[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6420143B2 - An organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at the end. - Google Patents

An organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at the end. Download PDF

Info

Publication number
JP6420143B2
JP6420143B2 JP2014266919A JP2014266919A JP6420143B2 JP 6420143 B2 JP6420143 B2 JP 6420143B2 JP 2014266919 A JP2014266919 A JP 2014266919A JP 2014266919 A JP2014266919 A JP 2014266919A JP 6420143 B2 JP6420143 B2 JP 6420143B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
chemical formula
chemical
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014266919A
Other languages
Japanese (ja)
Other versions
JP2016127153A (en
Inventor
一男 岡本
一男 岡本
雅宣 筒井
雅宣 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Chemix Corp
Original Assignee
Ushio Chemix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Chemix Corp filed Critical Ushio Chemix Corp
Priority to JP2014266919A priority Critical patent/JP6420143B2/en
Publication of JP2016127153A publication Critical patent/JP2016127153A/en
Application granted granted Critical
Publication of JP6420143B2 publication Critical patent/JP6420143B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Thin Film Transistor (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、屈曲型の有機半導体材料に関する、また該有機半導体材料を用いた有機電子デバイスに関するものである。 The present invention relates to a bent organic semiconductor material, and to an organic electronic device using the organic semiconductor material.

有機半導体は、有機ELや電子ペーパーなどのフレキシブルディスプレーへの応用が期待され、ウェットプロセスである塗布や印刷によって大面積の素子を、シリコン半導体よりも低コストで作製できることが期待されている。このようなウェットプロセスへ適応させるために、溶媒への溶解性を高め、また耐酸化性等の安定性のある有機半導体材料が求められている。 Organic semiconductors are expected to be applied to flexible displays such as organic EL and electronic paper, and it is expected that a large-area element can be produced at a lower cost than silicon semiconductors by application or printing, which are wet processes. In order to adapt to such a wet process, an organic semiconductor material having improved solubility in a solvent and having stability such as oxidation resistance is required.

高いキャリア移動度を有するペンタセンやテトラセン等のポリアセン化合物は、有機半導体材料として古くから知られている。しかし、このポリアセン化合物は、光や酸化に対して不安定であり、更に有機溶媒への溶解性が低いためウェットプロセスに利用することが困難である。そこで、化学的安定性や溶解度を改善するため、アセン骨格の一部に硫黄やセレン等のカルコゲン元素を導入したベンゾチエノベンゾチオフェン(以下、BTBTとする。)やジナフトチエノチオフェン(以下、DNTTとする。)などが多数検討されている。 Polyacene compounds such as pentacene and tetracene having high carrier mobility have long been known as organic semiconductor materials. However, this polyacene compound is unstable to light and oxidation, and further has low solubility in an organic solvent, so that it is difficult to use it in a wet process. Therefore, in order to improve chemical stability and solubility, benzothienobenzothiophene (hereinafter referred to as BTBT) or dinaphthothienothiophene (hereinafter referred to as DNTT) in which a chalcogen element such as sulfur or selenium is introduced into a part of the acene skeleton. Etc.) are being studied.

DNTTの中でも非特許文献1、特許文献1に記載のジナフト[2,3−b:2’,3’−f]チエノ[3,2−b]チエノチオフェン(以下,本非特許文献1の提案者は、この有機半導体をDNTTと称しているが、ここでは2,3−DNTTとする。)は、キャリアー移動度が2.0cm/Vsと高い値を示すことが報告されている。しかし、2,3−DNTTは、溶液状態で安定であるが、その溶解度は、室温でジクロロメタン1リットル中3.44mgであり、溶解性が低く、ウェットプロセスに利用することが困難である。そこで、本願発明者らは、2,3−DNTTとは別に溶媒中で安定であり、かつ、溶解性の高いジナフト[2,1−b:2‘,1’−f]チエノ[3,2−b]チオフェン(以下2,1−DNTTとする。)を開発し特許権を取得した。(特許文献2、特許文献3)
また、2,1−DNTTと異性体関係にあるジナフト[1,2−b:1‘,2’−f]チエノ[3,2−b]チオフェン(以下1,2−DNTTとする。)も特許文献2、3と同一の出願人により特許されている(特許文献4)。
Among the DNTTs, dinaphtho [2,3-b: 2 ′, 3′-f] thieno [3,2-b] thienothiophene described in Non-Patent Document 1 and Patent Document 1 (hereinafter, proposal of Non-Patent Document 1) Have called this organic semiconductor DNTT, but here it is 2,3-DNTT.) Has been reported to show a high carrier mobility of 2.0 cm 2 / Vs. However, 2,3-DNTT is stable in a solution state, but its solubility is 3.44 mg in 1 liter of dichloromethane at room temperature, and its solubility is low, making it difficult to use in a wet process. Therefore, the inventors of the present application are dinaphtho [2,1-b: 2 ′, 1′-f] thieno [3,2] which is stable in a solvent apart from 2,3-DNTT and has high solubility. -B] thiophene (hereinafter referred to as 2,1-DNTT) was developed and patented. (Patent Document 2, Patent Document 3)
In addition, dinaphtho [1,2-b: 1 ′, 2′-f] thieno [3,2-b] thiophene (hereinafter referred to as 1,2-DNTT) which has an isomer relationship with 2,1-DNTT is also used. Patented by the same applicant as Patent Documents 2 and 3 (Patent Document 4).

以下に、2,3−DNTT、2,1−DNTT、1,2−DNTTの一般式を[化A1]、[化A2]、[化A3]に示す。
[化A1]

Figure 0006420143
[化A2]
Figure 0006420143
[化A3]
Figure 0006420143
The general formulas of 2,3-DNTT, 2,1-DNTT, and 1,2-DNTT are shown in [Chemical A1], [Chemical A2], and [Chemical A3] below.
[Chemical A1]
Figure 0006420143
[Chemical A2]
Figure 0006420143
[Chemical A3]
Figure 0006420143

一方、2,3−DNTT類似の構造を有する縮合多環芳香族化合物において、中心のヘテロ環部分に隣接する芳香族環に置換基を導入することによって、縮合多環芳香族化合物の溶解度が改良されることを見出した特許出願もある(特許文献5)。 On the other hand, in a condensed polycyclic aromatic compound having a structure similar to 2,3-DNTT, the solubility of the condensed polycyclic aromatic compound is improved by introducing a substituent into the aromatic ring adjacent to the central heterocyclic portion. There is also a patent application that has been found (Patent Document 5).

また、有機半導体では、分子構造が直線的な場合、温度が高くなるに従い動きやすくなり、それによって分子状態が変化し不安定となる傾向があることが明らかとなっている。そのため、ジグザグな構造を求められ、化学的及び物理的に安定で、かつ、高いキャリア移動度を示すW型構造を取るジナフトチオフェン及びジナフトチオフェン以外の化合物を有機半導体とする特許文献もある(特許文献6)。特許文献6のW型構造の化学式を[化A4]に示す。
[化A4]

Figure 0006420143
[化A4]中、Xは、酸素、硫黄またはセレンである。 In addition, it has been clarified that in an organic semiconductor, when the molecular structure is linear, it tends to move as the temperature increases, thereby changing the molecular state and becoming unstable. Therefore, there is also a patent document in which a zigzag structure is required, dinaphthothiophene having a W-type structure which is chemically and physically stable and exhibits high carrier mobility, and a compound other than dinaphthothiophene as an organic semiconductor. (Patent Document 6). The chemical formula of the W-type structure of Patent Document 6 is shown in [Chemical Formula A4].
[Chemical A4]
Figure 0006420143
In [Chemical A4], X is oxygen, sulfur or selenium.

