JP7015117B2 - Organic wastewater treatment method and organic wastewater treatment system - Google Patents
Organic wastewater treatment method and organic wastewater treatment system Download PDFInfo
- Publication number
- JP7015117B2 JP7015117B2 JP2017097897A JP2017097897A JP7015117B2 JP 7015117 B2 JP7015117 B2 JP 7015117B2 JP 2017097897 A JP2017097897 A JP 2017097897A JP 2017097897 A JP2017097897 A JP 2017097897A JP 7015117 B2 JP7015117 B2 JP 7015117B2
- Authority
- JP
- Japan
- Prior art keywords
- tank
- membrane separation
- organic wastewater
- biological treatment
- treatment unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
本発明は、有機性排水処理方法及び有機性排水処理システムに関する。 The present invention relates to an organic wastewater treatment method and an organic wastewater treatment system.
図4に示すように、特許文献1には、窒素含有排液を活性汚泥を用いて処理する設備であって、無酸素槽A(A1~An)、好気槽O(O1~On)の順に複数個の無酸素槽Aと好気槽Oが交互に直列に結合され、最前段の無酸素槽A1と2段目以降の少なくともひとつの無酸素槽A2,Anに窒素含有排水DWを供給する供給経路Sを備え、最後段の好気槽Onには活性汚泥を分離して処理水を得るための浸漬型分離装置Mを備え、最後段の好気槽Onから最前段の無酸素槽A1へ活性汚泥液を循環返送する経路Rを備えたことを特徴とする窒素含有排水の処理設備が開示されている。なお、符号Pは膜分離用の吸引ポンプ、符号P1は汚泥返送用のポンプである。
As shown in FIG. 4,
上述した方法を採用した処理設備によれば、窒素除去率90%以上の窒素含有排水DWの処理設備が実現できるのであるが、曝気や送水のための動力機器、活性汚泥の循環経路を構成する配管などが大型化する。 According to the treatment equipment adopting the above-mentioned method, it is possible to realize a treatment equipment for nitrogen-containing wastewater DW having a nitrogen removal rate of 90% or more. Piping etc. will become larger.
また、脱窒処理を促進するために無酸素槽にメタノールなどの炭素源を定期的に注入する必要があり、センシング機器の故障等に起因してその際の注入量を誤ると処理後の放流水のT-N濃度が上昇する虞があった。 In addition, it is necessary to periodically inject a carbon source such as methanol into the oxygen-free tank in order to promote the denitrification process, and if the injection amount is incorrect due to a failure of the sensing device, etc., it will be discharged after the process. There was a risk that the TN concentration of water would increase.
そこで、図5に示すように、最後段の好気槽Onのみならず全ての好気槽O(O1~On)に浸漬型膜分離装置Mを備えた循環型の膜分離活性汚泥法(以下、「ステップ流入式MBR」と記す。なお、MBRは、Membrane Bio Reactorの略。)が提案されている。 Therefore, as shown in FIG. 5, a circulation type membrane separation activated sludge method (hereinafter referred to as a sludge method) in which an immersion type membrane separation device M is provided not only in the final aerobic tank On but also in all the aerobic tanks O (O1 to On). , "Step inflow type MBR". MBR is an abbreviation for Membrane Bio Reactor.) Has been proposed.
この方法によれば、例えば無酸素槽と好気槽を各3段直列に接続し、最終段の好気槽の活性汚泥を最上段の無酸素槽に返送することで、これまで非現実的であった9Q循環(汚水の流入量Qに対して9倍の循環量に設定する)が容易に実現でき、上述した動力機器やセンシング機器が小型化でき、また点数も減少できる。 According to this method, for example, an oxygen-free tank and an aerobic tank are connected in series in three stages each, and the activated sludge in the final-stage aerobic tank is returned to the top-level oxygen-free tank, which is unrealistic until now. The 9Q circulation (setting the circulation amount to be 9 times the inflow amount Q of sludge) can be easily realized, the above-mentioned power equipment and sensing equipment can be miniaturized, and the number of points can be reduced.
しかし、ステップ流入式MBRを採用する場合、好気槽Oで硝化液を膜分離する構成であるため、硝酸性窒素などの残留T-Nが膜透過液に流出することになり、T-N濃度の低減に限界があった。 However, when the step inflow type MBR is adopted, since the nitrifying liquid is membrane-separated in the aerobic tank O, residual TN such as nitrate nitrogen flows out to the membrane permeation liquid, and TN. There was a limit to the reduction of concentration.
そのため、降雨量が少なく、水道水の使用量が少ない内陸部の下水などのT-N濃度が50mg/Lの有機性排水のT-N濃度を、例えば環境基準となる3mg/L以下に浄化処理するのは困難であった。 Therefore, the TN concentration of organic wastewater with a TN concentration of 50 mg / L, such as inland sewage with low rainfall and low tap water usage, is purified to, for example, 3 mg / L or less, which is an environmental standard. It was difficult to handle.
