[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016139710A - Organic transistor with organic semiconductor layer containing organic semiconductor material characterized by bent thienothiophene skeleton having thiophenes at ends - Google Patents

Organic transistor with organic semiconductor layer containing organic semiconductor material characterized by bent thienothiophene skeleton having thiophenes at ends Download PDF

Info

Publication number
JP2016139710A
JP2016139710A JP2015013913A JP2015013913A JP2016139710A JP 2016139710 A JP2016139710 A JP 2016139710A JP 2015013913 A JP2015013913 A JP 2015013913A JP 2015013913 A JP2015013913 A JP 2015013913A JP 2016139710 A JP2016139710 A JP 2016139710A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
chemical formula
organic semiconductor
substituents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015013913A
Other languages
Japanese (ja)
Other versions
JP6404133B2 (en
Inventor
義人 功刀
Yoshito Kunugi
義人 功刀
一男 岡本
Kazuo Okamoto
一男 岡本
雅宣 筒井
Masanobu Tsutsui
雅宣 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Ushio Chemix Corp
Original Assignee
Tokai University
Ushio Chemix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University, Ushio Chemix Corp filed Critical Tokai University
Priority to JP2015013913A priority Critical patent/JP6404133B2/en
Publication of JP2016139710A publication Critical patent/JP2016139710A/en
Application granted granted Critical
Publication of JP6404133B2 publication Critical patent/JP6404133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic transistor having good transistor performance with an organic semiconductor layer containing an organic semiconductor material characterized by a bent thienothiophene skeleton having thiophenes at ends.SOLUTION: An organic transistor contains at least one organic semiconductor material characterized by a bent thienothiophene skeleton having thiophenes at ends represented by the general formula [8] in the figure.SELECTED DRAWING: None

Description

本発明は、本願発明者等が先にした特許出願(特願2014−266919 出願日:平26.12.28 以下、先出願とする。)に係わる、末端にチオフェンを有する屈曲型のチエノチオフェン骨格を特徴とする有機半導体材料(以下、先出願に係わる有機半導体材料とする。)を使用する有機トランジスタの特性に関する。 The present invention relates to a bent-type thienothiophene having a thiophene at the end according to a patent application previously filed by the inventors of the present application (Japanese Patent Application No. 2014-266919 filing date: Hei 26.12.28, hereinafter referred to as a prior application). The present invention relates to characteristics of an organic transistor using an organic semiconductor material characterized by a skeleton (hereinafter referred to as an organic semiconductor material according to an earlier application).

本願は先出願に係わる有機半導体材料を使用する有機トランジスタに関する発明であり、本願では、先出願の記載を引用する場合が多くあることに留意されたい。 It should be noted that the present application is an invention related to an organic transistor using an organic semiconductor material according to an earlier application, and the description of the earlier application is often cited in the present application.

有機半導体は、有機ELや電子ペーパーなどのフレキシブルディスプレーへの応用が期待され、ウェットプロセスである塗布や印刷によって大面積の素子を、シリコン半導体よりも低コストで作製できることが期待されている。このようなウェットプロセスへ適応させるために、溶媒への溶解性を高め、また熱安定性や耐酸化性等の安定性のある有機半導体材料が求められている。 Organic semiconductors are expected to be applied to flexible displays such as organic EL and electronic paper, and it is expected that a large-area element can be produced at a lower cost than silicon semiconductors by application or printing, which are wet processes. In order to adapt to such a wet process, there is a demand for an organic semiconductor material having improved solubility in a solvent and having stability such as thermal stability and oxidation resistance.

高いキャリア移動度を有するペンタセンやテトラセン等のポリアセン化合物は、有機半導体材料として古くから知られている。しかし、このポリアセン化合物は、光や酸化に対して不安定であり、更に有機溶媒への溶解性が低いためウェットプロセスに利用することが困難である。そこで、化学的安定性や溶解度を改善するため、アセン骨格の一部に硫黄やセレン等のカルコゲン元素を導入したベンゾチエノベンゾチオフェン (以下、BTBTとする。)やジナフトチエノチオフェン (以下、DNTTとする。 )などが多数検討されている。 Polyacene compounds such as pentacene and tetracene having high carrier mobility have long been known as organic semiconductor materials. However, this polyacene compound is unstable to light and oxidation, and further has low solubility in an organic solvent, so that it is difficult to use it in a wet process. Therefore, in order to improve chemical stability and solubility, benzothienobenzothiophene (hereinafter referred to as BTBT) or dinaphthothienothiophene (hereinafter referred to as DNTT) in which a chalcogen element such as sulfur or selenium is introduced into a part of the acene skeleton. ) Etc. are being studied.

DNTTの中でも非特許文献1、特許文献1に記載のジナフト[2,3−b:2’,3’−f]チエノ[3,2−b]チエノチオフェン(以下,本非特許文献1の提案者は、この有機半導体をDNTTと称しているが、ここでは2,3−DNTTとする。)は、キャリアー移動度が2.0cm/Vsと高い値を示すことが報告されている。しかし、2,3−DNTTは、溶液状態で安定であるが、その溶解度は、室温でジクロロメタン1リットル中3.44mgであり、溶解性が低く、ウェットプロセスに利用することが困難である。 Among the DNTTs, dinaphtho [2,3-b: 2 ′, 3′-f] thieno [3,2-b] thienothiophene described in Non-Patent Document 1 and Patent Document 1 (hereinafter, proposal of Non-Patent Document 1) Have called this organic semiconductor DNTT, but here it is 2,3-DNTT.) Has been reported to show a high carrier mobility of 2.0 cm 2 / Vs. However, 2,3-DNTT is stable in a solution state, but its solubility is 3.44 mg in 1 liter of dichloromethane at room temperature, and its solubility is low, making it difficult to use in a wet process.

そこで、本願発明者等は、2,3−DNTTとは別に溶媒中で安定であり、かつ、溶解性の高いジナフト[2,1−b:2’,1’−f]チエノ[3,2−b]チオフェン(以下2,1−DNTTとする。)を開発し特許権を取得した。(特許文献2、特許文献3)
また、2,1−DNTTと異性体関係にあるジナフト[1,2−b:1‘,2’−f]チエノ[3,2−b]チオフェン(以下1,2−DNTTとする。)も特許文献2、3と同一の出願人により特許されている(特許文献4)。
Therefore, the inventors of the present application have found that dinaphtho [2,1-b: 2 ′, 1′-f] thieno [3,2] that is stable in a solvent apart from 2,3-DNTT and has high solubility. -B] thiophene (hereinafter referred to as 2,1-DNTT) was developed and patented. (Patent Document 2, Patent Document 3)
In addition, dinaphtho [1,2-b: 1 ′, 2′-f] thieno [3,2-b] thiophene (hereinafter referred to as 1,2-DNTT) which has an isomer relationship with 2,1-DNTT is also used. Patented by the same applicant as Patent Documents 2 and 3 (Patent Document 4).

以下に、2,3−DNTT、2,1−DNTT、1,2−DNTTの一般式を下記の[化A1]、[化A2]、[化A3]に示す。
[化A1]

Figure 2016139710
[化A2]
Figure 2016139710
[化A3]
Figure 2016139710
The general formulas of 2,3-DNTT, 2,1-DNTT, and 1,2-DNTT are shown below in [Chemical A1], [Chemical A2], and [Chemical A3].
[Chemical A1]
Figure 2016139710
[Chemical A2]
Figure 2016139710
[Chemical A3]
Figure 2016139710

一方、2,3−DNTT類似の構造を有する縮合多環芳香族化合物において、中心のヘテロ環部分に隣接する芳香族環に置換基を導入することによって、縮合多環芳香族化合物の溶解度が改良されることを見出した特許出願もある(特許文献5)。 On the other hand, in a condensed polycyclic aromatic compound having a structure similar to 2,3-DNTT, the solubility of the condensed polycyclic aromatic compound is improved by introducing a substituent into the aromatic ring adjacent to the central heterocyclic portion. There is also a patent application that has been found (Patent Document 5).

また、有機半導体では、分子構造が直線的な場合、温度が高くなるに従い動きやすくなり、それによって分子状態が変化し不安定となる傾向があることが明らかとなっている。そのため、ジグザグな構造を求められ、化学的及び物理的に安定で、かつ、高いキャリア移動度を示すW型構造を取るジナフトチオフェン及びジナフトチオフェン以外の化合物を有機半導体とする特許文献もある(特許文献6)。特許文献6のW型構造の化学式を[化A4]に示す。
[化A4]

Figure 2016139710
[[化A4]中、Xは、酸素、硫黄またはセレンである。] In addition, it has been clarified that in an organic semiconductor, when the molecular structure is linear, it tends to move as the temperature increases, thereby changing the molecular state and becoming unstable. Therefore, there is also a patent document in which a zigzag structure is required, dinaphthothiophene having a W-type structure which is chemically and physically stable and exhibits high carrier mobility, and a compound other than dinaphthothiophene as an organic semiconductor. (Patent Document 6). The chemical formula of the W-type structure of Patent Document 6 is shown in [Chemical Formula A4].
[Chemical A4]
Figure 2016139710
[In [Chemical A4], X represents oxygen, sulfur or selenium. ]

本願発明者等の特許権に係わる発明である2,1−DNTTの末端のベンゼン環をチオフェン環に置き換えた屈曲型のチエノチオフェン骨格の有機半導体材料、ジ(ベンゾ[b]チエノ)[5,4―b:5’,4’―f]チエノ[3,2―b]チオフェン(以下、略称を54DBTとする。)を検討した結果、特許文献7にジ(ベンゾ[b]チエノ)[4,5―b:4’,5’―f]チエノ[3,2―b]チオフェン(以下、略称45DBTとする。)が見出された。45DBTの一般式を[化A5]に示す。
なお、45DBTは1,2−DNTTの端末のベンゼン環をチオフェン環に置き換えた有機半導体材料である。
[化A5]

Figure 2016139710
[化A5]中、Aは、チオフェン、フラン、セレノフェン、ピロール環である。] An organic semiconductor material having a bent thienothiophene skeleton in which the benzene ring at the end of 2,1-DNTT, which is an invention relating to the patent right of the present inventors, is replaced with a thiophene ring, di (benzo [b] thieno) [5 4-b: 5 ′, 4′-f] thieno [3,2-b] thiophene (hereinafter abbreviated as 54DBT 3 ) was examined, and as a result, di (benzo [b] thieno) [ 4,5-b: 4 ′, 5′-f] thieno [3,2-b] thiophene (hereinafter abbreviated as 45DBT 3 ) was found. The general formula of 45DBT 3 is shown in [Chemical A5].
Incidentally, 45DBT 3 is an organic semiconductor material replacing the benzene ring of the terminal 1, 2-DNTT the thiophene ring.
[Chemical A5]
Figure 2016139710
In [Chemical A5], A represents thiophene, furan, selenophene, or a pyrrole ring. ]

これまで、2,1−DNTT誘導体よりも1,2−DNTT誘導体は、溶解性が悪く、閾値電圧が高いという問題があった。この理由の一つとして、1,2−DNTTのHOMOレベル(計算値)が−5.56eVと、2,1−DNTTのHOMOレベル(計算値)の−5.40eVよりも深く、電極の仕事関数との差が大きくなり、正孔注入障壁が大きくなるものと考えられた。 So far, 1,2-DNTT derivatives have poor solubility and higher threshold voltage than 2,1-DNTT derivatives. One reason for this is that the HOMO level (calculated value) of 1,2-DNTT is −5.56 eV, which is deeper than the HOMO level (calculated value) of −5.40 eV of 2,1-DNTT. It was thought that the difference from the function increased and the hole injection barrier increased.

