JP6246502B2 - Copper alloy sheet with excellent conductivity and bending deflection coefficient - Google Patents
Copper alloy sheet with excellent conductivity and bending deflection coefficient Download PDFInfo
- Publication number
- JP6246502B2 JP6246502B2 JP2013124730A JP2013124730A JP6246502B2 JP 6246502 B2 JP6246502 B2 JP 6246502B2 JP 2013124730 A JP2013124730 A JP 2013124730A JP 2013124730 A JP2013124730 A JP 2013124730A JP 6246502 B2 JP6246502 B2 JP 6246502B2
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- less
- alloy plate
- mpa
- bending deflection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims description 44
- 238000005452 bending Methods 0.000 title claims description 35
- 239000000463 material Substances 0.000 claims description 24
- 239000013078 crystal Substances 0.000 claims description 23
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 10
- 230000017525 heat dissipation Effects 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 8
- 238000001887 electron backscatter diffraction Methods 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 238000000137 annealing Methods 0.000 description 47
- 238000005096 rolling process Methods 0.000 description 25
- 229910045601 alloy Inorganic materials 0.000 description 23
- 239000000956 alloy Substances 0.000 description 23
- 229910017755 Cu-Sn Inorganic materials 0.000 description 17
- 229910017927 Cu—Sn Inorganic materials 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 17
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 17
- 238000005097 cold rolling Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- 238000001953 recrystallisation Methods 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 238000005098 hot rolling Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 230000020169 heat generation Effects 0.000 description 6
- 239000011888 foil Substances 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Landscapes
- Non-Insulated Conductors (AREA)
Description
本発明は銅合金板及び通電用又は放熱用電子部品に関し、特に、電機・電子機器、自動車等に搭載される端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板等の電子部品の素材として使用される銅合金板、及び該銅合金板を用いた電子部品に関する。中でも、電気自動車、ハイブリッド自動車等で用いられる大電流用コネクタや端子等の大電流用電子部品の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に好適な銅合金板及び該銅合金板を用いた電子部品に関するものである。 TECHNICAL FIELD The present invention relates to a copper alloy plate and electronic parts for energization or heat dissipation, and in particular, electronic parts such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, heat sinks, etc. mounted on electric machines / electronic devices, automobiles, etc. The present invention relates to a copper alloy plate used as a material for the above and an electronic component using the copper alloy plate. Among these, copper alloys suitable for use in high current electronic parts such as high current connectors and terminals used in electric vehicles, hybrid cars, etc., or in heat dissipation electronic parts such as liquid crystal frames used in smartphones and tablet PCs. The present invention relates to a plate and an electronic component using the copper alloy plate.
電機・電子機器、自動車等には、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電気又は熱を伝えるための部品が組み込まれており、これら部品には銅合金が用いられている。ここで、電気伝導性と熱伝導性は比例関係にある。 Electrical and electronic equipment, automobiles, etc. have built-in parts for conducting electricity or heat, such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, heat sinks, etc. These parts are made of copper alloy. It is used. Here, electrical conductivity and thermal conductivity are in a proportional relationship.
近年、電子部品の小型化に伴い、曲げたわみ係数を高めることが求められている。コネクタ等が小型化すると、板ばねの変位を大きくとることが難しくなる。このため、小さな変位で高い接触力を得ることが必要になり、より高い曲げたわみ係数が求められるのである。 In recent years, with the miniaturization of electronic components, it is required to increase the bending deflection coefficient. If the connector or the like is downsized, it becomes difficult to increase the displacement of the leaf spring. For this reason, it is necessary to obtain a high contact force with a small displacement, and a higher bending deflection coefficient is required.
また、曲げたわみ係数が高いと曲げ加工の際のスプリングバックが小さくなり、プレス成型加工が容易になる。厚肉材が使用される大電流コネクタ等では、特にこのメリットは大きい。 Further, when the bending deflection coefficient is high, the spring back during bending becomes small, and press molding becomes easy. This advantage is particularly great in a high-current connector or the like in which a thick material is used.
さらに、スマートフォンやタブレットPCの液晶には、液晶フレームと呼ばれる放熱部品が用いられているが、このような放熱用途の銅合金板においても、より高い曲げたわみ係数が求められる。曲げたわみ係数を高めると外力が加わった際の放熱板の変形が軽減され、放熱板周りに配置される液晶部品、ICチップ等に対する保護性が改善されるためである。 Furthermore, although the heat dissipation component called a liquid crystal frame is used for the liquid crystal of a smart phone or a tablet PC, a higher bending deflection coefficient is required even in such a copper alloy plate for heat dissipation. This is because when the bending deflection coefficient is increased, deformation of the heat sink when an external force is applied is reduced, and the protection against liquid crystal components, IC chips and the like disposed around the heat sink is improved.
ここで、コネクタ等の板ばね部は、通常、その長手方向が圧延方向と直交する方向(曲げ変形の際の曲げ軸が圧延方向と平行)に採取される。以下、この方向を板幅方向(TD)と称する。したがって、曲げたわみ係数の上昇は、TDにおいて特に重要である。 Here, the leaf spring portion of the connector or the like is usually collected in a direction in which the longitudinal direction is orthogonal to the rolling direction (the bending axis at the time of bending deformation is parallel to the rolling direction). Hereinafter, this direction is referred to as a plate width direction (TD). Therefore, an increase in the bending deflection coefficient is particularly important in TD.
一方、電子部品の小型化に伴い、通電部における銅合金の断面積が小さくなる傾向にある。断面積が小さくなると、通電した際の銅合金からの発熱が増大する。また、成長著しい電気自動車やハイブリッド電気自動車で用いられる電子部品には、バッテリー部のコネクタ等の著しく高い電流が流される部品があり、通電時の銅合金の発熱が問題になっている。発熱が過大になると、銅合金は高温環境に晒されることになる。 On the other hand, with the miniaturization of electronic components, the cross-sectional area of the copper alloy in the current-carrying part tends to be small. When the cross-sectional area becomes small, heat generation from the copper alloy when energized increases. In addition, electronic parts used in fast-growing electric vehicles and hybrid electric vehicles include parts through which a remarkably high current flows, such as a connector of a battery unit, and heat generation of a copper alloy during energization is a problem. When the heat generation becomes excessive, the copper alloy is exposed to a high temperature environment.