また、ステップ流入式MBRで排水に含まれるリンを生物処理で除去する際には、いくつかの膜分離装置を停止させて好気槽を嫌気的状態に移行した場合に限り高い脱リン効果が得られるようになるが、通常は好気槽で微生物によるリンの過剰摂取が行なわれる過程で処理水としての膜透過液が取り出されるので、膜透過液に一部のT-Pが流出するという問題もあった。 In addition, when removing phosphorus contained in wastewater by biological treatment with a step inflow type MBR, a high dephosphorization effect is achieved only when some membrane separation devices are stopped and the aerobic tank is transferred to an anaerobic state. However, since the membrane permeate as treated water is usually taken out in the process of excessive intake of phosphorus by microorganisms in the aerobic tank, it is said that a part of T-P flows out into the membrane permeate. There was also a problem.
さらに、分離膜の洗浄のために大量に曝気された空気を脱臭して大気放出するための設備が大型になるという問題もあった。 Further, there is also a problem that the equipment for deodorizing a large amount of aerated air for cleaning the separation membrane and releasing it to the atmosphere becomes large.
本発明の目的は、上述した問題に鑑み、窒素を含む有機性排水に対して、効果的に低T-N濃度の処理水を得ることができる有機性排水処理方法及び有機性排水処理装置を提供する点にある。 In view of the above-mentioned problems, an object of the present invention is to provide an organic wastewater treatment method and an organic wastewater treatment apparatus capable of effectively obtaining treated water having a low TN concentration with respect to organic wastewater containing nitrogen. It is in the point of providing.
上述の目的を達成するため、本発明による有機性排水処理方法の第一特徴構成は、窒素を含む有機性排水を活性汚泥中で生物処理する有機性排水処理方法であって、嫌気槽と好気槽と無酸素処理を行なう膜分離槽とが活性汚泥の流れに沿ってこの順に配列された複数の生物処理ユニットを備え、上流側の生物処理ユニットの膜分離槽から下流側の生物処理ユニットの嫌気槽に活性汚泥が流れるように複数の生物処理ユニットが直列に複数接続され、各生物処理ユニットの嫌気槽に前記有機性排水を分割して供給し、各生物処理ユニットの膜分離槽内の活性汚泥を膜分離装置により固液分離して得られる膜透過液を処理水として取り出す点にある。 In order to achieve the above object, the first characteristic configuration of the organic wastewater treatment method according to the present invention is an organic wastewater treatment method for biologically treating organic wastewater containing nitrogen in active sludge, which is preferable to an anaerobic tank. The air tank and the membrane separation tank for anoxic treatment are provided with a plurality of biological treatment units arranged in this order along the flow of active sludge, and the biological treatment unit on the upstream side to the biological treatment unit on the downstream side. Multiple biological treatment units are connected in series so that active sludge flows into the anaerobic tank, and the organic wastewater is divided and supplied to the anaerobic tank of each biological treatment unit, and the inside of the membrane separation tank of each biological treatment unit. The point is that the membrane permeation liquid obtained by solid-liquid separation of the active sludge in the above is taken out as treated water.
各生物処理ユニットの最上流の嫌気槽に分割供給された有機性排水が好気槽に導かれてアンモニア性窒素が硝酸性窒素などに硝化処理され、さらに下流側の無酸素処理が行なわれる膜分離槽で内生脱窒作用を受けて脱窒処理されて処理水が取り出されるため、処理水に含まれるT-N濃度の値を低く抑えることができる。膜分離槽に残留した微量の硝酸性窒素も、次段の生物処理ユニットの嫌気槽に供給される有機性排水が炭素源となり当該嫌気槽でほぼ完全に脱窒されるようになる。また、嫌気槽で微生物から吐き出されたリンが、好気槽で微生物に過剰摂取された後に無酸素状態の膜分離槽で固液分離されるので、処理水である膜透過液に含まれるT-P濃度の値も低く抑えることができる。 A membrane in which organic wastewater divided and supplied to the most upstream anaerobic tank of each biological treatment unit is guided to an aerobic tank, ammoniacal nitrogen is nitrified into nitrate nitrogen, etc., and further downstream anoxic treatment is performed. Since the treated water is taken out by undergoing an endogenous denitrification action in the separation tank and being denitrified, the value of the TN concentration contained in the treated water can be kept low. The trace amount of nitrate nitrogen remaining in the membrane separation tank is also almost completely denitrified in the anaerobic tank by using the organic wastewater supplied to the anaerobic tank of the next-stage biological treatment unit as a carbon source. Further, since the phosphorus exhaled from the microorganism in the anaerobic tank is overdose by the microorganism in the aerobic tank and then solid-liquid separated in the anoxic membrane separation tank, T contained in the membrane permeate which is the treated water. The value of -P concentration can also be kept low.
同第二の特徴構成は、上述の第一の特徴構成に加えて、最下流部に配置される生物処理ユニットの膜分離槽から最上流部に配置される生物処理ユニットの嫌気槽に活性汚泥を返送する点にある。 In addition to the above-mentioned first feature configuration, the second feature configuration is active in the anaerobic tank of the biological treatment unit located in the most upstream portion from the membrane separation tank of the biological treatment unit located in the most downstream portion. The point is to return the sludge.
直列に接続された複数の生物処理ユニットの中で活性汚泥を循環させることにより、活性汚泥の十分な循環量を確保することができる。 By circulating the activated sludge in a plurality of biological treatment units connected in series, a sufficient circulation amount of the activated sludge can be ensured.