1,2−DNTTと2,1−DNTTの関係のような、45DBTとは異なり、より屈折した分子構造を持つ異性体の方が、HOMOレベルも浅くなると推察され、また、2,1−DNTTの端末のベンゼン環をチオフェン環に置き換えることで、末端の硫黄原子によって、2,1−DNTTよりも分子間相互作用が強くなり、耐熱性も向上すると推測されることから、合成を試みた。その結果、耐熱性に優れ、有機溶媒に溶けやすい、末端にチオフェンを有する屈曲型のチエノチオフェン骨格を特徴とする有機半導体材料を発明し、これを先出願とした。 1, 2-DNTT and like relationships 2,1-DNTT, unlike 45DBT 3, towards the isomer with more refracted molecular structure, is inferred HOMO level is shallow, also 2,1 By replacing the benzene ring at the terminal of DNTT with a thiophene ring, it was assumed that the intermolecular interaction was stronger than 2,1-DNTT and the heat resistance was improved by the terminal sulfur atom, so synthesis was attempted. . As a result, an organic semiconductor material characterized by a bent-type thienothiophene skeleton having excellent heat resistance and being easily dissolved in an organic solvent and having a thiophene at the end was invented, and this was filed as an earlier application.

そして、先出願に係わる有機半導体材料(以下、本有機半導体材料とする場合がある。)の物性を検討するため、45DBTと本有機半導体材料との分子軌道計算を行った。その結果は後述するが、後者の方が、前者に比較し、HOMOレベルがAu電極の仕事関数に近いため、正孔の注入障壁が小さく、Au電極から半導体層へ正孔が注入しやすくなり、より低電圧で駆動するようになり、トランジスタ性能が向上すると推察された。 Then, in order to examine the physical properties of the organic semiconductor material (hereinafter sometimes referred to as the present organic semiconductor material) according to the previous application, molecular orbital calculation between 45DBT 3 and the present organic semiconductor material was performed. Although the result will be described later, the latter has a lower HOMO level than the work function of the Au electrode, and therefore has a smaller hole injection barrier and facilitates the injection of holes from the Au electrode into the semiconductor layer. It is assumed that the transistor performance is improved by driving at a lower voltage.

WO2008/050726WO2008 / 050726 特開2009−302264号公報JP 2009-302264 A 特開2010−161323号公報JP 2010-161323 A 特開2010−258214号公報JP 2010-258214 A 特開2013−197193号公報JP 2013-197193 A 特開2013−53140号公報JP2013-53140A WO2014/087300 A1WO2014 / 087300 A1

Tatsuya Yamamoto,Kazuo Takimiya「Journalof American Chemical Society」2007年,第129巻, 2224−2225Tatsuya Yamamoto, Kazuo Takimiya "Journalf American Chemical Society" 2007, Vol. 129, 2224-2225

解決しようとする課題は、先出願に係わる末端にチオフェンを有する屈曲型のチエノチオフェン骨格を特徴とする有機半導体材料を、有機半導体層に使用し、良好なトランジスタ性能を有する有機トランジスタを提供するものである。 The problem to be solved is to provide an organic transistor having good transistor performance by using an organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at the terminal according to the prior application for an organic semiconductor layer It is.

参考のため、先出願に係わる有機半導体材料の一般式を[化8]に示す。
[化8]

Figure 2016139710
Figure 2016139710
For reference, the general formula of the organic semiconductor material according to the prior application is shown in [Chemical Formula 8].
[Chemical 8]
Figure 2016139710
Figure 2016139710

すなわち、第1発明は、下記の化学式[化1]で示される末端にチオフェンを有する屈曲型のチエノチオフェン骨格を特徴とする化合物を有機半導体層に使用する有機トランジスタである。
[化1]

Figure 2016139710
That is, the first invention is an organic transistor using a compound characterized by a bent thienothiophene skeleton having a thiophene at a terminal represented by the following chemical formula [Chemical Formula 1] for an organic semiconductor layer.
[Chemical 1]
Figure 2016139710

化学式〔化1〕中の置換基RからRは、水素原子及びハロゲン原子、炭素数が3から60のアリール基、炭素数が3から60の複素環基、炭素数が1から30のアルキル基、炭素数が2から30のアルケニル基、炭素数が2から30のアルキニル基、炭素数が1から30のアルコキシル基、炭素数が1から60のアミノ基、炭素数が1から30のアミド基、炭素数が1から30のイミノ基、炭素数が1から30のカルボキシル基、ヒドロキシル基、炭素数が1から30のエステル基、ニトロ基、ニトリル基、炭素数が1から30のスルフィド基、メルカプト基、炭素数が1から30のスルホニル基、炭素数が1から60のシリル基のうち、少なくとも一つを含み、これらの各基は置換基を有していてもよい。なお、置換基RからRの好ましい例は、水素原子、フッ素原子、アリール基、複素環基、アルキル基、アルケニル基、アルキニル基、アミノ基である。 The substituents R 1 to R 8 in the chemical formula [Chemical Formula 1] are a hydrogen atom and a halogen atom, an aryl group having 3 to 60 carbon atoms, a heterocyclic group having 3 to 60 carbon atoms, and 1 to 30 carbon atoms. Alkyl group, alkenyl group having 2 to 30 carbon atoms, alkynyl group having 2 to 30 carbon atoms, alkoxyl group having 1 to 30 carbon atoms, amino group having 1 to 60 carbon atoms, 1 to 30 carbon atoms Amido group, imino group having 1 to 30 carbon atoms, carboxyl group having 1 to 30 carbon atoms, hydroxyl group, ester group having 1 to 30 carbon atoms, nitro group, nitrile group, sulfide having 1 to 30 carbon atoms It includes at least one of a group, a mercapto group, a sulfonyl group having 1 to 30 carbon atoms, and a silyl group having 1 to 60 carbon atoms, and each of these groups may have a substituent. Preferred examples of the substituents R 1 to R 8 are a hydrogen atom, a fluorine atom, an aryl group, a heterocyclic group, an alkyl group, an alkenyl group, an alkynyl group, and an amino group.

置換基RからRにおける、ハロゲン原子はフッ素、塩素、臭素、ヨウ素であり、好ましい例はフッ素原子である。 In the substituents R 1 to R 8 , the halogen atom is fluorine, chlorine, bromine or iodine, and a preferred example is a fluorine atom.

置換基RからRにおける、アリール基は炭素数が3から60の芳香環基で、例えば、フェニル基、1−ナフチル基、2−ナフチル基、ビフェニル基、ターフェニル基、アントリル基、フェナントリル基、クリセンなどが挙げられ、これらの各基は置換基を有していてもよい。 In the substituents R 1 to R 8 , the aryl group is an aromatic ring group having 3 to 60 carbon atoms, such as a phenyl group, 1-naphthyl group, 2-naphthyl group, biphenyl group, terphenyl group, anthryl group, phenanthryl. Group, chrysene and the like, and each of these groups may have a substituent.

置換基RからRにおける、複素環基は炭素数が3から60の複素環基で、ピリジン、ピラジン、トリアジン、ピロール、キノリン、チオフェン、ベンゾチオフェン、ジベンゾチオフェン、チエノチオフェン、フラン、ベンゾフラン、ジベンゾフラン、チアゾール、ベンゾチアゾールなどが挙げられ、これらの各基は置換基を有していてもよい。 The heterocyclic group in the substituents R 1 to R 8 is a heterocyclic group having 3 to 60 carbon atoms, such as pyridine, pyrazine, triazine, pyrrole, quinoline, thiophene, benzothiophene, dibenzothiophene, thienothiophene, furan, benzofuran, Dibenzofuran, thiazole, benzothiazole and the like can be mentioned, and each of these groups may have a substituent.

置換基RからRにおける、アルキル基は炭素数が1から30の直鎖型、分岐型、環状型のアルキル基であり、例えば、メチル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、イソプロピル基、t-ブチル基、シクロプロピル基、シクロヘキシル基、アダマンチル基、n−トリフルオロメチル基などが挙げられ、これらの各基は置換基を有していてもよい。 In the substituents R 1 to R 8 , the alkyl group is a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, such as a methyl group, n-butyl group, n-pentyl group, n -Hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, isopropyl, t-butyl, cyclopropyl , A cyclohexyl group, an adamantyl group, an n-trifluoromethyl group, and the like, and each of these groups may have a substituent.

置換基RからRにおける、アルケニル基は炭素数が2から30のアルケニル基で、例えば、エテニル基、メチルエテニル基、(n−オクチル)エテニル基、フェニルエテニル基、ナフチルエテニル基、ビフェニルエテニル基、ターフェニルエテニル基、パーフルオロフェニルエテニル基などが挙げられ、これらの各基は置換基を有していてもよい。 In the substituents R 1 to R 8 , the alkenyl group is an alkenyl group having 2 to 30 carbon atoms such as ethenyl group, methylethenyl group, (n-octyl) ethenyl group, phenylethenyl group, naphthylethenyl group, biphenylethenyl group. Group, terphenyl ethenyl group, perfluorophenyl ethenyl group and the like, and each of these groups may have a substituent.

置換基R1からRにおける、アルキニル基は炭素数が2から30のアルキニル基で、例えば、エチニル基、メチルエチニル基、(n−オクチル)エチニル基、フェニルエチニル基、ナフチルエチニル基、ビフェニルエチニル基、ターフェニルエチニル基、パーフルオロフェニルエチニル基などが挙げられ、これらの各基は置換基を有していてもよい。 In the substituents R 1 to R 8 , the alkynyl group is an alkynyl group having 2 to 30 carbon atoms, such as ethynyl group, methylethynyl group, (n-octyl) ethynyl group, phenylethynyl group, naphthylethynyl group, biphenylethynyl group. Group, terphenylethynyl group, perfluorophenylethynyl group and the like, and each of these groups may have a substituent.

置換基RからRにおける、アミノ基は炭素数が1から60のアミノ基で、例えば、ジフェニルアミノ基、ジナフチルアミノ基、ジチエニルアミノ基、ジピリジルアミノ基などが挙げられ、これらの各基は置換基を有していてもよい。 In the substituents R 1 to R 8 , the amino group is an amino group having 1 to 60 carbon atoms, and examples thereof include a diphenylamino group, a dinaphthylamino group, a dithienylamino group, and a dipyridylamino group. The group may have a substituent.