本願発明者らの特許権に係わる発明である2,1−DNTTの末端のベンゼン環をチオフェン環に置き換えた屈折型のチエノチオフェン骨格の有機半導体材料を検討した結果、特許文献7にジ(ベンゾ[b]チエノ)[4,5―b:4‘,5’―f]チエノ[3,2―b]チオフェン(以下、略称45DBTとする。)が見出された。45DBTの一般式を[化A5]に示す。
45DBTは1,2−DNTTの端末のベンゼン環をチオフェン環に置き換えた有機半導体材料である。
[化A5]

Figure 0006420143
[化A5]中、Aは、チオフェン、フラン、セレノフェン、ピロール環である。 As a result of examining an organic semiconductor material having a refractive thienothiophene skeleton in which the benzene ring at the end of 2,1-DNTT, which is an invention relating to the patent rights of the present inventors, is replaced with a thiophene ring, Patent Document 7 discloses di (benzo [b] thieno). [4,5-b: 4 ', 5'-f] thieno [3,2-b] thiophene (hereinafter, abbreviated 45DBT 3) were found. The general formula of 45DBT 3 is shown in [Chemical A5].
45DBT 3 is an organic semiconductor material in which the benzene ring at the terminal of 1,2-DNTT is replaced with a thiophene ring.
[Chemical A5]
Figure 0006420143
In [Chemical A5], A represents thiophene, furan, selenophene, or a pyrrole ring.

これまで、2,1−DNTTよりも1,2−DNTTのトランジスタ特性が出にくいという問題があった。この理由の一つとして、1,2−DNTTのHOMOレベルが−5.56eVで、2,1−DNTTのHOMOレベルの−5.40eVよりも深く、[図1]のように、有機半導体材料のHOMOレベルと電極の仕事関数とのエネルギー差が大きいと、正孔注入障壁が大きくなり、キャリアが流れにくくなるため、キャリア移動度などのデバイス特性が出にくくなるということが挙げられる。 Up to now, there has been a problem that the transistor characteristics of 1,2-DNTT are less likely to appear than 2,1-DNTT. One of the reasons is that the HOMO level of 1,2-DNTT is −5.56 eV, which is deeper than the HOMO level of −5.40 eV of 2,1-DNTT, as shown in FIG. When the energy difference between the HOMO level of the electrode and the work function of the electrode is large, the hole injection barrier becomes large and carriers are difficult to flow, so that device characteristics such as carrier mobility are difficult to be obtained.

そこで、1,2−DNTTと2,1−DNTTの関係のような、45DBTとは異なり、より屈折した分子構造を持つ異性体の方が、HOMOレベルも浅くなると推察され、また、2,1−DNTTの端末のベンゼン環をチオフェン環に置き換えることで、末端の硫黄原子によって、2,1−DNTTよりも分子間相互作用が強くなり、耐熱性も向上すると推測されることから、合成を試みた。
その結果、耐熱性に優れ、有機溶媒に溶けやすい、末端にチオフェンを有する屈曲型のチエノチオフェン骨格を特徴とする有機半導体を発明するに至った。
Therefore, 1, 2-DNTT and like relationships 2,1-DNTT, unlike 45DBT 3, towards the isomer with more refracted molecular structure, is inferred HOMO level is shallow, also 2, By replacing the benzene ring at the terminal of 1-DNTT with a thiophene ring, it is assumed that the intermolecular interaction is stronger than 2,1-DNTT and heat resistance is improved by the terminal sulfur atom. Tried.
As a result, the inventors have invented an organic semiconductor characterized by a bent thienothiophene skeleton having excellent heat resistance and being easily soluble in an organic solvent and having a thiophene at the end.

WO2008/050726WO2008 / 050726 特開2009−302264号公報JP 2009-302264 A 特開2010−161323号公報JP 2010-161323 A 特開2010−258214号公報JP 2010-258214 A 特開2013−197193号公報JP 2013-197193 A 特開2013−53140号公報JP2013-53140A WO2014/087300 A1WO2014 / 087300 A1

Tatsuya Yamamoto,Kazuo Takimiya 「Journal of American Chemical Society」2007年,第129巻, 2224−2225Tatsuya Yamamoto, Kazuo Takimiya "Journal of American Chemical Society" 2007, Vol. 129, 2224-2225

解決しようとする課題は、安定性があり、溶解度も公知である、ジ(ベンゾ[b]チエノ)[4,5―b:4‘,5’―f]チエノ[3,2―b]チオフェン(45DBT)、及び、ジナフト[2,3−b:2’,3’−f]チエノ[3,2−b]チエノチオフェン(2,3−DNTT)よりも高く、末端にチオフェンを有する屈曲型チエノチオフェン骨格を特徴とする有機半導体材料である。一般式を[化8]に示す。
[化8]

Figure 0006420143
Figure 0006420143
The problem to be solved is di (benzo [b] thieno) [4,5-b: 4 ′, 5′-f] thieno [3,2-b] thiophene, which is stable and has known solubility (45DBT 3 ) and higher than dinaphtho [2,3-b: 2 ′, 3′-f] thieno [3,2-b] thienothiophene (2,3-DNTT), bent with thiophene at the end It is an organic semiconductor material characterized by a type thienothiophene skeleton. The general formula is shown in [Chemical Formula 8].
[Chemical 8]
Figure 0006420143
Figure 0006420143

すなわち、第1発明は、化学式[化1]で示される末端にチオフェンを有する屈曲型のチエノチオフェン骨格を特徴とする有機半導体材料である。
[化1]

Figure 0006420143
That is, the first invention is an organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at the end represented by the chemical formula [Chemical Formula 1].
[Chemical 1]
Figure 0006420143

化学式[化1]中の置換基R1からRは、水素原子及びハロゲン原子、炭素数が3から60のアリール基、炭素数が3から60の複素環基、炭素数が1から30のアルキル基、炭素数が2から30のアルケニル基、炭素数が2から30のアルキニル基、炭素数が1から30のアルコキシル基、炭素数が1から60のアミノ基、炭素数が1から30のアミド基、炭素数が1から30のイミノ基、炭素数が1から30のカルボキシル基、ヒドロキシル基、炭素数が1から30のエステル基、ニトロ基、ニトリル基、炭素数が1から30のスルフィド基、メルカプト基、炭素数が1から30のスルホニル基、炭素数が1から60のシリル基のうち、少なくとも一つを含み、これらの各基は置換基を有していてもよい。なお、置換基RからRの好ましい例は、水素原子、フッ素原子、アリール基、複素環基、アルキル基、アルケニル基、アルキニル基、アミノ基である。 Chemical [formula 1] R 8 substituted groups R1 in a hydrogen atom and a halogen atom, an aryl group having from 3 to 60 carbon atoms, heterocyclic group having a carbon number of 3 to 60, alkyl of from 1 to 30 carbon atoms Group, alkenyl group having 2 to 30 carbon atoms, alkynyl group having 2 to 30 carbon atoms, alkoxyl group having 1 to 30 carbon atoms, amino group having 1 to 60 carbon atoms, amide having 1 to 30 carbon atoms Group, imino group having 1 to 30 carbon atoms, carboxyl group having 1 to 30 carbon atoms, hydroxyl group, ester group having 1 to 30 carbon atoms, nitro group, nitrile group, sulfide group having 1 to 30 carbon atoms , A mercapto group, a sulfonyl group having 1 to 30 carbon atoms, and a silyl group having 1 to 60 carbon atoms, each of which may have a substituent. Preferred examples of the substituents R 1 to R 8 are a hydrogen atom, a fluorine atom, an aryl group, a heterocyclic group, an alkyl group, an alkenyl group, an alkynyl group, and an amino group.