同第三の特徴構成は、上述の第一または第二の特徴構成に加えて、前記膜分離装置により固液分離して得られる膜透過液を曝気槽で曝気処理する点にある。 The third characteristic configuration is that, in addition to the above -mentioned first or second characteristic configuration, the membrane permeate obtained by solid-liquid separation by the membrane separation device is aerated in an aeration tank.
膜分離装置によって無酸素状態で固液分離された膜分離装置の膜透過液を河川等に放流する場合であっても、曝気処理することにより環境に影響を及ぼさない程度の溶存酸素量に調整することができるようになる。 Even when the membrane permeate of the membrane separation device, which has been solid-liquid separated by the membrane separation device in an oxygen-free state, is discharged to a river, etc., the amount of dissolved oxygen is adjusted to a level that does not affect the environment by aeration treatment. You will be able to.
同第四の特徴構成は、上述の第一から第三の何れかの特徴構成に加えて、前記膜分離槽の上部の気相部が閉鎖空間をなし、前記気相部のガスを活性汚泥中に浸漬して配置された膜分離装置の下部から散気するように循環させる点にある。 In the fourth characteristic configuration, in addition to any of the above -mentioned first to third characteristic configurations, the gas phase portion at the upper part of the membrane separation tank forms a closed space and activates the gas in the gas phase portion. The point is that it is circulated so as to dissipate air from the lower part of the membrane separation device arranged by immersing it in sludge.
閉鎖空間とされた膜分離槽の気相部から回収されたガスが、膜分離槽に浸漬配置された膜分離装置の下部から散気されるように循環されるため、大気開放に伴う大型の脱臭設備などを設ける必要はない。また、運転始動時に膜分離槽の気相部のガスを窒素ガスなどの不活性ガスで置換しなくてもよい。気相部が空気であっても、初期の僅かな期間に空気に含まれる酸素が消費されるためである。 The gas recovered from the gas phase part of the membrane separation tank, which is a closed space, is circulated so as to be dissipated from the lower part of the membrane separation device immersed in the membrane separation tank. There is no need to install deodorizing equipment. Further, it is not necessary to replace the gas in the gas phase portion of the membrane separation tank with an inert gas such as nitrogen gas at the start of operation. This is because even if the gas phase portion is air, oxygen contained in the air is consumed in a short period at the initial stage.
本発明による有機性排水処理システムの第一の特徴構成は、窒素を含む有機性排水を活性汚泥中で生物処理する有機性排水処理システムであって、嫌気槽と好気槽と無酸素処理を行なう膜分離槽とが活性汚泥の流れに沿ってこの順に配列された複数の生物処理ユニットを備え、上流側の生物処理ユニットの膜分離槽から下流側の生物処理ユニットの嫌気槽に活性汚泥が流れるように複数の生物処理ユニットを直列に複数接続した生物処理ユニット接続体と、各生物処理ユニットの嫌気槽に前記有機性排水を分割して供給する原水供給路と、各生物処理ユニットの膜分離槽内の活性汚泥を固液分離して処理水として膜透過液を取り出す膜分離装置と、を備えている点にある。 The first characteristic configuration of the organic wastewater treatment system according to the present invention is an organic wastewater treatment system that biologically treats organic wastewater containing nitrogen in active sludge, and has an anaerobic tank, an aerobic tank, and anoxic treatment. The membrane separation tank to be performed is equipped with a plurality of biological treatment units arranged in this order along the flow of the active sludge, and the active sludge is generated from the membrane separation tank of the upstream biological treatment unit to the anaerobic tank of the downstream biological treatment unit. A biological treatment unit connector in which a plurality of biological treatment units are connected in series so as to flow, a raw water supply path for dividing and supplying the organic wastewater to the anaerobic tank of each biological treatment unit, and a membrane of each biological treatment unit. It is equipped with a membrane separation device that separates the active sludge in the separation tank into solid and liquid and takes out the membrane permeation liquid as treated water.
同第二の特徴構成は、上述の第一の特徴構成に加えて、前記生物処理ユニット接続体の最下流部に配置される生物処理ユニットの膜分離槽から最上流部に配置される生物処理ユニットの嫌気槽に活性汚泥を返送する汚泥返送路を備えている点にある。 In addition to the above-mentioned first feature configuration, the second feature configuration includes organisms arranged in the most upstream portion from the membrane separation tank of the biological treatment unit located in the most downstream portion of the biological treatment unit connection. The point is that the anaerobic tank of the treatment unit is equipped with a sludge return path for returning activated sludge.
同第三の特徴構成は、上述の第一の特徴構成に加えて、前記生物処理ユニット接続体は、前記複数の生物処理ユニットを環状に接続して構成されている点にある。 The third feature configuration is that, in addition to the first feature configuration described above , the biological treatment unit connector is configured by connecting the plurality of biological treatment units in a ring shape.
同第四の特徴構成は、上述の第一から第三の何れかの特徴構成に加えて、前記膜分離装置から得られる膜透過液を曝気処理する曝気槽を備えている点にある。 The fourth characteristic configuration is that, in addition to any of the above -mentioned first to third characteristic configurations, an aeration tank for aerating the membrane permeate obtained from the membrane separation device is provided.