前記置換基とは、水素原子及びハロゲン原子、アリール基、複素環基、アルキル基、フルオロアルキル基、アルケニル基、フルオロアルケニル基、アルキニル基、フルオロアルキニル基、アルコキシル基、フルオロアルコキシル基、アミノ基、アミド基、イミノ基、カルボキシル基、ヒドロキシル基、エステル基、ニトロ基、ニトリル基、スルフィド基、メルカプト基、スルホニル基、シリル基が挙げられる。 Examples of the substituent include a hydrogen atom and a halogen atom, an aryl group, a heterocyclic group, an alkyl group, a fluoroalkyl group, an alkenyl group, a fluoroalkenyl group, an alkynyl group, a fluoroalkynyl group, an alkoxyl group, a fluoroalkoxyl group, an amino group, Examples include amide group, imino group, carboxyl group, hydroxyl group, ester group, nitro group, nitrile group, sulfide group, mercapto group, sulfonyl group, and silyl group.

[化1]の正式名はジ(ベンゾ[b]チエノ)[6,7―b:6’,7’―f]チエノ[3,2―b]チオフェンであり、以下、略して67DBTとする。 The formal name of [Chemical Formula 1] is di (benzo [b] thieno) [6,7-b: 6 ′, 7′-f] thieno [3,2-b] thiophene, hereinafter referred to as 67DBT 3 for short. To do.

第1発明に記載の化学式[化1]の67DBTの有機半導体材料の合成過程を反応式[化4]に示すが、下記の合成法に限定されるものではなく、公知の反応を組み合わせて合成することが可能である。
[化4]

Figure 2016139710
The synthesis process of the 67DBT 3 organic semiconductor material represented by the chemical formula [Chemical Formula 1] described in the first invention is shown in Reaction Formula [Chemical Formula 4], but is not limited to the following synthesis method, and is a combination of known reactions. It is possible to synthesize.
[Chemical formula 4]
Figure 2016139710

2−ブロモチオフェノールを塩基性条件下で、2−ブロモアセトアルデヒドジエチルアセタールを作用させ、次にポリリン酸を作用させると、化合物Aを合成することができる。上記以外の化合物Aの合成法として、公知のベンゾ[b]チオフェンの合成法を用いることができる。例えば、o−ジブロモベンゼンや1−ブロモー2−ヨードベンゼンなどo−ジハロベンゼンに、n−BuLiなどの公知の有機リチウム試薬やMgなどを用いて有機金属化合物とし、硫黄を作用させ、2−ブロモアセトアルデヒドジエチルアセタールなど、2−ハロゲン化アセトアルデヒドジアルキルアセタールを用い、さらにポリリン酸や二リン酸等の酸触媒を用いることで化合物Aを合成することができる。 Compound A can be synthesized by reacting 2-bromothiophenol under basic conditions with 2-bromoacetaldehyde diethyl acetal and then with polyphosphoric acid. As a method for synthesizing Compound A other than the above, a known method for synthesizing benzo [b] thiophene can be used. For example, an o-dihalobenzene such as o-dibromobenzene or 1-bromo-2-iodobenzene is converted into an organometallic compound using a known organolithium reagent such as n-BuLi or Mg, and sulfur is allowed to act on 2-bromoacetaldehyde. Compound A can be synthesized by using 2-halogenated acetaldehyde dialkyl acetal such as diethyl acetal and further using an acid catalyst such as polyphosphoric acid or diphosphoric acid.

化合物Aにn−BuLiなどの公知の有機リチウム試薬やMgなどを用いて、有機金属化合物とし、DMFやN−メチルホルムアニリドなど公知のホルミル化剤を作用させると、化合物Bを合成することができる。
化合物Bに臭素などのハロゲンや塩化チオニル等の公知のハロゲン化剤と硫黄を作用させることで、67DBTを合成することができる。
Compound B can be synthesized by using a known organolithium reagent such as n-BuLi or Mg or the like as an organometallic compound and allowing a known formylating agent such as DMF or N-methylformanilide to act on compound A. it can.
67DBT 3 can be synthesized by allowing compound B to react with a halogen such as bromine or a known halogenating agent such as thionyl chloride and sulfur.

続いて、第2発明は、化学式[化2]で示される末端にチオフェンを有する屈曲型のチエノチオフェン骨格を特徴とする化合物を有機半導体層に使用する有機トランジスタである。
[化2]

Figure 2016139710
ただし、化学式[化2]中のRからRは、第1発明の[化1]のRからRと同じである。 Subsequently, the second invention is an organic transistor using a compound characterized by a bent thienothiophene skeleton having a thiophene at a terminal represented by a chemical formula [Chemical Formula 2] for an organic semiconductor layer.
[Chemical formula 2]
Figure 2016139710
However, R 1 to R 8 of the formula [Formula 2] in is the same as R 1 to R 8 in Formula 1] of the first invention.

化学式[化2]の正式名はジ(ベンゾ[b]チエノ)[5,4―b:5’,4’―f]チエノ[3,2―b]チオフェンであり、54DBTとする。 Full name of the chemical formula [Formula 2] is di (benzo [b] thieno) [5,4-b: 5 ' , 4'-f] a thieno [3,2-b] thiophene, and 54DBT 3.

化学式[化2]の化合物は、第1発明の化合物[化1]と同様にアルデヒドに臭素などのハロゲンや塩化チオニル等の公知のハロゲン化剤と硫黄を作用させることで、54DBTを合成することができる。反応式を[化5]に示す。
[化5]

Figure 2016139710
The compound represented by the chemical formula [Chemical Formula 2] synthesizes 54DBT 3 by reacting a known halogenating agent such as halogen such as bromine or thionyl chloride with sulfur in the same manner as the compound [Chemical Formula 1] of the first invention. be able to. The reaction formula is shown in [Chemical Formula 5].
[Chemical formula 5]
Figure 2016139710

続いて、第3発明は、化学式[化3]で示される末端にチオフェンを有する屈曲型のチエノチオフェン骨格を特徴とする化合物を有機半導体層に使用する有機トランジスタである。
[化3]

Figure 2016139710
ただし、化学式[化3]中のRからRは、第1発明の[化1]のRからRと同じである。 Subsequently, the third invention is an organic transistor using a compound characterized by a bent thienothiophene skeleton having a thiophene at a terminal represented by a chemical formula [Chemical Formula 3] for an organic semiconductor layer.
[Chemical formula 3]
Figure 2016139710
However, R 1 to R 8 in the formula [Formula 3] is the same as R 1 to R 8 in Formula 1] of the first invention.

化学式[化3]の正式名はジ(ベンゾ[c]チエノ)[5,4―b:5’,4’―f]チエノ[3,2―b]チオフェンであり、54DBT−cとする。 The formal name of the chemical formula [Chemical Formula 3] is di (benzo [c] thieno) [5,4-b: 5 ′, 4′-f] thieno [3,2-b] thiophene, which is 54DBT 3 -c. .

化合物[化3]は[化1]と同様にアルデヒドに臭素などのハロゲンや塩化チオニル等の公知のハロゲン化剤と硫黄を作用させることで、54DBT−cを合成することができる。反応式を[化6]に示す。
[化6]

Figure 2016139710
Similarly to [Chemical Formula 1], Compound [Chemical Formula 3] can synthesize 54DBT 3 -c by reacting a known halogenating agent such as halogen such as bromine or thionyl chloride with sulfur. The reaction formula is shown in [Chemical Formula 6].
[Chemical 6]
Figure 2016139710

続いて、第4発明は、第1発明から第3発明に記載の化学式[化1]、[化2]、[化3]のいずれかの有機半導体材料の複数を組み合わせて有機半導体層に使用する有機トランジスタである。 Subsequently, the fourth invention is used for the organic semiconductor layer by combining a plurality of organic semiconductor materials of any one of the chemical formulas [Chemical Formula 1], [Chemical Formula 2], and [Chemical Formula 3] described in the first to third inventions. It is an organic transistor.

化学式[化1]、[化2]、[化3]のいずれかの有機半導体材料の中から2種類の有機半導体材料を選択し組み合わせる、又は3種類のすべてを選択し組み合わせてなる有機トランジスタである。 An organic transistor formed by selecting and combining two types of organic semiconductor materials from any one of the chemical formulas [Chemical Formula 1], [Chemical Formula 2], and [Chemical Formula 3], or by selecting and combining all three types. is there.

本発明の有機トランジスタを製作する際、有機半導体材料は、高純度化のために不純物の除去等の精製が必要になるが、本発明の化合物は、液体クロマトグラフィー法、昇華法、ゾーンメルティング法、ゲルパーミェーションクロマトグラフィー法、再結晶法などによって精製できる。 When producing the organic transistor of the present invention, the organic semiconductor material needs to be purified to remove impurities in order to achieve high purity. However, the compound of the present invention can be obtained by liquid chromatography, sublimation, zone melting. Purification by gel permeation chromatography method, recrystallization method and the like.

また、本発明の有機トランジスタを製作する際、有機半導体材料は、主として薄膜の形態で用いられるが、その薄膜作製法として、ウェットプロセスとドライプロセスどちらを使用してもよい。本発明の化合物は、有機溶媒等への溶解させることにより、産業上メリットの大きいウェットプロセスに適応できる。 Further, when the organic transistor of the present invention is manufactured, the organic semiconductor material is mainly used in the form of a thin film, and either a wet process or a dry process may be used as a method for forming the thin film. The compound of the present invention can be applied to a wet process having a large industrial merit by dissolving it in an organic solvent or the like.

ここで、有機溶媒としては、例えば、ジクロロメタン、クロロホルム、クロロベンゼン、シクロヘキサノール、トルエン、キシレン、ニトロベンゼン、メチルエチルケトン、ジグライム、テトラヒドロフランなど、これまで公知のものが使用できる。これらの溶媒は、一種類もしくは二種類以上の混合物を用いても良い。また、本発明の化合物を有機溶媒等へ溶解させる場合、温度や圧力に特に制限は無いが、溶解させる温度に関しては、0〜200℃の範囲が好ましく、さらに好ましくは、10〜150℃の範囲である。また、溶解させる圧力に関しては、0.1〜100MPaの範囲が好ましく、さらに好ましくは、0.1〜10MPaの範囲である。また、有機溶媒の代わりに、超臨界二酸化炭素のようなものを用いることも可能である。 Here, as the organic solvent, for example, known solvents such as dichloromethane, chloroform, chlorobenzene, cyclohexanol, toluene, xylene, nitrobenzene, methyl ethyl ketone, diglyme, and tetrahydrofuran can be used. These solvents may be used singly or as a mixture of two or more. In addition, when the compound of the present invention is dissolved in an organic solvent or the like, the temperature and pressure are not particularly limited, but the temperature for dissolution is preferably in the range of 0 to 200 ° C, more preferably in the range of 10 to 150 ° C. It is. Moreover, regarding the pressure to melt | dissolve, the range of 0.1-100 MPa is preferable, More preferably, it is the range of 0.1-10 MPa. Moreover, it is also possible to use something like supercritical carbon dioxide instead of the organic solvent.

ここで言うウェットプロセスとは、スピンコート法、ディップコート法、バーコート法、スプレーコート法、インクジェット法、スクリーン印刷法、平板印刷法、凹版印刷法、凸版印刷法などを示しており、これら公知の方法が利用できる。
また、ここで言うドライプロセスとは、真空蒸着法、スパッタリング法、CVD法、レーザー蒸着法、分子線エピタキシャル成長法、気相輸送成長法などを示しており、これら公知の方法が利用できる。
The wet process here refers to a spin coating method, a dip coating method, a bar coating method, a spray coating method, an ink jet method, a screen printing method, a lithographic printing method, an intaglio printing method, a relief printing method, and the like. Can be used.
In addition, the dry process mentioned here indicates a vacuum deposition method, a sputtering method, a CVD method, a laser deposition method, a molecular beam epitaxial growth method, a vapor phase transport growth method, and the like, and these known methods can be used.

本発明の有機トランジスタには、電極が使用されるが、その導電性材料としては特に限定はなく、例えば、金、銅、銀、ニッケル、クロム、鉄、スズ、アルミニウム、インジウム、パラジウム、ゲルマニウム、カルシウム、ナトリウム、カリウム、マグネシウム、マンガン、チタン、リチウム、亜鉛、タングステン、モリブデン、酸化スズ、酸化インジウム、銀ペースト、カーボンペースト、ITO、PEDOT/PSSなどが挙げられる。これらの電極は、一種類もしくは二種類以上の混合物を用いても良い。 An electrode is used for the organic transistor of the present invention, but the conductive material is not particularly limited. For example, gold, copper, silver, nickel, chromium, iron, tin, aluminum, indium, palladium, germanium, Examples include calcium, sodium, potassium, magnesium, manganese, titanium, lithium, zinc, tungsten, molybdenum, tin oxide, indium oxide, silver paste, carbon paste, ITO, and PEDOT / PSS. These electrodes may use one kind or a mixture of two or more kinds.

本発明の有機トランジスタには、ゲート絶縁膜が使用されるが、その絶縁膜としては特に限定はなく、ポリメチルメタクリレート、パリレン、ポリスチレン、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリビニルフェノール、ポリビニルアルコール、ポリフッ化ビニリデン、シアノエチルプルラン、CYTOP
のような有機絶縁膜や、酸化ケイ素、酸化アルミニウム、酸化タンタル、酸化チタン、酸化スズ、チタン酸バリウム、チタン酸ストロンチウムなどの無機絶縁膜を用いることができる。なお、CYTOPとは、アモルファス(非晶質)構造を有するフッ素樹脂で、透明性があり、コーティング剤、絶縁膜等に使用される。
In the organic transistor of the present invention, a gate insulating film is used, but the insulating film is not particularly limited, and polymethyl methacrylate, parylene, polystyrene, polyacrylonitrile, polyimide, polyamide, polyvinyl phenol, polyvinyl alcohol, polyfluoride. Vinylidene, cyanoethyl pullulan, CYTOP
An inorganic insulating film such as silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, tin oxide, barium titanate, strontium titanate, or the like can be used. Note that CYTOP is a fluororesin having an amorphous structure and is transparent and is used for a coating agent, an insulating film, and the like.

本発明のトランジスタにおいて、有機半導体層は、ドーピング処理を施されていてもよい。ドーパントとしては、ドナー性のドーパントとアクセプター性のドーパントを用いることができる。ドナー性のドーパントとしては、有機半導体に、電子を供与できる化合物であれば、好適に用いる事ができる。例えば、リチウム、ナトリウム、カリウムなどのアルカリ金属や、カルシウム、ストロンチウム、バリウムなどのアルカリ土類金属。イットリウム、ランタン、ユーロピウム、などの希土類金属。テトラアルキルアンモニウム、テトラアルキルホスホニウムなどのカチオンが挙げられる。 In the transistor of the present invention, the organic semiconductor layer may be subjected to doping treatment. As the dopant, a donor-type dopant and an acceptor-type dopant can be used. As the donor dopant, any compound that can donate electrons to the organic semiconductor can be preferably used. For example, alkali metals such as lithium, sodium and potassium, and alkaline earth metals such as calcium, strontium and barium. Rare earth metals such as yttrium, lanthanum and europium. Cations such as tetraalkylammonium and tetraalkylphosphonium can be mentioned.

アクセプター性のドーパントとしては、有機半導体から、電子を取り去ることができる化合物であれば好適に用いる事ができる。例えば、塩素、臭素、ヨウ素、塩化ヨウ素、臭化ヨウ素などのハロゲン化合物。五フッ化リン、三フッ化ホウ素、三塩化ホウ素、三臭化ホウ素などのルイス酸、フッ化水素、硫酸、硝酸などのプロトン酸、酢酸、ギ酸、アミノ酸などの有機酸。三塩化鉄、四塩化チタン、四塩化ジルコニウム、五フッ化タングステン、六塩化タングステンなどの遷移金属化合物塩化物イオン、臭化物イオン、ヨウ化物イオン、スルホン酸アニオンなどの電解質アニオンなどが挙げられる。 As the acceptor dopant, any compound that can remove electrons from an organic semiconductor can be preferably used. For example, halogen compounds such as chlorine, bromine, iodine, iodine chloride, iodine bromide. Lewis acids such as phosphorus pentafluoride, boron trifluoride, boron trichloride and boron tribromide, proton acids such as hydrogen fluoride, sulfuric acid and nitric acid, and organic acids such as acetic acid, formic acid and amino acids. Examples include transition metal compounds such as iron trichloride, titanium tetrachloride, zirconium tetrachloride, tungsten pentafluoride, tungsten hexachloride, electrolyte anions such as chloride ions, bromide ions, iodide ions, and sulfonate anions.

また、本発明の有機トランジスタは、物理的損傷から保護するために、有機トランジスタの全面あるいは一部に保護層を設けることもできる。保護層を形成する材料としては、特に限定はなく、ポリメチルメタクリレート、パリレン、ポリスチレン、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリビニルフェノール、ポリビニルアルコール、ポリフッ化ビニリデン、シアノエチルプルラン、CYTOPのような有機化合物や、酸化ケイ素、酸化アルミニウム、酸化タンタル、酸化チタン、酸化スズ、チタン酸バリウム、チタン酸ストロンチウムなどの無機化合物を用いることができる。 Moreover, in order to protect the organic transistor of this invention from a physical damage, a protective layer can also be provided in the whole surface or a part of organic transistor. The material for forming the protective layer is not particularly limited, and an organic compound such as polymethyl methacrylate, parylene, polystyrene, polyacrylonitrile, polyimide, polyamide, polyvinyl phenol, polyvinyl alcohol, polyvinylidene fluoride, cyanoethyl pullulan, CYTOP, Inorganic compounds such as silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, tin oxide, barium titanate, and strontium titanate can be used.

本発明の有機トランジスタの使用例を、図1及び図2に示す。図1、図2では、電界効果型トランジスタ(以下FETとする)での使用例を挙げている。FETはその特徴から、スイッチング素子や増幅素子として利用される。ゲート電流が低いことに加え、構造が平面的であるため、ウェットプロセスによる作製や集積化が容易であり大面積化を可能とする。ここでは、本発明に使用する化合物は、主にp型半導体として利用されているが、置換基、溶剤によってn型半導体として機能する場合もある。 Examples of use of the organic transistor of the present invention are shown in FIGS. 1 and 2 show examples of use in a field effect transistor (hereinafter referred to as FET). FETs are used as switching elements and amplifying elements because of their characteristics. In addition to a low gate current, the structure is planar, so that fabrication and integration by a wet process are easy and a large area can be achieved. Here, although the compound used for this invention is mainly utilized as a p-type semiconductor, it may function as an n-type semiconductor by a substituent and a solvent.

第1発明ないし第3発明では、チエノチオフェン骨格を特徴とする有機半導体材料であるジナフト[2,1−b:2’,1’−f]チエノ[3,2−b]チオフェン(略称2,1−DNTT)を用いた有機トランジスタと比較し、電界効果移動度や熱安定性が高く、かつ、本発明に係わる有機半導体の異性体である、ジ(ベンゾ[b]チエノ)[4,5―b:4’,5’―f]チエノ[3,2―b]チオフェン(略称45DBT)よりも、HOMOレベルが浅く、低電圧で駆動できると推定され、有機溶媒への溶解性が高くなるため、この有機半導体をウェットプロセスで有機トランジスタに使用することが容易になり、安価に生産することが可能となる。第4発明によれば請求項1ないし請求項3の化合物の有機トランジスタへの用途を明らかにして化合物の有効利用をより図ることができる。 In the first to third inventions, dinaphtho [2,1-b: 2 ′, 1′-f] thieno [3,2-b] thiophene (abbreviated as 2, an organic semiconductor material characterized by a thienothiophene skeleton) Di (benzo [b] thieno) [4,5, which is an isomer of the organic semiconductor according to the present invention and has high field effect mobility and thermal stability as compared with an organic transistor using 1-DNTT). -B: 4 ', 5'-f] thieno [3,2-b] thiophene (abbreviation: 45DBT 3 ) is estimated to have a shallow HOMO level and can be driven at a low voltage, and has high solubility in organic solvents. Therefore, it becomes easy to use this organic semiconductor for an organic transistor by a wet process, and it becomes possible to produce it at low cost. According to the fourth invention, it is possible to clarify the application of the compounds of claims 1 to 3 to the organic transistor and to make more effective use of the compounds.

図1は、トップコンタクト型FETの概略図であるFIG. 1 is a schematic diagram of a top contact FET. 図2は、ボトムコンタクト型FETの慨略図である。FIG. 2 is a schematic diagram of a bottom contact FET. 図3は、各種DBT3の分子軌道計算結果である。FIG. 3 shows molecular orbital calculation results of various DBT3. 図4は、67DBTH−NMRスペクトル図である。Figure 4 is the 1 H-NMR spectrum of 67DBT 3. 図5は、8−67DBTH−NMRスペクトル図である。Figure 5 is a 1 H-NMR spectrum of 8-67DBT 3. 図6は、8−67DBT13C−NMRスペクトル図である。Figure 6 is a 13 C-NMR spectrum of 8-67DBT 3. 図7は、54DBTH−NMRスペクトル図である。Figure 7 is a 1 H-NMR spectrum of 54DBT 3. 図8は、ペンタセンのUVスペクトルの経時変化である。FIG. 8 shows the time course of the UV spectrum of pentacene. 図9は、54DBTのUVスペクトルの経時変化である。Figure 9 is a time course of UV spectra of 54DBT 3. 図10は、8−67DBTのUVスペクトルの経時変化である。Figure 10 is a time course of UV spectra of 8-67DBT 3. 図11は、54DBTのDSCチャートである。Figure 11 is a DSC chart of 54DBT 3. 図12は、2,1−DNTTのDSCチャートであるFIG. 12 is a DSC chart of 2,1-DNTT.

本発明の代表的な実施例を以下に挙げる。 Representative examples of the present invention are listed below.

前記反応式[化4]の67DBTの合成過程の詳細を示す。しかし、本発明はこれらの実施例のみに限定されるものではない。
また、目的の化合物は必要に応じてMS(質量分析スペクトル)、H―NMRおよび13C−NMRにより決定した。使用した機器は以下の通りである。
MS:ABSCIEX Q−STAR
H―NMRおよび13C−NMR:Agilent Technologies MercuryPlus
Showing details of the synthesis process of 67DBT 3 in the reaction [formula 4]. However, the present invention is not limited only to these examples.
The target compound was determined by MS (mass spectrometry spectrum), 1 H-NMR and 13 C-NMR as required. The equipment used is as follows.
MS: ABSCIEX Q-STAR
1 H-NMR and 13 C-NMR: Agilent Technologies MercuryPlus

ナトリウムt−ブトキシド0.59g(5.3mmol)のTHF溶液10mlに2−ブロモベンゼンチオール0.5g(2.6mmol)のTHF溶液5mlを滴下した。30分撹拌後、2−ブロモアセトアルデヒドジエチルアセタール0.62g(3.2mmol、1.2eq)を滴下し、室温で1時間撹拌した。反応液に水を加え、トルエンで抽出し、有機層を減圧濃縮後、ポリリン酸0.5gを加え、一晩撹拌した。反応液に水を加え、トルエンで抽出し、有機層を減圧濃縮後、化合物A0.3gを収率54%で得た。 To 10 ml of a THF solution of 0.59 g (5.3 mmol) of sodium t-butoxide, 5 ml of a THF solution of 0.5 g (2.6 mmol) of 2-bromobenzenethiol was added dropwise. After stirring for 30 minutes, 0.62 g (3.2 mmol, 1.2 eq) of 2-bromoacetaldehyde diethyl acetal was added dropwise, and the mixture was stirred at room temperature for 1 hour. Water was added to the reaction mixture, and the mixture was extracted with toluene. The organic layer was concentrated under reduced pressure, 0.5 g of polyphosphoric acid was added, and the mixture was stirred overnight. Water was added to the reaction solution, extraction was performed with toluene, and the organic layer was concentrated under reduced pressure to obtain 0.3 g of Compound A in a yield of 54%.

化合物AのH−NMRおよび13C−NMRの測定結果を以下に示す。
1H―NMR(CDCl3, 400.4MHz)δ=7.23(1H,t,J=8.6Hz),7.41(1H,d,J=5.5Hz),7.47(1H,d,J=8.6Hz),7.47(1H,d,J=5.3Hz),7.74(1H,dd,J=0.8Hz,8.6Hz).
13C−NMR(CDCl, 100.7MHz)δ=116.1,122.7,124.9,125.7,127.3,127.4,140.7,141.8.
The measurement results of 1 H-NMR and 13 C-NMR of Compound A are shown below.
1H-NMR (CDCl3, 400.4 MHz) δ = 7.23 (1H, t, J = 8.6 Hz), 7.41 (1H, d, J = 5.5 Hz), 7.47 (1H, d, J = 8.6 Hz), 7.47 (1H, d, J = 5.3 Hz), 7.74 (1H, dd, J = 0.8 Hz, 8.6 Hz).
13 C-NMR (CDCl 3 , 100.7 MHz) δ = 116.1, 122.7, 124.9, 125.7, 127.3, 127.4, 140.7, 141.8.

操作2
窒素雰囲気下、化合物A0.3g(1.4mmol)のTHF溶液10mlにi−PrMgCl・LiCl(1M−THF溶液)を2.8ml(2.8mmol、2eq)滴下し、室温で2時間撹拌後、0℃でN,N−ジメチルホルムアミド0.29ml(4.2mmol、3eq)を滴下し、滴下後室温に昇温後、塩酸で処理、トルエンで抽出し、有機層を減圧濃縮後、化合物Bを0.15g、収率66%で得た。
Operation 2
Under a nitrogen atmosphere, 2.8 ml (2.8 mmol, 2 eq) of i-PrMgCl·LiCl (1M-THF solution) was added dropwise to 10 ml of a THF solution of 0.3 g (1.4 mmol) of Compound A, and the mixture was stirred at room temperature for 2 hours. At 0 ° C., 0.29 ml (4.2 mmol, 3 eq) of N, N-dimethylformamide was added dropwise. After dropping, the mixture was warmed to room temperature, treated with hydrochloric acid, extracted with toluene, and the organic layer was concentrated under reduced pressure. 0.15 g, 66% yield.

化合物BのH−NMRおよび13C−NMRの測定結果を以下に示す。
H―NMR(CDCl3, 400.4MHz)δ=7.42(1H,d,J=5.5Hz),7.56(1H,t,J=7.2Hz),7.64(1H,d,J=5.6Hz),7.85(1H,ddd,J=0.4Hz,1.1Hz,7.2Hz)8.03(1H,dd,J=1.1Hz,7.8Hz),10.23(1H,s).13C−NMR(CDCl, 100.7MHz)δ=122.9,124.3,129.8,130.5,130.9,131.4,137.1,141.3,191.3.
The measurement results of 1 H-NMR and 13 C-NMR of Compound B are shown below.
1 H-NMR (CDCl 3, 400.4 MHz) δ = 7.42 (1H, d, J = 5.5 Hz), 7.56 (1H, t, J = 7.2 Hz), 7.64 (1H, d , J = 5.6 Hz), 7.85 (1H, ddd, J = 0.4 Hz, 1.1 Hz, 7.2 Hz) 8.03 (1H, dd, J = 1.1 Hz, 7.8 Hz), 10 .23 (1H, s). 13 C-NMR (CDCl 3 , 100.7 MHz) δ = 122.9, 124.3, 129.8, 130.5, 130.9, 131.4, 137.1, 141.3, 191.3.

窒素雰囲気下、化合物B0.15g(0.93mmol)のトルエン溶液5mlにN,N−ジメチルホルムアミド0.1mlを加えた。塩化チオニル0.9g(7.4mmol、8eq)と硫黄0.04g(1.1mmol、1.2eq)を加え220℃に加温し、1時間保った。冷却後、反応液をろ過し、67DBTを収率11%で得た Under a nitrogen atmosphere, 0.1 ml of N, N-dimethylformamide was added to 5 ml of a toluene solution of 0.15 g (0.93 mmol) of Compound B. 0.9 g (7.4 mmol, 8 eq) thionyl chloride and 0.04 g (1.1 mmol, 1.2 eq) sulfur were added and heated to 220 ° C. and kept for 1 hour. After cooling, the reaction solution was filtered to obtain 67DBT 3 in a yield of 11%.

以下に、67DBTのMSおよびH−NMRの測定結果を示す。また、67DBTH−NMRスペクトルを図4に示す。
MS(APPI) m/z=352H―NMR(CCl, 400.4MHz)δ=7.62(2H,d,J=5.3Hz),7.68(2H,d,J=5.3Hz),7.96(2H,d,J=8.5Hz),8.04(2H,d,J=8.5Hz).
The measurement results of MS and 1 H-NMR of 67DBT 3 are shown below. Further, the 1 H-NMR spectrum of 67DBT 3 is shown in FIG.
MS (APPI) m / z = 352 1 H-NMR (C 2 D 2 Cl 4 , 400.4 MHz) δ = 7.62 (2H, d, J = 5.3 Hz), 7.68 (2H, d, J = 5.3 Hz), 7.96 (2H, d, J = 8.5 Hz), 8.04 (2H, d, J = 8.5 Hz).

同様の合成法を用いて8−67DBTを合成した。8−67DBTとしたのは、端末のチオフェン環にオクチル基であるC17が付加しているためである。8−67DBTの反応式を[化7]に示す。
[化7]

Figure 2016139710
8-67DBT 3 was synthesized using the same synthesis method. The reason why 8-67DBT 3 is used is that C 8 H 17 which is an octyl group is added to the thiophene ring of the terminal. The reaction formula of 8-67DBT 3 is shown in [Chemical 7].
[Chemical 7]
Figure 2016139710

8−67DBTのMS、H−NMRおよび13C−NMRの測定結果を以下に示す。また、8−67DBTH−NMRスペクトルを図5に、13C−NMRスペクトルを図6に示す。
MS(APPI) m/z=576
H−NMR(Cl4, 400.4MHz)δ=0.91(6H,t,J=7.1Hz),1.31(20H,m),1.85(4H,m),3.04(4H,t,J=7.4Hz),7.25(2H,s),7.76(2H,d,J=8.6Hz),7.94(2H,d,J=8.6Hz).
13C−NMR(CCl, 100.7MHz)δ=14.3,22.7,29.2,29.3,29.4,30.9,31.5,31.9,120.1,120.2,121.2,127.0,131.8,132.1,137.7,139.0,146.7
The measurement results of MS, 1 H-NMR and 13 C-NMR of 8-67DBT 3 are shown below. Further, the 1 H-NMR spectrum of 8-67DBT 3 is shown in FIG. 5, and the 13 C-NMR spectrum is shown in FIG.
MS (APPI) m / z = 576
1 H- NMR (C 2 D 2 C l4, 400.4MHz) δ = 0.91 (6H, t, J = 7.1Hz), 1.31 (20H, m), 1.85 (4H, m) 3.04 (4H, t, J = 7.4 Hz), 7.25 (2H, s), 7.76 (2H, d, J = 8.6 Hz), 7.94 (2H, d, J = 8.6 Hz).
13 C-NMR (C 2 D 2 Cl 4 , 100.7 MHz) δ = 14.3, 22.7, 29.2, 29.3, 29.4, 30.9, 31.5, 31.9, 120.1, 120.2, 121.2, 127.0, 131.8, 132.1, 137.7, 139.0, 146.7

同様の合成法を用いて54DBTを合成した。54DBTの合成は、前記の反応式[化5]に示されている。
54DBTのMSおよびH−NMRの測定結果を以下に示す。また、54DBTH−NMRスペクトルを図7に示す。
MS(APPI) m/z=352
1H―NMR(CCl, 400.4MHz)δ=7.76(2H,d,J=5.3Hz),7.96(6H,m).
54DBT 3 was synthesized using a similar synthesis method. The synthesis of 54DBT 3 is shown in the above reaction formula [Chem. 5].
The measurement results of MS and 1 H-NMR of 54DBT 3 are shown below. The 1 H-NMR spectrum of 54DBT 3 is shown in FIG.
MS (APPI) m / z = 352
1H-NMR (C 2 D 2 Cl 4 , 400.4 MHz) δ = 7.76 (2H, d, J = 5.3 Hz), 7.96 (6H, m).

図8、図9、図10に、有機溶媒1,1,2,2−Tetrachloroethaneに溶解させたペンタセン、54DBT及び8−67DBTの0時間、24時間及び48時間後の経時変化におけUVスペクトルを示す。これらの図より、54DBT及び8−67DBTは、溶液中で48時間放置しても、スペクトルの変化が全く無く、非常に安定しているということがいえる。一方、ペンタセンは24時間後でスペクトルが大きく変化し、溶液中で不安定で、分解してしまっていることがわかる。 8, FIG. 9, FIG. 10, UV put pentacene dissolved in an organic solvent 1,1,2,2-Tetrachloroethane, 0 hours 54DBT 3 and 8-67DBT 3, the time course of 24 hours and 48 hours The spectrum is shown. From these figures, it can be said that 54DBT 3 and 8-67DBT 3 are very stable with no change in spectrum even when left in a solution for 48 hours. On the other hand, it can be seen that the spectrum of pentacene changes greatly after 24 hours, is unstable in solution, and has decomposed.

溶解度は、2,3―DNTTがジクロロメタン中3.4mg/L(文献値)、45DBT3は、45.5mg/Lであるのに対し、54DBTは、166.7mg/Lという結果となり、54DBTは、45DBT、2,3―DNTTよりも溶解性が高いことが分かる。
また、アルキル基を有する8−67DBTの溶解度は、ジクロロメタン中1125mg/Lであり、80℃トルエン中66g/Lと溶解性が非常に高い。
Solubility, 2,3-DNTT is dichloromethane 3.4 mg / L (literature value), is 45DBT3, whereas a 45.5mg / L, 54DBT 3 becomes a result of 166.7mg / L, 54DBT 3 Is more soluble than 45DBT 3 , 2,3-DNTT.
The solubility of 8-67DBT 3 having an alkyl group is 1125 mg / L in dichloromethane, and the solubility is very high at 66 g / L in 80 ° C. toluene.

また、図11、図12に示すように、DSC(示差走査熱量計)の測定結果より、2,1−DNTTの融点が306.3−307.0℃、54DBT3の融点が357.6−358.0℃となり、54DBTは2,1−DNTTよりも融点が高く、低温での相転移点もないことから、耐熱性に優れているといえる。 Further, as shown in FIGS. 11 and 12, from the measurement results of DSC (differential scanning calorimeter), the melting point of 2,1-DNTT is 306.3-307.0 ° C., and the melting point of 54DBT3 is 357.6-358. The temperature is 0.0 ° C., and 54DBT 3 has a higher melting point than 2,1-DNTT and has no phase transition point at a low temperature.

45DBT、54DBT、67DBT、54DBTおよび8−67DBTのHOMO−LUMOの計算を目的として、分子軌道計算プログラムGaussian09を用いて、密度汎関数理論(DFT)に基づく計算により構造最適化計算を行った。DFT計算を行うにあたり、密度汎関数にB3LYPを、基底関数に6−31G(d)を選択した。 For the purpose of calculating HOMO-LUMO of 45DBT 3 , 54DBT 3 , 67DBT 3 , 54DBT 3 and 8-67DBT 3, a structure optimization calculation is performed by calculation based on density functional theory (DFT) using a molecular orbital calculation program Gaussian09. Went. In performing the DFT calculation, B3LYP was selected as the density functional and 6-31G (d) as the basis function.

ここで、Gaussian及び密度汎関数理論について概説する。
Gaussianは、多種多様な分子・化学反応を解析・設計するための量子化学計算ソフトウェアであり、有名で利用者数の多い量子化学計算ソフトウェアである。分子設計・構造解析・化学反応解析などで多くの成果を上げている。Gaussianは、様々な半経験的・非経験的量子化学計算法に関する機能を有しており、密度汎関数理論に基づく計算にも対応している。また、分子構造・基準振動などの基礎物性や、NMR化学シフトや紫外・可視吸収スペクトルなどの分子の同定や材料設計に役立つ物性値などを算出することが可能である。
密度汎関数理論(Density Functional Theory, DFT)とは、物理や化学の分野に於いて、原子、分子、凝集系などの多体電子系の電子状態を調べるために用いられる量子力学の理論である。この理論では、多体系の全ての物理量は空間的に変化する電子密度の汎関数として表され、密度汎関数理論という名前はそれに由来している。汎関数理論を用いた計算は実験結果と十分に一致し、また計算コストもハートリー-フォック法などの多体の波動関数を用いる手法と比べて低為、最も広く使われている手法である。
Here, an overview of Gaussian and density functional theory will be given.
Gaussian is quantum chemistry calculation software for analyzing and designing a wide variety of molecules and chemical reactions, and is a well-known and widely used quantum chemistry calculation software. Has achieved many achievements in molecular design, structural analysis, chemical reaction analysis and so on. Gaussian has functions related to various semi-empirical and ab initio quantum chemical calculation methods, and also supports calculations based on density functional theory. It is also possible to calculate basic physical properties such as molecular structure and reference vibration, physical properties useful for molecular identification and material design such as NMR chemical shift and ultraviolet / visible absorption spectrum.
Density Functional Theory (DFT) is a quantum mechanics theory used to investigate the electronic states of many-body electronic systems such as atoms, molecules, and aggregates in the fields of physics and chemistry. . In this theory, all physical quantities of many-body systems are expressed as spatially varying electron density functionals, and the name density functional theory is derived from it. Calculations using functional theory agree well with experimental results, and are also the most widely used method because the calculation cost is low compared to methods using many-body wave functions such as the Hartley-Fock method. .

上記のように計算した結果を図3に示す。45DBTのHOMOレベルが、−5.50eVで、54DBTのほうが、HOMOレベルのAu電極の仕事関数に近いため、正孔の注入障壁が小さく、Au電極から半導体層へ正孔が注入しやすくなり、より低電圧で駆動するようになり、トランジスタ性能が向上すると推察される。 The results calculated as described above are shown in FIG. The HOMO level of 45DBT 3 is −5.50 eV, and 54DBT 3 is closer to the work function of the Au electrode at the HOMO level, so the hole injection barrier is small and holes can be easily injected from the Au electrode into the semiconductor layer. Thus, it is assumed that the transistor is driven at a lower voltage and the transistor performance is improved.

また、同様な方法で計算した各種DBTの分子起動計算結果を以下の表1に示す。

Figure 2016139710
表1より、45DBTのHOMOレベルは、54DBT、67DBT、54DBT−cおよび8−67DBTのどの化合物よりも深いことがわかる。 In addition, Table 1 below shows the results of molecular activation calculation of various DBTs 3 calculated by the same method.
Figure 2016139710
From Table 1, HOMO level 45DBT 3 is, 54DBT 3, 67DBT 3, 54DBT deep can be seen than 3 -c and 8-67DBT 3 throat compound.

前述のごとく、54DBTはウェットプロセスに利用するため溶液中で安定であり、かつ溶解性の高いことが特徴である。しかし、有機トランジスタの半導体層に使用して、その基本的な特性を評価する場合、多結晶やアモルファス状態の薄膜として使用するよりも、単結晶の薄膜を用いて評価するほうが、欠陥が少ないために、材料本来のポテンシャルを評価できると考えられている。 As described above, 54DBT 3 is characterized by being stable in a solution and having high solubility because it is used in a wet process. However, when evaluating the basic characteristics of a semiconductor layer used in an organic transistor, it is less likely to evaluate using a single crystal thin film than to use it as a polycrystalline or amorphous thin film. In addition, it is thought that the original potential of the material can be evaluated.

そこで、本発明では、Physical Vapor Transport(PVT)法およびキャスト法を用いて、54DBT誘導体の少なくとも一種の単結晶を含有してなる有機トランジスタを試作し、その性能を評価した。次いで、真空蒸着装置を用いて、54DBT誘導体を半導体層として使用した有機薄膜トランジスタを作成し、その性能を評価した。なお、トランジスタ性能を調べるため、各素子は以下のように作成した。 Therefore, in the present invention, an organic transistor containing at least one single crystal of 54DBT 3 derivative was prototyped using the Physical Vapor Transport (PVT) method and the cast method, and the performance was evaluated. Next, an organic thin film transistor using a 54DBT 3 derivative as a semiconductor layer was prepared using a vacuum deposition apparatus, and the performance was evaluated. In addition, in order to investigate transistor performance, each element was created as follows.

54DBTの単結晶トランジスタの作成(PVT法)
54DBTを170℃に加熱しながら、アルゴンガスをキャリアガスとして、100ml/minの流速で流し、結晶の析出部分を120℃にすることで54DBT3の単結晶サンプルを作成した。
54DBT 3 single crystal transistor fabrication (PVT method)
While heating 54DBT 3 to 170 ° C., an argon gas as a carrier gas, at a flow rate of 100 ml / min, to create a single-crystal sample of 54DBT3 by precipitation portion of the crystal to 120 ° C..

上記の方法で作成した54DBTの単結晶を用いて、図1に示す構造の薄膜デバイスを作成した。具体的には未処理の熱酸化膜を形成したシリコンウェハー(Si/SiO基板(bare))、0.3wt%のポリスチレン(PS)溶液を2000rpmで30秒間スピンコートし、90℃で1時間アニールを行ったSi/SiO基板(膜厚13nm)、CYTOP:薄め液=1:9の溶液を2000rpmで30秒間の条件でスピンコート法により成膜し、90℃で10分間、200℃で1時間アニールを行ったSi/SiO基板を用いた(膜厚27.8nm)。ソース・ドレイン電極は単結晶の両端にカーボンペーストを塗布することで形成、トップコンタクト型のFET素子を作製し、減圧条件下でFET測定を行った。 A thin film device having a structure shown in FIG. 1 was prepared using a single crystal of 54DBT 3 prepared by the above method. Specifically, a silicon wafer (Si / SiO 2 substrate (bare)) on which an unprocessed thermal oxide film is formed, a 0.3 wt% polystyrene (PS) solution is spin-coated at 2000 rpm for 30 seconds, and 90 ° C. for 1 hour. An annealed Si / SiO 2 substrate (film thickness: 13 nm), a solution of CYTOP: thinning solution = 1: 9 was formed by spin coating at 2000 rpm for 30 seconds, 90 ° C. for 10 minutes, 200 ° C. A Si / SiO 2 substrate annealed for 1 hour was used (film thickness 27.8 nm). The source / drain electrodes were formed by applying carbon paste to both ends of a single crystal to produce a top contact type FET element, and FET measurement was performed under reduced pressure conditions.

54DBTの単結晶トランジスタの作成(キャスト法)
54DBTの0.01wt%メシチレン溶液を基板へキャストした。調整の際、室温でサンプルが溶解しなかったため、ヒートガンを使用した。基板は0.7wt%のポリメチルメタクリレート(PMMA)溶液を2000rpmで30秒間の条件でスピンコート法により成膜し、120℃で4時間アニールしたSi/SiO基板(膜厚30nm)を使用した。ソース・ドレイン電極は単結晶の両端にカーボンペーストを塗布することで形成し、減圧条件下でFET測定を行った。
54DBT 3 single crystal transistor fabrication (cast method)
A 0.01 wt% mesitylene solution of 54DBT 3 was cast onto the substrate. At the time of adjustment, since the sample did not dissolve at room temperature, a heat gun was used. The substrate used was a Si / SiO 2 substrate (film thickness 30 nm) formed by spin coating with a 0.7 wt% polymethyl methacrylate (PMMA) solution at 2000 rpm for 30 seconds and annealed at 120 ° C. for 4 hours. . The source / drain electrodes were formed by applying carbon paste to both ends of the single crystal, and FET measurement was performed under reduced pressure conditions.

54DBTの有機薄膜トランジスタの作成(蒸着)
54DBTを真空蒸着装置を用いて基板上に50nm蒸着し、さらにその上にソース、ドレイン電極となる金を電子ビーム法を用いて80nm蒸着(L=50μm、W=1.5mm)し、トップコンタクト型素子を作成した。なお、用いた基板はSi/SiO基板にPSとCYTOPでそれぞれ表面処理したものと未処理(bare)のものを用い、有機膜の作製条件として、基板温度は室温で作製を行った。AFM測定によりPSの膜厚は13nm、CYTOPの膜厚は27.8nmであった。
54DBT 3 organic thin film transistor fabrication (vapor deposition)
54DBT 3 was deposited on a substrate by 50 nm using a vacuum deposition apparatus, and gold used as a source and drain electrode was further deposited by 80 nm using an electron beam method (L = 50 μm, W = 1.5 mm). A contact-type element was created. The substrate used was a Si / SiO 2 substrate surface-treated with PS and CYTOP and untreated (bare), and the substrate temperature was room temperature as the organic film preparation conditions. The film thickness of PS was 13 nm and the film thickness of CYTOP was 27.8 nm by AFM measurement.

8−67DBTについても同様に有機トランジスタを試作し、その性能を評価した。 For 8-67DBT 3 , an organic transistor was also made in the same manner and its performance was evaluated.

8−67DBTの単結晶トランジスタの作成(キャスト法)
8−67DBTのメシチレン溶液を0.2wt%、0.1wt%、0.05wt%の濃度で調整し、基板へキャストした。調整の際、室温でサンプルが溶解しなかったため、ヒートガンを使用した。基板は0.7wt%のPMMA溶液を2000rpmで30秒間の条件でスピンコート法により成膜し、120℃で4時間アニールしたSi/SiO2基板(膜厚30nm)を使用した。ソース・ドレイン電極は単結晶の両端にカーボンペーストを塗布することで形成し、減圧条件下でFET測定を行った。
8-67DBT 3 single crystal transistor fabrication (cast method)
A mesitylene solution of 8-67DBT 3 was prepared at concentrations of 0.2 wt%, 0.1 wt%, and 0.05 wt% and cast onto a substrate. At the time of adjustment, since the sample did not dissolve at room temperature, a heat gun was used. The substrate used was a Si / SiO 2 substrate (film thickness 30 nm) formed by spin coating with a 0.7 wt% PMMA solution at 2000 rpm for 30 seconds and annealed at 120 ° C. for 4 hours. The source / drain electrodes were formed by applying carbon paste to both ends of the single crystal, and FET measurement was performed under reduced pressure conditions.

8−67DBTの有機薄膜トランジスタの作成(蒸着)
8−67DBTを真空蒸着装置を用いて基板上に50nm蒸着し、さらにその上にソース、ドレイン電極となる金を電子ビーム法を用いて80nm蒸着(L=50μm、W=1.5mm)し、トップコンタクト型素子を作成した。なお、用いた基板はSi/SiO基板にPSとCYTOPでそれぞれ表面処理したものと未処理(bare)のものを用い、有機膜の作製条件として、基板温度は室温で作製を行った。
Preparation of 8-67DBT 3 organic thin film transistor (vapor deposition)
8-67DBT 3 is deposited on a substrate by 50 nm using a vacuum deposition apparatus, and further, gold serving as a source and drain electrode is deposited by 80 nm using an electron beam method (L = 50 μm, W = 1.5 mm). A top contact type element was prepared. The substrate used was a Si / SiO 2 substrate surface-treated with PS and CYTOP and untreated (bare), and the substrate temperature was room temperature as the organic film preparation conditions.

上記のように作製した各素子についてその性能を測定した結果を表2に示す。

Figure 2016139710
2,1−DNTTの単結晶の電界効果移動度は0.04cm/(Vs)で、On/Off電流比は10(特許文献3)であるため、上記の結果より、54DBTは2,1−DNTTよりもトランジスタ特性が優れているといえる。 Table 2 shows the results of measuring the performance of each element manufactured as described above.
Figure 2016139710
Since the field effect mobility of the single crystal of 2,1-DNTT is 0.04 cm 2 / (Vs) and the On / Off current ratio is 10 2 (Patent Document 3), from the above results, 54DBT 3 is 2 Therefore, it can be said that the transistor characteristics are superior to those of 1-DNTT.

本願に係わる発明は、末端にチオフェンを有する屈曲型のチエノチオフェン骨格を特徴とする有機半導体材料を有機半導体層に使用した有機トランジスタである。この有機半導体材料は、上記のように有機溶媒に対する溶解度が高く、安定性もあり、特に安価とされるウェットプロセスで有機トランジスタを作製することが可能である。そのため、今後、広くこの分野での需要使用が期待される。 The invention according to the present application is an organic transistor in which an organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at a terminal is used for an organic semiconductor layer. As described above, this organic semiconductor material has high solubility in an organic solvent, is stable, and can produce an organic transistor by a wet process that is particularly inexpensive. Therefore, it is expected that demand will be widely used in this field in the future.

1 トップコンタクト型FET
2 ボトムコンタクト型FET
3 ソース
4 ドレイン
5 有機半導体
6 絶縁膜
7 基板(ゲート)
1 Top contact FET
2 Bottom contact FET
3 Source 4 Drain 5 Organic Semiconductor 6 Insulating Film 7 Substrate (Gate)

Claims (4)

化学式[化1]で示される末端にチオフェンを有する屈曲型のチエノチオフェン骨格を特徴とする化合物を有機半導体層に使用する有機トランジスタ。
[化1]
Figure 2016139710
化学式〔化1〕中の置換基RからRは、水素原子及びハロゲン原子、炭素数が3から60のアリール基、炭素数が3から60の複素環基、炭素数が1から30のアルキル基、炭素数が2から30のアルケニル基、炭素数が2から30のアルキニル基、炭素数が1から30のアルコキシル基、炭素数が1から60のアミノ基、炭素数が1から30のアミド基、炭素数が1から30のイミノ基、炭素数が1から30のカルボキシル基、ヒドロキシル基、炭素数が1から30のエステル基、ニトロ基、ニトリル基、炭素数が1から30のスルフィド基、メルカプト基、炭素数が1から30のスルホニル基、炭素数が1から60のシリル基のうち、少なくとも一つを含み、これらの各基は置換基を有していてもよい。なお、置換基RからRの好ましい例は、水素原子、フッ素原子、アリール基、複素環基、アルキル基、アルケニル基、アルキニル基、アミノ基である。
置換基RからRにおける、ハロゲン原子はフッ素、塩素、臭素、ヨウ素であり、好ましい例はフッ素原子である。
置換基RからRにおける、アリール基は炭素数が3から60の芳香環基で、例えば、フェニル基、1−ナフチル基、2−ナフチル基、ビフェニル基、ターフェニル基、アントリル基、フェナントリル基、クリセンなどが挙げられ、これらの各基は置換基を有していてもよい。
置換基RからRにおける、複素環基は炭素数が3から60の複素環基で、ピリジン、ピラジン、トリアジン、ピロール、キノリン、チオフェン、ベンゾチオフェン、ジベンゾチオフェン、チエノチオフェン、フラン、ベンゾフラン、ジベンゾフラン、チアゾール、ベンゾチアゾールなどが挙げられ、これらの各基は置換基を有していてもよい。
置換基RからRにおける、アルキル基は炭素数が1から30の直鎖型、分岐型、環状型のアルキル基であり、例えば、メチル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、イソプロピル基、t-ブチル基、シクロプロピル基、シクロヘキシル基、アダマンチル基、n−トリフルオロメチル基などが挙げられ、これらの各基は置換基を有していてもよい。
置換基RからRにおける、アルケニル基は炭素数が2から30のアルケニル基で、例えば、エテニル基、メチルエテニル基、(n−オクチル)エテニル基、フェニルエテニル基、ナフチルエテニル基、ビフェニルエテニル基、ターフェニルエテニル基、パーフルオロフェニルエテニル基などが挙げられ、これらの各基は置換基を有していてもよい。
置換基R1からRにおける、アルキニル基は炭素数が2から30のアルキニル基で、例えば、エチニル基、メチルエチニル基、(n−オクチル)エチニル基、フェニルエチニル基、ナフチルエチニル基、ビフェニルエチニル基、ターフェニルエチニル基、パーフルオロフェニルエチニル基などが挙げられ、これらの各基は置換基を有していてもよい。
置換基RからRにおける、アミノ基は炭素数が1から60のアミノ基で、例えば、ジフェニルアミノ基、ジナフチルアミノ基、ジチエニルアミノ基、ジピリジルアミノ基などが挙げられ、これらの各基は置換基を有していてもよい。
前記置換基とは、水素原子及びハロゲン原子、アリール基、複素環基、アルキル基、フルオロアルキル基、アルケニル基、フルオロアルケニル基、アルキニル基、フルオロアルキニル基、アルコキシル基、フルオロアルコキシル基、アミノ基、アミド基、イミノ基、カルボキシル基、ヒドロキシル基、エステル基、ニトロ基、ニトリル基、スルフィド基、メルカプト基、スルホニル基、シリル基が挙げられる。
An organic transistor in which a compound characterized by a bent thienothiophene skeleton having a thiophene at a terminal represented by the chemical formula [Chemical Formula 1] is used for an organic semiconductor layer.
[Chemical 1]
Figure 2016139710
The substituents R 1 to R 8 in the chemical formula [Chemical Formula 1] are a hydrogen atom and a halogen atom, an aryl group having 3 to 60 carbon atoms, a heterocyclic group having 3 to 60 carbon atoms, and 1 to 30 carbon atoms. Alkyl group, alkenyl group having 2 to 30 carbon atoms, alkynyl group having 2 to 30 carbon atoms, alkoxyl group having 1 to 30 carbon atoms, amino group having 1 to 60 carbon atoms, 1 to 30 carbon atoms Amido group, imino group having 1 to 30 carbon atoms, carboxyl group having 1 to 30 carbon atoms, hydroxyl group, ester group having 1 to 30 carbon atoms, nitro group, nitrile group, sulfide having 1 to 30 carbon atoms It includes at least one of a group, a mercapto group, a sulfonyl group having 1 to 30 carbon atoms, and a silyl group having 1 to 60 carbon atoms, and each of these groups may have a substituent. Preferred examples of the substituents R 1 to R 8 are a hydrogen atom, a fluorine atom, an aryl group, a heterocyclic group, an alkyl group, an alkenyl group, an alkynyl group, and an amino group.
In the substituents R 1 to R 8 , the halogen atom is fluorine, chlorine, bromine or iodine, and a preferred example is a fluorine atom.
In the substituents R 1 to R 8 , the aryl group is an aromatic ring group having 3 to 60 carbon atoms, such as a phenyl group, 1-naphthyl group, 2-naphthyl group, biphenyl group, terphenyl group, anthryl group, phenanthryl. Group, chrysene and the like, and each of these groups may have a substituent.
The heterocyclic group in the substituents R 1 to R 8 is a heterocyclic group having 3 to 60 carbon atoms, such as pyridine, pyrazine, triazine, pyrrole, quinoline, thiophene, benzothiophene, dibenzothiophene, thienothiophene, furan, benzofuran, Dibenzofuran, thiazole, benzothiazole and the like can be mentioned, and each of these groups may have a substituent.
In the substituents R 1 to R 8 , the alkyl group is a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, such as a methyl group, n-butyl group, n-pentyl group, n -Hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, isopropyl, t-butyl, cyclopropyl , A cyclohexyl group, an adamantyl group, an n-trifluoromethyl group, and the like, and each of these groups may have a substituent.
In the substituents R 1 to R 8 , the alkenyl group is an alkenyl group having 2 to 30 carbon atoms such as ethenyl group, methylethenyl group, (n-octyl) ethenyl group, phenylethenyl group, naphthylethenyl group, biphenylethenyl group. Group, terphenyl ethenyl group, perfluorophenyl ethenyl group and the like, and each of these groups may have a substituent.
In the substituents R 1 to R 8 , the alkynyl group is an alkynyl group having 2 to 30 carbon atoms, such as ethynyl group, methylethynyl group, (n-octyl) ethynyl group, phenylethynyl group, naphthylethynyl group, biphenylethynyl group. Group, terphenylethynyl group, perfluorophenylethynyl group and the like, and each of these groups may have a substituent.
In the substituents R 1 to R 8 , the amino group is an amino group having 1 to 60 carbon atoms, and examples thereof include a diphenylamino group, a dinaphthylamino group, a dithienylamino group, and a dipyridylamino group. The group may have a substituent.
Examples of the substituent include a hydrogen atom and a halogen atom, an aryl group, a heterocyclic group, an alkyl group, a fluoroalkyl group, an alkenyl group, a fluoroalkenyl group, an alkynyl group, a fluoroalkynyl group, an alkoxyl group, a fluoroalkoxyl group, an amino group, Examples include amide group, imino group, carboxyl group, hydroxyl group, ester group, nitro group, nitrile group, sulfide group, mercapto group, sulfonyl group, and silyl group.
化学式[化2]で示される末端にチオフェンを有する屈曲型のチエノチオフェン骨格を特徴とする化合物を有機半導体層に使用する有機トランジスタ。
[化2]
Figure 2016139710
ただし、化学式[化2]中のRからRは、請求項1の[化1]のRからRと同じである。
An organic transistor in which a compound characterized by a bent thienothiophene skeleton having a thiophene at a terminal represented by a chemical formula [Chemical Formula 2] is used for an organic semiconductor layer.
[Chemical formula 2]
Figure 2016139710
However, R 8 from R 1 of the formula [Formula 2] in is the same as the R 1 of Formula 1 of claim 1 and R 8.
化学式[化3]で示される末端にチオフェンを有する屈曲型のチエノチオフェン骨格を特徴とする化合物を有機半導体層に使用する有機トランジスタ。
[化3]
Figure 2016139710
ただし、化学式[化3]中のRからRは、請求項1の[化1]のRからRと同じである。
An organic transistor in which a compound having a bent thienothiophene skeleton having a thiophene at a terminal represented by the chemical formula [Chemical Formula 3] is used for an organic semiconductor layer.
[Chemical formula 3]
Figure 2016139710
However, R 8 from R 1 in the chemical formula [Chem 3] are the same from R 1 of Formula 1 of claim 1 and R 8.
請求項1から請求項3に記載の化学式[化1]、[化2]、[化3]のいずれかの有機半導体材料の複数を組み合わせて有機半導体層に使用する有機トランジスタ。 An organic transistor that is used in an organic semiconductor layer by combining a plurality of organic semiconductor materials of any one of the chemical formulas [Chemical Formula 1], [Chemical Formula 2], and [Chemical Formula 3] according to claim 1.
JP2015013913A 2015-01-28 2015-01-28 An organic transistor using, as an organic semiconductor layer, an organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at the end. Active JP6404133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015013913A JP6404133B2 (en) 2015-01-28 2015-01-28 An organic transistor using, as an organic semiconductor layer, an organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at the end.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015013913A JP6404133B2 (en) 2015-01-28 2015-01-28 An organic transistor using, as an organic semiconductor layer, an organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at the end.

Publications (2)

Publication Number Publication Date
JP2016139710A true JP2016139710A (en) 2016-08-04
JP6404133B2 JP6404133B2 (en) 2018-10-10

Family

ID=56560481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015013913A Active JP6404133B2 (en) 2015-01-28 2015-01-28 An organic transistor using, as an organic semiconductor layer, an organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at the end.

Country Status (1)

Country Link
JP (1) JP6404133B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113087720A (en) * 2021-03-03 2021-07-09 北京大学深圳研究生院 N-type organic semiconductor material based on benzothieno [3,2-b ] benzothiophene and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1932847A1 (en) * 2006-12-13 2008-06-18 Samsung Electronics Co., Ltd. Heteroacene compound, organic thin film comprising the compound, and electronic device comprising the thin film
JP2009302264A (en) * 2008-06-13 2009-12-24 Ushio Chemix Kk Organic semiconductor material characterized by thienothiophene skeleton
JP2011054749A (en) * 2009-09-01 2011-03-17 Yamamoto Chem Inc Organic transistor
US20130149812A1 (en) * 2010-08-18 2013-06-13 Cambridge Display Technology Limited Low contact resistance organic thin film transistors
WO2014087300A1 (en) * 2012-12-03 2014-06-12 Basf Se Heteroacene compounds for organic electronics
WO2016047391A1 (en) * 2014-09-24 2016-03-31 富士フイルム株式会社 Organic semiconductor element, method for producing same, compound, composition for forming organic semiconductor film, and organic semiconductor film
WO2016092065A1 (en) * 2014-12-12 2016-06-16 Eni .P.A. Bis-thienobenzothienothiophene compounds and process for their preparation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1932847A1 (en) * 2006-12-13 2008-06-18 Samsung Electronics Co., Ltd. Heteroacene compound, organic thin film comprising the compound, and electronic device comprising the thin film
JP2009302264A (en) * 2008-06-13 2009-12-24 Ushio Chemix Kk Organic semiconductor material characterized by thienothiophene skeleton
JP2011054749A (en) * 2009-09-01 2011-03-17 Yamamoto Chem Inc Organic transistor
US20130149812A1 (en) * 2010-08-18 2013-06-13 Cambridge Display Technology Limited Low contact resistance organic thin film transistors
WO2014087300A1 (en) * 2012-12-03 2014-06-12 Basf Se Heteroacene compounds for organic electronics
WO2016047391A1 (en) * 2014-09-24 2016-03-31 富士フイルム株式会社 Organic semiconductor element, method for producing same, compound, composition for forming organic semiconductor film, and organic semiconductor film
WO2016092065A1 (en) * 2014-12-12 2016-06-16 Eni .P.A. Bis-thienobenzothienothiophene compounds and process for their preparation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113087720A (en) * 2021-03-03 2021-07-09 北京大学深圳研究生院 N-type organic semiconductor material based on benzothieno [3,2-b ] benzothiophene and preparation method and application thereof

Also Published As

Publication number Publication date
JP6404133B2 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
JP5562652B2 (en) Silylethynylated heteroacenes and electronic devices made therewith
KR102117134B1 (en) Benzobis(thiadiazole) derivative and organic electronics device using same
JP5220005B2 (en) Thiazolothiazole derivatives and organic electronic devices using the same
JP2009076868A (en) Soluble derivative of sexithiophene, and thin-film field-effect transistor using the same
KR20150061035A (en) Novel heterocyclic compound, method for producing intermediate therefor, and use thereof
KR101348436B1 (en) Tetrathiafulvalene derivative, and organic film and organic transistor using the same
Zhao et al. Trifluoromethylation of anthraquinones for n-Type organic semiconductors in field effect transistors
WO2012115218A1 (en) Method for producing dianthra[2,3-b:2',3'-f]thieno[3,2-b]thiophene, and use thereof
JP5314814B2 (en) Organic semiconductor materials featuring thienothiophene skeleton
JP2015199716A (en) Polycyclic fused ring compound, organic semiconductor material, organic semiconductor device, and organic transistor
JP5478189B2 (en) Organic transistor with excellent atmospheric stability
JP6404133B2 (en) An organic transistor using, as an organic semiconductor layer, an organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at the end.
JP5438326B2 (en) An organic transistor using an organic semiconductor material made of a compound having a thienothiophene skeleton for a semiconductor layer.
JP2010056476A (en) n-TYPE AND HETERO-JUNCTION ORGANIC THIN-FILM TRANSISTOR
JP2014133713A (en) Dinaphthofuran compound and organic semiconductor device using the same
JP6420143B2 (en) An organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at the end.
JP2010083785A (en) Compound having molecular structure high in planarity and organic transistor using the same
JP2013191821A (en) Organic semiconductor device and method of manufacturing the same, and compound
KR101084685B1 (en) Polyacene derivative and organic thin film transistor using the same
JP6004293B2 (en) Torquesen derivative and organic semiconductor device using the same
JP7133750B2 (en) Iodine-containing condensed ring compound and organic electronic material using iodine-containing condensed ring compound
JP6143257B2 (en) Organic semiconductor material and organic semiconductor device using the same
JP2011165877A (en) Organic transistor using tetrathiafulvalene derivative and method of manufacturing the same
CN108069987B (en) Method for producing fused heteroaromatic compound, electronic device, intermediate, and method for producing same
WO2020241582A1 (en) Organic transistor material and organic transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180912

R150 Certificate of patent or registration of utility model

Ref document number: 6404133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250