置換基RからRにおける、ハロゲン原子はフッ素、塩素、臭素、ヨウ素であり、好ましい例はフッ素原子である。 In the substituents R 1 to R 8 , the halogen atom is fluorine, chlorine, bromine or iodine, and a preferred example is a fluorine atom.

置換基RからRにおける、アリール基は炭素数が3から60の芳香環基で、例えば、フェニル基、1−ナフチル基、2−ナフチル基、ビフェニル基、ターフェニル基、アントリル基、フェナントリル基、クリセンなどが挙げられ、これらの各基は置換基を有していてもよい。 In the substituents R 1 to R 8 , the aryl group is an aromatic ring group having 3 to 60 carbon atoms, such as a phenyl group, 1-naphthyl group, 2-naphthyl group, biphenyl group, terphenyl group, anthryl group, phenanthryl. Group, chrysene and the like, and each of these groups may have a substituent.

置換基RからRにおける、複素環基は炭素数が3から60の複素環基で、ピリジン、ピラジン、トリアジン、ピロール、キノリン、チオフェン、ベンゾチオフェン、ジベンゾチオフェン、チエノチオフェン、フラン、ベンゾフラン、ジベンゾフラン、チアゾール、ベンゾチアゾールなどが挙げられ、これらの各基は置換基を有していてもよい。 The heterocyclic group in the substituents R 1 to R 8 is a heterocyclic group having 3 to 60 carbon atoms, such as pyridine, pyrazine, triazine, pyrrole, quinoline, thiophene, benzothiophene, dibenzothiophene, thienothiophene, furan, benzofuran, Dibenzofuran, thiazole, benzothiazole and the like can be mentioned, and each of these groups may have a substituent.

置換基RからRにおける、アルキル基は炭素数が1から30の直鎖型、分岐型、環状型のアルキル基であり、例えば、メチル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、イソプロピル基、t-ブチル基、シクロプロピル基、シクロヘキシル基、アダマンチル基、n−トリフルオロメチル基などが挙げられ、これらの各基は置換基を有していてもよい。 In the substituents R 1 to R 8 , the alkyl group is a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, such as a methyl group, n-butyl group, n-pentyl group, n -Hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, isopropyl, t-butyl, cyclopropyl , A cyclohexyl group, an adamantyl group, an n-trifluoromethyl group, and the like, and each of these groups may have a substituent.

置換基RからRにおけるアルケニル基は炭素数が2から60のアルケニル基で、例えば、エテニル基、メチルエテニル基、(n−オクチル)エテニル基、フェニルエテニル基、ナフチルエテニル基、ビフェニルエテニル基、ターフェニルエテニル基、パーフルオロフェニルエテニル基などが挙げられ、これらの各基は置換基を有していてもよい。 The alkenyl group in the substituents R 1 to R 8 is an alkenyl group having 2 to 60 carbon atoms, and examples thereof include an ethenyl group, a methylethenyl group, an (n-octyl) ethenyl group, a phenylethenyl group, a naphthylethenyl group, and a biphenylethenyl group. , Terphenylethenyl group, perfluorophenylethenyl group and the like, and each of these groups may have a substituent.

置換基R1からRにおける、アルキニル基は炭素数が2から60のアルキニル基で、例えば、エチニル基、メチルエチニル基、(n−オクチル)エチニル基、フェニルエチニル基、ナフチルエチニル基、ビフェニルエチニル基、ターフェニルエチニル基、パーフルオロフェニルエチニル基などが挙げられ、これらの各基は置換基を有していてもよい。 The alkynyl group in the substituents R 1 to R 8 is an alkynyl group having 2 to 60 carbon atoms, such as ethynyl group, methylethynyl group, (n-octyl) ethynyl group, phenylethynyl group, naphthylethynyl group, biphenylethynyl group. Group, terphenylethynyl group, perfluorophenylethynyl group and the like, and each of these groups may have a substituent.

置換基RからRにおける、アミノ基は炭素数が1から60のアミノ基で、例えば、ジフェニルアミノ基、ジナフチルアミノ基、ジチエニルアミノ基、ジピリジルアミノ基などが挙げられ、これらの各基は置換基を有していてもよい。 In the substituents R 1 to R 8 , the amino group is an amino group having 1 to 60 carbon atoms, and examples thereof include a diphenylamino group, a dinaphthylamino group, a dithienylamino group, and a dipyridylamino group. The group may have a substituent.

前記置換基とは、水素原子及びハロゲン原子、アリール基、複素環基、アルキル基、フルオロアルキル基、アルケニル基、フルオロアルケニル基、アルキニル基、フルオロアルキニル基、アルコキシル基、フルオロアルコキシル基、アミノ基、アミド基、イミノ基、カルボキシル基、ヒドロキシル基、エステル基、ニトロ基、ニトリル基、スルフィド基、メルカプト基、スルホニル基、シリル基が挙げられる。 Examples of the substituent include a hydrogen atom and a halogen atom, an aryl group, a heterocyclic group, an alkyl group, a fluoroalkyl group, an alkenyl group, a fluoroalkenyl group, an alkynyl group, a fluoroalkynyl group, an alkoxyl group, a fluoroalkoxyl group, an amino group, Examples include amide group, imino group, carboxyl group, hydroxyl group, ester group, nitro group, nitrile group, sulfide group, mercapto group, sulfonyl group, and silyl group.

[化1]の正式名はジ(ベンゾ[b]チエノ)[6,7―b:6‘,7’―f]チエノ[3,2―b]チオフェンであり、以下、略して67DBTとする。 The formal name of [Chemical Formula 1] is di (benzo [b] thieno) [6,7-b: 6 ′, 7′-f] thieno [3,2-b] thiophene, hereinafter referred to as 67DBT 3 for short. To do.

第1発明に記載の化学式[化1]の67DBTの有機半導体材料の合成過程を反応式[化4]に示すが、下記の合成法に限定されるものではなく、公知の反応を組み合わせて合成することが可能である。
[化4]

Figure 0006420143
The synthesis process of the 67DBT 3 organic semiconductor material represented by the chemical formula [Chemical Formula 1] described in the first invention is shown in Reaction Formula [Chemical Formula 4], but is not limited to the following synthesis method, and is a combination of known reactions. It is possible to synthesize.
[Chemical formula 4]
Figure 0006420143

2−ブロモチオフェノールを塩基性条件下で、2−ブロモアセトアルデヒドジエチルアセタールを作用させ、次にポリリン酸を作用させると、化合物Aを合成することができる。
上記以外の化合物Aの合成法として、公知のベンゾ[b]チオフェンの合成法を用いることができる。例えば、o−ジブロモベンゼンや1−ブロモー2−ヨードベンゼンなどo−ジハロベンゼンに、n−BuLiなどの公知の有機リチウム試薬やMgなどを用いて有機金属化合物とし、硫黄を作用させ、2−ブロモアセトアルデヒドジエチルアセタールなど、2−ハロゲン化アセトアルデヒドジアルキルアセタールを用い、さらにポリリン酸や二リン酸等の酸触媒を用いることで化合物Aを合成することができる。
Compound A can be synthesized by reacting 2-bromothiophenol under basic conditions with 2-bromoacetaldehyde diethyl acetal and then with polyphosphoric acid.
As a method for synthesizing Compound A other than the above, a known method for synthesizing benzo [b] thiophene can be used. For example, an o-dihalobenzene such as o-dibromobenzene or 1-bromo-2-iodobenzene is converted into an organometallic compound using a known organolithium reagent such as n-BuLi or Mg, and sulfur is allowed to act on 2-bromoacetaldehyde. Compound A can be synthesized by using 2-halogenated acetaldehyde dialkyl acetal such as diethyl acetal and further using an acid catalyst such as polyphosphoric acid or diphosphoric acid.

化合物Aにn−BuLiなどの公知の有機リチウム試薬やMgなどを用いて、有機金属化合物とし、DMFやN−メチルホルムアニリドなど公知のホルミル化剤を作用させると、化合物Bを合成することができる。
化合物Bに臭素などのハロゲンや塩化チオニル等の公知のハロゲン化剤と硫黄を作用させることで、67DBTを合成することができる。
Compound B can be synthesized by using a known organolithium reagent such as n-BuLi or Mg or the like as an organometallic compound and allowing a known formylating agent such as DMF or N-methylformanilide to act on compound A. it can.
67DBT 3 can be synthesized by allowing compound B to react with a halogen such as bromine or a known halogenating agent such as thionyl chloride and sulfur.

続いて、第2発明は、化学式[化2]で示される末端にチオフェンを有する屈曲型のチエノチオフェン骨格を特徴とする有機半導体材料である。
[化2]

Figure 0006420143

ただし、化学式[化2]中のRからRは、第1発明の[化1]のRからRと同じである。 Subsequently, the second invention is an organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at the terminal represented by the chemical formula [Chemical Formula 2].
[Chemical 2]
Figure 0006420143

However, R 1 to R 8 of the formula [Formula 2] in is the same as R 1 to R 8 in Formula 1] of the first invention.

化学式[化2]の正式名はジ(ベンゾ[b]チエノ)[5,4―b:5‘,4’―f]チエノ[3,2―b]チオフェンであり、54DBTとする。 Full name of the chemical formula [Formula 2] is di (benzo [b] thieno) [5,4-b: 5 ' , 4'-f] a thieno [3,2-b] thiophene, and 54DBT 3.

化合物[化2]は第1発明の化合物[化1]と同様にアルデヒドに臭素などのハロゲンや塩化チオニル等の公知のハロゲン化剤と硫黄を作用させることで、54DBTを合成することができる。反応式を[化5]に示す。
[化5]

Figure 0006420143
Compound [Chemical Formula 2] can synthesize 54DBT3 by reacting a known halogenating agent such as halogen such as bromine or thionyl chloride with sulfur in the same manner as Compound [Chemical Formula 1] of the first invention. . The reaction formula is shown in [Chemical Formula 5].
[Chemical formula 5]
Figure 0006420143

続いて、第3発明は、化学式[化3]で示される末端にチオフェンを有する屈曲型のチエノチオフェン骨格を特徴とする有機半導体材料である。
[化3]

Figure 0006420143
ただし、化学式[化3]中のRからRは、第1発明の[化1]のRからRと同じである。 Subsequently, a third invention is an organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at a terminal represented by the chemical formula [Chemical Formula 3].
[Chemical formula 3]
Figure 0006420143
However, R 1 to R 8 in the formula [Formula 3] is the same as R 1 to R 8 in Formula 1] of the first invention.

化学式[化3]の正式名はジ(ベンゾ[c]チエノ)[5,4―b:5‘,4’―f]チエノ[3,2―b]チオフェンであり、54DBT−Cとする。 The formal name of the chemical formula [Chemical Formula 3] is di (benzo [c] thieno) [5,4-b: 5 ′, 4′-f] thieno [3,2-b] thiophene, which is 54DBT 3 -C. .

化合物[化3]は[化1]と同様にアルデヒドに臭素などのハロゲンや塩化チオニル等の公知のハロゲン化剤と硫黄を作用させることで、54DBT−Cを合成することができる。反応式を[化6]に示す。
[化6]

Figure 0006420143
Similarly to [Chemical Formula 1], Compound [Chemical Formula 3] can synthesize 54DBT 3 -C by reacting aldehyde with a halogen such as bromine or a known halogenating agent such as thionyl chloride and sulfur. The reaction formula is shown in [Chemical Formula 6].
[Chemical 6]
Figure 0006420143

続いて第4発明は、第1発明から第3発明に記載の化学式[化1]、[化2]、[化3]のいずれかの有機半導体材料からなる有機電子デバイスである。 Subsequently, a fourth invention is an organic electronic device made of an organic semiconductor material of any one of the chemical formulas [Chemical Formula 1], [Chemical Formula 2], and [Chemical Formula 3] described in the first invention to the third invention.

ここでいう有機電子デバイスとは、本化合物の電気特性を利用した電子デバイスのことであり、具体的には、有機トランジスタ、有機発光ダイオード、有機ダイオード、有機レーザー、有機薄膜太陽電池、有機メモリーなどが挙げられる。 An organic electronic device as used herein refers to an electronic device that utilizes the electrical characteristics of the present compound. Specifically, an organic transistor, an organic light emitting diode, an organic diode, an organic laser, an organic thin film solar cell, an organic memory, etc. Is mentioned.

本発明の化合物をこれら有機電子デバイスに利用するに当たっては、高純度化のために不純物の除去等の精製が必要になるが、本発明の化合物は、液体クロマトグラフィー法、昇華法、ゾーンメルティング法、ゲルパーミネーションクロマトグラフィー法、再結晶法などによって精製できる。 In order to use the compound of the present invention for these organic electronic devices, purification such as removal of impurities is required for high purity. Purification by gel method, gel permeation chromatography method, recrystallization method and the like.

また、本発明の化合物を有機電子デバイスに利用するに当たって、主として薄膜の形態で用いられるが、その薄膜作製法として、ウェットプロセスとドライプロセスどちらを使用してもよい。本発明の化合物は、有機溶媒等への溶解させることにより、産業上メリットの大きいウェットプロセスに適応できる。 Further, when the compound of the present invention is used for an organic electronic device, it is mainly used in the form of a thin film, and either a wet process or a dry process may be used as a method for forming the thin film. The compound of the present invention can be applied to a wet process having a large industrial merit by dissolving it in an organic solvent or the like.

ここで、有機溶媒としては、例えば、ジクロロメタン、クロロホルム、クロロベンゼン、シクロヘキサノール、トルエン、キシレン、ニトロベンゼン、メチルエチルケトン、ジグライム、テトラヒドロフランなど、これまで公知のものが使用できる。また、本発明の化合物を有機溶媒等へ溶解させる場合、温度や圧力に特に制限は無いが、溶解させる温度に関しては、0〜200℃の範囲が好ましく、さらに好ましくは、10〜150℃の範囲である。また、溶解させる圧力に関しては、0.1〜100MPaの範囲が好ましく、さらに好ましくは、0.1〜10MPaの範囲である。また、有機溶媒の代わりに、超臨界二酸化炭素のようなものを用いることも可能である。 Here, as the organic solvent, for example, known solvents such as dichloromethane, chloroform, chlorobenzene, cyclohexanol, toluene, xylene, nitrobenzene, methyl ethyl ketone, diglyme, and tetrahydrofuran can be used. In addition, when the compound of the present invention is dissolved in an organic solvent or the like, the temperature and pressure are not particularly limited, but the temperature for dissolution is preferably in the range of 0 to 200 ° C, more preferably in the range of 10 to 150 ° C. It is. Moreover, regarding the pressure to melt | dissolve, the range of 0.1-100 MPa is preferable, More preferably, it is the range of 0.1-10 MPa. Moreover, it is also possible to use something like supercritical carbon dioxide instead of the organic solvent.

ここで言うウェットプロセスとは、スピンコート法、ディップコート法、バーコート法、スプレーコート法、インクジェット法、スクリーン印刷法、平板印刷法、凹版印刷法、凸版印刷法などを示しており、これら公知の方法が利用できる。また、ここで言うドライプロセスとは、真空蒸着法、スパッタリング法、CVD法、レーザー蒸着法、分子線エピタキシャル成長法、気相輸送成長法などを示しており、これら公知の方法が利用できる。 The wet process here refers to a spin coating method, a dip coating method, a bar coating method, a spray coating method, an ink jet method, a screen printing method, a lithographic printing method, an intaglio printing method, a relief printing method, and the like. Can be used. In addition, the dry process mentioned here indicates a vacuum deposition method, a sputtering method, a CVD method, a laser deposition method, a molecular beam epitaxial growth method, a vapor phase transport growth method, and the like, and these known methods can be used.

続いて、第5発明は、第1発明から第3発明に記載の化学式[化1]、[化2]、[化3]のいずれかの有機半導体材料の複数を組み合わせてからなる有機電子デバイスである。 Subsequently, the fifth invention is an organic electronic device comprising a combination of a plurality of organic semiconductor materials of any one of the chemical formulas [Chemical Formula 1], [Chemical Formula 2], and [Chemical Formula 3] described in the first to third inventions. It is.

化学式[化1]、[化2]、[化3]のいずれかの有機半導体材料の中から2種類の有機半導体材料選択し組み合わせるか、又は3種類のすべてを選択し組み合わせてなる有機電子デバイスである。他の事項は、第4発明と同じである。 Organic electronic device obtained by selecting and combining two types of organic semiconductor materials from any one of chemical formulas [Chemical Formula 1], [Chemical Formula 2], and [Chemical Formula 3], or selecting and combining all three types It is. The other matters are the same as in the fourth invention.

本発明の有機半導体材料を使用した有機電子デバイスの使用例を、図2及び図3に示す。図2、図3では、電界効果型トランジスタ(以下FETとする)での使用例を挙げている。FETはその特徴から、スイッチング素子や増幅素子として利用される。ゲート電流が低いことに加え、構造が平面的であるため、ウェットプロセスによる作製や集積化が容易であり大面積化を可能とする。ここでは、本発明の化合物は、主にp型半導体として利用されているが、置換基、溶剤によってn型半導体として機能する場合もある。 Examples of use of organic electronic devices using the organic semiconductor material of the present invention are shown in FIGS. 2 and 3 show examples of use in a field effect transistor (hereinafter referred to as FET). FETs are used as switching elements and amplifying elements because of their characteristics. In addition to a low gate current, the structure is planar, so that fabrication and integration by a wet process are easy and a large area can be achieved. Here, although the compound of the present invention is mainly used as a p-type semiconductor, it may function as an n-type semiconductor depending on a substituent or a solvent.

第1発明ないし第3発明は、チエノチオフェン骨格を特徴とする有機半導体材料であるジナフト[2,1−b:2‘,1’−f]チエノ[3,2−b]チオフェン(略称2,1−DNT)に比較し、有機溶媒に対する溶解性、溶液中での安定性が高く、かつ、本願に係わる有機半導体の異性体である、ジ(ベンゾ[b]チエノ)[4,5―b:4‘,5’―f]チエノ[3,2―b]チオフェン(45DBT)に比較し、有機溶媒に対する溶解性が高く、更に、HOMOレベルが浅く、低電圧で駆動できると推定される、有機半導体材料を提供するものである。第4発明及び第5発明はこれらの有機半導体材料を使用した有機電子デバイスを提供し、保護するものである。 1st invention thru | or 3rd invention is dinaphtho [2,1-b: 2 ', 1'-f] thieno [3,2-b] thiophene (abbreviation 2, abbreviated as 2) which is an organic semiconductor material characterized by a thienothiophene skeleton. Di (benzo [b] thieno) [4,5-b, which is an isomer of the organic semiconductor according to the present application and has higher solubility in organic solvents and higher stability in solution than 1-DNT). : Compared with 4 ', 5'-f] thieno [3,2-b] thiophene (45DBT 3 ), it is estimated that it has higher solubility in organic solvents, and has a shallow HOMO level and can be driven at a low voltage. An organic semiconductor material is provided. The fourth and fifth inventions provide and protect organic electronic devices using these organic semiconductor materials.

図1は、エネルギー準位の参考図である。FIG. 1 is a reference diagram of energy levels. 図2は、トップコンタクト型FETの概略図であるFIG. 2 is a schematic view of a top contact FET. 図3は、ボトムコンタクト型FETの慨略図である。FIG. 3 is a schematic diagram of a bottom contact FET. 図4は、67DBTH−NMRスペクトル図である。Figure 4 is the 1 H-NMR spectrum of 67DBT 3. 図5は、8−67DBTH−NMRスペクトル図である。Figure 5 is a 1 H-NMR spectrum of 8-67DBT 3. 図6は、8−67DBT13C−NMRスペクトル図である。Figure 6 is a 13 C-NMR spectrum of 8-67DBT 3. 図7は、54DBTH−NMRスペクトル図である。Figure 7 is a 1 H-NMR spectrum of 54DBT 3. 図8は、ペンタセンのUVスペクトルの経時変化である。FIG. 8 shows the time course of the UV spectrum of pentacene. 図9は、54DBTのUVスペクトルの経時変化である。Figure 9 is a time course of UV spectra of 54DBT 3. 図10は、8−67DBTのUVスペクトルの経時変化である。Figure 10 is a time course of UV spectra of 8-67DBT 3. 図11は、54DBTのDSCチャートである。Figure 11 is a DSC chart of 54DBT 3. 図12は、2,1−DNTTのDSCチャートである。FIG. 12 is a DSC chart of 2,1-DNTT.

本発明の実施例を以下に示す。 Examples of the present invention are shown below.

前記反応式[化4]の67DBTの合成過程を詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
また、目的の化合物は必要に応じてMS(質量分析スペクトル)、H―NMRおよび13C−NMRにより決定した。使用した機器は以下の通りである。
MS:ABSCIEX Q−STAR
H―NMRおよび13C−NMR:Agilent Technologies MercuryPlus
The synthesis process of 67DBT 3 of the reaction formula [Chem. 4] will be described in detail, but the present invention is not limited only to these examples.
The target compound was determined by MS (mass spectrometry spectrum), 1 H-NMR and 13 C-NMR as required. The equipment used is as follows.
MS: ABSCIEX Q-STAR
1 H-NMR and 13 C-NMR: Agilent Technologies MercuryPlus

操作1
ナトリウムt−ブトキシド0.59g(5.3mmol)のTHF溶液10mlに2−ブロモベンゼンチオール0.5g(2.6mmol)のTHF溶液5mlを滴下した。30分撹拌後、2−ブロモアセトアルデヒドジエチルアセタール0.62g(3.2mmol、1.2eq)を滴下し、室温で1時間撹拌した。反応液に水を加え、トルエンで抽出し、有機層を減圧濃縮後、ポリリン酸0.5gを加え、一晩撹拌した。反応液に水を加え、トルエンで抽出し、有機層を減圧濃縮後、化合物A0.3gを収率54%で得た。
化合物Aの1H−NMRおよび13C−NMRの測定結果を以下に示す。
1H―NMR(CDCl3, 400.4MHz)δ=7.23(1H,t,J=8.6Hz),7.41(1H,d,J=5.5Hz),7.47(1H,d,J=8.6Hz),7.47(1H,d,J=5.3Hz),7.74(1H,dd,J=0.8Hz,8.6Hz).
13C−NMR(CDCl3, 100.7MHz)δ=116.1,122.7,124.9,125.7,127.3,127.4,140.7,141.8.
Operation 1
To 10 ml of a THF solution of 0.59 g (5.3 mmol) of sodium t-butoxide, 5 ml of a THF solution of 0.5 g (2.6 mmol) of 2-bromobenzenethiol was added dropwise. After stirring for 30 minutes, 0.62 g (3.2 mmol, 1.2 eq) of 2-bromoacetaldehyde diethyl acetal was added dropwise, and the mixture was stirred at room temperature for 1 hour. Water was added to the reaction mixture, and the mixture was extracted with toluene. The organic layer was concentrated under reduced pressure, 0.5 g of polyphosphoric acid was added, and the mixture was stirred overnight. Water was added to the reaction solution, extraction was performed with toluene, and the organic layer was concentrated under reduced pressure to obtain 0.3 g of Compound A in a yield of 54%.
The measurement results of 1H-NMR and 13C-NMR of Compound A are shown below.
1H-NMR (CDCl3, 400.4 MHz) δ = 7.23 (1H, t, J = 8.6 Hz), 7.41 (1H, d, J = 5.5 Hz), 7.47 (1H, d, J = 8.6 Hz), 7.47 (1H, d, J = 5.3 Hz), 7.74 (1H, dd, J = 0.8 Hz, 8.6 Hz).
13C-NMR (CDCl3, 100.7 MHz) [delta] = 116.1, 122.7, 124.9, 125.7, 127.3, 127.4, 140.7, 141.8.

操作2
窒素雰囲気下、化合物A0.3g(1.4mmol)のTHF溶液10mlにiPrMgCl・LiCl(1M−THF溶液)を2.8ml(2.8mmol、2eq)滴下し、室温で2時間撹拌後、0℃でN,N−ジメチルホルムアミド0.29ml(4.2mmol、3eq)を滴下し、滴下後室温に昇温後、塩酸で処理、トルエンで抽出し、有機層を減圧濃縮後、化合物Bを0.15g、収率66%で得た。
化合物BのH−NMRおよび13C−NMRの測定結果を以下に示す。
H―NMR(CDCl, 400.4MHz)δ=7.42(1H,d,J=5.5Hz),7.56(1H,t,J=7.2Hz),7.64(1H,d,J=5.6Hz),7.85(1H,ddd,J=0.4Hz,1.1Hz,7.2Hz)8.03(1H,dd,J=1.1Hz,7.8Hz),10.23(1H,s).
13C−NMR(CDCl, 100.7MHz)δ=122.9,124.3,129.8,130.5,130.9,131.4,137.1,141.3,191.3.
Operation 2
In a nitrogen atmosphere, 2.8 ml (2.8 mmol, 2 eq) of iPrMgCl·LiCl (1M-THF solution) was added dropwise to 10 ml of a THF solution of 0.3 g (1.4 mmol) of Compound A, and the mixture was stirred at room temperature for 2 hours and then 0 ° C. Then, 0.29 ml (4.2 mmol, 3 eq) of N, N-dimethylformamide was added dropwise, and after the dropwise addition, the mixture was warmed to room temperature, treated with hydrochloric acid, extracted with toluene, and the organic layer was concentrated under reduced pressure. 15 g, 66% yield.
The measurement results of 1 H-NMR and 13 C-NMR of Compound B are shown below.
1 H-NMR (CDCl 3 , 400.4 MHz) δ = 7.42 (1H, d, J = 5.5 Hz), 7.56 (1H, t, J = 7.2 Hz), 7.64 (1H, d, J = 5.6 Hz), 7.85 (1H, ddd, J = 0.4 Hz, 1.1 Hz, 7.2 Hz) 8.03 (1H, dd, J = 1.1 Hz, 7.8 Hz), 10.23 (1H, s).
13 C-NMR (CDCl 3 , 100.7 MHz) δ = 122.9, 124.3, 129.8, 130.5, 130.9, 131.4, 137.1, 141.3, 191.3.

操作3
窒素雰囲気下、化合物B0.15g(0.93mmol)のトルエン溶液5mlにN,N−ジメチルホルムアミド0.1mlを加えた。塩化チオニル0.9g(7.4mmol、8eq)と硫黄0.04g(1.1mmol、1.2eq)を加え220℃に加温し、1時間保った。冷却後、反応液をろ過し、67DBTを収率11%で得た。
以下に、67DBTのMSおよび1H−NMRの測定結果を示す。また、67DBTの1H−NMRスペクトルを図4に示す。
MS(APPI) m/z=352
1H―NMR(CDCl3, 400.4MHz)δ=7.58(2H,d,J=5.28Hz),7.63(2H,d,J=5.28Hz),7.91(2H,d,J=8.6Hz),8.00(2H,d,J=8.6Hz).
Operation 3
Under a nitrogen atmosphere, 0.1 ml of N, N-dimethylformamide was added to 5 ml of a toluene solution of 0.15 g (0.93 mmol) of Compound B. 0.9 g (7.4 mmol, 8 eq) thionyl chloride and 0.04 g (1.1 mmol, 1.2 eq) sulfur were added and heated to 220 ° C. and kept for 1 hour. After cooling, the reaction solution was filtered to obtain 67DBT in a yield of 11%.
The measurement results of MS and 1H-NMR of 67DBT 3 are shown below. Further, the 1H-NMR spectrum of 67DBT 3 is shown in FIG.
MS (APPI) m / z = 352
1H-NMR (CDCl3, 400.4 MHz) δ = 7.58 (2H, d, J = 5.28 Hz), 7.63 (2H, d, J = 5.28 Hz), 7.91 (2H, d, J = 8.6 Hz), 8.00 (2H, d, J = 8.6 Hz).

同様の合成法を用いて8−67DBTを合成した。8−67DBTとしたのは、端末のチオフェン環にC17が付加しているためである。8−67DBTの反応式を[化7]に示す。
[化7]

Figure 0006420143

8−67DBTのMS、H−NMRおよび13C−NMRの測定結果を以下に示す。また、8−67DBTH−NMRスペクトルを図5に、13C−NMRスペクトルを図6に示す。
MS(APPI) m/z=576
H―NMR(CCl, 400.4MHz)δ=0.91(6H,t,J=7.1Hz),1.31(20H,m),1.85(4H,m),3.04(4H,t,J=7.4Hz),7.25(2H,s),7.76(2H,d,J=8.6Hz),7.94(2H,d,J=8.6Hz).
13C−NMR(CCl, 100.7MHz)δ=14.3,22.7,29.2,29.3,29.4,30.9,31.5,31.9,120.1,120.2,121.2,127.0,131.8,132.1,137.7,139.0,146.7. 8-67DBT 3 was synthesized using the same synthesis method. The reason why 8-67DBT 3 is selected is that C 8 H 17 is added to the terminal thiophene ring. The reaction formula of 8-67DBT 3 is shown in [Chemical 7].
[Chemical 7]
Figure 0006420143

The measurement results of MS, 1 H-NMR and 13 C-NMR of 8-67DBT 3 are shown below. Further, the 1 H-NMR spectrum of 8-67DBT 3 is shown in FIG. 5, and the 13 C-NMR spectrum is shown in FIG.
MS (APPI) m / z = 576
1 H-NMR (C 2 D 2 Cl 4 , 400.4 MHz) δ = 0.91 (6H, t, J = 7.1 Hz), 1.31 (20H, m), 1.85 (4H, m) 3.04 (4H, t, J = 7.4 Hz), 7.25 (2H, s), 7.76 (2H, d, J = 8.6 Hz), 7.94 (2H, d, J = 8.6 Hz).
13 C-NMR (C 2 D 2 Cl 4 , 100.7 MHz) δ = 14.3, 22.7, 29.2, 29.3, 29.4, 30.9, 31.5, 31.9, 120.1, 120.2, 121.2, 127.0, 131.8, 132.1, 137.7, 139.0, 146.7.

同様の合成法を用いて54DBTを合成した。54DBTの合成は、前記反応式[化5]に示す。
54DBTのMSおよびH−NMRの測定結果を以下に示す。また、54DBTH−NMRスペクトルを図7に示す。
MS(APPI) m/z=352
H―NMR(CCl, 400.4MHz)δ=7.76(2H,d,J=5.3Hz),7.96(6H,m).
54DBT 3 was synthesized using a similar synthesis method. The synthesis of 54DBT 3 is shown in the above reaction formula [Chem. 5].
The measurement results of MS and 1 H-NMR of 54DBT 3 are shown below. The 1 H-NMR spectrum of 54DBT 3 is shown in FIG.
MS (APPI) m / z = 352
1 H-NMR (C 2 D 2 Cl 4 , 400.4 MHz) δ = 7.76 (2H, d, J = 5.3 Hz), 7.96 (6H, m).

図8、図9、図10に、有機溶媒1,1,2,2−Tetrachloroethaneに溶解させたペンタセン、54DBT及び8−67DBTの0時間、24時間及び48時間後の経時変化におけUVスペクトルを示す。これらの図より、54DBT及び8−67DBTは、溶液中で48時間放置しても、スペクトルの変化が全く無く、非常に安定しているということがいえる。一方、ペンタセンは24時間後でスペクトルが大きく変化し、溶液中で不安定で、分解してしまっていることがわかる。 8, FIG. 9, FIG. 10, UV put pentacene dissolved in an organic solvent 1,1,2,2-Tetrachloroethane, 0 hours 54DBT 3 and 8-67DBT 3, the time course of 24 hours and 48 hours The spectrum is shown. From these figures, it can be said that 54DBT 3 and 8-67DBT 3 are very stable with no change in spectrum even when left in a solution for 48 hours. On the other hand, it can be seen that the spectrum of pentacene changes greatly after 24 hours, is unstable in solution, and has decomposed.

溶解度は、2,3―DNTTがジクロロメタン中3.4mg/L(文献値)、45DBTは、45.5mg/Lであるのに対し、54DBTは、166.7mg/Lという結果となり、54DBTは、45DBT、2,3―DNTTよりも溶解性が高いことが分かる。また、アルキル基を有する8−67DBTの溶解度は、ジクロロメタン中1125mg/Lであり、80℃トルエン中66g/Lと溶解性が非常に高い。 Solubility was as follows: 2,3-DNTT was 3.4 mg / L in dichloromethane (literature value), 45DBT 3 was 45.5 mg / L, whereas 54DBT 3 was 166.7 mg / L. 3 is found to be more soluble than 45DBT 3 , 2,3-DNTT. The solubility of 8-67DBT 3 having an alkyl group is 1125 mg / L in dichloromethane, and the solubility is very high at 66 g / L in 80 ° C. toluene.

また、[図11]、[図12]に示すように、DSC(示差走査熱量計)の測定結果より、2,1−DNTTの融点が306.3−307.0℃、54DBTの融点が357.6−358.0℃となり、54DBTは2,1−DNTTよりも融点が高く、低温での相転移点もないことから、耐熱性に優れているといえる。 Moreover, as shown in [FIG. 11] and [FIG. 12], from the measurement result of DSC (differential scanning calorimeter), the melting point of 2,1-DNTT is 306.3-307.0 ° C., and the melting point of 54DBT 3 is Since 357.6-358.0 ° C., 54DBT 3 has a higher melting point than 2,1-DNTT and no phase transition point at low temperature, it can be said that it has excellent heat resistance.

1 トップコンタクト型FET
2 ボトムコンタクト型FET
3 ソース
4 ドレイン
5 有機半導体
6 絶縁膜
7 基板(ゲート)
1 Top contact FET
2 Bottom contact FET
3 Source
4 Drain 5 Organic semiconductor 6 Insulating film 7 Substrate (gate)

上記のように有機溶媒に対する溶解度が高く、安定性もあることから、ウェットプロセスに用いられる有機半導体材料として期待される。 As described above, since it has high solubility in organic solvents and is stable, it is expected as an organic semiconductor material used in wet processes.

Claims (4)

化学式[化1]で示される末端にチオフェンを有する屈曲型のチエノチオフェン骨格を特徴とする有機半導体材料。[化1]
Figure 0006420143
化学式〔化1〕中の置換基RからRは、水素原子及びハロゲン原子、炭素数が3から60のアリール基、炭素数が3から60の複素環基、炭素数が1から30のアルキル基、炭素数が2から30のアルケニル基、炭素数が2から30のアルキニル基、炭素数が1から30のアルコキシル基、炭素数が1から60のアミノ基、炭素数が1から30のアミド基、炭素数が1から30のイミノ基、炭素数が1から30のカルボキシル基、ヒドロキシル基、炭素数が1から30のエステル基、ニトロ基、ニトリル基、炭素数が1から30のスルフィド基、メルカプト基、炭素数が1から30のスルホニル基、炭素数が1から60のシリル基のうち、少なくとも一つを含み、これらの各基は置換基を有していてもよい。
An organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at a terminal represented by the chemical formula [Chemical Formula 1]. [Chemical 1]
Figure 0006420143
The substituents R 1 to R 8 in the chemical formula [Chemical Formula 1] are a hydrogen atom and a halogen atom, an aryl group having 3 to 60 carbon atoms, a heterocyclic group having 3 to 60 carbon atoms, and 1 to 30 carbon atoms. Alkyl group, alkenyl group having 2 to 30 carbon atoms, alkynyl group having 2 to 30 carbon atoms, alkoxyl group having 1 to 30 carbon atoms, amino group having 1 to 60 carbon atoms, 1 to 30 carbon atoms Amido group, imino group having 1 to 30 carbon atoms, carboxyl group having 1 to 30 carbon atoms, hydroxyl group, ester group having 1 to 30 carbon atoms, nitro group, nitrile group, sulfide having 1 to 30 carbon atoms It includes at least one of a group, a mercapto group, a sulfonyl group having 1 to 30 carbon atoms, and a silyl group having 1 to 60 carbon atoms, and each of these groups may have a substituent.
化学式[化2]で示される末端にチオフェンを有する屈曲型のチエノチオフェン骨格を特徴とする有機半導体材料。[化2]
Figure 0006420143
ただし、化学式[化2]中のRからRは、請求項1の[化1]のRからRと同じである。
An organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at a terminal represented by the chemical formula [Chemical Formula 2]. [Chemical 2]
Figure 0006420143
However, R 8 from R 1 of the formula [Formula 2] in is the same as the R 1 of Formula 1 of claim 1 and R 8.
請求項1から請求項2に記載の化学式[化1]、[化2]のいずれかの有機半導体材料からなる有機電子デバイス An organic electronic device comprising the organic semiconductor material represented by any one of the chemical formulas [Chemical Formula 1] and [Chemical Formula 2] according to claim 1. 請求項1から請求項2に記載の化学式[化1]、[化2]のいずれかの有機半導体材料を組み合わせてからなる有機電子デバイス。 The organic electronic device formed by combining the organic-semiconductor material in any one of chemical formula [Chemical Formula 1] of [Chemical Formula 1], and [Chemical Formula 2].
JP2014266919A 2014-12-28 2014-12-28 An organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at the end. Active JP6420143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014266919A JP6420143B2 (en) 2014-12-28 2014-12-28 An organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at the end.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014266919A JP6420143B2 (en) 2014-12-28 2014-12-28 An organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at the end.

Publications (2)

Publication Number Publication Date
JP2016127153A JP2016127153A (en) 2016-07-11
JP6420143B2 true JP6420143B2 (en) 2018-11-07

Family

ID=56359655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014266919A Active JP6420143B2 (en) 2014-12-28 2014-12-28 An organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at the end.

Country Status (1)

Country Link
JP (1) JP6420143B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016000804A1 (en) * 2014-06-30 2016-01-07 Merck Patent Gmbh Extended non-linear acene derivatives and their use as organic semiconductors

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101314998B1 (en) * 2006-12-13 2013-10-04 삼성전자주식회사 Heteroacenes, organic thin film comprising the compounds and electronic device comprising the thin film
JP5314814B2 (en) * 2008-06-13 2013-10-16 ウシオケミックス株式会社 Organic semiconductor materials featuring thienothiophene skeleton
JP5449929B2 (en) * 2009-09-01 2014-03-19 山本化成株式会社 Organic transistor
GB201013820D0 (en) * 2010-08-18 2010-09-29 Cambridge Display Tech Ltd Low contact resistance organic thin film transistors
JP6093027B2 (en) * 2012-12-03 2017-03-08 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Heteroacene compounds for organic electronic devices
WO2016047391A1 (en) * 2014-09-24 2016-03-31 富士フイルム株式会社 Organic semiconductor element, method for producing same, compound, composition for forming organic semiconductor film, and organic semiconductor film
EP3230291B1 (en) * 2014-12-12 2019-01-23 Eni .p.a. Bis-thienobenzothienothiophene compounds and process for their preparation

Also Published As

Publication number Publication date
JP2016127153A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
KR102117134B1 (en) Benzobis(thiadiazole) derivative and organic electronics device using same
JP5901732B2 (en) Method for producing novel heterocyclic compound and intermediate thereof and use thereof
JP5562652B2 (en) Silylethynylated heteroacenes and electronic devices made therewith
JP4958119B2 (en) Novel condensed polycyclic aromatic compound, method for producing the same, and use thereof
JP5220005B2 (en) Thiazolothiazole derivatives and organic electronic devices using the same
JP5438363B2 (en) Organic semiconductor material characterized by wide band gap
JPWO2012115218A1 (en) Process for producing diantra [2,3-b: 2 ', 3'-f] thieno [3,2-b] thiophene and use thereof
JP5314814B2 (en) Organic semiconductor materials featuring thienothiophene skeleton
JP6420143B2 (en) An organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at the end.
JP2010118415A (en) Semiconductor material using organic compound having chrysene skeleton
JP2010056476A (en) n-TYPE AND HETERO-JUNCTION ORGANIC THIN-FILM TRANSISTOR
JP6404133B2 (en) An organic transistor using, as an organic semiconductor layer, an organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at the end.
JP2013191821A (en) Organic semiconductor device and method of manufacturing the same, and compound
WO2020195632A1 (en) Compound and organic semiconductor material containing said compound
JP6678515B2 (en) Compounds, compositions, and organic semiconductor devices
JP7521742B2 (en) Organic transistor material and organic transistor
WO2015015397A1 (en) Substituted naphthyridines as acceptor molecules for electronic devices
JP2015199670A (en) Tetracene derivative and method for synthesizing the same, and organic electronics device prepared using the same
JP2019043936A (en) Iodine-containing condensed ring compound, and organic electronic material using iodine-containing condensed ring compound
JP2014036039A (en) Organic semiconductor material, and organic semiconductor device using the same
Jin Synthesis of Novel Hydrogen-Bonding Unit for Organic Field-Effect Transistors
JP2017039655A (en) Binaphthyl derivative as organic semiconductor material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181011

R150 Certificate of patent or registration of utility model

Ref document number: 6420143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250