同第五の特徴構成は、上述の第一から第四の何れかの特徴構成に加えて、前記膜分離槽の上部の気相部が閉鎖空間をなし、前記気相部のガスを活性汚泥中に浸漬して配置された膜分離装置の下部から散気するように循環させる循環散気機構を備えている点にある。 In the fifth characteristic configuration, in addition to any of the above -mentioned first to fourth characteristic configurations, the gas phase portion at the upper part of the membrane separation tank forms a closed space and activates the gas in the gas phase portion. The point is that it is equipped with a circulating air dispersal mechanism that circulates air from the lower part of the membrane separation device arranged by immersing it in sludge.
以上説明した通り、本発明によれば、窒素を含む有機性排水に対して、効果的に低T-N濃度の処理水を得ることができる有機性排水処理方法及び有機性排水処理装置を提供することができるようになった。 As described above, according to the present invention, there is provided an organic wastewater treatment method and an organic wastewater treatment apparatus capable of effectively obtaining treated water having a low TN concentration for organic wastewater containing nitrogen. You can now do it.
以下、本発明による排水処理方法及び排水処理システムの実施形態を説明する。
図1(a)には、本発明による有機性排水処理システム1が示されている。当該有機性排水処理システム1は、窒素を含む有機性排水DWを活性汚泥中で生物処理する有機性排水処理システム1であり、活性汚泥の流れに沿って複数段直列に接続され、嫌気槽AN(AN1~ANn)と好気槽O(O1~On)と無酸素状態で固液分離する膜分離槽(A1~An)とが順に配列された生物処理ユニットU(U1~Un)と、各生物処理ユニットU(U1~Un)の嫌気槽ANに有機性排水DWを分割して供給する原水供給路Sと、各生物処理ユニットU(U1~Un)の膜分離槽A(A1~An)内の活性汚泥を固液分離して処理水としての膜透過液TWを取り出す膜分離装置Mと、を備えている。なお、nは正整数である。つまり、直列に複数接続された生物処理ユニットU(U1~Un)によって生物処理ユニット接続体が構成される。
Hereinafter, embodiments of a wastewater treatment method and a wastewater treatment system according to the present invention will be described.
FIG. 1A shows an organic
そして、当該生物処理ユニット接続体には、最下流部に配置される生物処理ユニットUnの膜分離槽Anから最上流部に配置される生物処理ユニットU1の嫌気槽AN1に活性汚泥を返送する汚泥返送路Rを備えている。活性汚泥の流れに沿って直列に接続された複数段の生物処理ユニットUの中で活性汚泥を循環させることにより、活性汚泥の十分な循環量を確保して効率的に脱窒処理することができる。 Then, sludge that returns activated sludge from the membrane separation tank An of the biological treatment unit Un arranged in the most downstream part to the anaerobic tank AN1 of the biological treatment unit U1 arranged in the most upstream part in the biological treatment unit connection body. It has a return route R. By circulating the activated sludge in a multi-stage biological treatment unit U connected in series along the flow of the activated sludge, it is possible to secure a sufficient circulation amount of the activated sludge and perform efficient denitrification treatment. can.
各好気槽O(O1~On)の底部には微細な気泡を放出して好気性処理を促す散気装置が配置され、各散気装置に接続されたブロワBから空気が供給されている。 At the bottom of each aerobic tank O (O1 to On), an air diffuser that discharges fine bubbles to promote aerobic treatment is arranged, and air is supplied from a blower B connected to each air diffuser. ..
さらに、図1(b)に示すように、膜分離槽A(A1~An)の気相部が閉鎖されて構成され、気相部のガスを活性汚泥中に浸漬された膜分離装置Mの下部から散気するように循環させる循環曝気機構CAを備えている。 Further, as shown in FIG. 1 (b), the membrane separation apparatus M in which the gas phase portion of the membrane separation tanks A (A1 to An) is closed and the gas in the gas phase portion is immersed in activated sludge. It is equipped with a circulating aeration mechanism CA that circulates so as to dissipate air from the lower part.
循環曝気機構CAは、各膜分離槽A(A1~An)の気相部からガスを吸引するブロワB1と、ブロワB1で吸引されるガスを膜分離装置Mの下部に配した散気装置に導く配管と、吸引側の配管に備えたチェッキ弁Vを備えている。循環ガスとして空気が好適に用いられる。初期の僅かな期間に空気に含まれる酸素が微生物に取り込まれ、速やかに酸素濃度が低下するので無酸素状態が実現できる。また、酸素の消費により減圧状態になるとチェッキ弁Vから微量の大気が供給されるように構成されているため、ガス循環量はほぼ一定に維持されるようになる。 The circulating aeration mechanism CA is a blower B1 that sucks gas from the gas phase portion of each membrane separation tank A (A1 to An), and an air diffuser that arranges the gas sucked by the blower B1 under the membrane separation device M. It is equipped with a guiding pipe and a check valve V provided for the suction side pipe. Air is preferably used as the circulating gas. Oxygen contained in the air is taken up by microorganisms in a short period of time at the initial stage, and the oxygen concentration is rapidly lowered, so that an oxygen-free state can be realized. Further, since the check valve V is configured to supply a small amount of air when the pressure is reduced due to the consumption of oxygen, the gas circulation amount is maintained almost constant.
