JP2016119459A - 金属酸化物ナノ粒子とカーボンの複合体、その製造方法、この複合体を用いた電極及び電気化学素子 - Google Patents
金属酸化物ナノ粒子とカーボンの複合体、その製造方法、この複合体を用いた電極及び電気化学素子 Download PDFInfo
- Publication number
- JP2016119459A JP2016119459A JP2015240707A JP2015240707A JP2016119459A JP 2016119459 A JP2016119459 A JP 2016119459A JP 2015240707 A JP2015240707 A JP 2015240707A JP 2015240707 A JP2015240707 A JP 2015240707A JP 2016119459 A JP2016119459 A JP 2016119459A
- Authority
- JP
- Japan
- Prior art keywords
- composite
- metal oxide
- carbon
- nanoparticles
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明で用いる反応方法は、本出願人等が先に特許出願した特許文献1及び特許文献2に示した方法と同様のメカノケミカル反応であって、化学反応の過程で、旋回する反応器内で反応物にずり応力と遠心力を加えて化学反応を促進させるものである。
本発明に係る金属酸化物ナノ粒子を生成するための金属酸化物としては、例えば、酸化マンガンMnO、リン酸鉄リチウムLiFePO4、チタン酸リチウムLi4Ti5O12が使用できる。また、その他の酸化物として、MxOz、AxMyOz、Mx(DO4)y、AxMy(DO4)z(ただし、M:金属元素 A:アルカリ金属又はランタノイド元素)で表される金属酸化物の使用も可能である。
反応過程で所定のカーボンを加えることによって、5〜100nmのチタン酸リチウムを高分散担持させたカーボンを得ることができる。すなわち、反応器の内筒の内部に金属塩と所定の反応抑制剤とカーボンを投入して、内筒を旋回して金属塩と反応抑制剤とカーボンを混合、分散する。さらに内筒を旋回させながら水酸化ナトリウムなどの触媒を投入して加水分解、縮合反応を進行させ、金属酸化物を生成すると共に、この金属酸化物とカーボンを分散状態で、混合する。反応終了後にこれを急速加熱することで、金属酸化物ナノ粒子を高分散担持させたカーボンを形成することができる。
溶媒としては、アルコール類、水、これらの混合溶媒を用いることができる。例えば、酢酸と酢酸リチウムをイソプロパノールと水の混合物に溶解した混合溶媒を使用することができる。
出発原料として金属アルコキシドを使用した場合には、特許文献2に記載のように、前記メカノケミカル反応を適用する所定の金属アルコキシドに、反応抑制剤として該金属アルコキシドと錯体を形成する所定の化合物を添加することができる。これにより、化学反応が促進しすぎるのを抑制することができる。
本発明は、メカノケミカル反応によりカーボンナノ粒子の構造体の内部に金属酸化物ナノ粒子の前駆体を担持させた複合体を得ると共に、この金属酸化物とカーボンの複合体を窒素雰囲気中で加熱することによって、金属酸化物の結晶化を促進させ、この複合体を使用した電極や電気化学素子の容量、出力特性を向上させるものである。
本発明により得られた金属酸化物ナノ粒子とカーボンの複合体は、バインダーと混錬、成型し、電気化学素子の電極、すなわち電気エネルギー貯蔵用電極とすることができ、その電極は高出力特性、高容量特性を示す。
この電極を用いることができる電気化学素子は、リチウムやマグネシウムなどの金属イオンを含有する電解液を用いる電気化学キャパシタ、電池である。すなわち、本発明の電極は、金属イオンの吸蔵、脱着を行うことができ、負極や正極として作動する。したがって、金属イオンを含有する電解液を用い、対極として活性炭、金属イオンが吸蔵、脱着するカーボンや金属酸化物等を用いることによって、電気化学キャパシタ、電池を構成することができる。
酢酸マンガン1モル、エタノール、水の混合溶液を作製した。この混合溶液とケッチェンブラック(KB)を旋回反応器内に投入し、66,000N(kgms-2)の遠心力で5分間、内筒を旋回して外筒の内壁に反応物の薄膜を形成すると共に、反応物にずり応力と遠心力を加えて化学反応を促進させ、酸化マンガンの前駆体を高分散担持したKBを得た。