コネクタ等の電子部品の電気接点では、銅合金板にたわみが与えられ、このたわみで発生する応力により、接点での接触力を得ている。たわみを与えた銅合金板を高温下に長時間保持すると、応力緩和現象により、応力すなわち接触力が低下し、接触電気抵抗の増大を招く。この問題に対処するため銅合金板には、発熱量が減ずるよう導電性により優れることが求められ、また発熱しても接触力が低下しないよう応力緩和特性により優れることも求められている。同様に放熱用途の銅合金板においても、外力による放熱板のクリープ変形を抑制する点から、応力緩和特性に優れることが望まれている。 In an electrical contact of an electronic component such as a connector, a deflection is given to the copper alloy plate, and a contact force at the contact is obtained by a stress generated by the deflection. When a bent copper alloy plate is held at a high temperature for a long time, the stress, that is, the contact force is lowered due to the stress relaxation phenomenon, and the contact electric resistance is increased. In order to cope with this problem, the copper alloy plate is required to be excellent in conductivity so that the amount of heat generation is reduced, and is also required to be excellent in stress relaxation characteristics so that the contact force does not decrease even if heat is generated. Similarly, a copper alloy plate for heat dissipation is also desired to have excellent stress relaxation characteristics from the viewpoint of suppressing creep deformation of the heat dissipation plate due to external force.
導電率が高く、比較的高い強度を有する材料として、Cu−Sn系合金が知られている。例えば、0.10〜0.15質量%のSnを含有する銅合金が、CDA(Copper Development Association)合金番号C14415として実用に供されている。また、Cu−Sn系合金は以前より、銅合金箔として携帯電話のフレキシブルプリント基板やリチウムイオン二次電池等の二次電池の負極集電体材料にも使用されている。(特許文献1、2)。 A Cu—Sn alloy is known as a material having high conductivity and relatively high strength. For example, a copper alloy containing 0.10 to 0.15% by mass of Sn has been put into practical use as CDA (Copper Development Association) alloy number C14415. Cu-Sn alloys have also been used as copper alloy foils for negative electrode current collector materials for secondary batteries such as flexible printed boards of mobile phones and lithium ion secondary batteries. (Patent Documents 1 and 2).
しかしながら、Cu−Sn系合金は、高い導電率と強度を有するものの、そのTDの曲げたわみ係数は大電流を流す部品の用途又は大熱量を放散する部品の用途として満足できるレベルではなかった。また、従来のCu−Sn系合金の応力緩和特性のレベルは大電流を流す部品の用途又は大熱量を放散する部品の用途として必ずしも十分とはいえなかった。特に、高い曲げたわみ係数と優れた応力緩和特性を兼ね備えたCu−Sn系合金は、これまでに報告されていなかった。 However, although Cu—Sn alloys have high electrical conductivity and strength, the bending deflection coefficient of TD is not at a level that can be satisfied as an application of a component that carries a large current or a component that dissipates a large amount of heat. Further, the level of stress relaxation characteristics of conventional Cu-Sn alloys has not always been sufficient for applications of parts that carry large currents or parts that dissipate large amounts of heat. In particular, a Cu—Sn alloy having a high bending deflection coefficient and an excellent stress relaxation property has not been reported so far.
例えば特許文献1では、水素及び酸素濃度を低く調整し製造性、品質及び特性を改善したCu−Sn系合金箔が開示されている。しかしながら、特許文献1のCu−Sn系合金箔では、曲げたわみ係数の制御は行われていない。 For example, Patent Document 1 discloses a Cu—Sn alloy foil in which the concentration of hydrogen and oxygen is adjusted to be low and the productivity, quality, and characteristics are improved. However, in the Cu-Sn alloy foil of Patent Document 1, the bending deflection coefficient is not controlled.
特許文献2では、TDのヤング率(振動法により測定)が133.5GPaである厚み0.01mmのCu−Sn系合金箔が開示されている。しかしながら、曲げたわみ係数と特許文献2の振動法によるヤング率は、弾性係数という点で類似するものの、両者の値は一致しない。また、特許文献2では、最終冷間圧延条件を調整することによりヤングを制御しているが、この手法では、厚み0.1mm以上のCu−Sn系合金板の曲げたわみ係数を制御することはできなかった。これは0.1mmの厚みを境とし圧延中の金属組織の変形挙動が大きく変化するためである。 Patent Document 2 discloses a Cu—Sn alloy foil having a thickness of 0.01 mm and a Young's modulus (measured by a vibration method) of TD of 133.5 GPa. However, although the bending deflection coefficient and the Young's modulus by the vibration method of Patent Document 2 are similar in terms of the elastic coefficient, the values of both do not match. In Patent Document 2, Young is controlled by adjusting the final cold rolling conditions. However, in this method, it is possible to control the bending deflection coefficient of a Cu-Sn alloy plate having a thickness of 0.1 mm or more. could not. This is because the deformation behavior of the metal structure during rolling changes greatly with a thickness of 0.1 mm as a boundary.
一方、後述するようにCu−Sn系合金板の応力緩和特性を改善するためには最終圧延の後に歪取焼鈍を行う必要があるが、特許文献1および2のCu−Sn系合金箔ともこの歪取焼鈍が行われていない。 On the other hand, as described later, in order to improve the stress relaxation characteristics of the Cu—Sn alloy plate, it is necessary to perform strain relief annealing after the final rolling. No strain relief annealing is performed.
そこで、本発明は、高強度、高導電性、高い曲げたわみ係数および優れた応力緩和特性を兼ね備えた銅合金板及び大電流用途又は放熱用途に好適な電子部品を提供することを目的とする。 Therefore, an object of the present invention is to provide a copper alloy plate having high strength, high conductivity, a high bending deflection coefficient, and excellent stress relaxation characteristics, and an electronic component suitable for large current use or heat radiation use.
本発明者は鋭意検討を重ねた結果、Cu−Sn系合金板について、TDと直交する断面における(122)面と(133)面の面積率を制御することにより、TDの曲げたわみ係数が向上することを見出した。さらに、この結晶方位制御に加え、TDのばね限界値を適正範囲に調整することにより応力緩和特性が著しく向上することをも見出した。 As a result of intensive studies, the inventor has improved the bending deflection coefficient of TD by controlling the area ratio of the (122) plane and the (133) plane in the cross section orthogonal to TD for the Cu-Sn alloy plate. I found out. Furthermore, in addition to this crystal orientation control, it has also been found that the stress relaxation characteristic is remarkably improved by adjusting the spring limit value of TD to an appropriate range.
以上の知見を基礎として完成した本発明は一側面において、Snを0.005〜0.25質量%含有し、残部が銅およびその不可避的不純物からなり、350MPa以上の引張強さを有し、圧延材の板幅方向(以下「TDと称する」)と直交する断面においてEBSD測定を行った際に、(122)面の法線がTDと成す角度が10度以下である結晶の面積率と、(133)面の法線がTDと成す角度が10度以下である結晶の面積率との合計が10%以上であり、TDのばね限界値が200MPa以上であることを特徴とする銅合金板である。
The present invention completed on the basis of the above knowledge, in one aspect, contains 0.005 to 0.25% by mass of Sn, the balance is made of copper and its inevitable impurities, and has a tensile strength of 350 MPa or more, When the EBSD measurement is performed in a cross section perpendicular to the sheet width direction of the rolled material (hereinafter referred to as “TD”), the area ratio of the crystal whose normal line of (122) plane forms with TD is 10 degrees or less , copper, characterized in that (133) Ri der total more than 10% of the normal is the area ratio of crystal angle between TD is less than 10 degrees of surface, the spring limit value of the TD is not less than 200MPa Alloy plate.