つまり、閉鎖空間として構成された膜分離槽Aの気相部から回収されたガスが、膜分離槽Aに浸漬配置された膜分離装置Mの下部から散気され、散気されたガスが膜分離装置Mの分離膜面を洗浄した後に気相部に到り循環される。通常の稼働状態では気相部のガスが大気に開放されることがないので大型の脱臭設備などを設ける必要はない。また、膜分離槽Aの無酸素状態を維持するため循環ガスとして、特別のガスを用いずに空気を用いることも可能である。初期の僅かな期間に空気に含まれる酸素が消費されるためである。 That is, the gas recovered from the gas phase portion of the membrane separation tank A configured as a closed space is dissipated from the lower part of the membrane separation device M immersed and arranged in the membrane separation tank A, and the dissipated gas is the membrane. After cleaning the separation membrane surface of the separation device M, it reaches the gas phase portion and is circulated. Since the gas in the gas phase is not released to the atmosphere under normal operating conditions, it is not necessary to install a large deodorizing facility. Further, in order to maintain the oxygen-free state of the membrane separation tank A, it is also possible to use air as the circulating gas without using a special gas. This is because the oxygen contained in the air is consumed in a short period of time at the beginning.
窒素を含む有機性排水は、各生物処理ユニットUの最上流の嫌気槽Aに分割供給される。嫌気槽Aでは、当該有機性排水に含まれる有機成分が水素供与体として機能し、さらに上流側の生物処理ユニットUからの循環汚泥に含まれる硝酸性窒素が窒素に還元されて脱窒された後に好気槽Oに流入する。 The organic wastewater containing nitrogen is separately supplied to the most upstream anaerobic tank A of each biological treatment unit U. In the anaerobic tank A, the organic component contained in the organic wastewater functions as a hydrogen donor, and the nitrate nitrogen contained in the circulating sludge from the biological treatment unit U on the upstream side is reduced to nitrogen and denitrified. Later, it flows into the aerobic tank O.
好気槽Oでは好気性処理が促進されて有機性排水に含まれるアンモニア性窒素が硝酸性窒素は亜硝酸性窒素に硝化処理され、さらに下流側の無酸素状態の膜分離槽Aで内生脱窒作用を受けて脱窒処理されて固液分離される。 In the aerobic tank O, aerobic treatment is promoted, and the ammoniacal nitrogen contained in the organic wastewater is nitrified into nitrite nitrogen, and then endogenous in the oxygen-free membrane separation tank A on the downstream side. It undergoes denitrification and is denitrified to be separated into solid and liquid.
膜分離槽Aは実質的に無酸素槽として機能し、脱窒処理によって槽内の硝酸性窒素濃度が低下するため、膜分離装置Mによる分離水つまり膜透過液に含まれるT-N濃度の値が極めて低く抑えられる。膜分離槽Aに残留した微量の硝酸性窒素も、次段の生物処理ユニットUの嫌気槽ANにおいて有機性排水が水素供与体となりほぼ完全に脱窒されるようになる。 The membrane separation tank A functions as a substantially oxygen-free tank, and the concentration of nitrate nitrogen in the tank decreases due to the denitrification treatment. The value is kept extremely low. The trace amount of nitrate nitrogen remaining in the membrane separation tank A is also almost completely denitrified by the organic wastewater as a hydrogen donor in the anaerobic tank AN of the biological treatment unit U in the next stage.
また、好気槽Oでリンが微生物に過剰摂取された後に無酸素状態の膜分離槽Aで固液分離されるので、分離水に含まれるT-P濃度の値も低く抑えることができる。 Further, since phosphorus is excessively ingested by microorganisms in the aerobic tank O and then solid-liquid separated in the anoxic membrane separation tank A, the value of the T-P concentration contained in the separated water can be kept low.
上述した有機性排水処理システム1には、膜分離装置Mにより固液分離して得られる膜透過液TWを曝気処理する曝気槽AEがさらに設けられている。膜分離装置Mによって無酸素状態で固液分離された膜透過液を河川等に放流する場合であっても、曝気処理することにより環境に影響を及ぼさない程度の溶存酸素量に調整することができるようになる。
The above-mentioned organic
本発明の有機性排水処理方法は、上述した有機性排水処理システム1で実行され、嫌気槽ANと好気槽Oと無酸素処理を行なう膜分離槽Aとが順に配列された生物処理ユニットUが、活性汚泥の流れに沿って直列に複数接続され、各生物処理ユニットUの嫌気槽ANに有機性排水を分割して供給し、各生物処理ユニットUの膜分離槽A内の活性汚泥を膜分離装置Mにより固液分離して得られる膜透過液を処理水として取り出すように構成されている。
The organic wastewater treatment method of the present invention is executed in the above-mentioned organic
また、最下流部に配置される生物処理ユニットUnの膜分離槽Anから最上流部に配置される生物処理ユニットU1の嫌気槽AN1に活性汚泥を返送するように構成され、膜分離装置Mにより固液分離して得られる膜透過液を曝気槽AEで曝気処理するように構成されている。 Further, the activated sludge is configured to be returned from the membrane separation tank An of the biological treatment unit Un located in the most downstream portion to the anaerobic tank AN1 of the biological treatment unit U1 arranged in the most upstream portion, and is configured by the membrane separation device M. The membrane permeate obtained by solid-liquid separation is configured to be aerated in the aeration tank AE.