ビニリデンPVDFと共に(MnO/KB/PVDF 40:40:20)、SUS板上に溶接されたSUSメッシュ中に投入し、作用電極W.E.とした。前記電極上にセパレータと対極C.E.及び参照極としてLiフォイルを乗せ、電解液として、1.0M 六フッ化リン酸リチウム(LiPF6)/炭酸エチレンEC:炭酸ジメチルDEC(1:1 w/w)を浸透させて、セルとした。この状態で、作用電圧0−2Vとして、その充放電特性からエネルギー密度を算出した。結果は酸化マンガンあたり、691mAh/g(1C)、418mAh/g(3C)と高いエネルギー密度を示した。
酢酸鉄1モルに対して、リン酸1.0モル、酢酸リチウム1モルの水溶液を作製した。ここで反応抑制剤としてクエン酸を用いた。この溶液とカーボンナノファイバー(CNF)を旋回反応器内に投入し、66,000N(kgms-2)の遠心力で5分間、内筒を旋回して外筒の内壁に反応物の薄膜を形成すると共に、反応物にずり応力と遠心力を加えて化学反応を促進させ、オリビン型リン酸鉄リチウムの前駆体を高分散担持したCNFを得た。この場合、混合溶媒に溶解する酢酸鉄、リン酸、酢酸リチウムとCNFの量は、得られる複合体の組成が、リン酸鉄リチウム/CNFが、50/50の質量比(w/w)となるように設定した。
リン酸鉄リチウム/CNFが、60/40の質量比(w/w)となるように設定する以外は、実施例2−1と同様にしてセルを作製した。このセルの容量は71mAh/gであった。また、図12にこの複合体粉末の高解像度TEM像を示す。この図から分かるように、2〜5原子層レベルで1nm以下の厚みを有し、径が5〜100nmの平板上のリン酸鉄リチウム結晶構造体がCNFに担持していることが分かる。
カーボンとしてケッチェンブラックを用いた以外は、実施例2−1と同様にしてセルを作製した。このセルの容量は108mAh/gであった。また、図13にこの複合体粉末の高解像度TEM像を示す。この図から分かるように、2〜5原子層レベルで1nm以下の厚みを有し、径が5〜20nmの平板上のリン酸鉄リチウム結晶構造体がケッチェンブラックに内包されていることが分かる。図25は、この実施例2−3の複合体粉末の高解像度TEM像とその模式図を示すものである。この実施例2−3では、ホオヅキのように中空で球状のカーボンの中にリン酸鉄リチウムナノ粒子が1粒ずつ入っているような構造になっている。
リン酸鉄リチウム/ケッチェンブラックが、60/40の質量比(w/w)となるように設定する以外は、実施例2−3と同様にしてセルを作製した。このセルの容量は102mAh/gであった。
カーボンとしてキャボット社製、BP2000を用いた以外は、実施例2−1と同様にしてセルを作製した。このセルの容量は88mAh/gであった。また、図14にこの複合体粉末の高解像度TEM像を示す。この図から分かるように、2〜5原子層レベルで1nm以下の厚みを有し、径が5〜100nmの平板上のリン酸鉄リチウム結晶構造体がBP2000に担持していることが分かる。
リン酸鉄リチウム/BP2000が、60/40の質量比(w/w)となるように設定する以外は、実施例2−3と同様にしてセルを作製した。このセルの容量は96mAh/gであった。
チタンアルコキシド1モルに対して、酢酸1.8モル、酢酸リチウム1モルとなる量の酢酸と酢酸リチウムをイソプロパノールと水の混合物に溶解して混合溶媒を作製した。この混合溶媒とチタンアルコキシド、カーボンナノファイバー(CNF)を旋回反応器内に
投入し、66,000N(kgms-2)の遠心力で5分間、内筒を旋回して外筒の内壁に反応物の薄膜を形成すると共に、反応物にずり応力と遠心力を加えて化学反応を促進させ、チタン酸リチウムの前駆体を高分散担持したCNFを得た。この場合、混合溶媒に溶解するチタンアルコキシドとCNFの量は、得られる複合体の組成が、チタン酸リチウム/CNFが、70/30の質量比(w/w)となるように設定した。
実施例2−1で作製した作用電極を正極とし、実施例3で作製した作用電極を負極とし、電解液として、1.0M 六フッ化リン酸リチウム(LiPF6)/炭酸エチレン(EC):炭酸ジメチル(DMC)(1:1 w/w)を用いて、電気化学素子を作製した。この電気化学素子について、エネルギー密度とパワー密度を測定した結果を図19に示す
。
