却水に放熱させる熱交換器20A、20Bとを備える。
これにより、熱交換器20A、20Bにおいて、第2冷却水から第1冷却水に放熱させることができるので、第2冷却水によって電動駆動系装置30を冷却する冷却性能を向上することができる。
本実施形態では、熱交換器20A、20Bは、第1、第2ラジエータ10A、10Bのうち対応するラジエータのタンク11b内に内蔵されている。このため、自動車に対する熱交換器20A、20Bの搭載スペースを節約することができる。したがって、自動車に燃料電池システム1を搭載する上で制約を受け難くすることができる。
本実施形態では、第1冷却水の温度が第1冷却水の管理温度(95℃)よりも高い場合には、電子制御装置90が制御弁70を制御して第1、第2ラジエータ10A、10Bのそれぞれに流れる第1冷却水の流量の比率を制御する。したがって、第1、第2ラジエータ10A、10Bから放熱される放熱量を増大させることできる。これにより、燃料電池50の放熱能力を増大することができる。
特に、第1冷却水の温度が第1冷却水の管理温度よりも高く、かつ第1冷却水の温度が第2冷却水の管理温度よりも高い場合には、電子制御装置90が制御弁70を制御して、第1、第2ラジエータ10A、10Bから放熱される放熱量Fa、Fbとの合計(Fa+Fb)を高放熱量にする。これにより、第1、第2ラジエータ10A、10Bにおいて第1冷却水を空気流によって冷却させつつ、熱交換器20A内の第2冷却水から第1ラジエータ10A内の第1冷却水に放熱させる放熱量を増大させることができる。
本実施形態では、第1ラジエータ10Aは、第2ラジエータ10Bに対して空気流れ上流側に位置する。このため、第1ラジエータ10Aは、第2ラジエータ10Bに比べて第1冷却水から空気流に放熱する放熱能力が高い。したがって、上述の如く、熱交換器20A内の第2冷却水から第1ラジエータ10A内の第1冷却水に放熱させる放熱量を増大させることにより、電動駆動系装置30の放熱能力をより一層、増大することができる。
特に、本実施形態では、第1ラジエータ10Aの冷却水出口側の第1冷却水の温度が、第2冷却水の温度よりも高い場合には、電子制御装置90が制御弁70を制御して第1ラジエータ10Aに流れる流量Gaを減らして、第2ラジエータ10Bに流れる流量Gbを増大させる。これにより、熱交換器20A内の第2冷却水から第1ラジエータ10A内の第1冷却水に放熱させることができる。したがって、電動駆動系装置30の放熱能力を更に増大することができる。
本実施形態では、第1、第2ラジエータ10A、10Bは、冷却回路81の第1冷却水の流れに対して並列に配置されている。このため、冷却回路81の第1冷却水を循環させるポンプ40Aを駆動するのに必要なエネルギー(動力)を低減することができる。
本実施形態では、熱交換器20A、20Bは、冷却回路80の第2冷却水の流れに対して並列に配置されている。このため、冷却回路80の第2冷却水を循環させるポンプ40Bを駆動するのに必要なエネルギー(動力)を低減することができる。
(他の実施形態)
(1)上記実施形態では、燃料電池システム1を自動車に適用した例について説明したが、これに代えて、燃料電池システム1を設置型の発電機に適用してもよい。
(2)上記実施形態では、燃料電池システム1において、第1、第2ラジエータ10A、10Bを採用した例について説明したが、これに代えて、1つのラジエータ、或いは、3つ以上のラジエータを用いてもよい。
(3)上記実施形態では、燃料電池システム1において、熱交換器20A、20Bを採用した例について説明したが、これに代えて、1つの熱交換器、或いは、3つ以上の熱交換器を用いてもよい。
(4)上記実施形態では、燃料電池システム1において、制御弁60、70を採用した例について説明したが、これに代えて、制御弁60、70のうち制御弁70を採用して燃料電池システム1を構成してもよい。
例えば、図3のステップ120において、制御弁70を制御して第1ラジエータ10Aに流れる流量Gaを減らして、第2ラジエータ10Bに流れる流量Gbを増大させる。これにより、熱交換器20A内の第2冷却水から第1ラジエータ10A内の第1冷却水に放熱させることができる。
例えば、図4のステップ230において、制御弁70を制御して、第1、第2ラジエータ10A、10Bから空気流に放熱される放熱量Fa、Fbとの合計(Fa+Fb)を高放熱量に近づける。このため、第1、第2ラジエータ10A、10B内の第1冷却水から熱交換器20A内の第2冷却水に放熱させることができる。
このように、冷却回路80の放熱性能が十分であるのであれば、制御弁60を採用しない燃料電池システム1を採用しても良い。
(5)上記実施形態では、第2冷却水による被冷却対象としての電気機器としては、モータ駆動回路を用いた例について説明したが、これに代えて、走行用電動モータおよびモータ駆動回路の双方を第2冷却水による被冷却対象としての電気機器としてもよい。
(6)上記実施形態では、熱交換器20A、20Bを第1、第2ラジエータ10A、10Bのうち対応するラジエータのタンク11aに内蔵した例について説明したが、これに代えて、熱交換器20A、20Bを第1、第2ラジエータ10A、10Bのうち対応するラジエータの外側に配置してもよい。
つまり、熱交換器20A、20Bと第1、第2ラジエータ10A、10Bとを分離して構成してもよい。或いは、熱交換器20A、20Bを第1、第2ラジエータ10A、10Bのうち対応するラジエータのタンク11a以外の部位に内蔵してもよい。
(7)なお、本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。また、上記実施形態および他の実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。
1 燃料電池システム
10A 第1ラジエータ(燃料電池用熱交換器)
10B 第2ラジエータ(燃料電池用熱交換器)
10C 電動ファン
11a、11b タンク
11c 熱交換コア
11d チューブ
20A、20B 熱交換器(燃料電池用熱交換器)
30 電動駆動系装置(電気機器、モータ駆動回路)
40A、40B ポンプ
50 燃料電池
60 制御弁(第1制御弁)
70 制御弁(第1制御弁)
80、81 冷却回路

Claims (9)

  1. 酸素を含む酸化剤ガスと水素を含む燃料ガスとを電気化学反応させて電力を発生させる燃料電池(50)と、前記燃料電池から発生される電力により作動する電気機器(30)とを備える自動車に適用される燃料電池システムであって、
    前記燃料電池を冷却する第1熱媒体から放熱させる燃料電池用熱交換器(10A、10B)を有し、前記燃料電池用熱交換器および前記燃料電池の間で前記第1熱媒体を循環させる冷却回路(81)と、
    前記電気機器を冷却する第2熱媒体と前記第1熱媒体とを熱交換させて前記第2熱媒体から前記第1熱媒体に放熱させる電気機器用熱交換器(20A、20B)と、
    を備える燃料電池システム。
  2. 前記電気機器用熱交換器は、前記燃料電池用熱交換器内に配置されている請求項1に記載の燃料電池システム。
  3. 前記燃料電池用熱交換器は、複数本のチューブ(11d)と、前記燃料電池から供給される第1熱媒体を前記複数本のチューブのそれぞれに分配する第1タンク(11a)と、前記複数本のチューブを通過した第1熱媒体を集合させる第2タンク(11b)と、を備え、
    前記複数本のチューブ内を流れる前記第1熱媒体が前記複数本のチューブの外側に放熱するように前記複数本のチューブが構成されており、
    前記電気機器用熱交換器は、前記第2タンク内に配置されている請求項2に記載の燃料電池システム。
  4. 前記自動車は、前記燃料電池から発生される電力によって走行用電動モータを駆動するモータ駆動回路(30)と、を備え、
    前記電気機器は、少なくとも前記モータ駆動回路を含んでいる請求項1または2に記載の燃料電池システム。
  5. 前記冷却回路を流れる前記第1熱媒体の流れを発生させるポンプ(40A)と、
    前記第1熱媒体の流れに対して並列に配置されている複数の前記燃料電池用熱交換器(10A、10B)と、
    を備える請求項2ないし4のいずれか1つに記載の燃料電池システム。
  6. 前記複数の燃料電池用熱交換器は、前記空気流の流れ方向に並べられている請求項5に記載の燃料電池システム。
  7. 前記冷却回路を構成し、かつ前記燃料電池からの前記第1熱媒体を前記複数の燃料電池用熱交換器のそれぞれに分配して、前記燃料電池から前記複数の燃料電池用熱交換器のそれぞれに流れる前記第1熱媒体の流量の比率を調整する制御弁(70)と、
    前記制御弁を制御して前記燃料電池から前記複数の燃料電池用熱交換器のそれぞれに流れる前記第1熱媒体の流量の比率を制御することにより、前記燃料電池から放熱される放熱量を制御する放熱量制御部(S220、S230)と、
    を備える請求項6に記載の燃料電池システム。
  8. 前記第1熱媒体の流れを発生させるポンプは、第1ポンプであり、
    前記第2熱媒体の流れを発生させる第2ポンプ(40A)と、
    前記第2熱媒体の流れに対して並列に配置されている前記複数の電気機器用熱交換器(20A、20B)と、を備える請求項2ないし7のいずれか1つに記載の燃料電池システム。
  9. 前記制御弁は、第1制御弁であり、
    前記冷却回路は、第1冷却回路であり、
    前記放熱量制御部は、第1放熱量制御部であり、
    前記複数の電気機器用熱交換器および前記電気機器とともに、前記第2熱媒体を循環させる第2冷却回路を構成し、かつ前記電気機器からの前記第2熱媒体を前記複数の電気機器用熱交換器のそれぞれに分配して前記電気機器から前記複数の電気機器用熱交換器のそれぞれに流れる前記第2熱媒体の流量の比率を調整する第2制御弁(60)と、
    前記第2制御弁を制御して前記電気機器から前記複数の電気機器用熱交換器のそれぞれに流れる前記第2熱媒体の流量の比率を制御することにより、前記電気機器から放熱される放熱量を制御する第2放熱量制御部(S120、S140)と、
    を備える請求項8に記載の燃料電池システム。
JP2016090777A 2016-04-28 2016-04-28 車載燃料電池システム Pending JP2017199611A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016090777A JP2017199611A (ja) 2016-04-28 2016-04-28 車載燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016090777A JP2017199611A (ja) 2016-04-28 2016-04-28 車載燃料電池システム

Publications (1)

Publication Number Publication Date
JP2017199611A true JP2017199611A (ja) 2017-11-02

Family

ID=60239414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016090777A Pending JP2017199611A (ja) 2016-04-28 2016-04-28 車載燃料電池システム

Country Status (1)

Country Link
JP (1) JP2017199611A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190064789A (ko) * 2017-12-01 2019-06-11 현대자동차주식회사 연료전지용 공기 냉각장치
KR20210155619A (ko) * 2020-06-16 2021-12-23 현대모비스 주식회사 차량용 연료전지 시스템
JP2022155704A (ja) * 2021-03-31 2022-10-14 本田技研工業株式会社 電力システム及び電力制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190064789A (ko) * 2017-12-01 2019-06-11 현대자동차주식회사 연료전지용 공기 냉각장치
KR102496802B1 (ko) * 2017-12-01 2023-02-06 현대자동차 주식회사 연료전지용 공기 냉각장치
KR20210155619A (ko) * 2020-06-16 2021-12-23 현대모비스 주식회사 차량용 연료전지 시스템
KR102387889B1 (ko) * 2020-06-16 2022-04-18 현대모비스 주식회사 차량용 연료전지 시스템
US11450872B2 (en) 2020-06-16 2022-09-20 Hyundai Mobis Co., Ltd. Fuel cell system for vehicle
JP2022155704A (ja) * 2021-03-31 2022-10-14 本田技研工業株式会社 電力システム及び電力制御装置
JP7374145B2 (ja) 2021-03-31 2023-11-06 本田技研工業株式会社 電力システム及び電力制御装置

Similar Documents

Publication Publication Date Title
JP4591896B2 (ja) 燃料電池電源システムが搭載された車両
KR101856825B1 (ko) 연료 전지 시스템, 연료 전지 탑재 차량 및 연료 전지 시스템의 제어 방법
JP5197713B2 (ja) 冷却システム
JP6364926B2 (ja) 車両用空調装置
JP2010119282A (ja) 熱マネージメントシステム
WO2018047539A1 (ja) 機器温調装置
JP2010274675A (ja) 燃料電池システム
JP2006224879A (ja) 車両冷却システム
JP2010284045A (ja) 熱供給装置
JP2020100189A (ja) 電気自動車における温調制御システム
JP2005329818A (ja) 冷却システムおよびこれを搭載するハイブリッド車。
JPH09126617A (ja) 電気自動車用放熱装置
JP4811057B2 (ja) 荷役車両
JP2019052837A (ja) 機器温調装置
JP3722145B2 (ja) ハイブリッド電気自動車の冷却システム
JP2017199611A (ja) 車載燃料電池システム
WO2020158180A1 (ja) 機器温調装置
CN113459760B (zh) 热请求调节装置和调节方法、非暂时性存储介质及车辆
JP2016147559A (ja) 自動車
JP6559537B2 (ja) 燃料電池車
JP2005126029A (ja) 燃料電池搭載車両
JP2005163758A (ja) 熱交換装置
JP4626342B2 (ja) 燃料電池車両の冷却装置
JP2021167161A (ja) 車両
JP2005280639A (ja) 燃料電池車用床暖房装置