以下、別実施形態を説明する。上述した実施形態では、生物処理ユニットUを構成する嫌気槽AN、好気槽O、膜分離槽AN及び複数の生物処理ユニットUがともに、活性汚泥の流れに沿って物理的に直線状に配された例を説明したが、嫌気槽AN、好気槽O、膜分離槽ANの配置は直線状に限るものでないことは言うまでもなく、複数の生物処理ユニットUの配置も直線状に限るものでないことは言うまでもない。 Hereinafter, another embodiment will be described. In the above-described embodiment, the anaerobic tank AN, the aerobic tank O, the membrane separation tank AN, and the plurality of biological treatment units U constituting the biological treatment unit U are all physically arranged linearly along the flow of activated sludge. It goes without saying that the arrangement of the anaerobic tank AN, the aerobic tank O, and the membrane separation tank AN is not limited to the linear shape, and the arrangement of the plurality of biological treatment units U is not limited to the linear shape. Needless to say.
図2に示す例では、複数の生物処理ユニットUは直線状に配されているものの、膜分離槽ANに対して嫌気槽AN及び好気槽Oが隣接するように、各生物処理ユニットUは活性汚泥の蛇行流路に沿って配されている。 In the example shown in FIG. 2, although the plurality of biological treatment units U are arranged in a straight line, each biological treatment unit U has an anaerobic tank AN and an aerobic tank O adjacent to the membrane separation tank AN. It is arranged along the meandering flow path of activated sludge.
図3に示す例では、有機性排水が循環する環状流路が形成され、環状流路に沿って各生物処理ユニットUが配置されている。つまり、各生物処理ユニットUの膜分離槽に隣接するように下流側の生物処理ユニットUの嫌気槽が隣接配置されて、生物処理ユニット接続体が構成されている。従って、図1や図2に示した例のように、活性汚泥液を循環返送する経路Rを長い配管で構成する必要が無く、従って送水量の大きな大型のポンプ設備を用いる必要が無くなる。 In the example shown in FIG. 3, an annular flow path through which organic wastewater circulates is formed, and each biological treatment unit U is arranged along the annular flow path. That is, the anaerobic tank of the biological treatment unit U on the downstream side is adjacently arranged so as to be adjacent to the membrane separation tank of each biological treatment unit U, and the biological treatment unit connection body is configured. Therefore, as in the examples shown in FIGS. 1 and 2, it is not necessary to configure the path R for circulating and returning the activated sludge liquid with a long pipe, and therefore it is not necessary to use a large pump facility having a large amount of water to be sent.
図3の例では、例えば、嫌気槽Aと好気槽Oとの仕切り壁に面して嫌気槽A側にエアリフトポンプを設けて、嫌気槽Aから好気槽Oに有機性排水を送水するように構成すればよい。 In the example of FIG. 3, for example, an air lift pump is provided on the anaerobic tank A side facing the partition wall between the anaerobic tank A and the aerobic tank O, and organic wastewater is sent from the anaerobic tank A to the aerobic tank O. It may be configured as follows.
図2,3の何れの例でも、生物処理ユニットUの段数が4段で構成されている。単位時間あたりの有機性排水の流入量をQ、各生物処理ユニットUの嫌気槽ANへの有機性排水の流入量をQ/4とし、各膜分離装置Mから総量でQの膜透過液量の処理水が引抜かれ、最下流の膜分離槽Aの活性汚泥が汚泥返送経路Rを介して最上流の嫌気槽ANに3Qの汚泥が返送される場合には、汚泥の実質的な循環比が3×4となり12Qという高い循環比が実現でき、各槽の実質的な汚泥滞留時間SRTを十分な値に維持しながらも槽の容量を小さくすることができる。 In any of the examples of FIGS. 2 and 3, the number of stages of the biological processing unit U is composed of four stages. The inflow amount of organic sludge per unit time is Q, the inflow amount of organic sludge into the anaerobic tank AN of each biological treatment unit U is Q / 4, and the total amount of membrane permeation liquid from each membrane separation device M is Q. When the treated water of the above is drawn out and the activated sludge of the most downstream membrane separation tank A is returned to the most upstream anaerobic tank AN via the sludge return route R, the substantial circulation ratio of the sludge is Is 3 × 4, and a high circulation ratio of 12Q can be realized, and the capacity of the tank can be reduced while maintaining the actual sludge residence time SRT of each tank at a sufficient value.
浸漬型の膜分離装置Mに組み込まれる膜エレメントとして、不織布の表面に多孔性を有する有機高分子膜を備えた孔径が最大で0.4μm程度の精密ろ過膜を採用したものが好適に用いられるが、任意の種類の分離膜及び任意の形態の膜エレメント(中空糸膜エレメント、管状膜エレメント、モノリス膜エレメント等)を用いることが可能である。 As the membrane element incorporated in the immersion type membrane separation device M, a membrane element having a porous organic polymer membrane on the surface of the non-woven fabric and having a pore diameter of about 0.4 μm at the maximum is preferably used. However, it is possible to use any kind of separation membrane and any form of membrane element (hollow yarn membrane element, tubular membrane element, monolithic membrane element, etc.).
上述した実施形態では膜分離槽Aに膜分離装置Mを浸漬配置した例を説明したが、本発明による膜分離装置Mは膜分離槽Aに浸漬配置する態様に限るものではなく、膜分離槽Aの外部に設置された膜分離装置Mでクロスフローろ過する態様であってもよい。このとき分離された活性汚泥の一部を膜分離槽Aまたは次段の嫌気槽Aに返送するように構成してもよい。 In the above-described embodiment, an example in which the membrane separation device M is immersed and arranged in the membrane separation tank A has been described, but the membrane separation device M according to the present invention is not limited to the embodiment in which the membrane separation device M is immersed and arranged in the membrane separation tank A. A mode may be used in which cross-flow filtration is performed by a membrane separation device M installed outside A. A part of the activated sludge separated at this time may be returned to the membrane separation tank A or the anaerobic tank A in the next stage.
生物処理ユニットUの数は特に制限されるものではないが、3から5の範囲が好ましい。一般的に数を増やすと処理水質が良くなる傾向を示すが、逆に実際のHRTが短くなるために膜分離槽でファウリング物質の発生量が増して膜詰まりが生じやすく、結果として水質の低下を招く。そのため、適切にバランスのとれた数に設定する必要がある。 The number of biological treatment units U is not particularly limited, but is preferably in the range of 3 to 5. Generally, increasing the number tends to improve the quality of treated water, but conversely, because the actual HRT is shortened, the amount of fouling substances generated in the membrane separation tank increases and membrane clogging is likely to occur, resulting in water quality. It causes a decline. Therefore, it is necessary to set an appropriately balanced number.
本発明による有機性排水処理方法によれば、水素供与体として別途の炭素源を投入することなく脱窒処理しながらも、例えばT-N濃度が50mg/Lの有機性排水のT-N濃度を3mg/L以下に浄化処理することができるようになる。そして、別途の炭素源を投入することがないため、余剰汚泥の発生量も低減できるようになる。 According to the organic wastewater treatment method according to the present invention, the TN concentration of organic wastewater having a TN concentration of 50 mg / L, for example, while denitrifying without adding a separate carbon source as a hydrogen donor. Can be purified to 3 mg / L or less. Further, since no separate carbon source is input, the amount of excess sludge generated can be reduced.
上述した実施形態は、本発明の一例であり、該記載により本発明が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。 The above-described embodiment is an example of the present invention, and the description thereof does not limit the present invention, and the specific configuration of each part can be appropriately modified and designed within the range in which the action and effect of the present invention are exhibited. Needless to say.
1:排水処理装置
AN:嫌気槽
A:膜分離槽
DW:有機性排水
M:膜分離装置
O:好気槽
R:汚泥返送路
S:原水供給路
U:生物処理ユニット
1: Wastewater treatment device AN: Anaerobic tank A: Membrane separation tank DW: Organic wastewater M: Membrane separation device O: Aerobic tank R: Sludge return path S: Raw water supply path U: Biological treatment unit
Claims (9)
嫌気槽と好気槽と無酸素処理を行なう膜分離槽とが活性汚泥の流れに沿ってこの順に配列された複数の生物処理ユニットを備え、上流側の生物処理ユニットの膜分離槽から下流側の生物処理ユニットの嫌気槽に活性汚泥が流れるように複数の生物処理ユニットが直列に複数接続され、
各生物処理ユニットの嫌気槽に前記有機性排水を分割して供給し、
各生物処理ユニットの膜分離槽内の活性汚泥を膜分離装置により固液分離して得られる膜透過液を処理水として取り出す、ことを特徴とする有機性排水処理方法。 It is an organic wastewater treatment method that biologically treats organic wastewater containing nitrogen in activated sludge.
The anaerobic tank, the aerobic tank, and the membrane separation tank for anoxic treatment are provided with a plurality of biological treatment units arranged in this order along the flow of activated sludge, and the upstream biological treatment unit is downstream from the membrane separation tank. Multiple biological treatment units are connected in series so that activated sludge can flow into the anaerobic tank of the biological treatment unit.
The organic wastewater is divided and supplied to the anaerobic tank of each biological treatment unit.
An organic wastewater treatment method characterized by taking out a membrane permeation liquid obtained by solid-liquid separation of activated sludge in a membrane separation tank of each biological treatment unit with a membrane separation device as treated water.
嫌気槽と好気槽と無酸素処理を行なう膜分離槽とが活性汚泥の流れに沿ってこの順に配列された複数の生物処理ユニットを備え、上流側の生物処理ユニットの膜分離槽から下流側の生物処理ユニットの嫌気槽に活性汚泥が流れるように複数の生物処理ユニットを直列に複数接続した生物処理ユニット接続体と、
各生物処理ユニットの嫌気槽に前記有機性排水を分割して供給する原水供給路と、
各生物処理ユニットの膜分離槽内の活性汚泥を固液分離して処理水として膜透過液を取り出す膜分離装置と、
を備えている、ことを特徴とする有機性排水処理システム。 An organic wastewater treatment system that biologically treats organic wastewater containing nitrogen in activated sludge.
The anaerobic tank, the aerobic tank, and the membrane separation tank for anoxic treatment are provided with a plurality of biological treatment units arranged in this order along the flow of activated sludge, and the upstream biological treatment unit is downstream from the membrane separation tank. A biological treatment unit connector in which multiple biological treatment units are connected in series so that activated sludge flows into the anaerobic tank of the biological treatment unit.
The raw water supply channel that divides and supplies the organic wastewater to the anaerobic tank of each biological treatment unit,
A membrane separation device that separates activated sludge in the membrane separation tank of each biological treatment unit into solid and liquid and takes out the membrane permeation liquid as treated water.
It features an organic wastewater treatment system.
A circulating air dispersal mechanism in which the gas phase portion at the upper part of the membrane separation tank forms a closed space, and the gas in the gas phase portion is immersed in activated sludge and circulated so as to dissipate air from the lower part of the membrane separation device arranged. The organic wastewater treatment system according to any one of claims 5 to 8, wherein the organic wastewater treatment system comprises.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017097897A JP7015117B2 (en) | 2017-05-17 | 2017-05-17 | Organic wastewater treatment method and organic wastewater treatment system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017097897A JP7015117B2 (en) | 2017-05-17 | 2017-05-17 | Organic wastewater treatment method and organic wastewater treatment system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018192419A JP2018192419A (en) | 2018-12-06 |
JP7015117B2 true JP7015117B2 (en) | 2022-02-02 |
Family
ID=64569453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017097897A Active JP7015117B2 (en) | 2017-05-17 | 2017-05-17 | Organic wastewater treatment method and organic wastewater treatment system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7015117B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114206477A (en) * | 2019-07-16 | 2022-03-18 | 法伊布拉卡斯特有限公司 | System and method for feeding submerged membrane units |
CN112777742B (en) * | 2019-11-11 | 2022-11-25 | 四川轻化工大学 | Integrated backflow-free A2O equipment based on fluidized bed |
CN114262659B (en) * | 2021-12-03 | 2024-06-04 | 中国船舶重工集团公司第七0四研究所 | Automatic bacteria culturing system for marine domestic sewage treatment device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000140886A (en) | 1998-11-11 | 2000-05-23 | Kawasaki Steel Corp | Equipment for treatment of nitrogen-containing drainage |
JP2002166139A (en) | 2000-12-04 | 2002-06-11 | Hitachi Plant Eng & Constr Co Ltd | Membrane separator |
JP2004305916A (en) | 2003-04-07 | 2004-11-04 | Hitachi Plant Eng & Constr Co Ltd | Membrane separator |
JP2006055849A (en) | 2001-11-22 | 2006-03-02 | Ebara Corp | Apparatus and method for treating organic waste water |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3278560B2 (en) * | 1995-11-17 | 2002-04-30 | 株式会社クボタ | Water treatment equipment |
-
2017
- 2017-05-17 JP JP2017097897A patent/JP7015117B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000140886A (en) | 1998-11-11 | 2000-05-23 | Kawasaki Steel Corp | Equipment for treatment of nitrogen-containing drainage |
JP2002166139A (en) | 2000-12-04 | 2002-06-11 | Hitachi Plant Eng & Constr Co Ltd | Membrane separator |
JP2006055849A (en) | 2001-11-22 | 2006-03-02 | Ebara Corp | Apparatus and method for treating organic waste water |
JP2004305916A (en) | 2003-04-07 | 2004-11-04 | Hitachi Plant Eng & Constr Co Ltd | Membrane separator |
Also Published As
Publication number | Publication date |
---|---|
JP2018192419A (en) | 2018-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7850851B2 (en) | Biological phosphorus removal | |
JP4997460B2 (en) | Wastewater treatment system | |
US20090152192A1 (en) | Novel Arrangement of Denitrification Reactors in a Recirculating Aquaculture System | |
JP2018138292A (en) | Water treatment method and apparatus | |
JP7015117B2 (en) | Organic wastewater treatment method and organic wastewater treatment system | |
JP2023065705A (en) | Wastewater treatment system | |
JP2003053363A (en) | Treatment method and treatment equipment for organic matter-containing water | |
JP5260417B2 (en) | Sewage treatment facilities and methods for renovating sewage treatment facilities | |
WO2003043941A1 (en) | Apparatus and method for treating organic waste water | |
JP6941439B2 (en) | Membrane separation activated sludge treatment equipment, membrane separation activated sludge treatment method and raw water supply equipment | |
JPH1034185A (en) | Drainage treatment method | |
JP4709792B2 (en) | Wastewater treatment system | |
KR100992321B1 (en) | Wastewater treatment apparatus with membrane module | |
JP4307275B2 (en) | Wastewater treatment method | |
JP2005246308A (en) | Method for bio-treating wastewater | |
JP4373871B2 (en) | Activated sludge treatment equipment | |
JP2003311295A (en) | Membrane separation activated sludge method | |
CN212387932U (en) | Domestic sewage treatment integrated device | |
JP2007050312A (en) | Method and apparatus for biologically treating waste water | |
KR200171727Y1 (en) | Processing system for excretions of animals | |
KR100783790B1 (en) | Apparatus for wastewater treatment with multi-stage denitification-filtration and method for wastewater treatment using the same | |
JP2005254207A (en) | Water treatment apparatus | |
JP2006007137A (en) | Apparatus and method for treating waste water | |
JP4872757B2 (en) | Multistage biological treatment apparatus and multistage biological treatment method | |
JP7121823B2 (en) | Membrane separation activated sludge treatment device, membrane separation activated sludge treatment method and raw water supply device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201028 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201110 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210406 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210630 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20210630 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20210630 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20210813 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20210817 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211012 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211012 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220121 |