Li4Ti5O12/CNF複合体の合成には、チタン源にTi(OC4H9)4を、リチウム源にCH3COOLiを用いた。これらの原料を、Li4Ti5O12/CNF全体に対して10〜40wt%のCNFや有機溶媒などと共に超遠心力処理(UC処理)を行い、前駆体を得た。その後、高温短時間焼成を行うことにより高結晶性ナノ粒子Li4Ti5O12/CNF複合体を得た。本複合体を、PVDFを用いて電極化し、対極にLi金属、電解液に1M LiBF4/EC+DMC 1:1(in volume)を用いたハーフセルにより、電気化学特性を評価した。充放電試験の結果、出力特性はLi4Ti5O12の重量比に依存することがわかった。また、図22から分かるように、高出力特性の要求される600Cにおいても10C容量の81%(87mAh/g)を、さらに1200Cにおいても68%(72mAh/g)の容量を維持した。
Claims (9)
- 旋回する反応器内で金属酸化物の出発原料とカーボン粉末とを含む溶液にずり応力と遠心力を加えて反応させ、金属酸化物ナノ粒子の前駆体がカーボンに高分散担持された複合体粉末を、窒素雰囲気中で急速加熱処理することによって、金属酸化物の結晶化を進行させ、超薄膜構造体を有する、金属酸化物ナノ粒子をカーボンに高分散担持させることを特徴とする金属酸化物ナノ粒子とカーボンの複合体の製造方法。
- 前記急速加熱処理が、前記複合体を窒素雰囲気中で、400〜1000℃に加熱するものであることを特徴とする請求項1に記載の金属酸化物ナノ粒子とカーボンの複合体の製造方法。
- 前記反応器内において、反応物と共に反応抑制剤を含む溶液にずり応力と遠心力を加えて反応させることを特徴とする請求項2に記載の金属酸化物ナノ粒子とカーボンの複合体の製造方法。
- 前記金属酸化物が、MxOz、AxMyOz、Mx(DO4)y、AxMy(DO4)z(ただし、M:金属元素 A:アルカリ金属又はランタノイド元素)で表されるものである請求項1から請求項3のいずれか1項に記載の金属酸化物ナノ粒子とカーボンの複合体の製造方法。
- 前記金属酸化物が、酸化マンガンMnO、リン酸鉄リチウムLiFePO4、チタン酸リチウムLi4Ti5O12のいずれかである請求項4に記載の金属酸化物ナノ粒子とカーボンの複合体の製造方法。
- 請求項1から請求項5のいずれか1項に記載の方法で製造した金属酸化物ナノ粒子とカーボンの複合体。
- 前記請求項6に記載の複合体をバインダーと混合した後、成形して得られる電極。
- 請求項7に記載の電極を用いた電気化学素子。
- 正極にリン酸鉄リチウムLiFePO4、負極にチタン酸リチウムLi4Ti5O12を用
いた請求項8の電気化学素子。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010084644 | 2010-03-31 | ||
JP2010084644 | 2010-03-31 | ||
JP2010106051 | 2010-05-04 | ||
JP2010106051 | 2010-05-04 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010250185A Division JP5858395B2 (ja) | 2010-03-31 | 2010-11-08 | 金属化合物ナノ粒子とカーボンの複合体の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016119459A true JP2016119459A (ja) | 2016-06-30 |
JP6155316B2 JP6155316B2 (ja) | 2017-06-28 |
Family
ID=56244449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015240707A Expired - Fee Related JP6155316B2 (ja) | 2010-03-31 | 2015-12-10 | 金属化合物ナノ粒子とカーボンの複合体、この複合体を有する電極及び電気化学素子 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6155316B2 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109205586A (zh) * | 2018-09-07 | 2019-01-15 | 高延敏 | 一种工业化的磷酸铁锂制造方法及其制备的磷酸铁锂复合材料 |
CN111948231A (zh) * | 2020-07-22 | 2020-11-17 | 中国科学院物理研究所 | 原位监测AlF3作为锂原电池正极的放电过程的方法 |
WO2021193500A1 (ja) * | 2020-03-24 | 2021-09-30 | 株式会社Gsユアサ | 蓄電素子用正極及び蓄電素子 |
CN115347198A (zh) * | 2021-05-12 | 2022-11-15 | 昆明理工大学 | 利用配位剂制备N-rGO负载MnO纳米催化剂的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006032321A (ja) * | 2004-06-16 | 2006-02-02 | Matsushita Electric Ind Co Ltd | 活物質材料、その製造方法、およびそれを含む非水電解質二次電池 |
JP2007160151A (ja) * | 2005-12-09 | 2007-06-28 | K & W Ltd | 反応方法及びこの方法で得られた金属酸化物ナノ粒子、またはこの金属酸化物ナノ粒子を担持したカーボン及びこのカーボンを含有する電極、並びにこれを用いた電気化学素子。 |
JP2008252002A (ja) * | 2007-03-30 | 2008-10-16 | Nippon Chemicon Corp | 電気化学素子用電極 |
JP2008270795A (ja) * | 2007-03-28 | 2008-11-06 | Nippon Chemicon Corp | 反応方法及びこの方法で得られた金属酸化物ナノ粒子、またはこの金属酸化物ナノ粒子を担持したカーボン及びこのカーボンを含有する電極並びにこの電極を用いた電気化学素子 |
JP2009129719A (ja) * | 2007-11-23 | 2009-06-11 | Toyota Motor Corp | リチウムイオン二次電池、組電池、ハイブリッド自動車、電池システム |
-
2015
- 2015-12-10 JP JP2015240707A patent/JP6155316B2/ja not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006032321A (ja) * | 2004-06-16 | 2006-02-02 | Matsushita Electric Ind Co Ltd | 活物質材料、その製造方法、およびそれを含む非水電解質二次電池 |
JP2007160151A (ja) * | 2005-12-09 | 2007-06-28 | K & W Ltd | 反応方法及びこの方法で得られた金属酸化物ナノ粒子、またはこの金属酸化物ナノ粒子を担持したカーボン及びこのカーボンを含有する電極、並びにこれを用いた電気化学素子。 |
JP2008270795A (ja) * | 2007-03-28 | 2008-11-06 | Nippon Chemicon Corp | 反応方法及びこの方法で得られた金属酸化物ナノ粒子、またはこの金属酸化物ナノ粒子を担持したカーボン及びこのカーボンを含有する電極並びにこの電極を用いた電気化学素子 |
JP2008252002A (ja) * | 2007-03-30 | 2008-10-16 | Nippon Chemicon Corp | 電気化学素子用電極 |
JP2009129719A (ja) * | 2007-11-23 | 2009-06-11 | Toyota Motor Corp | リチウムイオン二次電池、組電池、ハイブリッド自動車、電池システム |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109205586A (zh) * | 2018-09-07 | 2019-01-15 | 高延敏 | 一种工业化的磷酸铁锂制造方法及其制备的磷酸铁锂复合材料 |
WO2021193500A1 (ja) * | 2020-03-24 | 2021-09-30 | 株式会社Gsユアサ | 蓄電素子用正極及び蓄電素子 |
CN111948231A (zh) * | 2020-07-22 | 2020-11-17 | 中国科学院物理研究所 | 原位监测AlF3作为锂原电池正极的放电过程的方法 |
CN115347198A (zh) * | 2021-05-12 | 2022-11-15 | 昆明理工大学 | 利用配位剂制备N-rGO负载MnO纳米催化剂的方法 |
CN115347198B (zh) * | 2021-05-12 | 2024-05-17 | 昆明理工大学 | 利用配位剂制备N-rGO负载MnO纳米催化剂的方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6155316B2 (ja) | 2017-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5858395B2 (ja) | 金属化合物ナノ粒子とカーボンの複合体の製造方法 | |
JP4944974B2 (ja) | チタン酸リチウムナノ粒子とカーボンの複合体、その製造方法、この複合体からなる電極材料、この電極材料を用いた電極及び電気化学素子 | |
Lyu et al. | Carbon coated porous titanium niobium oxides as anode materials of lithium-ion batteries for extreme fast charge applications | |
JP5836568B2 (ja) | チタン酸リチウム結晶構造体とカーボンの複合体、その製造方法、その複合体を用いた電極及び電気化学素子 | |
Zou et al. | Chromium-modified Li4Ti5O12 with a synergistic effect of bulk doping, surface coating, and size reducing | |
WO2011122046A1 (ja) | チタン酸リチウムナノ粒子、チタン酸リチウムナノ粒子とカーボンの複合体、その製造方法、この複合体からなる電極材料、この電極材料を用いた電極、電気化学素子及び電気化学キャパシタ | |
WO2010100954A1 (ja) | 電極材料及びこの電極材料を含有する電極 | |
TW201628239A (zh) | 正極活性材料及其製備方法 | |
JP6375331B2 (ja) | チタン酸化物粒子、チタン酸化物粒子の製造方法、チタン酸化物粒子を含む蓄電デバイス用電極、チタン酸化物粒子を含む電極を備えた蓄電デバイス | |
JP5829796B2 (ja) | チタン酸リチウムナノ粒子とカーボンの複合体の製造方法 | |
JP6155316B2 (ja) | 金属化合物ナノ粒子とカーボンの複合体、この複合体を有する電極及び電気化学素子 | |
TWI513084B (zh) | 一種磷酸鋰鐵錳/碳陰極材料的製造方法及其用途 | |
CN108314010B (zh) | 一种火焰法修饰的碳纳米管及其制备方法和应用 | |
Ye et al. | Constructing hollow nanofibers to boost electrochemical performance: insight into kinetics and the Li storage mechanism for CrNb49O124 | |
Yuan et al. | High‐Safety Anode Materials for Advanced Lithium‐Ion Batteries | |
JP6012057B2 (ja) | チタン酸リチウムナノ粒子の製造方法 | |
JP5877630B2 (ja) | 電気化学キャパシタ | |
JP2012104288A (ja) | 酸化マンガンナノ粒子とカーボンの複合体、その製造方法、この複合体を用いた電極及び電気化学素子 | |
JP5965015B2 (ja) | チタン酸リチウム結晶構造体 | |
JP7524892B2 (ja) | 電極及び電極の製造方法 | |
JP2011216748A (ja) | 電気化学キャパシタ | |
WO2016098371A1 (ja) | 金属化合物粒子群の製造方法、金属化合物粒子群及び金属化合物粒子群を含む蓄電デバイス用電極 | |
Wang et al. | New Insights of Controllable Oxygen Vacancy Sno2-X Anode for Lithium-Ion Batteries with High Stability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170516 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170605 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6155316 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |