JP7133750B2 - Iodine-containing condensed ring compound and organic electronic material using iodine-containing condensed ring compound - Google Patents
Iodine-containing condensed ring compound and organic electronic material using iodine-containing condensed ring compound Download PDFInfo
- Publication number
- JP7133750B2 JP7133750B2 JP2018137848A JP2018137848A JP7133750B2 JP 7133750 B2 JP7133750 B2 JP 7133750B2 JP 2018137848 A JP2018137848 A JP 2018137848A JP 2018137848 A JP2018137848 A JP 2018137848A JP 7133750 B2 JP7133750 B2 JP 7133750B2
- Authority
- JP
- Japan
- Prior art keywords
- iodine
- att
- condensed ring
- ring compound
- containing condensed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 title claims description 42
- 229910052740 iodine Inorganic materials 0.000 title claims description 36
- 239000011630 iodine Substances 0.000 title claims description 33
- 150000001875 compounds Chemical class 0.000 title claims description 30
- 239000012776 electronic material Substances 0.000 title claims description 6
- 238000000034 method Methods 0.000 description 25
- 239000010409 thin film Substances 0.000 description 20
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 18
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 16
- 206010016256 fatigue Diseases 0.000 description 14
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 12
- 239000004065 semiconductor Substances 0.000 description 12
- 238000005266 casting Methods 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 10
- 238000002441 X-ray diffraction Methods 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000013078 crystal Substances 0.000 description 9
- 239000010408 film Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 239000012299 nitrogen atmosphere Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 230000003993 interaction Effects 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- SWJBITNFDYHWBU-UHFFFAOYSA-N [I].[I] Chemical compound [I].[I] SWJBITNFDYHWBU-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000010898 silica gel chromatography Methods 0.000 description 4
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical class [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 3
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical group C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 3
- 238000002484 cyclic voltammetry Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- TUCRZHGAIRVWTI-UHFFFAOYSA-N 2-bromothiophene Chemical compound BrC1=CC=CS1 TUCRZHGAIRVWTI-UHFFFAOYSA-N 0.000 description 2
- -1 2-octylthiophen-5-yl group Chemical group 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 238000000089 atomic force micrograph Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000006138 lithiation reaction Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- VJYJJHQEVLEOFL-UHFFFAOYSA-N thieno[3,2-b]thiophene Chemical group S1C=CC2=C1C=CS2 VJYJJHQEVLEOFL-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 2
- 238000012982 x-ray structure analysis Methods 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000006619 Stille reaction Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- KWTSZCJMWHGPOS-UHFFFAOYSA-M chloro(trimethyl)stannane Chemical compound C[Sn](C)(C)Cl KWTSZCJMWHGPOS-UHFFFAOYSA-M 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000009878 intermolecular interaction Effects 0.000 description 1
- 238000006192 iodination reaction Methods 0.000 description 1
- 238000005442 molecular electronic Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 238000010129 solution processing Methods 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000002233 thin-film X-ray diffraction Methods 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
Description
特許法第30条第2項適用 日本化学会第97春季年会(2017)(発表日:平成29年3月18日)Application of
特許法第30条第2項適用 日本化学会第97春季年会 予稿集(3C5-31)(発行日:平成29年3月3日)Application of
本発明は、有機薄膜トランジスタ用の新規含ヨウ素縮合環化合物、及びこれを用いた有機電子材料に関する。 TECHNICAL FIELD The present invention relates to novel iodine-containing condensed ring compounds for organic thin film transistors and organic electronic materials using the same.
半導体から導体までの様々な電気特性を有する有機電子材料は、フレキシブルディスプレイ・多機能スイッチ・多機能センサー・有機太陽電池・有機電極など、有機化合物を用いた、薄くて曲がる電子デバイス(all-organic electronics)の実現に直接つながることから分子エレクトロニクスの中枢を担っている。特に、導電性材料や有機半導体を用いた薄膜トランジスタに関する研究は大きな注目を集めている。 Organic electronic materials with various electrical properties ranging from semiconductors to conductors are used in flexible displays, multifunctional switches, multifunctional sensors, organic solar cells, organic electrodes, and other thin and flexible electronic devices (all-organic materials) using organic compounds. It plays a central role in molecular electronics because it directly leads to the realization of electronics). In particular, research on thin film transistors using conductive materials and organic semiconductors has attracted a great deal of attention.
有機化合物の持つ本来の魅力はインクジェット法などのウエットプロセスによる大面積デバイスの作製であり、高溶解性及び高性能を示す材料のさらなる開発が望まれている。高性能の実現には活性層の結晶性薄膜における高次の分子配列が求められ、これまでπ電子系の拡張による強い分子間相互作用を期待した直線的な縮合環数の増加等が試みられてきた。しかし、π電子系の拡張と溶解性とはトレードオフの関係にあり、ウエットプロセスにおいて大きな障害となっている。 The original attraction of organic compounds is the fabrication of large-area devices by wet processes such as the inkjet method, and further development of materials exhibiting high solubility and high performance is desired. In order to achieve high performance, a high-order molecular arrangement is required in the crystalline thin film of the active layer. It's here. However, there is a trade-off relationship between the expansion of the π-electron system and the solubility, which is a major obstacle in wet processes.
このような中、近年、高い溶解性の獲得に分子骨格の非対称化が着目され、分子の片末端にアルキル基を導入した可溶性有機半導体材料が報告されている(非特許文献1~4)。しかしながら、アルキル基による配向制御は難しく、未だ分子配向における相互作用には不明な点が多く、しばしば半導体特性において明確な優位性を与えない(非特許文献5及び6)。よって、分子の溶解性と配向性の両立に向けた明確なメカニズムの解明と該メカニズムに基づく新しい材料群の設計コンセプトが求められている。
Under such circumstances, in recent years, attention has been paid to the asymmetry of the molecular skeleton to obtain high solubility, and soluble organic semiconductor materials in which an alkyl group is introduced at one end of the molecule have been reported (Non-Patent Documents 1 to 4). However, it is difficult to control the orientation with alkyl groups, and there are still many unclear points about the interactions in molecular orientation, and they often do not provide clear superiority in semiconductor properties (
本発明は、上記の事情に鑑みてなされたものであり、その目的は、有機薄膜トランジスタ等に用いる有機電子材料として、高溶解性及び高性能を示す非対称型の拡張π共役系縮合環化合物を提供することにある。 The present invention has been made in view of the above circumstances, and its object is to provide an asymmetric extended π-conjugated condensed ring compound that exhibits high solubility and high performance as an organic electronic material used in organic thin-film transistors and the like. to do.
本発明の含ヨウ素縮合環化合物は、下記一般式(1)で表されることを特徴とする。
本発明の含ヨウ素縮合環化合物は、下記一般式(2)で表されることを特徴とする。
上記含ヨウ素縮合環化合物は、分子同士が同方向に整然と配列したヘリンボーン(herringbone)構造を有するため、薄膜状態での高い分子配向性を実現し、高い半導体性能を有する。さらに、上記含ヨウ素縮合環化合物は、有機溶媒への高溶解性を維持しているため、有機薄膜トランジスタ等に用いる有機半導体材料として好適である。
The iodine-containing condensed ring compound of the present invention is characterized by being represented by the following general formula (1).
The iodine-containing condensed ring compound of the present invention is characterized by being represented by the following general formula (2).
Since the iodine-containing condensed ring compound has a herringbone structure in which the molecules are arranged orderly in the same direction, it achieves high molecular orientation in a thin film state and has high semiconductor performance. Furthermore, since the iodine-containing condensed ring compound maintains high solubility in organic solvents, it is suitable as an organic semiconductor material for use in organic thin-film transistors and the like.
本発明の含ヨウ素縮合環化合物は、ヨウ素原子を含むアセン骨格が高い溶解性と高い分子配向性とを示すため、溶液プロセスでのデバイス作製が可能である。
よって、上記含ヨウ素縮合環化合物は、有機導電性材料又は有機薄膜トランジスタ用の有機半導体材料として、優れた性能を発揮する。
In the iodine-containing condensed ring compound of the present invention, the acene skeleton containing an iodine atom exhibits high solubility and high molecular orientation, so devices can be produced by a solution process.
Therefore, the iodine-containing condensed ring compound exhibits excellent performance as an organic conductive material or an organic semiconductor material for an organic thin film transistor.
以下、本発明について、詳細に説明する。
本発明の含ヨウ素縮合環化合物は、下記一般式(1)で表される。
The iodine-containing condensed ring compound of the present invention is represented by the following general formula (1).
すなわち、上記含ヨウ素縮合環化合物は、縮合環数が4~6の縮合環骨格を有する。これらのうち、含ヨウ素縮合環化合物として具体的には、以下の化合物がより好ましい。
上記含ヨウ素縮合環化合物は、例えば、以下に示す方法により合成することができる。一例として、I-ATTの合成方法を示す。
不活性ガス雰囲気下で、アントラセノチエノ[3,2-b]チオフェン(ATT)をTHF等の溶剤に溶解させ、n-ブチルリチウムを加えてリチオ化した後、ヨウ素を加えて攪拌する。クエンチ後、濃縮、精製することにより、収率77%でI-ATTの黄色固体を得る。 In an inert gas atmosphere, anthracenothieno[3,2-b]thiophene (ATT) is dissolved in a solvent such as THF, and n-butyllithium is added for lithiation, after which iodine is added and stirred. After quenching, concentration and purification yield a yellow solid of I-ATT in 77% yield.
ATTは末端チエノチオフェン部位の選択的なリチオ化が可能であり、スズ化した後にStilleカップリング反応を用いて、ヨウ素原子を有するチオフェン骨格を導入することも可能である。
なお、本発明の含ヨウ素縮合環化合物は、上記した方法に限られず、種々の方法で合成することができる。
ATT is capable of selective lithiation of the terminal thienothiophene site, and it is also possible to introduce a thiophene skeleton having an iodine atom using Stille coupling reaction after tination.
The iodine-containing condensed ring compound of the present invention is not limited to the method described above, and can be synthesized by various methods.
本発明の含ヨウ素縮合環化合物を構成するアセン骨格は、高い溶解性を有することがすでにわかっている。例えば、ATTは、熱クロロホルムに対して、1.9g/Lの溶解度を示し、ATTの末端チエノチオフェン部位のα位(硫黄原子に隣接する位置)が2-オクチルチオフェン-5-イル基で置換された化合物は、熱クロロホルム(55℃)に対して、3.8g/Lの溶解度を示す。
本発明の含ヨウ素縮合環化合物のように、ヨウ素原子を含むアセン骨格を持つ分子は、クロロホルム、トルエン及びテトラヒドロフラン等、種々の溶媒に対して高い溶解性を示す。
It has already been found that the acene skeleton constituting the iodine-containing condensed ring compound of the present invention has high solubility. For example, ATT exhibits a solubility of 1.9 g/L in hot chloroform, and the α-position (position adjacent to the sulfur atom) of the terminal thienothiophene moiety of ATT is substituted with a 2-octylthiophen-5-yl group. The compound presented exhibits a solubility of 3.8 g/L in hot chloroform (55° C.).
A molecule having an acene skeleton containing an iodine atom, such as the iodine-containing condensed ring compound of the present invention, exhibits high solubility in various solvents such as chloroform, toluene and tetrahydrofuran.
また、上記含ヨウ素縮合環化合物は、高い分子配向性を示す。ヨウ素無置換のATTは交互にずれたスリップ・スタック型をとるが(非特許文献4)、ヨウ素を含むATT、すなわち、I-ATTは、分子が同方向に整然と配列したヘリンボーン(herringbone)構造を形成する。これにより、I-ATTは、薄膜状態での高い分子配向性を実現し、有機トランジスタ材料として優れた特性を示す。 In addition, the iodine-containing condensed ring compound exhibits high molecular orientation. Iodine-unsubstituted ATT takes an alternate slip-stack type (Non-Patent Document 4), whereas iodine-containing ATT, that is, I-ATT, has a herringbone structure in which molecules are orderly arranged in the same direction. Form. As a result, I-ATT achieves high molecular orientation in a thin film state and exhibits excellent properties as an organic transistor material.
なお、インディゴ骨格にヨウ素原子を導入した対称型の含ヨウ素有機導電性材料が報告されているが(非特許文献7)、インディゴのみで高い分子配向性が得られることからヨウ素の導入による分子配列の向上は認められないこと、また、対称型構造を有することから、溶解性が乏しく、蒸着プロセスでのデバイス作製に限られている。 A symmetrical iodine-containing organic conductive material in which iodine atoms are introduced into the indigo skeleton has been reported (Non-Patent Document 7). , and because of its symmetrical structure, it has poor solubility and is limited to device fabrication by a vapor deposition process.
上記含ヨウ素縮合環化合物は、溶液プロセスが可能な高い溶解性を示し、かつ、薄膜状態における分子配向性も高く、トランジスタ特性を示す。例えば、ドロップキャスト法により製膜したI-ATT薄膜を用いたトップコンタクト型電界効果トランジスタ(FET)では、移動度(μFET)が0.9cm2/Vsであり、高いp型特性を示す。薄膜X線回折(XRD)の結果から、I-ATTは基板に垂直にエッジオン(edge-on)配向し、ヘリンボーン構造を形成している。また、単結晶X線構造解析の結果、I-ATTのレイヤー間に明確なヨウ素-ヨウ素相互作用があることを確認することができる。I-ATT2分子間での大きなトランスファー積分(平均で12~64meV)が得られ、ヨウ素原子間で相互作用することも確認された。つまり、図3に示すとおり、ヨウ素-ヨウ素相互作用がI-ATTの高い秩序構造に寄与している。 The iodine-containing condensed ring compound exhibits high solubility that enables solution processing, high molecular orientation in a thin film state, and transistor characteristics. For example, a top-contact field effect transistor (FET) using an I-ATT thin film formed by the drop casting method has a mobility (μ FET ) of 0.9 cm 2 /Vs and exhibits high p-type characteristics. Thin film X-ray diffraction (XRD) results show that I-ATT is edge-on oriented perpendicular to the substrate and forms a herringbone structure. Further, as a result of single-crystal X-ray structure analysis, it can be confirmed that there is a clear iodine-iodine interaction between the layers of I-ATT. A large transfer integral (12 to 64 meV on average) was obtained between I-ATT2 molecules, confirming interaction between iodine atoms. That is, as shown in FIG. 3, iodine-iodine interactions contribute to the highly ordered structure of I-ATT.
ここで、ドロップキャスト法とは、スピンコート法と同じく代表的なウエットプロセスである。ゆっくりと溶媒を蒸発させ時間をかけて製膜するため、スピンコート法に比べて結晶性に優れる膜を形成することができる。トップコンタクト型FETの場合は、ゲート絶縁膜上に製膜され、ボトムコンタクト型FETの場合はゲート絶縁膜上、及び、ソース電極及びドレイン電極が形成された基板上に製膜される。図1はこのようなデバイスにおいて、ドロップキャスト法で製膜する様子を表す図である。なお、絶縁膜材料の種類やその表面状態、有機半導体層を形成する基板の表面状態、並びにソース電極及びドレイン電極の材料は様々であってよい。
一方、ヨウ素無置換のATTを用いた場合、同じくドロップキャスト法で製膜したFETデバイスではトランジスタ特性を示さず、薄膜状態における分子配向性も低い。
Here, the drop casting method is a representative wet process like the spin coating method. Since the film is formed over a long period of time by slowly evaporating the solvent, a film having excellent crystallinity can be formed as compared with the spin coating method. In the case of a top-contact FET, it is formed on the gate insulating film, and in the case of a bottom-contact FET, it is formed on the gate insulating film and the substrate on which the source electrode and the drain electrode are formed. FIG. 1 is a diagram showing how a film is formed by a drop casting method in such a device. The type and surface state of the insulating film material, the surface state of the substrate on which the organic semiconductor layer is formed, and the materials of the source electrode and the drain electrode may vary.
On the other hand, when ATT without iodine substitution is used, the FET device formed by the drop casting method does not exhibit transistor characteristics, and the molecular orientation in the thin film state is also low.
以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明は下記実施例により制限されるものではない。 EXAMPLES The present invention will be more specifically described below based on examples, but the present invention is not limited to the following examples.
[実施例1]I-ATTの合成
得られたI-ATTの1HNMR(日本電子(株)製(500MHz)JNM-ECX型)の結果を以下に示す。
1HNMR(CDCl3,500MHz)δ8.59(s,1H),8.49(s,1H),8.45(s,1H),8.40(s,1H),8.03-8.02(m,2H),7.47-7.46(m,3H).
[Example 1] Synthesis of I-ATT
The results of 1 HNMR (JNM-ECX type (500 MHz) manufactured by JEOL Ltd.) of the obtained I-ATT are shown below.
1 H NMR (CDCl 3 , 500 MHz) δ 8.59 (s, 1H), 8.49 (s, 1H), 8.45 (s, 1H), 8.40 (s, 1H), 8.03-8. 02 (m, 2H), 7.47-7.46 (m, 3H).
[実施例2]
実施例1で得られたI-ATTと、ヨウ素無置換のATTとのそれぞれをクロロホルムに溶解させた1.0×10-5M溶液、及びこれをフィルムキャストした薄膜の紫外・可視(UV-vis)吸収スペクトル((株)島津製作所製 UV-3150)を測定した。
また、I-ATT及びATTのそれぞれに、ジクロロメタン(6mL)、フェロセン(1.0mg)及びテトラブチルアンモニウムテトラフルオロボレート(170mg)を添加して、0.5mMの試料溶液を調製し、グローブボックス中、窒素下で、サイクリックボルタンメトリー(CV)(ALS 660Bモデル 電気化学アナライザー(ビーエーエス(株))を測定した。
UV-vis吸収スペクトルとCVの測定結果を図2に示す。
吸収スペクトル及び酸化電位より、ATTに比べてI-ATTの方が、分子間の強い相互作用を有する会合体を形成し、また、電気化学的に安定であることがわかる。よって、I-ATTでは、ヨウ素原子の導入により、配向性及び安定性は明らかに向上している。
[Example 2]
A 1.0×10 −5 M solution of I-ATT obtained in Example 1 and iodine-unsubstituted ATT dissolved in chloroform, and a thin film cast from this solution were subjected to ultraviolet/visible (UV- vis) An absorption spectrum (UV-3150 manufactured by Shimadzu Corporation) was measured.
Further, to each of I-ATT and ATT, dichloromethane (6 mL), ferrocene (1.0 mg) and tetrabutylammonium tetrafluoroborate (170 mg) were added to prepare a 0.5 mM sample solution, and placed in a glove box. , under nitrogen, cyclic voltammetry (CV) (ALS 660B model electrochemical analyzer (BAS Co., Ltd.) was measured.
FIG. 2 shows the UV-vis absorption spectrum and CV measurement results.
From the absorption spectrum and oxidation potential, it is found that I-ATT forms an aggregate having stronger intermolecular interaction and is electrochemically more stable than ATT. Therefore, in I-ATT, the orientation and stability are clearly improved by the introduction of iodine atoms.
[実施例3]
I-ATT及びATTのそれぞれについて、単結晶X線構造解析((株)リガク製Saturn-724)を行った。
図3に示すように、I-ATTは単結晶中で分子間ヨウ素-ヨウ素相互作用を示した。ヨウ素無置換のATTはアンチパラレルな配向であるから、配向におけるヨウ素原子の寄与は明らかである。
[Example 3]
Single crystal X-ray structure analysis (Saturn-724 manufactured by Rigaku Co., Ltd.) was performed for each of I-ATT and ATT.
As shown in FIG. 3, I-ATT exhibited intermolecular iodine-iodine interactions in single crystals. Since the iodine-unsubstituted ATT has an antiparallel orientation, the contribution of the iodine atoms to the orientation is clear.
[実施例4]
I-ATT及びATTのそれぞれについて、FET特性を評価した。
I-ATTはドロップキャスト法による素子作製によって移動度0.9cm2/Vsのp型半導体特性を示した。I-ATTは-5.51eV、ATTは-5.30eVのイオン化ポテンシャルを示し、ヨウ素原子の導入による安定性の向上が示された。結果を図4に示す。
一方、ATTは溶液法においては半導体特性が発現していなかった。よって、非対称分子へのモノヨウ素化は溶液法を用いた素子作製において明らかな優位性を持つことがわかった。
[Example 4]
FET characteristics were evaluated for each of I-ATT and ATT.
I-ATT exhibited p-type semiconductor characteristics with a mobility of 0.9 cm 2 /Vs when the device was fabricated by the drop casting method. I-ATT showed an ionization potential of -5.51 eV, and ATT showed an ionization potential of -5.30 eV, indicating an improvement in stability due to the introduction of iodine atoms. The results are shown in FIG.
On the other hand, ATT did not exhibit semiconductor characteristics in the solution method. Therefore, mono-iodination of asymmetric molecules has a clear advantage in device fabrication using the solution method.
[実施例5]
I-ATT及びATTをそれぞれ、ドロップキャスト法によって製膜し、薄膜の結晶構造をAFM(原子間力顕微鏡)(Bruker社製Dimension Icon)及びXRD(X線回折)((株)リガク製SMART-Lab)により評価した。
結果を図5に示す。
I-ATTは薄膜構造において単結晶における分子配向を維持している。このことからモノヨウ素化の溶液法による結晶性薄膜の作製における優位性は明らかである。
AFM像及びXRDチャートの間にAFM像中のa-bの拡大図を示す。a-bの距離は300nmで、拡大図中の色の濃淡は凹凸を表し、濃いほど凹が深く、薄いほど凸が浅い。
[Example 5]
I-ATT and ATT were each formed by a drop casting method, and the crystal structure of the thin film was examined by AFM (Atomic Force Microscope) (Dimension Icon manufactured by Bruker) and XRD (X-ray diffraction) (SMART manufactured by Rigaku Co., Ltd.). Lab).
The results are shown in FIG.
I-ATT maintains the molecular orientation in the single crystal in the thin film structure. From this fact, the superiority in the production of crystalline thin films by the solution method of monoiodination is clear.
An enlarged view of ab in the AFM image is shown between the AFM image and the XRD chart. The distance ab is 300 nm, and the shading of the color in the enlarged view represents the unevenness.