本発明に係る銅合金板は一実施態様において、Ag、Co、Ni、Cr、Mn、Zn、Mg、Si、PおよびBのうちの一種以上を、総量で0.2質量%以下含有することを特徴とする銅合金板である。 In one embodiment, the copper alloy plate according to the present invention contains one or more of Ag , Co, Ni, Cr, Mn, Zn, Mg, Si, P and B in a total amount of 0.2% by mass or less. A copper alloy plate characterized by the above.
本発明に係る銅合金板は更に別の一実施態様において、導電率が80%IACS以上であり、TDの曲げたわみ係数が115GPa以上である。 In yet another embodiment of the copper alloy plate according to the present invention, the electrical conductivity is 80% IACS or more, and the bending deflection coefficient of TD is 115 GPa or more.
本発明に係る銅合金板は更に別の一実施態様において、導電率が80%IACS以上であり、TDの曲げたわみ係数が115GPa以上であり、150℃で1000時間保持後のTDの応力緩和率が50%以下である。 In yet another embodiment, the copper alloy sheet according to the present invention has a conductivity of 80% IACS or more, a bending deflection coefficient of TD of 115 GPa or more, and a stress relaxation rate of TD after being held at 150 ° C. for 1000 hours. Is 50% or less.
本発明に係る銅合金板は更に別の一実施態様において、厚みが0.1〜2.0mmである。 In yet another embodiment, the copper alloy plate according to the present invention has a thickness of 0.1 to 2.0 mm.
本発明は別の一側面において、上記銅合金板を用いた大電流用電子部品である。 Another aspect of the present invention is an electronic component for large current using the copper alloy plate.
本発明は別の一側面において、上記銅合金板を用いた放熱用電子部品である。 In another aspect, the present invention is a heat dissipating electronic component using the copper alloy plate.
本発明によれば、高強度、高導電性、高い曲げたわみ係数および優れた応力緩和特性を兼ね備えた銅合金板及び大電流用途又は放熱用途に好適な電子部品を提供することが可能である。この銅合金板は、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電子部品の素材として好適に使用することができ、特に大電流を通電する電子部品の素材又は大熱量を放散する電子部品の素材として有用である。 ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the copper alloy board which has high intensity | strength, high electroconductivity, a high bending deflection coefficient, and the outstanding stress relaxation characteristic, and an electronic component suitable for a large current use or a heat dissipation use. This copper alloy plate can be suitably used as a material for electronic parts such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, heat sinks, etc. It is useful as a material for electronic parts that dissipate heat.
以下、本発明について説明する。
(目標特性)
本発明の実施の形態に係るCu−Sn系合金板は、80%IACS以上の導電率を有し、且つ350MPa以上の引張強さを有する。導電率が80%IACS以上であれば、通電時の発熱量が純銅と同等といえる。また、引張強さが350MPa以上であれば、大電流を通電する部品の素材又は大熱量を放散する部品の素材として必要な強度を有しているといえる。
The present invention will be described below.
(Target characteristics)
The Cu—Sn based alloy plate according to the embodiment of the present invention has a conductivity of 80% IACS or more and a tensile strength of 350 MPa or more. If the electrical conductivity is 80% IACS or higher, it can be said that the amount of heat generated during energization is equivalent to that of pure copper. Further, if the tensile strength is 350 MPa or more, it can be said that the material has a strength necessary for a material for a component that conducts a large current or a material for a component that dissipates a large amount of heat.
本発明の実施の形態に係るCu−Sn系合金板のTDの曲げたわみ係数は115GPa以上、より好ましくは120GPa以上である。ばねたわみ係数とは、片持ち梁に弾性限界を超えない範囲で荷重をかけ、その時のたわみ量から算出される値である。銅合金板の弾性係数の指標としては引張試験により求めるヤング率もあるが、ばねたわみ係数の方がコネクタ等の板ばね接点における接触力とより良好な相関を示す。従来のCu−Sn系合金板の曲げたわみ係数は110GPa程度であり、これを115GPa以上に調整することで、コネクタ等に加工した後に明らかに接触力が向上し、また、放熱板等に加工した後に外力に対して明らかに弾性変形しにくくなる。 The bending deflection coefficient of TD of the Cu-Sn alloy plate according to the embodiment of the present invention is 115 GPa or more, more preferably 120 GPa or more. The spring deflection coefficient is a value calculated from the amount of deflection at the time when a load is applied to the cantilever beam within a range not exceeding the elastic limit. Although the Young's modulus obtained by a tensile test is an index of the elastic coefficient of a copper alloy plate, the spring deflection coefficient shows a better correlation with the contact force at a leaf spring contact such as a connector. A conventional Cu-Sn alloy plate has a bending deflection coefficient of about 110 GPa, and by adjusting it to 115 GPa or more, the contact force is clearly improved after processing into a connector or the like, and processing into a heat sink or the like. It becomes difficult to elastically deform after an external force.
本発明の実施の形態に係る銅合金板の応力緩和特性については、TDに0.2%耐力の80%の応力を付加し、150℃で1000時間保持した時の銅合金板の応力緩和率(以下、単に応力緩和率と記す)が50%以下であり、より好ましくは40%以下、さらに好ましくは30%以下である。通常のCu−Sn系合金板の応力緩和率は70〜80%程度であるが、これを50%以下にすることで、コネクタに加工した後に大電流を通電しても接触力低下に伴う接触電気抵抗の増加が生じ難くなり、また、放熱板に加工した後に熱と外力が同時に加わってもクリープ変形が生じ難くなる。 Regarding the stress relaxation characteristics of the copper alloy sheet according to the embodiment of the present invention, the stress relaxation rate of the copper alloy sheet when 80% stress of 0.2% proof stress is applied to TD and held at 150 ° C. for 1000 hours. (Hereinafter, simply referred to as stress relaxation rate) is 50% or less, more preferably 40% or less, and still more preferably 30% or less. The stress relaxation rate of a normal Cu-Sn alloy plate is about 70 to 80%. By making this 50% or less, contact with a decrease in contact force even when a large current is applied after processing into a connector. Electrical resistance is unlikely to increase, and creep deformation is unlikely to occur even if heat and external force are applied simultaneously after processing into a heat sink.
(合金成分濃度)
Sn濃度は0.005〜0.25質量%、好ましくは0.05〜0.20質量%とする。Snが0.25質量%を超えると、80%IACS以上の導電率を得ることが難しくなり、Snが0.005%未満になると、350MPa以上の引張強さおよび50%以下の応力緩和率を得ることが難しくなる。
(Alloy component concentration)
The Sn concentration is 0.005 to 0.25% by mass, preferably 0.05 to 0.20% by mass. When Sn exceeds 0.25% by mass, it becomes difficult to obtain a conductivity of 80% IACS or more. When Sn is less than 0.005%, a tensile strength of 350 MPa or more and a stress relaxation rate of 50% or less are obtained. It becomes difficult to obtain.
Cu−Sn系合金には、強度や耐熱性を改善するために、Ag、Fe、Co、Ni、Cr、Mn、Zn、Mg、Si、PおよびBのうちの一種以上を含有させることができる。ただし、添加量が多すぎると、導電率が低下して80%IACSを下回ったり、製造性が悪化したりするので、添加量は総量で0.2質量%以下、より好ましくは0.1質量%以下、さらに好ましくは0.05質量%以下に制限される。また、添加による効果を得るためには、添加量を総量で0.001質量%以上にすることが好ましい。 In order to improve strength and heat resistance, the Cu—Sn alloy can contain one or more of Ag, Fe, Co, Ni, Cr, Mn, Zn, Mg, Si, P and B. . However, if the addition amount is too large, the electrical conductivity decreases and falls below 80% IACS, or the manufacturability deteriorates. Therefore, the addition amount is 0.2% by mass or less, more preferably 0.1% by mass. % Or less, more preferably 0.05% by mass or less. Moreover, in order to acquire the effect by addition, it is preferable to make addition amount 0.001 mass% or more in total amount.
(結晶方位)
本発明の実施の形態に係る銅合金板は、(122)面の法線がTDと成す角度が10度以下である結晶の面積率と、(133)面の法線がTDと成す角度が10度以下である結晶の面積率との面積率合計(以下、A値とする)を10%以上、より好ましくは15%以上に調整する。
(Crystal orientation)
The copper alloy plate according to the embodiment of the present invention has an area ratio of a crystal whose angle of (122) plane normal to TD is 10 degrees or less and an angle of (133) plane normal to TD. The total area ratio (hereinafter referred to as A value) with the area ratio of the crystal of 10 degrees or less is adjusted to 10% or more, more preferably 15% or more.
A値は、圧延材のTDと直交する断面において、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)法により求める。ここでEBSDとは、SEM(Scanning Electron Microscope:走査電子顕微鏡)内で試料に電子線を照射したときに生じる反射電子菊池線回折(菊池パターン)を利用して結晶方位を解析する技術である。 The A value is determined by an EBSD (Electron Back Scatter Diffraction) method in a cross section orthogonal to the TD of the rolled material. Here, EBSD is a technique for analyzing crystal orientation by using reflected electron Kikuchi diffraction (Kikuchi pattern) generated when a sample is irradiated with an electron beam in a scanning electron microscope (SEM).
A値を10%以上に調整すると、TDの曲げたわみ係数が115GPa以上になり、同時に応力緩和特性も向上する。A値の上限値はTDの曲げたわみ係数の点から制限されるものではないが、A値は60%以下の値をとることが多い。 When the A value is adjusted to 10% or more, the bending deflection coefficient of TD becomes 115 GPa or more, and at the same time, the stress relaxation characteristics are improved. The upper limit value of the A value is not limited in terms of the bending deflection coefficient of the TD, but the A value often takes a value of 60% or less.
(ばね限界値)
銅合金板のTDのばね限界値は、200MPa以上に調整することが好ましく、230MPa以上に調整することがさらに好ましい。A値を10%以上に調整することに加え、TDのばね限界値を200MPa以上に調整することにより、応力緩和率が50%以下となる。
(Spring limit value)
The TD spring limit value of the copper alloy plate is preferably adjusted to 200 MPa or more, and more preferably adjusted to 230 MPa or more. In addition to adjusting the A value to 10% or more, the stress relaxation rate becomes 50% or less by adjusting the spring limit value of TD to 200 MPa or more.
(厚み)
製品の厚みは0.1〜2.0mmであることが好ましい。厚みが薄すぎると、通電部断面積が小さくなり通電時の発熱が増加するため大電流を流すコネクタ等の素材として不適であり、また、わずかな外力で変形するようになるため放熱板等の素材としても不適である。一方で、厚みが厚すぎると、曲げ加工が困難になる。このような観点から、より好ましい厚みは0.2〜1.5mmである。厚みが上記範囲となることにより、通電時の発熱を抑えつつ、曲げ加工性を良好なものとすることができる。
(Thickness)
The thickness of the product is preferably 0.1 to 2.0 mm. If the thickness is too thin, the cross-sectional area of the current-carrying part will decrease and heat generation will increase during energization, making it unsuitable as a material for connectors that carry large currents, and because it will deform with a slight external force, It is also unsuitable as a material. On the other hand, if the thickness is too thick, bending becomes difficult. From such a viewpoint, a more preferable thickness is 0.2 to 1.5 mm. When the thickness is in the above range, the bending workability can be improved while suppressing heat generation during energization.
(用途)
本発明の実施の形態に係る銅合金板は、電機・電子機器、自動車等で用いられる端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板等の電子部品の用途に好適に使用することができ、特に、電気自動車、ハイブリッド自動車等で用いられる大電流用コネクタや端子等の大電流用電子部品の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に有用である。
(Use)
The copper alloy plate according to the embodiment of the present invention is suitably used for applications of electronic parts such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, heat sinks, etc. used in electric / electronic devices, automobiles, etc. In particular, applications of high-current electronic components such as connectors and terminals for large currents used in electric vehicles, hybrid vehicles, etc., or uses of electronic components for heat dissipation such as liquid crystal frames used in smartphones and tablet PCs Useful for.
(製造方法)
純銅原料として電気銅等を溶解した後、Snおよび必要に応じ他の合金元素を添加し、厚み30〜300mm程度のインゴットに鋳造する。このインゴットを例えば800〜1000℃の熱間圧延により厚み3〜30mm程度の板とした後、冷間圧延と再結晶焼鈍とを繰り返し、最終の冷間圧延で所定の製品厚みに仕上げ、最後に歪取り焼鈍を施す。
(Production method)
After melting electrolytic copper or the like as a pure copper raw material, Sn and other alloy elements are added as necessary, and cast into an ingot having a thickness of about 30 to 300 mm. After this ingot is made into a plate having a thickness of about 3 to 30 mm by hot rolling at 800 to 1000 ° C., for example, cold rolling and recrystallization annealing are repeated, and finally finished to a predetermined product thickness by cold rolling. Apply strain relief annealing.
A値を10%以上に調整する方法は特定の方法に限定されないが、例えば熱間圧延条件の制御により可能となる。本発明の熱間圧延では、850〜1000℃に加熱したインゴットを一対の圧延ロール間に繰り返し通過させ、目標の板厚に仕上げてゆく。A値には1パスあたりの加工度が影響を及ぼす。ここで、1パスあたりの加工度R(%)とは、圧延ロールを1回通過したときの板厚減少率であり、R=(T0−T)/T0×100(T0:圧延ロール通過前の厚み、T:圧延ロール通過後の厚み)で与えられる。 The method of adjusting the A value to 10% or more is not limited to a specific method, but can be achieved by controlling the hot rolling conditions, for example. In the hot rolling of the present invention, an ingot heated to 850 to 1000 ° C. is repeatedly passed between a pair of rolling rolls to finish the target plate thickness. The degree of processing per pass affects the A value. Here, the processing degree R (%) per pass is a sheet thickness reduction rate when the rolling roll passes once, and R = (T 0 −T) / T 0 × 100 (T 0 : rolling) Thickness before passing through roll, T: Thickness after passing through rolling roll).
このRについて、全パスのうちの最大値(Rmax)を25%以下にし、全パスの平均値(Rave)を20%以下にすることが好ましい。これら両条件を満足することで、A値が10%以上になる。より好ましくはRaveを19%以下とする。 Regarding R, it is preferable that the maximum value (Rmax) of all paths is 25% or less and the average value (Rave) of all paths is 20% or less. By satisfying both of these conditions, the A value becomes 10% or more. More preferably, Rave is set to 19% or less.
再結晶焼鈍では、圧延組織の一部または全てを再結晶化させる。最終冷間圧延前の再結晶焼鈍では、銅合金板の平均結晶粒径を50μm以下に調整する。平均結晶粒径が大きすぎると、製品の引張強さを350MPa以上に調整することが難しくなる。 In recrystallization annealing, part or all of the rolling structure is recrystallized. In the recrystallization annealing before the final cold rolling, the average crystal grain size of the copper alloy sheet is adjusted to 50 μm or less. When the average crystal grain size is too large, it becomes difficult to adjust the tensile strength of the product to 350 MPa or more.
最終冷間圧延前の再結晶焼鈍の条件は、目標とする焼鈍後の結晶粒径に基づき決定する。具体的には、バッチ炉または連続焼鈍炉を用い、炉内温度を250〜800℃として焼鈍を行えばよい。バッチ炉では250〜600℃の炉内温度において30分から30時間の範囲で加熱時間を適宜調整すればよい。連続焼鈍炉では450〜800℃の炉内温度において5秒から10分の範囲で加熱時間を適宜調整すればよい。 The recrystallization annealing conditions before the final cold rolling are determined based on the target crystal grain size after annealing. Specifically, annealing may be performed by using a batch furnace or a continuous annealing furnace and setting the furnace temperature to 250 to 800 ° C. In a batch furnace, the heating time may be appropriately adjusted within the range of 30 minutes to 30 hours at a furnace temperature of 250 to 600 ° C. In a continuous annealing furnace, the heating time may be appropriately adjusted within a range of 5 seconds to 10 minutes at a furnace temperature of 450 to 800 ° C.
最終冷間圧延では、一対の圧延ロール間に材料を繰り返し通過させ、目標の板厚に仕上げていく。最終冷間圧延の加工度は25〜99%とするのが好ましい。ここで加工度r(%)は、r=(t0−t)/t0×100(t0:圧延前の板厚、t:圧延後の板厚)で与えられる。rが小さすぎると、引張強さを350MPa以上に調整することが難しくなる。rが大きすぎると、圧延材のエッジが割れることがある。 In the final cold rolling, the material is repeatedly passed between a pair of rolling rolls to finish the target plate thickness. The degree of work of the final cold rolling is preferably 25 to 99%. Here, the working degree r (%) is given by r = (t 0 −t) / t 0 × 100 (t 0 : plate thickness before rolling, t: plate thickness after rolling). If r is too small, it becomes difficult to adjust the tensile strength to 350 MPa or more. If r is too large, the edge of the rolled material may be broken.
熱間圧延条件制御によるA値の調整に加え、製品のTDのばね限界値を200MPa以上に調整することにより、応力緩和率が50%以下となる。ばね限界値を200MPa以上に調整する方法は、特定の方法に限定されないが、例えば最終圧延後に適切な条件で歪取焼鈍を行うことにより可能となる。 In addition to the adjustment of the A value by the hot rolling condition control, the stress relaxation rate is 50% or less by adjusting the spring limit value of the TD of the product to 200 MPa or more. The method for adjusting the spring limit value to 200 MPa or more is not limited to a specific method, but it can be performed, for example, by performing strain relief annealing under appropriate conditions after the final rolling.
すなわち、歪取焼鈍後の引張強さを歪取焼鈍前(最終圧延上がり)の引張強さに対し、10〜100MPa低い値、好ましくは20〜80MPa低い値に調整することにより、ばね限界値が200MPa以上となる。引張強さの低下量が小さすぎると、ばね限界値を200MPa以上に調整することが難しくなる。引張強さの低下量が大きすぎると製品の引張強さが350MPa未満になることがある。 That is, the spring limit value is adjusted by adjusting the tensile strength after strain relief annealing to a value that is 10 to 100 MPa lower, preferably 20 to 80 MPa lower than the tensile strength before strain relief annealing (after final rolling). 200 MPa or more. If the amount of decrease in tensile strength is too small, it becomes difficult to adjust the spring limit value to 200 MPa or more. If the decrease in tensile strength is too large, the tensile strength of the product may be less than 350 MPa.
具体的には、バッチ炉を用いる場合には100〜500℃の炉内温度において30分から30時間の範囲で加熱時間を適宜調整することにより、また連続焼鈍炉を用いる場合には300〜700℃の炉内温度において5秒から10分の範囲で加熱時間を適宜調整することにより、引張強さの低下量を上記範囲に調整すればよい。 Specifically, when a batch furnace is used, the heating time is appropriately adjusted in the range of 30 minutes to 30 hours at a furnace temperature of 100 to 500 ° C., and when a continuous annealing furnace is used, 300 to 700 ° C. What is necessary is just to adjust the fall amount of tensile strength to the said range by adjusting a heating time suitably in the range for 5 second to 10 minutes in the furnace temperature of this.
以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.
溶銅に合金元素を添加した後、厚みが200mmのインゴットに鋳造した。インゴットを850℃で3時間加熱し、熱間圧延により厚み15mmの板にした。熱間圧延後の板表面の酸化スケールを研削、除去した後、焼鈍と冷間圧延を繰り返し、最終の冷間圧延で所定の製品厚みに仕上げた。最後に歪取焼鈍を行った。 After adding the alloy element to the molten copper, it was cast into an ingot having a thickness of 200 mm. The ingot was heated at 850 ° C. for 3 hours and formed into a plate having a thickness of 15 mm by hot rolling. After grinding and removing the oxide scale on the surface of the plate after hot rolling, annealing and cold rolling were repeated and finished to a predetermined product thickness by final cold rolling. Finally, strain relief annealing was performed.
熱間圧延では、1パスあたりの加工度の最大値(Rmax)および平均値を(Rave)を種々変化させた。 In hot rolling, the maximum value (Rmax) and average value (Rave) of the degree of processing per pass were variously changed.
最終冷間圧延前の焼鈍(最終再結晶焼鈍)は、焼鈍時の厚みが2mmを超える場合はバッチ炉を、厚みが2mm以下の場合は連続焼鈍炉を用いて行った。バッチ炉の場合は加熱時間を5時間とし炉内温度を250〜600℃の範囲で調整し、焼鈍後の結晶粒径を変化させた。連続焼鈍炉の場合は炉内温度を700℃とし加熱時間を5秒から15分の間で適宜調整し、焼鈍後の結晶粒径を変化させた。最終冷間圧延では、加工度(r)を種々変化させた。 The annealing before the final cold rolling (final recrystallization annealing) was performed using a batch furnace when the thickness during annealing exceeded 2 mm, and a continuous annealing furnace when the thickness was 2 mm or less. In the case of a batch furnace, the heating time was 5 hours, the furnace temperature was adjusted in the range of 250 to 600 ° C., and the crystal grain size after annealing was changed. In the case of a continuous annealing furnace, the furnace temperature was set to 700 ° C., and the heating time was appropriately adjusted between 5 seconds and 15 minutes to change the crystal grain size after annealing. In the final cold rolling, the degree of work (r) was varied.
歪取り焼鈍では、連続焼鈍炉を用い、炉内温度を500℃として加熱時間を1秒から10分の間で調整し、引張強さの低下量を種々変化させた。なお、一部の実施例では歪取り焼鈍を行わなかった。 In strain relief annealing, a continuous annealing furnace was used, the furnace temperature was 500 ° C., the heating time was adjusted between 1 second and 10 minutes, and the amount of decrease in tensile strength was variously changed. In some examples, strain relief annealing was not performed.
製造途中の材料および歪取焼鈍後の材料(製品)につき、次の測定を行った。 The following measurements were performed for materials in the process of manufacture and materials (products) after strain relief annealing.
(成分)
歪取焼鈍後の材料の合金元素濃度をICP−質量分析法で分析した。
(component)
The alloy element concentration of the material after strain relief annealing was analyzed by ICP-mass spectrometry.
(最終再結晶焼鈍後の平均結晶粒径)
圧延方向と直交する断面を機械研磨により鏡面に仕上げた後、エッチングにより結晶粒界を現出させた。この金属組織上において、JIS H 0501(1999年)の切断法に従い測定し、平均結晶粒径を求めた。
(Average grain size after final recrystallization annealing)
After the cross section perpendicular to the rolling direction was finished to a mirror surface by mechanical polishing, crystal grain boundaries were revealed by etching. On this metal structure, the average crystal grain size was determined by measurement according to the cutting method of JIS H 0501 (1999).
(製品の結晶方位)
TDと直交する断面(厚み方向と圧延方向にそれぞれ平行な断面)に電子線を照射しEBSD測定を行った。測定面積は0.1mm2とし、2μmのステップでスキャンし、方位を解析した。そして、(122)面の法線がTDと成す角度が10度以下である結晶の面積率および(133)面の法線がTDと成す角度が10度以下である結晶の面積率を求め、両面積率の合計(A値)を算出した。
(Crystal orientation of the product)
An EBSD measurement was performed by irradiating an electron beam to a cross section perpendicular to TD (cross section parallel to the thickness direction and the rolling direction). The measurement area was 0.1 mm 2, and scanning was performed in 2 μm steps to analyze the orientation. Then, an area ratio of the crystal whose angle formed by the normal of the (122) plane and TD is 10 degrees or less and an area ratio of the crystal whose angle formed by the normal of the (133) plane and TD are 10 degrees or less are obtained, The total (A value) of both area ratios was calculated.
(引張強さ)
最終冷間圧延後および歪取焼鈍後の材料につき、JIS Z2241に規定する13B号試験片を引張方向が圧延方向と平行になるように採取し、JIS Z2241に準拠して圧延方向と平行に引張試験を行い、引張強さを求めた。
(Tensile strength)
For the material after the final cold rolling and strain relief annealing, sample No. 13B specified in JIS Z2241 was taken so that the tensile direction was parallel to the rolling direction, and pulled in parallel with the rolling direction in accordance with JIS Z2241. A test was conducted to determine the tensile strength.
(ばね限界値)
歪取焼鈍後の材料から、幅が10mmの短冊形状の試験片を、試験片の長手方向が圧延方向と直交するように採取し、JIS H3130に規定されているモーメント式試験により、TDのばね限界値を測定した。
(Spring limit value)
A strip-shaped specimen having a width of 10 mm was taken from the material after strain relief annealing so that the longitudinal direction of the specimen was perpendicular to the rolling direction, and a TD spring was obtained by a moment type test specified in JIS H3130. The limit value was measured.
(導電率)
歪取焼鈍後の材料から、試験片の長手方向が圧延方向と平行になるように試験片を採取し、JIS H0505に準拠し四端子法により20℃での導電率を測定した。
(conductivity)
A test piece was taken from the material after strain relief annealing so that the longitudinal direction of the test piece was parallel to the rolling direction, and the conductivity at 20 ° C. was measured by a four-terminal method in accordance with JIS H0505.
(曲げたわみ係数)
TDの曲げたわみ係数を日本伸銅協会(JACBA)技術標準「銅及び銅合金板条の片持ち梁による曲げたわみ係数測定方法」に準じて測定した。
板厚t、幅w(=10mm)の短冊形状の試験片を、試験片の長手方向が圧延方向と直交するように採取した。この試料の片端を固定し、固定端からL(=100t)の位置にP(=0.15N)の荷重を加え、このときのたわみdから、次式を用いてTDの曲げたわみ係数Eを求めた。
E=4・P・(L/t)3/(w・d)
(Bending deflection coefficient)
The bending deflection coefficient of TD was measured according to the Japan Copper and Brass Association (JACBA) technical standard “Method of measuring bending deflection coefficient by cantilever of copper and copper alloy strip”.
A strip-shaped test piece having a thickness t and a width w (= 10 mm) was taken so that the longitudinal direction of the test piece was orthogonal to the rolling direction. One end of this sample is fixed, a load of P (= 0.15 N) is applied to the position of L (= 100 t) from the fixed end, and the bending deflection coefficient E of TD is calculated from the deflection d at this time using the following equation. Asked.
E = 4 · P · (L / t) 3 / (w · d)
(応力緩和率)
歪取焼鈍後の材料から、幅10mm、長さ100mmの短冊形状の試験片を、試験片の長手方向が圧延方向と直交するように採取した。図1のように、l=50mmの位置を作用点として、試験片にy0のたわみを与え、TDの0.2%耐力(JIS Z2241に準拠して測定)の80%に相当する応力(s)を負荷した。y0は次式により求めた。
y0=(2/3)・l2・s / (E・t)
ここで、EはTDの曲げたわみ係数であり、tは試料の厚みである。150℃にて1000時間加熱後に除荷し、図2のように永久変形量(高さ)yを測定し、応力緩和率{[y(mm)/y0(mm)]×100(%)}を算出した。
(Stress relaxation rate)
A strip-shaped test piece having a width of 10 mm and a length of 100 mm was collected from the material after strain relief annealing so that the longitudinal direction of the test piece was orthogonal to the rolling direction. As shown in FIG. 1, a stress corresponding to 80% of the 0.2% proof stress (measured in accordance with JIS Z2241) of TD is given to the test piece with a deflection of y 0 with the position of l = 50 mm as the working point. s) was loaded. y 0 was determined by the following equation.
y 0 = (2/3) · l 2 · s / (E · t)
Here, E is the bending deflection coefficient of TD, and t is the thickness of the sample. Unloading after heating at 150 ° C. for 1000 hours, and measuring the amount of permanent deformation (height) y as shown in FIG. 2, stress relaxation rate {[y (mm) / y 0 (mm)] × 100 (%) } Was calculated.
表1に評価結果を示す。表1の最終再結晶焼鈍後の結晶粒径における「<10μm」の表記は、圧延組織の全てが再結晶化しその平均結晶粒径が10μm未満であった場合、および圧延組織の一部のみが再結晶化した場合の双方を含んでいる。また、歪取焼鈍の引張強さの低下における「0MPa」の表記は、歪取焼鈍を行っていないことを示す。 Table 1 shows the evaluation results. The notation of “<10 μm” in the crystal grain size after the final recrystallization annealing in Table 1 indicates that when all of the rolling structure is recrystallized and the average crystal grain size is less than 10 μm, and only a part of the rolling structure is used. Both cases of recrystallization are included. Moreover, the description of “0 MPa” in the decrease in the tensile strength of strain relief annealing indicates that strain relief annealing is not performed.
表2には、熱間圧延の各パスにおける材料の仕上げ厚みおよび1パスあたりの加工度として、表1の発明例1、発明例4、比較例1および比較例2のものを例示した。 Table 2 shows examples of Invention Example 1, Invention Example 4, Comparative Example 1 and Comparative Example 2 in Table 1 as the finished thickness of the material in each pass of hot rolling and the degree of processing per pass.
発明例1〜22及び比較例14の銅合金板では、Sn濃度を0.005〜0.25%に調整し、熱間圧延においてRmaxを25%以下、Raveを20%以下とし、最終再結晶焼鈍において結晶粒径を50μm以下に調整し、最終冷間圧延において加工度を25〜99%とした。その結果、A値が10%以上となり、80%IACS以上の導電率、350MPa以上の引張強さ、115GPa以上の曲げたわみ係数が得られた。 In the copper alloy sheets of Invention Examples 1 to 22 and Comparative Example 14 , the Sn concentration was adjusted to 0.005 to 0.25%, Rmax was 25% or less and Rave was 20% or less in hot rolling, and final recrystallization was performed. In the annealing, the crystal grain size was adjusted to 50 μm or less, and the workability was set to 25 to 99% in the final cold rolling. As a result, the A value was 10% or more, and an electrical conductivity of 80% IACS or more, a tensile strength of 350 MPa or more, and a bending deflection coefficient of 115 GPa or more were obtained.
さらに発明例1〜22及び比較例14では、最終圧延後の歪取焼鈍において引張強さを10〜100MPa低下させたため、ばね限界値が200MPa以上となり、その結果50%以下の応力緩和率も得られた。比較例11、12は歪取焼鈍での引張強さ低下量が10MPaに満たなかったため、また比較例13は歪取焼鈍を実施しなかったため、ばね限界値が200MPa未満となり、その結果応力緩和率が50%を超えた。
Furthermore, in Invention Examples 1 to 22 and Comparative Example 14 , since the tensile strength was reduced by 10 to 100 MPa in the strain relief annealing after the final rolling, the spring limit value was 200 MPa or more, and as a result, a stress relaxation rate of 50% or less was also obtained. It was. In Comparative Examples 11 and 12, since the amount of decrease in tensile strength in strain relief annealing was less than 10 MPa, and in Comparative Example 13 in which stress relief annealing was not performed, the spring limit value was less than 200 MPa, resulting in a stress relaxation rate. Exceeded 50%.
比較例1〜6では、RmaxまたはRaveが本発明の規定から外れたため、A値が10%未満になった。その結果、曲げたわみ係数が115GPaに満たなかった。 In Comparative Examples 1 to 6, since Rmax or Rave deviated from the definition of the present invention, the A value was less than 10%. As a result, the bending deflection coefficient was less than 115 GPa.
このうち比較例1〜3、5、6では、引張強さを10〜100MPa低下させる条件で歪取焼鈍を行うことによりばね限界値を200MPa以上に調整したにもかかわらず、応力緩和率が50%を超えた。 Among these, in Comparative Examples 1-3, 5, and 6, although the spring limit value was adjusted to 200 MPa or more by performing strain relief annealing under the condition of reducing the tensile strength by 10 to 100 MPa, the stress relaxation rate was 50 % Exceeded.
また、比較例4では、A値が10%未満になったことに加え、歪取焼鈍を行わずばね限界値が200MPa未満になったため、応力緩和率が80%近くまで増大した。比較例4と比較例13を比較すると、歪取焼鈍を行わずばね限界値が200MPa未満であっても、A値を10%以上に調整することにより応力緩和率が明らかに小さくなることがわかる。なお、特許文献1および2のCu−Sn系合金箔の場合、RmaxおよびRaveの制御が行われておらず、また歪取焼鈍も行われていないため、その応力緩和特性のレベルは比較例4に近いといえる。
In Comparative Example 4, in addition to the A value being less than 10%, the stress relaxation rate increased to nearly 80% because the spring limit value was less than 200 MPa without performing strain relief annealing. Comparing Comparative Example 4 and Comparative Example 13 , it can be seen that even if the stress relief annealing is not performed and the spring limit value is less than 200 MPa, the stress relaxation rate is clearly reduced by adjusting the A value to 10% or more. . In the case of the Cu-Sn alloy foils of Patent Documents 1 and 2, since the Rmax and Rave are not controlled and the strain relief annealing is not performed, the level of the stress relaxation characteristic is Comparative Example 4. It can be said that it is close.
比較例7では、Sn濃度が0.005質量%未満だったため、歪取焼鈍後の引張強さが350MPa未満となり、また応力緩和率が50%を超えた。 In Comparative Example 7, since the Sn concentration was less than 0.005% by mass, the tensile strength after strain relief annealing was less than 350 MPa, and the stress relaxation rate exceeded 50%.
比較例8では、最終冷間圧延における加工度が25%に満たなかったため、また比較例9では最終冷間圧延前の再結晶焼鈍上がりの結晶粒径が50μmを超えたため、歪取焼鈍後の引張強さが350MPaに満たなかった。 In Comparative Example 8, the degree of work in the final cold rolling was less than 25%. In Comparative Example 9, the crystal grain size after recrystallization annealing before the final cold rolling exceeded 50 μm. The tensile strength was less than 350 MPa.
比較例10では、Sn濃度が0.2質量%を超えたため、導電率が80%IACS未満となった。 In Comparative Example 10, since the Sn concentration exceeded 0.2 mass% , the conductivity was less than 80% IACS.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013124730A JP6246502B2 (en) | 2013-06-13 | 2013-06-13 | Copper alloy sheet with excellent conductivity and bending deflection coefficient |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013124730A JP6246502B2 (en) | 2013-06-13 | 2013-06-13 | Copper alloy sheet with excellent conductivity and bending deflection coefficient |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017020500A Division JP2017115249A (en) | 2017-02-07 | 2017-02-07 | Copper alloy sheet excellent in conductivity and bending deflection coefficient |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015000990A JP2015000990A (en) | 2015-01-05 |
JP6246502B2 true JP6246502B2 (en) | 2017-12-13 |
Family
ID=52295698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013124730A Active JP6246502B2 (en) | 2013-06-13 | 2013-06-13 | Copper alloy sheet with excellent conductivity and bending deflection coefficient |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6246502B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017115249A (en) * | 2017-02-07 | 2017-06-29 | Jx金属株式会社 | Copper alloy sheet excellent in conductivity and bending deflection coefficient |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6296728B2 (en) * | 2013-09-03 | 2018-03-20 | Jx金属株式会社 | Copper alloy sheet with excellent conductivity and bending deflection coefficient |
JP6085633B2 (en) * | 2015-03-30 | 2017-02-22 | Jx金属株式会社 | Copper alloy plate and press-molded product including the same |
JP6719316B2 (en) * | 2016-07-25 | 2020-07-08 | 古河電気工業株式会社 | Copper alloy plate material for heat dissipation member and manufacturing method thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62193254A (en) * | 1986-02-20 | 1987-08-25 | Mitsubishi Metal Corp | Cu alloy ultrafine wire for semiconductor device |
JP4749780B2 (en) * | 2005-07-06 | 2011-08-17 | 三井住友金属鉱山伸銅株式会社 | Copper alloy rolled foil |
JP5055088B2 (en) * | 2007-10-31 | 2012-10-24 | Jx日鉱日石金属株式会社 | Copper foil and flexible printed circuit board using the same |
EP2610358A4 (en) * | 2010-08-27 | 2017-05-03 | Furukawa Electric Co., Ltd. | Copper alloy sheet and manufacturing method for same |
JP2013067853A (en) * | 2011-09-09 | 2013-04-18 | Jx Nippon Mining & Metals Corp | Rolled copper foil, copper-clad laminate, flexible printed wiring board and electronic device |
JP5631847B2 (en) * | 2011-11-07 | 2014-11-26 | Jx日鉱日石金属株式会社 | Rolled copper foil |
JP6188273B2 (en) * | 2011-11-18 | 2017-08-30 | Jx金属株式会社 | Copper alloy sheet with excellent heat dissipation and repeated bending workability |
JP5700834B2 (en) * | 2011-12-09 | 2015-04-15 | 株式会社神戸製鋼所 | High strength copper alloy sheet with excellent oxide film adhesion |
JP6328380B2 (en) * | 2013-05-31 | 2018-05-23 | Jx金属株式会社 | Copper alloy sheet with excellent conductivity and bending deflection coefficient |
-
2013
- 2013-06-13 JP JP2013124730A patent/JP6246502B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017115249A (en) * | 2017-02-07 | 2017-06-29 | Jx金属株式会社 | Copper alloy sheet excellent in conductivity and bending deflection coefficient |
Also Published As
Publication number | Publication date |
---|---|
JP2015000990A (en) | 2015-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6296728B2 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
JP5427971B1 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
WO2015022789A1 (en) | Copper alloy sheet having excellent conductivity and bending deflection factor | |
JP6270417B2 (en) | Copper alloy sheet with excellent conductivity and stress relaxation properties | |
JP5380621B1 (en) | Copper alloy sheet with excellent conductivity and stress relaxation properties | |
JP2015101773A (en) | Copper alloy sheet excellent in conductivity and stress relaxation property | |
JP6128976B2 (en) | Copper alloy and high current connector terminal material | |
JP5470483B1 (en) | Copper alloy sheet with excellent conductivity and stress relaxation properties | |
JP6328380B2 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
JP6296727B2 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
JP6246502B2 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
JP5892974B2 (en) | Copper alloy sheet with excellent conductivity and stress relaxation properties | |
JP2017002407A (en) | Copper alloy sheet excellent in conductivity and stress relaxation characteristic | |
JP5453565B1 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
JP6047466B2 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
JP5449595B1 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
JP2017066532A (en) | Copper alloy sheet having excellent conductivity and stress relaxation properties | |
JP5620025B2 (en) | Copper alloy sheet with excellent conductivity and stress relaxation properties | |
JP5352750B1 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
JP2017082335A (en) | Copper alloy sheet excellent in conductivity and bending deflection coefficient | |
JP2017089011A (en) | Copper alloy sheet excellent in conductivity and flexure deflection coefficient | |
JP2017115249A (en) | Copper alloy sheet excellent in conductivity and bending deflection coefficient | |
JP2017082338A (en) | Copper alloy sheet excellent in conductivity and bending deflection coefficient |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150323 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160816 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161014 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20161108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171115 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6246502 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |