[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017066532A - Copper alloy sheet having excellent conductivity and stress relaxation properties - Google Patents

Copper alloy sheet having excellent conductivity and stress relaxation properties Download PDF

Info

Publication number
JP2017066532A
JP2017066532A JP2016218191A JP2016218191A JP2017066532A JP 2017066532 A JP2017066532 A JP 2017066532A JP 2016218191 A JP2016218191 A JP 2016218191A JP 2016218191 A JP2016218191 A JP 2016218191A JP 2017066532 A JP2017066532 A JP 2017066532A
Authority
JP
Japan
Prior art keywords
copper alloy
less
alloy sheet
annealing
stress relaxation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2016218191A
Other languages
Japanese (ja)
Inventor
波多野 隆紹
Takaaki Hatano
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Publication of JP2017066532A publication Critical patent/JP2017066532A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy sheet having all of high strength, high conductivity and excellent stress relaxation properties, a method for producing a copper alloy sheet, and an electronic component for large current and an electronic component for heat radiation prepared with the copper alloy sheet.SOLUTION: A copper alloy sheet comprises Sn of 0.005-0.25 mass% with the balance being copper and inevitable impurities, and has 0.2% proof stress of 330 MPa or more and a thermal shrinkage of 50 ppm or less in rolling direction when heated at 200°C for 30 minutes.SELECTED DRAWING: None

Description

本発明は銅合金板及び通電用又は放熱用電子部品に関し、特に、電機・電子機器、自動車等に搭載される端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板等の電子部品の素材として使用される銅合金板、及び該銅合金板を用いた電子部品に関する。中でも、電気自動車、ハイブリッド自動車等で用いられる大電流用コネクタや端子等の大電流用電子部品の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に好適な銅合金板及び該銅合金板を用いた電子部品に関するものである。   TECHNICAL FIELD The present invention relates to a copper alloy plate and electronic parts for energization or heat dissipation, and in particular, electronic parts such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, heat sinks, etc. mounted on electric machines / electronic devices, automobiles and the like. The present invention relates to a copper alloy plate used as a material for the above and an electronic component using the copper alloy plate. Among these, copper alloys suitable for use in high current electronic parts such as high current connectors and terminals used in electric vehicles, hybrid cars, etc., or in heat dissipation electronic parts such as liquid crystal frames used in smartphones and tablet PCs. The present invention relates to a plate and an electronic component using the copper alloy plate.

自動車や電機・電子機器等には、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電気又は熱を伝えるための部品が組み込まれており、これら部品には銅合金が用いられている。ここで、電気伝導性と熱伝導性は比例関係にある。   Parts such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, heat sinks, etc., that transmit electricity or heat are built into automobiles, electrical equipment, electronic devices, etc., and these parts are made of copper alloy. It is used. Here, electrical conductivity and thermal conductivity are in a proportional relationship.

近年、電子部品の小型化に伴い、通電部における銅合金の断面積が小さくなる傾向にある。断面積が小さくなると、通電した際の銅合金からの発熱が増大する。また、成長著しい電気自動車やハイブリッド電気自動車で用いられる電子部品には、バッテリー部のコネクタ等の著しく高い電流が流される部品があり、通電時の銅合金の発熱が問題になっている。発熱が過大になると、銅合金は高温環境に晒されることになる。   In recent years, with the miniaturization of electronic components, the cross-sectional area of the copper alloy in the current-carrying part tends to be small. When the cross-sectional area becomes small, heat generation from the copper alloy when energized increases. In addition, electronic parts used in fast-growing electric vehicles and hybrid electric vehicles include parts through which a remarkably high current flows, such as a connector of a battery unit, and heat generation of a copper alloy during energization is a problem. When the heat generation becomes excessive, the copper alloy is exposed to a high temperature environment.

コネクタ等の電子部品の電気接点では、銅合金板にたわみが与えられ、このたわみで発生する応力により、接点での接触力を得ている。たわみを与えた銅合金を高温下に長時間保持すると、応力緩和現象により、応力すなわち接触力が低下し、接触電気抵抗の増大を招く。この問題に対処するため銅合金には、発熱量が減ずるよう導電性により優れることが求められ、また発熱しても接触力が低下しないよう応力緩和特性により優れることも求められている。   In an electrical contact of an electronic component such as a connector, a deflection is given to the copper alloy plate, and a contact force at the contact is obtained by a stress generated by the deflection. When a bent copper alloy is held at a high temperature for a long time, the stress, that is, the contact force is lowered due to the stress relaxation phenomenon, and the contact electric resistance is increased. In order to cope with this problem, the copper alloy is required to be more excellent in conductivity so that the amount of heat generation is reduced, and is also required to be superior in stress relaxation characteristics so that the contact force does not decrease even if heat is generated.

一方、例えばスマートフォンやタブレットPCの液晶には液晶フレームと呼ばれる放熱部品が用いられている。このような放熱用途の銅合金板においても、応力緩和特性を高めると、外力による放熱板のクリープ変形が抑制され、放熱板周りに配置される液晶部品、ICチップ等に対する保護性が改善される、等の効果を期待できる。このため、放熱用途の銅合金板においても、応力緩和特性に優れることが望まれている。   On the other hand, for example, a heat radiating component called a liquid crystal frame is used for a liquid crystal of a smartphone or a tablet PC. Even in such a copper alloy plate for heat dissipation, when stress relaxation characteristics are enhanced, creep deformation of the heat sink due to external force is suppressed, and the protection against liquid crystal components, IC chips, etc. disposed around the heat sink is improved. , Etc. can be expected. For this reason, it is desired that the copper alloy plate for heat dissipation also has excellent stress relaxation characteristics.

導電率が高く、比較的高い強度を有する材料として、Cu−Sn系合金が知られている。例えば、0.10〜0.15質量%のSnを含有する銅合金が、CDA(Copper Development Association)合金番号C14415として実用に供されている。また、Cu−Sn合金は以前より、銅合金箔として携帯電話のフレキシブルプリント基盤やリチウムイオン二次電池等の二次電池の負極集電体材料にも使用されている。(特許文献1、2)。   A Cu—Sn alloy is known as a material having high conductivity and relatively high strength. For example, a copper alloy containing 0.10 to 0.15% by mass of Sn has been put into practical use as CDA (Copper Development Association) alloy number C14415. Moreover, Cu-Sn alloy has been used as a copper alloy foil for a negative current collector material of a secondary battery such as a flexible printed circuit board of a mobile phone or a lithium ion secondary battery. (Patent Documents 1 and 2).

特開2003−286528号公報JP 2003-286528 A 特開2011−142071号公報JP 2011-142071 A

銅の応力緩和特性は、合金元素を添加することにより改善できる。ただし、合金元素の添加は導電率を低下させるため、添加元素には導電率低下への影響が少ないこと、少量の添加で応力緩和改善効果が発現することが求められる。   The stress relaxation property of copper can be improved by adding an alloy element. However, since the addition of alloy elements decreases the electrical conductivity, the additive elements are required to have little influence on the decrease in electrical conductivity, and to exhibit a stress relaxation improving effect with a small amount of addition.

応力緩和改善効果が顕著な元素として、例えばZrがあげられる。ところが、Zrは極めて活性であるため、インゴットの溶製時に添加したZrの一部が酸化する。このZr酸化物がインゴットに巻き込まれると、製品表面に傷が発生したり、圧延中の材料が切れたりする。また、Zrは固体銅中で析出物を形成し、その析出形態によって機械的特性や応力緩和特性が変化するため、熱間圧延や各熱処理の条件を厳密に調整する必要がある。このことから、Cu−Zr系合金の製造コストは極めて高価なものであった。   An example of an element having a remarkable effect of improving stress relaxation is Zr. However, since Zr is extremely active, a part of Zr added during ingot melting is oxidized. When this Zr oxide is caught in an ingot, the surface of the product is damaged or the material being rolled is cut. Further, Zr forms precipitates in solid copper, and mechanical characteristics and stress relaxation characteristics change depending on the form of precipitation, so it is necessary to strictly adjust conditions for hot rolling and each heat treatment. From this, the manufacturing cost of the Cu—Zr alloy was very expensive.

一方、Cu−Sn系合金の場合、SnはZr等と比較し溶銅中で酸化物を形成しにくいため、インゴットの溶製が容易であり、圧延材の品質も良好である。また、Snは固体銅中に安定して固溶するため、製品特性が安定して発現する。したがって、Cu−Sn系合金は安価に製造することができる。しかし、Cu−Sn系合金の応力緩和特性は純Cuと比べると優れるものの、近年市場から要求されるレベルに対し充分といえなかった。   On the other hand, in the case of a Cu—Sn alloy, Sn does not easily form an oxide in molten copper as compared with Zr or the like, so that the ingot can be easily melted and the quality of the rolled material is good. Moreover, since Sn is stably dissolved in solid copper, product characteristics are stably expressed. Therefore, the Cu—Sn alloy can be manufactured at a low cost. However, although the stress relaxation property of the Cu—Sn alloy is superior to that of pure Cu, it has not been sufficient for the level required from the market in recent years.

そこで、本発明は、高強度、高導電性および優れた応力緩和特性を兼ね備えた銅合金板を提供することを目的とし、具体的には、安価で導電性と強度に優れるCu−Sn系合金板の応力緩和特性を改善することを課題とする。さらには、本発明は、該銅合金板の製造方法、及び大電流用途又は放熱用途に好適な電子部品を提供することをも目的とする。   Accordingly, an object of the present invention is to provide a copper alloy plate having high strength, high conductivity, and excellent stress relaxation characteristics. Specifically, the Cu-Sn alloy is inexpensive and has excellent conductivity and strength. It is an object to improve the stress relaxation characteristics of the plate. Furthermore, another object of the present invention is to provide a method for producing the copper alloy plate and an electronic component suitable for high current use or heat dissipation use.

本発明者は、鋭意検討を重ねた結果、Cu−Sn系合金について、その圧延方向の熱伸縮率を所定の値に調整することにより、高強度および高導電性を有するCu−Sn系合金の応力緩和特性が向上することを見出した。   As a result of intensive studies, the inventor of the Cu-Sn alloy has a high strength and high conductivity by adjusting the thermal expansion / contraction ratio in the rolling direction to a predetermined value. It has been found that the stress relaxation characteristics are improved.

以上の知見を基礎として完成した本発明は一側面において、Snを0.005〜0.25質量%含有し、残部が銅およびその不可避的不純物からなり、330MPa以上の0.2%耐力を有し、200℃で30分加熱した際の圧延方向の熱伸縮率が50ppm以下であることを特徴とする銅合金板である。   The present invention completed on the basis of the above knowledge, in one aspect, contains 0.005 to 0.25% by mass of Sn, the balance is made of copper and its inevitable impurities, and has a 0.2% proof stress of 330 MPa or more. And it is a copper alloy board characterized by the thermal expansion-contraction rate of the rolling direction at the time of heating for 30 minutes at 200 degreeC being 50 ppm or less.

本発明に係る銅合金板は一実施態様において、Ag、Fe、Co、Ni、Cr、Mn、Zn、Mg、Si、PおよびBのうちの一種以上を0.2質量%以下含有する。   In one embodiment, the copper alloy plate according to the present invention contains 0.2% by mass or less of one or more of Ag, Fe, Co, Ni, Cr, Mn, Zn, Mg, Si, P, and B.

本発明に係る銅合金板は別の一実施態様において、80%IACS以上の導電率を有し、150℃で1000時間保持後の応力緩和率が50%以下である。   In another embodiment, the copper alloy sheet according to the present invention has a conductivity of 80% IACS or more, and a stress relaxation rate after holding at 150 ° C. for 1000 hours is 50% or less.

本発明は別の一側面において、インゴットを、800〜1000℃で厚み3〜30mmまで熱間圧延した後、冷間圧延と再結晶焼鈍とを繰り返し、最終の冷間圧延の後、歪取焼鈍を施す銅合金板の製造方法であって、(A)最終の冷間圧延前の再結晶焼鈍において、炉内温度を250〜800℃として、銅合金板の平均結晶粒径を50μm以下に調整し、(B)最終の冷間圧延において、総加工度を25〜99%、1パスあたりの圧延加工度を20%以下とし、(C)歪取焼鈍において、連続焼鈍炉を用い、炉内温度を300〜700℃、炉内で銅合金板に付加される張力を1〜5MPaとして、銅合金板を通板し、0.2%耐力を10〜50MPa低下させることを含む銅合金板の製造方法である。   In another aspect of the present invention, the ingot is hot rolled at a temperature of 800 to 1000 ° C. to a thickness of 3 to 30 mm, then cold rolling and recrystallization annealing are repeated, and after the final cold rolling, strain relief annealing is performed. (A) In the recrystallization annealing before the final cold rolling, the furnace crystal temperature is set to 250 to 800 ° C., and the average crystal grain size of the copper alloy plate is adjusted to 50 μm or less. (B) In the final cold rolling, the total workability is 25 to 99%, the rolling workability per pass is 20% or less, and (C) In the straightening annealing, a continuous annealing furnace is used. A temperature of 300 to 700 ° C., a tension applied to the copper alloy plate in the furnace of 1 to 5 MPa, a copper alloy plate is passed, and a 0.2% proof stress is reduced by 10 to 50 MPa. It is a manufacturing method.

本発明は更に別の一側面において、上記銅合金板を用いた大電流用電子部品である。   In another aspect of the present invention, there is provided an electronic component for high current using the copper alloy plate.

本発明は更に別の一側面において、上記銅合金板を用いた放熱用電子部品である。   In another aspect of the present invention, there is provided a heat dissipating electronic component using the copper alloy plate.

本発明によれば、高強度、高導電性および優れた応力緩和特性を兼ね備えた銅合金板及びその製造方法、並びに大電流用途又は放熱用途に好適な電子部品を提供することが可能である。この銅合金板は、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム等の電子部品の素材として好適に使用することができ、特に大電流を通電する電子部品の素材又は大熱量を放散する電子部品の素材として有用である。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the copper alloy board which has high intensity | strength, high electroconductivity, and the outstanding stress relaxation characteristic, its manufacturing method, and an electronic component suitable for a large current use or a heat dissipation use. This copper alloy plate can be suitably used as a material for electronic parts such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, etc., and particularly dissipates the material or large amount of heat of electronic parts that carry a large current. It is useful as a material for electronic parts.

熱伸縮率測定用の試験片を説明する図である。It is a figure explaining the test piece for thermal expansion-contraction rate measurement. 応力緩和率の測定原理を説明する図である。It is a figure explaining the measurement principle of a stress relaxation rate. 応力緩和率の測定原理を説明する図である。It is a figure explaining the measurement principle of a stress relaxation rate.

以下、本発明について説明する。
(目標特性)
本発明の実施の形態に係る銅合金板は、80%IACS以上の導電率を有し、且つ330MPa以上の0.2%耐力を有する。導電率が80%IACS以上であれば、通電時の発熱量が純銅と同等といえる。また、0.2%耐力が330MPa以上であれば、大電流を通電する部品の素材又は大熱量を放散する部品の素材として必要な強度を有しているといえる。
The present invention will be described below.
(Target characteristics)
The copper alloy plate according to the embodiment of the present invention has a conductivity of 80% IACS or more and a 0.2% proof stress of 330 MPa or more. If the electrical conductivity is 80% IACS or higher, it can be said that the amount of heat generated during energization is equivalent to that of pure copper. In addition, if the 0.2% proof stress is 330 MPa or more, it can be said that the material has a strength necessary for a material for a component that conducts a large current or a material for a component that dissipates a large amount of heat.

本発明の実施の形態に係る銅合金板の応力緩和特性については、0.2%耐力の80%の応力を付加し、150℃で1000時間保持した時の銅合金板の応力緩和率(以下、単に応力緩和率と記す)が50%以下であり、より好ましくは40%以下、さらに好ましくは30%以下である。通常のCu−Sn系合金板の応力緩和率は70〜80%程度であるが、これを50%以下にすることで、コネクタに加工した後に大電流を通電しても接触力低下に伴う接触電気抵抗の増加が生じ難くなり、また、放熱板に加工した後に熱と外力が同時に加わってもクリープ変形が生じ難くなる。   Regarding the stress relaxation characteristics of the copper alloy plate according to the embodiment of the present invention, the stress relaxation rate of the copper alloy plate (hereinafter referred to as “80% stress of 0.2% proof stress”) is maintained at 150 ° C. for 1000 hours. , Simply referred to as stress relaxation rate) is 50% or less, more preferably 40% or less, and still more preferably 30% or less. The stress relaxation rate of a normal Cu-Sn alloy plate is about 70 to 80%. By making this 50% or less, contact with a decrease in contact force even when a large current is applied after processing into a connector. Electrical resistance is unlikely to increase, and creep deformation is unlikely to occur even if heat and external force are applied simultaneously after processing into a heat sink.

(合金成分濃度)
Sn濃度は0.005〜0.25質量%、好ましくは0.05〜0.20質量%とする。Snが0.25質量%を超えると、80%IACS以上の導電率を得ることが難しくなり、Snが0.005%未満になると、330MPa以上の0.2%耐力を得ることが難しくなる。
(Alloy component concentration)
The Sn concentration is 0.005 to 0.25% by mass, preferably 0.05 to 0.20% by mass. If Sn exceeds 0.25% by mass, it will be difficult to obtain a conductivity of 80% IACS or more, and if Sn is less than 0.005%, it will be difficult to obtain a 0.2% proof stress of 330 MPa or more.

Cu−Sn系合金には、強度や耐熱性を改善するために、Ag、Fe、Co、Ni、Cr、Mn、Zn、Mg、Si、PおよびBのうちの一種以上を含有させることができる。ただし、添加量が多すぎると、導電率が低下して80%IACSを下回ったり、製造性が悪化したりするので、添加量は総量で0.2質量%以下、より好ましくは0.1質量%以下、さらに好ましくは0.05質量%以下に制限される。また、添加による効果を得るためには、添加量を総量で0.001質量%以上にすることが好ましい。   In order to improve strength and heat resistance, the Cu—Sn alloy can contain one or more of Ag, Fe, Co, Ni, Cr, Mn, Zn, Mg, Si, P and B. . However, if the addition amount is too large, the electrical conductivity decreases and falls below 80% IACS, or the manufacturability deteriorates. Therefore, the addition amount is 0.2% by mass or less, more preferably 0.1% by mass. % Or less, more preferably 0.05% by mass or less. Moreover, in order to acquire the effect by addition, it is preferable to make addition amount 0.001 mass% or more in total amount.

(熱伸縮率)
銅合金板に熱を加えると、極微小な寸法変化が生じる。この寸法変化の割合を「熱伸縮率」と称する。本発明者らは、熱伸縮率を指標とし、Cu−Sn系合金板の金属組織を調質することにより、応力緩和率を著しく改善できることを見出した。
(Thermal expansion and contraction rate)
When heat is applied to a copper alloy plate, a very small dimensional change occurs. This ratio of dimensional change is referred to as “thermal expansion / contraction rate”. The present inventors have found that the stress relaxation rate can be remarkably improved by refining the metal structure of the Cu—Sn based alloy sheet using the thermal expansion / contraction rate as an index.

本発明では、熱伸縮率として、200℃で30分加熱した時の圧延方向の寸法変化率を用いる。この熱伸縮率の絶対値(以下、単に熱伸縮率と記す)を50ppm以下、好ましくは30ppm以下に調整することにより、応力緩和率が50%以下となる。熱伸縮率の下限値については、銅合金板の特性の点からは制限されないが、熱伸縮率が1ppm以下になることは少ない。  In the present invention, a dimensional change rate in the rolling direction when heated at 200 ° C. for 30 minutes is used as the thermal expansion / contraction rate. By adjusting the absolute value of this thermal expansion / contraction rate (hereinafter simply referred to as thermal expansion / contraction rate) to 50 ppm or less, preferably 30 ppm or less, the stress relaxation rate becomes 50% or less. The lower limit value of the thermal expansion / contraction rate is not limited in terms of the characteristics of the copper alloy sheet, but the thermal expansion / contraction rate is rarely 1 ppm or less.

(厚み)
製品の厚みは0.1〜2.0mmであることが好ましい。厚みが薄すぎると、通電部断面積が小さくなり通電時の発熱が増加するため大電流を流すコネクタ等の素材として不適であり、また、わずかな外力で変形するようになるため放熱板等の素材としても不適である。一方で、厚みが厚すぎると、曲げ加工が困難になる。このような観点から、より好ましい厚みは0.2〜1.5mmである。厚みが上記範囲となることにより、通電時の発熱を抑えつつ、曲げ加工性を良好なものとすることができる。
(Thickness)
The thickness of the product is preferably 0.1 to 2.0 mm. If the thickness is too thin, the cross-sectional area of the current-carrying part will decrease and heat generation will increase during energization, making it unsuitable as a material for connectors that carry large currents, and because it will deform with a slight external force, It is also unsuitable as a material. On the other hand, if the thickness is too thick, bending becomes difficult. From such a viewpoint, a more preferable thickness is 0.2 to 1.5 mm. When the thickness is in the above range, the bending workability can be improved while suppressing heat generation during energization.

(用途)
本発明の実施の形態に係る銅合金板は、電機・電子機器、自動車等で用いられる端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム等の電子部品の用途に好適に使用することができ、特に、電気自動車、ハイブリッド自動車等で用いられる大電流用コネクタや端子等の大電流用電子部品の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に有用である。
(Use)
The copper alloy plate according to the embodiment of the present invention can be suitably used for applications of electronic parts such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, etc. used in electric / electronic devices, automobiles and the like. In particular, it is useful for applications of high current electronic components such as connectors and terminals for high current used in electric vehicles, hybrid vehicles, etc., or for heat dissipation electronic components such as liquid crystal frames used in smartphones and tablet PCs. is there.

(製造方法)
純銅原料として電気銅等を溶解した後、Snおよび必要に応じ他の合金元素を添加し、厚み30〜300mm程度のインゴットに鋳造する。このインゴットを例えば800〜1000℃の熱間圧延により厚み3〜30mm程度の板とした後、冷間圧延と再結晶焼鈍とを繰り返し、最終の冷間圧延で所定の製品厚みに仕上げ、最後に歪取り焼鈍を施す。ここで、熱伸縮率を上述した範囲に調整する手段は、特定の方法に制限されないが、例えば、最終冷間圧延及び歪取焼鈍の両条件を、後述するように制御することで可能となる。
(Production method)
After melting electrolytic copper or the like as a pure copper raw material, Sn and other alloy elements are added as necessary, and cast into an ingot having a thickness of about 30 to 300 mm. After this ingot is made into a plate having a thickness of about 3 to 30 mm by hot rolling at 800 to 1000 ° C., for example, cold rolling and recrystallization annealing are repeated, and finally finished to a predetermined product thickness by cold rolling. Apply strain relief annealing. Here, the means for adjusting the thermal expansion / contraction ratio to the above-described range is not limited to a specific method, but for example, it is possible to control both conditions of final cold rolling and strain relief annealing as described later. .

再結晶焼鈍では、圧延組織の一部または全てを再結晶化させる。最終冷間圧延前の再結晶焼鈍(最終再結晶焼鈍)では、銅合金板の平均結晶粒径を50μm以下に調整する。平均結晶粒径が大きすぎると、製品の0.2%耐力を330MPa以上に調整することが難しくなる。   In recrystallization annealing, part or all of the rolling structure is recrystallized. In recrystallization annealing (final recrystallization annealing) before final cold rolling, the average crystal grain size of the copper alloy sheet is adjusted to 50 μm or less. If the average crystal grain size is too large, it will be difficult to adjust the 0.2% yield strength of the product to 330 MPa or more.

最終再結晶焼鈍の条件は、目標とする焼鈍後の結晶粒径に基づき決定する。具体的には、バッチ炉または連続焼鈍炉を用い、炉内温度を250〜800℃として焼鈍を行えばよい。バッチ炉では250〜600℃の炉内温度において30分から30時間の範囲で加熱時間を適宜調整すればよい。連続焼鈍炉では450〜800℃の炉内温度において5秒から10分の範囲で加熱時間を適宜調整すればよい。   The conditions for final recrystallization annealing are determined based on the target crystal grain size after annealing. Specifically, annealing may be performed by using a batch furnace or a continuous annealing furnace and setting the furnace temperature to 250 to 800 ° C. In a batch furnace, the heating time may be appropriately adjusted within the range of 30 minutes to 30 hours at a furnace temperature of 250 to 600 ° C. In a continuous annealing furnace, the heating time may be appropriately adjusted within a range of 5 seconds to 10 minutes at a furnace temperature of 450 to 800 ° C.

最終冷間圧延では、一対の圧延ロール間に材料を繰り返し通過させ、目標の板厚に仕上げてゆく。最終冷間圧延の総加工度と1パスあたりの加工度を制御する。
総加工度R(%)は、R=(t0−t)/t0×100(t0:最終冷間圧延前の板厚、t:最終冷間圧延後の板厚)で与えられる。また、1パスあたりの加工度r(%)とは、圧延ロールを1回通過したときの板厚減少率であり、r=(T0−T)/T0×100(T0:圧延ロール通過前の厚み、T:圧延ロール通過後の厚み)で与えられる。
総加工度Rは25〜99%とするのが好ましい。Rが小さすぎると、0.2%耐力を330MPa以上に調整することが難しくなる。Rが大きすぎると、圧延材のエッジが割れることがある。
In the final cold rolling, the material is repeatedly passed between a pair of rolling rolls to finish the target plate thickness. The total workability of final cold rolling and the workability per pass are controlled.
The total workability R (%) is given by R = (t 0 −t) / t 0 × 100 (t 0 : plate thickness before final cold rolling, t: plate thickness after final cold rolling). Further, the processing degree r (%) per pass is a sheet thickness reduction rate when the rolling roll passes once, and r = (T 0 −T) / T 0 × 100 (T 0 : rolling roll) Thickness before passing, T: Thickness after passing the rolling roll).
The total processing degree R is preferably 25 to 99%. If R is too small, it becomes difficult to adjust the 0.2% proof stress to 330 MPa or more. When R is too large, the edge of the rolled material may be broken.

1パスあたりの加工度rは20%以下とすることが好ましい。全パスの中にrが20%を超えるパスが一つでも含まれると、後述の条件で歪取焼鈍を行ったとしても、熱伸縮率を50ppm以下に調整することが難しくなる。   The processing degree r per pass is preferably 20% or less. If at least one of the passes in which r exceeds 20% is included, it is difficult to adjust the thermal expansion / contraction rate to 50 ppm or less even if strain relief annealing is performed under the conditions described later.

本発明の歪取焼鈍は連続焼鈍炉を用いて行う。バッチ炉の場合、コイル状に巻き取った状態で材料を加熱するため、加熱中に材料が変形を起こし材料に反りが生じる。したがって、バッチ炉は本発明の歪取焼鈍に不適である。   The strain relief annealing of the present invention is performed using a continuous annealing furnace. In the case of a batch furnace, since the material is heated in a state of being wound in a coil shape, the material is deformed during the heating, and the material is warped. Therefore, the batch furnace is not suitable for the strain relief annealing of the present invention.

連続焼鈍炉において、炉内温度を300〜700℃とし、5秒から10分の範囲で加熱時間を適宜調整し、歪取焼鈍後の0.2%耐力を歪取焼鈍前の0.2%耐力に対し10〜50MPa低い値、好ましくは15〜45MPa低い値に調整する。さらに、連続焼鈍炉内において材料に付加される張力を1〜5MPa、より好ましくは1〜4MPaに調整する。この条件で歪取焼鈍を行うことにより、熱伸縮率が低減する。   In a continuous annealing furnace, the furnace temperature is set to 300 to 700 ° C., the heating time is appropriately adjusted in the range of 5 seconds to 10 minutes, and the 0.2% proof stress after the stress relief annealing is 0.2% before the stress relief annealing. The value is adjusted to a value 10-50 MPa lower than the proof stress, preferably 15-45 MPa lower. Further, the tension applied to the material in the continuous annealing furnace is adjusted to 1 to 5 MPa, more preferably 1 to 4 MPa. By performing strain relief annealing under these conditions, the thermal expansion / contraction rate is reduced.

0.2%耐力の低下量が小さすぎても大きすぎても、歪取焼鈍による熱伸縮率の低減が不十分となり、熱伸縮率を50ppm以下に調整することが難しくなる。また、張力が大きすぎても、歪取焼鈍による熱伸縮率の低減が不十分となり、熱伸縮率を50ppm以下に調整することが難しくなる。一方、張力が小さすぎると、焼鈍炉を通板中の材料が炉壁と接触し、材料の表面やエッジに傷が付くことがある。   If the 0.2% yield strength decrease is too small or too large, the reduction in thermal expansion / contraction due to strain relief annealing becomes insufficient, and it becomes difficult to adjust the thermal expansion / contraction to 50 ppm or less. Moreover, even if tension is too large, reduction of the thermal expansion / contraction rate due to strain relief annealing becomes insufficient, and it becomes difficult to adjust the thermal expansion / contraction rate to 50 ppm or less. On the other hand, if the tension is too small, the material in the passing plate of the annealing furnace may come into contact with the furnace wall, and the surface or edge of the material may be damaged.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

溶銅に合金元素を添加した後、厚みが200mmのインゴットに鋳造した。インゴットを850℃で3時間加熱し、熱間圧延により厚み15mmの板にした。熱間圧延板表面の酸化スケールを研削、除去した後、焼鈍と冷間圧延を繰り返し、最終の冷間圧延で所定の製品厚みに仕上げた。最後に連続焼鈍炉を用い歪取焼鈍を行った。   After adding the alloy element to the molten copper, it was cast into an ingot having a thickness of 200 mm. The ingot was heated at 850 ° C. for 3 hours and formed into a plate having a thickness of 15 mm by hot rolling. After grinding and removing the oxide scale on the surface of the hot rolled plate, annealing and cold rolling were repeated, and the product was finished to a predetermined product thickness by the final cold rolling. Finally, strain relief annealing was performed using a continuous annealing furnace.

最終冷間圧延前の焼鈍(最終再結晶焼鈍)は、焼鈍時の厚みが2mmを超える場合はバッチ炉を、厚みが2mm以下の場合は連続焼鈍炉を用いて行った。バッチ炉の場合は加熱時間を5時間とし炉内温度を250〜700℃の範囲で調整し、焼鈍後の結晶粒径を変化させた。連続焼鈍炉の場合は炉内温度を700℃とし加熱時間を5秒から15分の間で適宜調整し、焼鈍後の結晶粒径を変化させた。   The annealing before the final cold rolling (final recrystallization annealing) was performed using a batch furnace when the thickness during annealing exceeded 2 mm, and a continuous annealing furnace when the thickness was 2 mm or less. In the case of a batch furnace, the heating time was 5 hours, the furnace temperature was adjusted in the range of 250 to 700 ° C., and the crystal grain size after annealing was changed. In the case of a continuous annealing furnace, the furnace temperature was set to 700 ° C., and the heating time was appropriately adjusted between 5 seconds and 15 minutes to change the crystal grain size after annealing.

最終冷間圧延では、総加工度および1パスあたりの加工度を制御した。   In the final cold rolling, the total workability and the workability per pass were controlled.

連続焼鈍炉を用いた歪取り焼鈍では、炉内温度を500℃とし加熱時間を1秒から15分の間で調整し、歪取焼鈍による0.2%耐力の低下量を種々変化させた。また、炉内において材料に付加する張力を種々変化させた。なお、一部の例では歪取り焼鈍を行わなかった。   In strain relief annealing using a continuous annealing furnace, the furnace temperature was 500 ° C., the heating time was adjusted between 1 second and 15 minutes, and the amount of 0.2% proof stress reduction due to strain relief annealing was variously changed. In addition, various tensions were added to the material in the furnace. In some cases, strain relief annealing was not performed.

製造途中の材料および歪取焼鈍後の材料につき、次の測定を行った。   The following measurement was performed on the material in the process of manufacturing and the material after strain relief annealing.

(成分)
歪取焼鈍後の材料の合金元素濃度をICP−質量分析法で分析した。
(component)
The alloy element concentration of the material after strain relief annealing was analyzed by ICP-mass spectrometry.

(最終再結晶焼鈍後の平均結晶粒径)
圧延方向と直交する断面を機械研磨により鏡面に仕上げた後、エッチングにより結晶粒界を現出させた。この金属組織上において、JIS H 0501(1999年)の切断法に従い測定し、平均結晶粒径を求めた。
(Average grain size after final recrystallization annealing)
After the cross section perpendicular to the rolling direction was finished to a mirror surface by mechanical polishing, crystal grain boundaries were revealed by etching. On this metal structure, the average crystal grain size was determined by measurement according to the cutting method of JIS H 0501 (1999).

(0.2%耐力)
最終冷間圧延後および歪取焼鈍後の材料につき、JIS Z2241に規定する13B号試験片を引張方向が圧延方向と平行になるように採取し、JIS Z2241に準拠して圧延方向と平行に引張試験を行い、0.2%耐力を求めた。
(0.2% yield strength)
For the material after the final cold rolling and strain relief annealing, sample No. 13B specified in JIS Z2241 was taken so that the tensile direction was parallel to the rolling direction, and pulled in parallel with the rolling direction in accordance with JIS Z2241. Tests were performed to determine 0.2% yield strength.

(導電率)
歪取焼鈍後の材料から、試験片の長手方向が圧延方向と平行になるように試験片を採取し、JIS H0505に準拠し四端子法により20℃での導電率を測定した。
(conductivity)
A test piece was taken from the material after strain relief annealing so that the longitudinal direction of the test piece was parallel to the rolling direction, and the conductivity at 20 ° C. was measured by a four-terminal method in accordance with JIS H0505.

(熱伸縮率)
歪取焼鈍後の材料から、幅20mm、長さ210mmの短冊形状の試験片を、試験片の長手方向が圧延方向と平行になるように採取し、図1のようにL0(=200mm)の間隔を空け二点の打痕を刻印した。その後、200℃で30分加熱し、加熱後の打痕間隔(L)を測定した。そして、熱伸縮率(ppm)として、(L−L0)/L0×106の式で算出される値の絶対値を求めた。
(Thermal expansion and contraction rate)
A strip-shaped test piece having a width of 20 mm and a length of 210 mm was taken from the material after strain relief annealing so that the longitudinal direction of the test piece was parallel to the rolling direction, and L 0 (= 200 mm) as shown in FIG. Two dents were engraved with an interval of. Then, it heated at 200 degreeC for 30 minutes, and measured the dent space | interval (L) after a heating. Then, the absolute value of the value calculated by the formula of (L−L 0 ) / L 0 × 10 6 was obtained as the thermal expansion / contraction rate (ppm).

(応力緩和率)
歪取焼鈍後の材料から、幅10mm、長さ100mmの短冊形状の試験片を、試験片の長手方向が圧延方向と平行になるように採取した。図2のように、l=50mmの位置を作用点として、試験片にy0のたわみを与え、圧延方向の0.2%耐力の80%に相当する応力(s)を負荷した。y0は次式により求めた。
0=(2/3)・l2・s / (E・t)
ここで、Eは圧延方向のヤング率であり、tは試料の厚みである。150℃にて1000時間加熱後に除荷し、図3のように永久変形量(高さ)yを測定し、応力緩和率{[y(mm)/y0(mm)]×100(%)}を算出した。
(Stress relaxation rate)
A strip-shaped test piece having a width of 10 mm and a length of 100 mm was collected from the material after strain relief annealing so that the longitudinal direction of the test piece was parallel to the rolling direction. As shown in FIG. 2, with the position of l = 50 mm as the working point, the test piece was given a deflection of y 0 and a stress (s) corresponding to 80% of the 0.2% proof stress in the rolling direction was applied. y 0 was determined by the following equation.
y 0 = (2/3) · l 2 · s / (E · t)
Here, E is the Young's modulus in the rolling direction, and t is the thickness of the sample. After unloading after heating at 150 ° C. for 1000 hours, the amount of permanent deformation (height) y is measured as shown in FIG. 3, and the stress relaxation rate {[y (mm) / y 0 (mm)] × 100 (%) } Was calculated.

表1に評価結果を示す。最終冷間圧延では複数のパスを実施したが、これら各パスの加工度の中での最大値を示してある。また、最終再結晶焼鈍後の結晶粒径における「<10μm」の表記は、圧延組織の全てが再結晶化しその平均結晶粒径が10μm未満であった場合、および圧延組織の一部のみが再結晶化した場合の双方を含んでいる。   Table 1 shows the evaluation results. In the final cold rolling, a plurality of passes were performed, and the maximum value in the degree of processing of each pass is shown. In addition, the expression “<10 μm” in the crystal grain size after the final recrystallization annealing indicates that all of the rolling structure is recrystallized and the average crystal grain size is less than 10 μm, and that only a part of the rolling structure is recrystallized. Both cases of crystallization are included.

発明例1〜24の銅合金板では、Sn濃度を0.005〜0.25%に調整し、最終冷間圧延前の再結晶焼鈍において、結晶粒径を50μm以下に調整し、最終冷間圧延において、総加工度を25〜99%に、1パスあたりの加工度を20%以下に調整し、歪取焼鈍において、材料を連続焼鈍炉に張力1〜5MPaで通板して0.2%耐力を10〜50MPa低下させた。その結果、熱伸縮率が50ppm以下となり、80%IACS以上の導電率、330MPa以上の0.2%耐力、50%以下の応力緩和率が得られた。   In the copper alloy plates of Invention Examples 1 to 24, the Sn concentration is adjusted to 0.005 to 0.25%, and the crystal grain size is adjusted to 50 μm or less in the recrystallization annealing before the final cold rolling, and the final cold In rolling, the total workability is adjusted to 25 to 99%, the workability per pass is adjusted to 20% or less, and in strain relief annealing, the material is passed through a continuous annealing furnace with a tension of 1 to 5 MPa and 0.2. % Proof stress was reduced by 10-50 MPa. As a result, the thermal expansion / contraction rate was 50 ppm or less, and a conductivity of 80% IACS or more, a 0.2% proof stress of 330 MPa or more, and a stress relaxation rate of 50% or less were obtained.

比較例1は歪取焼鈍を行わなかったものであり、熱伸縮率が50ppmを超え、応力緩和率が50%を超えた。   In Comparative Example 1, the strain relief annealing was not performed, the thermal expansion / contraction rate exceeded 50 ppm, and the stress relaxation rate exceeded 50%.

比較例2〜3では、歪取焼鈍を行ったものの、炉内での材料張力が5MPaを超えたため、熱伸縮率が50ppmを超え、応力緩和率が50%を超えた。   In Comparative Examples 2-3, although strain relief annealing was performed, since the material tension in the furnace exceeded 5 MPa, the thermal expansion / contraction rate exceeded 50 ppm and the stress relaxation rate exceeded 50%.

比較例4では歪取焼鈍における0.2%耐力の低下量が過小であり、比較例5では歪取焼鈍における0.2%耐力の低下量が過大であった。このため、熱伸縮率が50ppmを超え、応力緩和率が50%を超えた。   In Comparative Example 4, the amount of decrease in 0.2% yield strength in strain relief annealing was excessive, and in Comparative Example 5, the amount of decrease in 0.2% yield strength in strain relief annealing was excessive. For this reason, the thermal expansion / contraction rate exceeded 50 ppm and the stress relaxation rate exceeded 50%.

比較例6、7では、最終冷間圧延における1パス当たりの加工度が20%を超えたため、熱伸縮率が50ppmを超え、応力緩和率が50%を超えた。   In Comparative Examples 6 and 7, since the degree of processing per pass in the final cold rolling exceeded 20%, the thermal expansion / contraction rate exceeded 50 ppm and the stress relaxation rate exceeded 50%.

比較例8では最終冷間圧延における総加工度が25%に満たなかったため、また比較例9では最終冷間圧延前の再結晶焼鈍上がりの結晶粒径が50μmを超えたため、歪取焼鈍後の0.2%耐力が330MPaに満たなかった。   In Comparative Example 8, the total degree of work in the final cold rolling was less than 25%, and in Comparative Example 9, the crystal grain size after recrystallization annealing before the final cold rolling exceeded 50 μm. The 0.2% proof stress was less than 330 MPa.

比較例10では、Sn濃度が0.005質量%未満だったため、歪取焼鈍後の0.2%耐力が330MPaに満たなかった。比較例11では、Sn濃度が0.25質量%を超えたため、導電率が80%IACSに満たなかった。   In Comparative Example 10, since the Sn concentration was less than 0.005% by mass, the 0.2% proof stress after strain relief annealing was less than 330 MPa. In Comparative Example 11, since the Sn concentration exceeded 0.25% by mass, the conductivity was less than 80% IACS.

Figure 2017066532
Figure 2017066532

Claims (6)

Snを0.005〜0.25質量%含有し、残部が銅およびその不可避的不純物からなり、330MPa以上の0.2%耐力を有し、200℃で30分加熱した際の圧延方向の熱伸縮率が50ppm以下であることを特徴とする銅合金板。   The content of Sn is 0.005 to 0.25% by mass, the balance is copper and its inevitable impurities, has a 0.2% proof stress of 330 MPa or more, and heat in the rolling direction when heated at 200 ° C. for 30 minutes. A copper alloy plate characterized by having an expansion / contraction rate of 50 ppm or less. Ag、Fe、Co、Ni、Cr、Mn、Zn、Mg、Si、PおよびBのうちの一種以上を0.2質量%以下含有することを特徴とする請求項1に記載の銅合金板。   2. The copper alloy sheet according to claim 1, comprising 0.2% by mass or less of one or more of Ag, Fe, Co, Ni, Cr, Mn, Zn, Mg, Si, P and B. 80%IACS以上の導電率を有し、150℃で1000時間保持後の応力緩和率が50%以下であることを特徴とする請求項1又は2に記載の銅合金板。   3. The copper alloy sheet according to claim 1, wherein the copper alloy sheet has a conductivity of 80% IACS or more and a stress relaxation rate after holding at 150 ° C. for 1000 hours is 50% or less. インゴットを、800〜1000℃で厚み3〜30mmまで熱間圧延した後、冷間圧延と再結晶焼鈍とを繰り返し、最終の冷間圧延の後、歪取焼鈍を施す銅合金板の製造方法であって、
(A)前記最終の冷間圧延前の再結晶焼鈍において、炉内温度を250〜800℃として、銅合金板の平均結晶粒径を50μm以下に調整し、
(B)前記最終の冷間圧延において、総加工度を25〜99%、1パスあたりの圧延加工度を20%以下とし、
(C)前記歪取焼鈍において、連続焼鈍炉を用い、炉内温度を300〜700℃、炉内で銅合金板に付加される張力を1〜5MPaとして、銅合金板を通板し、0.2%耐力を10〜50MPa低下させること
を含む請求項1〜3の何れか1項に記載の銅合金板の製造方法。
In the method of manufacturing a copper alloy plate, after ingot is hot rolled at 800 to 1000 ° C. to a thickness of 3 to 30 mm, cold rolling and recrystallization annealing are repeated, and after final cold rolling, strain relief annealing is performed. There,
(A) In the recrystallization annealing before the final cold rolling, the furnace temperature is 250 to 800 ° C., the average crystal grain size of the copper alloy plate is adjusted to 50 μm or less,
(B) In the final cold rolling, the total workability is 25 to 99%, the rolling work per pass is 20% or less,
(C) In the strain relief annealing, using a continuous annealing furnace, the furnace temperature is 300 to 700 ° C., the tension applied to the copper alloy sheet in the furnace is 1 to 5 MPa, and the copper alloy sheet is passed through, 0 The method for producing a copper alloy sheet according to any one of claims 1 to 3, further comprising: reducing 2% proof stress by 10 to 50 MPa.
請求項1〜3の何れか1項に記載の銅合金板を用いた大電流用電子部品。   The electronic component for large currents using the copper alloy plate of any one of Claims 1-3. 請求項1〜3の何れか1項に記載の銅合金板を用いた放熱用電子部品。   The electronic component for thermal radiation using the copper alloy plate of any one of Claims 1-3.
JP2016218191A 2013-03-25 2016-11-08 Copper alloy sheet having excellent conductivity and stress relaxation properties Withdrawn JP2017066532A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013062809 2013-03-25
JP2013062809 2013-03-25

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013085039A Division JP6222971B2 (en) 2013-03-25 2013-04-15 Copper alloy sheet with excellent conductivity and stress relaxation properties

Publications (1)

Publication Number Publication Date
JP2017066532A true JP2017066532A (en) 2017-04-06

Family

ID=51903258

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013085039A Active JP6222971B2 (en) 2013-03-25 2013-04-15 Copper alloy sheet with excellent conductivity and stress relaxation properties
JP2016218191A Withdrawn JP2017066532A (en) 2013-03-25 2016-11-08 Copper alloy sheet having excellent conductivity and stress relaxation properties

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013085039A Active JP6222971B2 (en) 2013-03-25 2013-04-15 Copper alloy sheet with excellent conductivity and stress relaxation properties

Country Status (1)

Country Link
JP (2) JP6222971B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6222971B2 (en) * 2013-03-25 2017-11-01 Jx金属株式会社 Copper alloy sheet with excellent conductivity and stress relaxation properties
JP6719316B2 (en) * 2016-07-25 2020-07-08 古河電気工業株式会社 Copper alloy plate material for heat dissipation member and manufacturing method thereof
JP7351171B2 (en) * 2019-09-27 2023-09-27 三菱マテリアル株式会社 Copper alloys for electronic and electrical equipment, copper alloy sheets and strips for electronic and electrical equipment, parts for electronic and electrical equipment, terminals, and bus bars

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014208859A (en) * 2013-03-25 2014-11-06 Jx日鉱日石金属株式会社 Copper alloy sheet having excellent conductivity and stress relaxation characteristic

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3911184B2 (en) * 2002-03-28 2007-05-09 日鉱金属株式会社 Copper alloy rolled foil
JP5590990B2 (en) * 2010-06-30 2014-09-17 株式会社Shカッパープロダクツ Copper alloy
JP5778460B2 (en) * 2011-03-24 2015-09-16 Jx日鉱日石金属株式会社 Rolled copper foil, method for producing the same, and copper-clad laminate
JP5432201B2 (en) * 2011-03-30 2014-03-05 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent heat dissipation and repeated bending workability
JP5892974B2 (en) * 2012-07-06 2016-03-23 Jx金属株式会社 Copper alloy sheet with excellent conductivity and stress relaxation properties

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014208859A (en) * 2013-03-25 2014-11-06 Jx日鉱日石金属株式会社 Copper alloy sheet having excellent conductivity and stress relaxation characteristic

Also Published As

Publication number Publication date
JP2014208859A (en) 2014-11-06
JP6222971B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
JP5847787B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5380621B1 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP6270417B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
WO2015022789A1 (en) Copper alloy sheet having excellent conductivity and bending deflection factor
JP6128976B2 (en) Copper alloy and high current connector terminal material
JP5470483B1 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP6296728B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP6328380B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP2017155340A (en) Copper alloy sheet excellent in conductivity and stress relaxation characteristic
JP2014189816A (en) Copper alloy sheet, electronic component for heat release having the same, manufacturing method of copper alloy sheet
JP2017002407A (en) Copper alloy sheet excellent in conductivity and stress relaxation characteristic
JP5892974B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP6246502B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP2017066532A (en) Copper alloy sheet having excellent conductivity and stress relaxation properties
WO2015068420A1 (en) Copper alloy plate, and electronic part for heat dissipation use which is equipped with same
JP5453565B1 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP6207539B2 (en) Copper alloy strip, and electronic component for high current and heat dissipation provided with the same
JP5449595B1 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
WO2014041865A1 (en) Copper alloy plate having excellent electroconductive properties and stress relaxation properties
JP5525101B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5352750B1 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP2014205864A (en) Copper alloy sheet excellent in conductivity and stress relaxation property
JP2017089011A (en) Copper alloy sheet excellent in conductivity and flexure deflection coefficient
JP2014055347A (en) Copper alloy sheet excellent in conductivity and stress relief properties
JP2014208868A (en) Copper alloy and high-current connector terminal material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20170801

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20170926