[実施例6]I-TNTTの合成
(i)Sn-NTTの合成
得られたSn-NTTの1HNMR(日本電子(株)製(500MHz)JNM-ECX型)の結果を以下に示す。
1HNMR(CDCl3,500MHz)δ(ppm)8.29(s,2H),7.99-7.97(m,1H),7.90-7.88(m,1H),7.49-7.47(m,2H),7.53(s,1H),0.461(s,9H),
HRMS(FD+)calcd for C17H16S2Sn(M+)m/z=403.97152、found 403.97098.
[Example 6] Synthesis of I-TNTT (i) Synthesis of Sn-NTT
The results of 1 HNMR (JNM-ECX type (500 MHz) manufactured by JEOL Ltd.) of the obtained Sn-NTT are shown below.
1 H NMR (CDCl 3 , 500 MHz) δ (ppm) 8.29 (s, 2H), 7.99-7.97 (m, 1H), 7.90-7.88 (m, 1H), 7.49 −7.47 (m, 2H), 7.53 (s, 1H), 0.461 (s, 9H),
HRMS (FD + )calcd for C17H16S2Sn (M+ ) m/z = 403.97152 , found 403.97098.
(ii)TNTTの合成
得られたTNTTの1HNMR(日本電子(株)製(500MHz)JNM-ECX型)の結果を以下に示す。
1HNMR(CDCl3,500MHz)δ(ppm)8.29(s,1H),8.24(s,1H),7.98-7.96(m,1H),7.89-7.88(m,1H),7.49-7.47(m,2H),7.40(s,1H),7.30-7.28(m,2H),7.08-7.06(m,1H),HRMS(FD+)calcd for C18H10S3(M+) m/z=321.99446,found 321.99356.
(ii) Synthesis of TNTT
The results of 1 HNMR (manufactured by JEOL Ltd. (500 MHz) JNM-ECX type) of the obtained TNTT are shown below.
1 H NMR (CDCl 3 , 500 MHz) δ (ppm) 8.29 (s, 1H), 8.24 (s, 1H), 7.98-7.96 (m, 1H), 7.89-7.88 (m, 1H), 7.49-7.47 (m, 2H), 7.40 (s, 1H), 7.30-7.28 (m, 2H), 7.08-7.06 (m , 1H), HRMS (FD + ) calcd for C18H10S3 ( M + ) m/z = 321.99446, found 321.99356.
(iii)I-TNTTの合成
得られたI-TNTTの1HNMR(日本電子(株)製(500MHz)JNM-ECX型)の結果を以下に示す。
1HNMR(CDCl3)δ(ppm)8.30(s,1H),8.25(s,1H),7.98-7.96(m,1H),7.90-7.88(m,1H),7.50-7.48(m,2H),7.34(s,1H),7.22-7.21(d,J=4.0Hz,2H),6.97-6.96(d, J=4.0Hz,1H),HRMS(FD+)calcd for C18H9IS3,(M+)m/z=447.89110,found 447.89107.
(iii) Synthesis of I-TNTT
The results of 1 HNMR (manufactured by JEOL Ltd. (500 MHz) JNM-ECX type) of the obtained I-TNTT are shown below.
1 H NMR (CDCl 3 ) δ (ppm) 8.30 (s, 1H), 8.25 (s, 1H), 7.98-7.96 (m, 1H), 7.90-7.88 (m , 1H), 7.50-7.48 (m, 2H), 7.34 (s, 1H), 7.22-7.21 (d, J = 4.0Hz, 2H), 6.97-6 .96 (d, J=4.0 Hz, 1 H), HRMS (FD + )calcd for C18H9IS3 , (M + ) m/z=447.89110, found 447.89107.
[実施例7]I-TATTの合成
(i)TATTの合成
得られたTATTの1HNMR(日本電子(株)製(500MHz)JNM-ECX型)の結果を以下に示す。
1HNMR(CDCl3,500MHz)δ(ppm)8.57(s,1H),8.47(s,1H),8.44(S,1H),8.40(s,1H),8.02-8.00(m,2H),7.45-7.43(m,2H),7.38(s,1H),7.32-7.29(m,2H),7.09-7.07(m,1H),HRMS(FD+)calcd for C22H12S3(M+)m/z=372.01011,found 372.01025.
[Example 7] Synthesis of I-TATT (i) Synthesis of TATT
The results of 1 HNMR (JNM-ECX type (500 MHz) manufactured by JEOL Ltd.) of the obtained TATT are shown below.
1 H NMR (CDCl 3 , 500 MHz) δ (ppm) 8.57 (s, 1H), 8.47 (s, 1H), 8.44 (S, 1H), 8.40 (s, 1H), 8. 02-8.00 (m, 2H), 7.45-7.43 (m, 2H), 7.38 (s, 1H), 7.32-7.29 (m, 2H), 7.09- 7.07 (m, 1H), HRMS (FD + ) calcd for C22H12S3 ( M + ) m/z = 372.01011 , found 372.01025.
(ii)I-TATTの合成
得られたI-TATTの1HNMR(日本電子(株)製(500MHz)JNM-ECX型)の結果を以下に示す。
1HNMR(CDCl3,500MHz)δ(ppm)8.58(s,1H),8.48(s,1H),8.44(s,1H),8.40(s,1H),8.20-8.00(m,2H),7.46-7.45(m,2H),7.32(s,1H),7.23-7.22(d,J=3.5Hz,2H),6.99-6.98(d,J=4.0Hz,1H),HRMS(FD+)calcd for C22H11IS3(M+)M/z=497.90675,found 497.90685.
(ii) Synthesis of I-TATT
The results of 1 H NMR (manufactured by JEOL Ltd. (500 MHz) JNM-ECX type) of the obtained I-TATT are shown below.
1 H NMR (CDCl 3 , 500 MHz) δ (ppm) 8.58 (s, 1H), 8.48 (s, 1H), 8.44 (s, 1H), 8.40 (s, 1H), 8. 20-8.00 (m, 2H), 7.46-7.45 (m, 2H), 7.32 (s, 1H), 7.23-7.22 (d, J=3.5Hz, 2H ), 6.99-6.98 (d, J = 4.0 Hz, 1 H), HRMS (FD + ) calcd for C 22 H 11 IS 3 (M + ) M/z = 497.90675, found 497.90685 .
[実施例8]
I-TNTT及びI-TATTをそれぞれ、ドロップキャスト法によって製膜し、薄膜の結晶構造をXRD(X線回折)((株)リガク製SMART-Lab)により評価した。結果を図6b(I-TNTT)及び図7b(I-TATT)に示す。
I-TNTT及びI-TATTの薄膜構造は実施例1のI-ATTと同様に電荷輸送に有利な配向であった。さらに、最も低角のピークより面間隔を算出したところ化合物の長軸方向の2分子分に相当するピークが得られたことから、ヨウ素-ヨウ素相互作用による2分子分の繰返し周期を示した。
[Example 8]
Each of I-TNTT and I-TATT was formed into a film by a drop casting method, and the crystal structure of the thin film was evaluated by XRD (X-ray diffraction) (SMART-Lab manufactured by Rigaku Corporation). The results are shown in Figure 6b (I-TNTT) and Figure 7b (I-TATT).
The thin film structures of I-TNTT and I-TATT, like I-ATT in Example 1, had orientations favorable to charge transport. Furthermore, when the interplanar spacing was calculated from the lowest angle peak, a peak corresponding to two molecules in the long axis direction of the compound was obtained, indicating the repetition period of two molecules due to the iodine-iodine interaction.
[実施例9]
I-TNTT及びI-TATTはドロップキャスト法による素子作製によってそれぞれ3.4×10-5、0.056cm2/Vsのp型半導体特性を示した。結果を図6a(I-TNTT)及び図7a(I-TATT)に示す。
[Example 9]
I-TNTT and I-TATT exhibited p-type semiconductor characteristics of 3.4×10 -5 and 0.056 cm 2 /Vs, respectively, when devices were fabricated by the drop casting method. The results are shown in Figure 6a (I-TNTT) and Figure 7a (I-TATT).
[実施例10]
得られたI-NTTの1HNMR(日本電子(株)製(500MHz)JEOL-ECX500)の結果を以下に示す。
1HNMR(CDCl3,500MHz)δ(ppm)8.28(s,1H),8.22(s,1H),7.98-7.96(m,1H),7.89-7.87(m,1H),7.50-7.48(m,3H).
[Example 10]
The results of 1 HNMR (JEOL-ECX500 (500 MHz) manufactured by JEOL Ltd.) of the obtained I-NTT are shown below.
1 H NMR (CDCl 3 , 500 MHz) δ (ppm) 8.28 (s, 1H), 8.22 (s, 1H), 7.98-7.96 (m, 1H), 7.89-7.87 (m, 1H), 7.50-7.48 (m, 3H).
本発明の含ヨウ素縮合環化合物は、有機導電性材料又は有機薄膜トランジスタ用の有機半導体材料として好適に用いられる。 The iodine-containing condensed ring compound of the present invention is suitably used as an organic conductive material or an organic semiconductor material for organic thin film transistors.
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017165095 | 2017-08-30 | ||
JP2017165095 | 2017-08-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019043936A JP2019043936A (en) | 2019-03-22 |
JP7133750B2 true JP7133750B2 (en) | 2022-09-09 |
Family
ID=65815457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018137848A Active JP7133750B2 (en) | 2017-08-30 | 2018-07-23 | Iodine-containing condensed ring compound and organic electronic material using iodine-containing condensed ring compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7133750B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010087405A (en) | 2008-10-02 | 2010-04-15 | Mitsui Chemicals Inc | Organic transistor |
JP2010254636A (en) | 2009-04-27 | 2010-11-11 | Tosoh Corp | Halobenzochalcogenophene derivative, raw material compound of the same and production method thereof |
JP2016001659A (en) | 2014-06-11 | 2016-01-07 | 株式会社東海理化電機製作所 | Organic semiconductor material |
-
2018
- 2018-07-23 JP JP2018137848A patent/JP7133750B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010087405A (en) | 2008-10-02 | 2010-04-15 | Mitsui Chemicals Inc | Organic transistor |
JP2010254636A (en) | 2009-04-27 | 2010-11-11 | Tosoh Corp | Halobenzochalcogenophene derivative, raw material compound of the same and production method thereof |
JP2016001659A (en) | 2014-06-11 | 2016-01-07 | 株式会社東海理化電機製作所 | Organic semiconductor material |
Non-Patent Citations (1)
Title |
---|
ACS Applied Materials & Interfaces,9(11),2017年,9902-9909 |
Also Published As
Publication number | Publication date |
---|---|
JP2019043936A (en) | 2019-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101410150B1 (en) | Field-effect transistor | |
EP2966077B1 (en) | Chalcogen-containing organic compound and use therefor | |
US9761810B2 (en) | Organic semiconductor material | |
KR101429370B1 (en) | Organic semiconductor material, organic semiconductor thin film, and organic thin film transistor | |
WO2013125599A1 (en) | Novel chalcogen-containing organic compound and use thereof | |
WO2014038708A1 (en) | Benzothienobenzothiophene derivative, organic semiconductor material, and organic transistor | |
KR101348436B1 (en) | Tetrathiafulvalene derivative, and organic film and organic transistor using the same | |
TW201308702A (en) | Organic field effect transistor and organic semiconductor material | |
JP2007091714A (en) | New nitrogen-based semiconductor compound, organic thin membrane transistor, organic solar photovoltaic cell and organic electric field light-emitting element by using the same | |
JP5187737B2 (en) | FIELD EFFECT TRANSISTOR, PROCESS FOR PRODUCING THE SAME, COMPOUND USED FOR THE SAME, AND INK FOR SEMICONDUCTOR DEVICE | |
JP2007019086A (en) | Organic semiconductor material, semiconductor device using same and field-effect transistor | |
JP2015199716A (en) | Polycyclic fused ring compound, organic semiconductor material, organic semiconductor device, and organic transistor | |
JP2012169616A (en) | Semiconductor compound | |
JP5335379B2 (en) | Organic semiconductor material and organic electronic device using the same | |
JP2006182710A (en) | Porphyrin compound and its manufacturing method, organic semiconductor film and its manufacturing method, and semiconductor device and its manufacturing method | |
JP5228411B2 (en) | [1] Benzochalcogeno [3,2-b] [1] Compound having benzochalcogenophene skeleton and organic transistor using the same | |
JP7133750B2 (en) | Iodine-containing condensed ring compound and organic electronic material using iodine-containing condensed ring compound | |
JP2017193521A (en) | Benzobisthiadiazole compound, organic thin film containing the same, and organic semiconductor element | |
JP6962090B2 (en) | Heteroacene derivatives, organic semiconductor layers, and organic thin film transistors | |
JP2023116428A (en) | Halogen-containing organic semiconductor material | |
JP6143257B2 (en) | Organic semiconductor material and organic semiconductor device using the same | |
JP2011165877A (en) | Organic transistor using tetrathiafulvalene derivative and method of manufacturing the same | |
KR101101448B1 (en) | Diethynylbenzene-Based Liquid Crystalline Semiconductor for Solution-Processable Organic Thin-Film Transistors | |
Yang | Development of π-Extended Heteroacene-based Materials toward Application in Organic Field-Effect Transistors | |
JP2015089882A (en) | Phthalocyanine compound and organic semiconductor material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AA64 | Notification of invalidation of claim of internal priority (with term) |
Free format text: JAPANESE INTERMEDIATE CODE: A241764 Effective date: 20180808 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180911 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220317 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220317 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220512 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220603 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220701 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20220729 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220729 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20220729 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7133750 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |