JP2013239221A - 光記録装置および光記録方法 - Google Patents
光記録装置および光記録方法 Download PDFInfo
- Publication number
- JP2013239221A JP2013239221A JP2012111804A JP2012111804A JP2013239221A JP 2013239221 A JP2013239221 A JP 2013239221A JP 2012111804 A JP2012111804 A JP 2012111804A JP 2012111804 A JP2012111804 A JP 2012111804A JP 2013239221 A JP2013239221 A JP 2013239221A
- Authority
- JP
- Japan
- Prior art keywords
- recording
- layer
- guide
- physical address
- recording layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/10—Digital recording or reproducing
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/007—Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
- G11B7/00736—Auxiliary data, e.g. lead-in, lead-out, Power Calibration Area [PCA], Burst Cutting Area [BCA], control information
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/0604—Improving or facilitating administration, e.g. storage management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0638—Organizing or formatting or addressing of data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0668—Interfaces specially adapted for storage systems adopting a particular infrastructure
- G06F3/0671—In-line storage system
- G06F3/0673—Single storage device
- G06F3/0674—Disk device
- G06F3/0677—Optical disk device, e.g. CD-ROM, DVD
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/10—Digital recording or reproducing
- G11B20/12—Formatting, e.g. arrangement of data block or words on the record carriers
- G11B20/1217—Formatting, e.g. arrangement of data block or words on the record carriers on discs
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/10—Digital recording or reproducing
- G11B2020/10916—Seeking data on the record carrier for preparing an access to a specific address
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/10—Digital recording or reproducing
- G11B2020/10916—Seeking data on the record carrier for preparing an access to a specific address
- G11B2020/10925—Seeking data on the record carrier for preparing an access to a specific address involving an inter-layer jump, i.e. changing from one recording layer to another
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/10—Digital recording or reproducing
- G11B20/12—Formatting, e.g. arrangement of data block or words on the record carriers
- G11B20/1217—Formatting, e.g. arrangement of data block or words on the record carriers on discs
- G11B2020/1218—Formatting, e.g. arrangement of data block or words on the record carriers on discs wherein the formatting concerns a specific area of the disc
- G11B2020/1238—Formatting, e.g. arrangement of data block or words on the record carriers on discs wherein the formatting concerns a specific area of the disc track, i.e. the entire a spirally or concentrically arranged path on which the recording marks are located
- G11B2020/1239—Formatting, e.g. arrangement of data block or words on the record carriers on discs wherein the formatting concerns a specific area of the disc track, i.e. the entire a spirally or concentrically arranged path on which the recording marks are located the track being a pregroove, e.g. the wobbled track of a recordable optical disc
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2403—Layers; Shape, structure or physical properties thereof
- G11B7/24035—Recording layers
- G11B7/24038—Multiple laminated recording layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2403—Layers; Shape, structure or physical properties thereof
- G11B7/24047—Substrates
- G11B7/2405—Substrates being also used as track layers of pre-formatted layers
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Signal Processing (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Optical Recording Or Reproduction (AREA)
- Signal Processing For Digital Recording And Reproducing (AREA)
- Management Or Editing Of Information On Record Carriers (AREA)
Abstract
【課題】ガイド層と複数の記録層を有する多層ディスクにおいて、全ての記録層のデータ領域に対して連続した論理アドレスを良好に割り当てる。
【解決手段】コントローラ81は、ガイド層の物理アドレスと記録層情報とから全ての記録層のデータ領域の論理アドレスを計算によって得る。具体的には、
ガイド層における物理アドレスの最大値(最終物理アドレス)をPSN_max、
記録層Lxの記録層情報をx(x=0,1,2,・・・)、
記録層Lxのデータ領域における記録先の位置に対応する物理アドレスをPSN、
記録層Lxのデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSNとして、
LSN=(PSN_max×x)+PSN・・・(1)
の計算を行う。
【選択図】図8
【解決手段】コントローラ81は、ガイド層の物理アドレスと記録層情報とから全ての記録層のデータ領域の論理アドレスを計算によって得る。具体的には、
ガイド層における物理アドレスの最大値(最終物理アドレス)をPSN_max、
記録層Lxの記録層情報をx(x=0,1,2,・・・)、
記録層Lxのデータ領域における記録先の位置に対応する物理アドレスをPSN、
記録層Lxのデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSNとして、
LSN=(PSN_max×x)+PSN・・・(1)
の計算を行う。
【選択図】図8
Description
本発明は、ガイド層と複数の記録層を有する多層ディスクに対して記録を行う光記録装置および光記録方法に関する。
DVD(Digital Versatile Disk)、ブルーレイディスク(登録商標)などの光ディスクの大容量化を目的として、記録層を多層化することが行われる。記録層の多層化に伴い、記録層へのデータの記録または再生時のトラックキング制御を、記録層とは別の層に設けられたガイドトラックを用いて行う方式も知られている。例えば、グルーブ構造によるガイドトラックが設けられたガイドトラック層に390nm〜420nmの波長(青色)の光を使用してトラッキング制御を行うとともに、複数の記録層の中の一つの記録層に650nm〜680nmの波長(赤色)の光を使用して記録を行う光ドライブ装置などがある(例えば、特許文献1等)。
追記型のDVDなどのディスクにおいては、記録トラック上に物理アドレスを記録する方法としてウォブル変調方式が採用される。ウォブル変調方式は、記録トラックを形成する案内溝(グルーブ)を蛇行させ、その蛇行(ウォブル)の周波数変調あるいは位相変調などによって物理アドレスを記録する方式である。ディスクドライブは、ディスクにデータを記録する際、ウォブルを復調して物理アドレス(セクタ番号)を取得し、この物理アドレスを含むID(Identification Data)を記録データフレームの論理アドレスとして生成し、そのIDを記録用のユーザデータなどとともにディスクに記録する。そしてディスクドライブは、上位装置から、論理アドレスを指定したリードコマンドを受け付けると、論理アドレスを物理アドレスに変換し、ディスク上の該当する位置のユーザデータを読み出し、上位装置に転送する。
しかしながら、ガイド層と複数の記録層を有する多層ディスクにおいては、各記録層は平らな面で構成できることが製造上の利点とされることから、DVDのように物理アドレスがウォブル変調方式によって記録された案内溝を設けることは想定されていない。そこで、記録層に記録データフレームを記録する際に、この記録データフレームに割り当てる論理アドレスをどのようにして取得し、また取得した物理アドレスからどのようにして論理アドレスを生成するかが課題となってくる。
以上のような事情に鑑み、本発明の目的は、ガイド層と複数の記録層を有する多層ディスクにおいて、全ての記録層のデータ領域に対して連続した論理アドレスを良好に割り当てることができるとともに、多層ディスクの製造歩留りの向上を図ることのできる光記録装置および光記録方法を提供することにある。
上記目的を達成するため、本発明の一形態に係る光記録装置は、物理アドレス情報が記録されたガイドトラックが設けられた1以上のガイド層と、前記ガイドトラックに従って記録が行われる複数の記録層とを有するディスクに記録を行う光記録装置であって、前記ガイド層の前記ガイドトラックから前記物理アドレスの情報を取得する物理アドレス再生部と、前記取得された物理アドレスの情報と前記記録層を特定する情報から、当該記録層に記録されるデータ単位に付与される論理アドレスを計算する制御部とを具備する。
本発明の光記録装置では、ガイド層の物理アドレスと記録層情報とから複数の記録層のデータ領域の論理アドレスが計算によって生成される。これにより、個々の記録層にウォブルやピット列で物理アドレスを記録しておき、これを利用して各記録層の論理アドレスをユーザデータの記録時に生成する方式に比較して、多層ディスクの製造歩留りを向上させることができる。すなわち、記録層毎にウォブルやプリピットなどによって物理アドレスが記録された光ディスクでは、物理アドレスの読み込みでエラーが発生する記録層が一つでも存在するような光ディスクは不良品として処分されねばならない。したがって、このような多層ディスクの場合には記録層の積層数が増加するにつれて不良品の発生確率が増大する傾向となるのに対し、本実施形態では、ガイド層から物理アドレスを読み出すことができればよいため、記録層の多層化が比較的容易となり、製造歩留りの向上も期待できる。
また、本発明において、前記制御部は、
前記ガイドトラックに記録された物理アドレスの最大値をPSN_max、
前記記録層Lxを特定する情報をx(前記ガイド層に近いまたは遠い記録層より順にx=0,1,2,・・・)、
前記記録層Lxのデータ領域における記録先の位置に対応する前記物理アドレスをPSN、
前記記録層Lxのデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSNとして、
LSN=(PSN_max×x)+PSN
の式によりLSNを計算するものであってよい。
前記ガイドトラックに記録された物理アドレスの最大値をPSN_max、
前記記録層Lxを特定する情報をx(前記ガイド層に近いまたは遠い記録層より順にx=0,1,2,・・・)、
前記記録層Lxのデータ領域における記録先の位置に対応する前記物理アドレスをPSN、
前記記録層Lxのデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSNとして、
LSN=(PSN_max×x)+PSN
の式によりLSNを計算するものであってよい。
また、本発明において、前記ガイド層は、第1のガイドトラックを有する第1のガイド層と、第1のガイドトラックに対してスパイラルの向きが逆の第2のガイドトラックを有する第2のガイド層とで構成され、前記第1のガイドトラックに記録された物理アドレスを開始側として当該第1のガイドトラックと前記第2のガイドトラックに全体として1つの物理アドレス空間が割り当てられ、
前記制御部は、
前記第1のガイドトラックに記録された物理アドレスの最大値をPSN_max、
前記記録層Lxを特定する情報をx(前記第1のガイド層に近いまたは遠い記録層より順にx=0,1,2,・・・)、
偶数番目の記録層Lx(x=0,2,・・・)のデータ領域における記録先の位置に対応する前記第1のガイドトラックの物理アドレスをPSN0、
奇数番目の記録層Lx(x=1,3,・・・)のデータ領域における記録先の位置に対応する前記第2のガイドトラックの物理アドレスをPSN1、
偶数番目の記録層Lx(x=0,2,・・・)のデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSN0、
奇数番目の記録層Lx(x=1,3,・・・)のデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSN1として、
LSN0=(PSN_max×x)+PSN0
LSN1=(PSN_max×(x−1))+PSN1
の式によりLSN0およびLSN1をそれぞれ計算するものであってよい。
前記制御部は、
前記第1のガイドトラックに記録された物理アドレスの最大値をPSN_max、
前記記録層Lxを特定する情報をx(前記第1のガイド層に近いまたは遠い記録層より順にx=0,1,2,・・・)、
偶数番目の記録層Lx(x=0,2,・・・)のデータ領域における記録先の位置に対応する前記第1のガイドトラックの物理アドレスをPSN0、
奇数番目の記録層Lx(x=1,3,・・・)のデータ領域における記録先の位置に対応する前記第2のガイドトラックの物理アドレスをPSN1、
偶数番目の記録層Lx(x=0,2,・・・)のデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSN0、
奇数番目の記録層Lx(x=1,3,・・・)のデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSN1として、
LSN0=(PSN_max×x)+PSN0
LSN1=(PSN_max×(x−1))+PSN1
の式によりLSN0およびLSN1をそれぞれ計算するものであってよい。
さらに、本発明において、前記ガイド層は、第1のガイドトラックを有する第1のガイド層と、第1のガイドトラックに対してスパイラルの向きが逆の第2のガイドトラックを有する第2のガイド層とで構成され、前記第1のガイドトラックに記録された物理アドレスが一つの物理アドレス空間においてスパイラルの向きに沿って増大し、前記第2のガイドトラックに記録された物理アドレスが前記物理アドレス空間において前記スパイラルの向きに沿って減少するように記録され、前記制御部は、
前記第1のガイドトラックに記録された物理アドレスの最大値をPSN_max、
前記記録層Lxを特定する情報をx(前記第1のガイド層に近いまたは遠い記録層より順にx=0,1,2,・・・)、
偶数番目の記録層Lx(x=0,2,・・・)のデータ領域における記録先の位置に対応する前記第1のガイドトラックの物理アドレスをPSN0、
奇数番目の記録層Lx(x=1,3,・・・)のデータ領域における記録先の位置に対応する前記第2のガイドトラックの物理アドレスをPSN1、
偶数番目の記録層Lx(x=0,2,・・・)のデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSN0、
奇数番目の記録層Lx(x=1,3,・・・)のデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSN1として、
LSN0=(PSN_max×x)+PSN0
LSN1=(PSN_max×x)+PSN_max−PSN1+1
の式によりLSN0およびLSN1をそれぞれ計算するものであってよい。
前記第1のガイドトラックに記録された物理アドレスの最大値をPSN_max、
前記記録層Lxを特定する情報をx(前記第1のガイド層に近いまたは遠い記録層より順にx=0,1,2,・・・)、
偶数番目の記録層Lx(x=0,2,・・・)のデータ領域における記録先の位置に対応する前記第1のガイドトラックの物理アドレスをPSN0、
奇数番目の記録層Lx(x=1,3,・・・)のデータ領域における記録先の位置に対応する前記第2のガイドトラックの物理アドレスをPSN1、
偶数番目の記録層Lx(x=0,2,・・・)のデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSN0、
奇数番目の記録層Lx(x=1,3,・・・)のデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSN1として、
LSN0=(PSN_max×x)+PSN0
LSN1=(PSN_max×x)+PSN_max−PSN1+1
の式によりLSN0およびLSN1をそれぞれ計算するものであってよい。
本発明の別の形態に係る光記録方法は、物理アドレス情報が記録されたガイドトラックが設けられた1以上のガイド層と、前記ガイドトラックに従って記録が行われる複数の記録層とを有するディスクに記録を行う方法であって、前記ガイド層の前記ガイドトラックから前記物理アドレスの情報を取得するステップと、前記取得された物理アドレスの情報と前記記録層を特定する情報から、当該記録層に記録されるデータ単位に付与される論理アドレスを計算するステップとを有する。
以上のように、本発明によれば、ガイド層と複数の記録層を有する多層ディスクにおいて、全ての記録層のデータ領域に対して連続した論理アドレスを良好に割り当てることができるとともに、多層ディスクの製造歩留りの向上を図ることができる。
以下、図面を参照しながら、本発明の実施形態を説明する。
図1は、本発明の第1の実施形態に係る光記録システムを示す図である。
図1は、本発明の第1の実施形態に係る光記録システムを示す図である。
図1は光記録システムの全体の構成を示す図である。
この光記録システム1は、ストレージユニット10と、ディスク搬送機構20と、ドライブユニット30と、RAIDコントローラ40と、ホスト装置50とを備える。以下、それぞれの詳細について説明する。
この光記録システム1は、ストレージユニット10と、ディスク搬送機構20と、ドライブユニット30と、RAIDコントローラ40と、ホスト装置50とを備える。以下、それぞれの詳細について説明する。
[ストレージユニット10]
ストレージユニット10は、複数の多層光記録媒体である光ディスク11が個別に着脱自在に収容されるユニットである。
ストレージユニット10は、複数の多層光記録媒体である光ディスク11が個別に着脱自在に収容されるユニットである。
ストレージユニット10内での複数の光ディスク11の収容形態としては平積み、縦並びなどが想定される。いずれの場合も、ストレージユニット10に対して光ディスク11の出し入れが円滑に行われるように、隣り合う光ディスク11間には一定の隙間が設けられることが好ましい。ストレージユニット10の形状は、ユーザによるハンドリング性、光ディスク11の収納効率などの点から、例えば直方体形状、円筒形状などが想定される。図1の例では、複数の光ディスク11を平積みで収容した直方体形状のストレージユニット10が用いられる。
図2は、ストレージユニット10、光ディスク11およびドライブユニット30の構成を示す図である。
ストレージユニット10の少なくとも一つの側面には光ディスク11の出し入れのための開口部101と、この開口部101を開閉する扉(図示せず)とが設けられている。扉はディスク搬送機構20によるストレージユニット10からの光ディスク11の出し入れの動作と連動して開閉され、その他のときは閉状態とされる。
ストレージユニット10の少なくとも一つの側面には光ディスク11の出し入れのための開口部101と、この開口部101を開閉する扉(図示せず)とが設けられている。扉はディスク搬送機構20によるストレージユニット10からの光ディスク11の出し入れの動作と連動して開閉され、その他のときは閉状態とされる。
なお、本発明において、ストレージユニット10の構成は図2のものに限定されない。ストレージユニット10の形状、開口部の数や位置、扉の有無、複数の光ディスク11の収容形態など、様々な変形が可能である。
[光ディスク11]
ストレージユニット10に収容される光ディスク11は、ガイド層と記録層とが別々の層に分離して形成された、いわゆる「ガイド層付き光ディスク」である。特にこの実施形態では、2枚のガイド層付き光ディスクを貼り合わせた両面記録型の光ディスクと、ガイド層付き光ディスクを単体で使用した片面記録型の光ディスクが用いられる。以降、両面記録型の光ディスクを「両面ディスク」、片面記録型の光ディスクを「片面ディスク」とそれぞれ略称する。
ストレージユニット10に収容される光ディスク11は、ガイド層と記録層とが別々の層に分離して形成された、いわゆる「ガイド層付き光ディスク」である。特にこの実施形態では、2枚のガイド層付き光ディスクを貼り合わせた両面記録型の光ディスクと、ガイド層付き光ディスクを単体で使用した片面記録型の光ディスクが用いられる。以降、両面記録型の光ディスクを「両面ディスク」、片面記録型の光ディスクを「片面ディスク」とそれぞれ略称する。
図3はガイド層付き光ディスク111の構成を示す断面図である。
ガイド層付き光ディスク111は、ガイド層112と複数の記録層113とを有する。同図のガイド層付き光ディスク111の例では記録層113の層数は"4"である。ガイド層112とこれに最も近い記録層113との間、隣り合う記録層113の間との間には光透過性を有する中間層114がそれぞれ介層されている。これらの層は、光ピックアップ32からの記録再生光R1およびガイド光R2が入射される側から、保護層115、記録層113、中間層114、記録層113、中間層114、記録層113、中間層114、記録層113、中間層114、ガイド層112の順に積層配置される。
ガイド層付き光ディスク111は、ガイド層112と複数の記録層113とを有する。同図のガイド層付き光ディスク111の例では記録層113の層数は"4"である。ガイド層112とこれに最も近い記録層113との間、隣り合う記録層113の間との間には光透過性を有する中間層114がそれぞれ介層されている。これらの層は、光ピックアップ32からの記録再生光R1およびガイド光R2が入射される側から、保護層115、記録層113、中間層114、記録層113、中間層114、記録層113、中間層114、記録層113、中間層114、ガイド層112の順に積層配置される。
ガイド層112において記録層113に対向する側の面には、トラッキング制御のためのランド・グルーブ構造によるガイドトラック121がスパイラル状あるいは同心円状に設けられている。ガイドトラック121の側壁面にはウォブルによる変調によって、ディスク全周のわたるトラック位置情報を示す物理アドレス情報が形成されている。ガイドトラック121は、例えばDVD(Digital Versatile Disk)の記録再生に用いられる赤色レーザ光に対応するトラックピッチ(0.64μm)で形成される。ランドとグルーブ間のピッチの平均は0.32μmである。以後、赤色レーザ光のレーザ光を「ガイド光」と呼ぶ。
本実施形態の光記録システム1では、ガイドトラック121のランドとグルーブのそれぞれにおいて、例えば、差動プッシュプル法(DPP:Differential Push-Pull)などによるトラッキング制御が行われる。ガイドトラック121のランドとグルーブのそれぞれにおいてトラッキング制御が行われることで、記録層113に対する情報の記録は0.32μmのトラックピッチで行うことが可能である。
記録層113は、例えばブルーレイディスク(登録商標)の記録再生に用いられる青色レーザ光に対応するトラックピッチ(0.32μm)で情報の記録が行われる層である。以後、この青色レーザ光を「記録再生光」または「記録光」と呼ぶ。記録層113は、例えば光吸収層と反射層等とにより構成される。光吸収層としてはシアニン系色素やアゾ系色素等の有機色素や、Si、Cu、Sb、Te、Ge等の無機材料が用いられる。記録光がガイド層付き光ディスク111における目的の記録層113に照射されると、その記録光が照射された領域の反射率が変化し、反射率が変化した領域がピットとして形成されることで、記録層113に情報が記録される。
なお、記録層113への情報の記録時および再生時のトラッキング制御および物理アドレスならびに基準クロックの取得は、ガイド層112のガイドトラック121を用いて行われるため、記録層113にはランド・グルーブ構造によるガイドトラック121は不要である。したがって、記録層113の表面は平坦でよい。
両面ディスクとしての光ディスク11は、2枚のガイド層付き光ディスク111がガイド層112のランド・グルーブ構造面の逆側の面どうしを対向させるようにして貼り合わせて一体化することにより構成される。
図4はガイド層付き光ディスク111におけるガイド層112および記録層113の半径方向の位置によって区分される領域の構成を示す図である。
ガイド層112および記録層113は、半径方向における位置によって内周側よりリードイン領域、データ領域、リードアウト領域に各層共通に区分される。
ガイド層112および記録層113は、半径方向における位置によって内周側よりリードイン領域、データ領域、リードアウト領域に各層共通に区分される。
ガイド層112のリードイン領域には、ガイド層付き光ディスク111に固有の管理情報がウォブル変調などによって予め記録されている。
ガイド層付き光ディスク111に固有の管理情報は、記録層の数、記録方式、記録線速度、記録再生時のレーザパワーおよびレーザ駆動パルス波形などの推奨情報、データ領域の位置情報、OPC領域の位置情報などを含む。
ガイド層付き光ディスク111に固有の管理情報は、記録層の数、記録方式、記録線速度、記録再生時のレーザパワーおよびレーザ駆動パルス波形などの推奨情報、データ領域の位置情報、OPC領域の位置情報などを含む。
ガイド層112のデータ領域には、当該データ領域に対して割り当てられた物理アドレス情報が、ガイドトラック121のグルーブのウォブル変調などによって予め記録されている。
なお、ガイド層112のリードアウト領域にも、リードイン領域に記録された情報と同一の情報がウォブル変調などによって予め記録されていてもよい。
なお、ガイド層112のリードアウト領域にも、リードイン領域に記録された情報と同一の情報がウォブル変調などによって予め記録されていてもよい。
記録層113のリードイン領域は、記録層113への記録再生に用いられる管理情報がピット列によって記録される領域である。記録層113への記録再生に用いられる管理情報は、当該記録層113に割り当てられた層番号などの層情報、欠陥領域の交替処理に関する交替管理情報、OPC処理(校正処理)によって決定された記録時の最適なレーザパワーなどの記録再生条件などを含む。
記録層113のデータ領域にはユーザデータが記録される。ユーザデータはデータフレームと呼ばれる構造単位で記録される。
図6はデータフレームの構造を示す図である。同図に示すように、データフレームは、先頭よりディスクのID(Identification data)、IDのエラー検出コード、著作権情報、ユーザデータ、エラー検出コードで構成される。
図6はデータフレームの構造を示す図である。同図に示すように、データフレームは、先頭よりディスクのID(Identification data)、IDのエラー検出コード、著作権情報、ユーザデータ、エラー検出コードで構成される。
図7はIDの構成を示す図である。
IDは、セクタ情報(Sector Information)と論理アドレスとで構成される。
セクタ情報は、ディスク層数情報と記録層情報(レイヤ情報)とを含む。
IDは、セクタ情報(Sector Information)と論理アドレスとで構成される。
セクタ情報は、ディスク層数情報と記録層情報(レイヤ情報)とを含む。
ディスク層数情報は、ガイド層付き光ディスク111に設けられた片面分の記録層の層数を示す情報である。
記録層情報は、ガイド層付き光ディスク111に設けられた片面分の個々の記録層を識別するための値である。具体的には、ガイド層に最も近い記録層に対して"0"が割り当てられ、ガイド層から離れるに従って"1"が加算された値がその他の記録層にそれぞれ割り当てられる。逆に、ガイド層に最も遠い記録層に対して"0"が割り当てられ、ガイド層に近づくに従って"1"が加算された値がその他の記録層にそれぞれ割り当てられるようにしてもよい。本実施形態では前者が採用されている。
論理アドレスは、記録層へのユーザデータの記録時にガイド層のガイドトラックに記録された物理アドレス(セクタ番号)と記録層情報からの計算によって得られる値である。また、記録層からのユーザデータの再生時には、論理アドレスは逆変換用の計算式によって物理アドレス(セクタ番号)と記録層情報とに逆変換される。
[ディスク搬送機構20]
ディスク搬送機構20は、ストレージユニット10から目的の光ディスク11を取り出してドライブユニット30内のディスクドライブ31に装填したり、逆にディスクドライブ31から排出された光ディスク11をストレージユニット10に戻したりするための機構である。
ディスク搬送機構20は、ストレージユニット10から目的の光ディスク11を取り出してドライブユニット30内のディスクドライブ31に装填したり、逆にディスクドライブ31から排出された光ディスク11をストレージユニット10に戻したりするための機構である。
ディスク搬送機構20は、例えば、ストレージユニット10から同時に複数の光ディスク11を取り出して、ドライブユニット30内の複数のディスクドライブ31に別々に装填することができるように、独立して動作可能な複数の搬送機構を備えたものであることが望ましい。
[ドライブユニット30]
ドライブユニット30には複数のディスクドライブ31が搭載される。同図の例では、5機のディスクドライブ31が搭載される。ストレージユニット10に収容される光ディスク11の数とドライブユニット30内に搭載されるディスクドライブ31の数は必ずしも同じとする必要はない。
ドライブユニット30には複数のディスクドライブ31が搭載される。同図の例では、5機のディスクドライブ31が搭載される。ストレージユニット10に収容される光ディスク11の数とドライブユニット30内に搭載されるディスクドライブ31の数は必ずしも同じとする必要はない。
(ディスクドライブ31の構成)
図5は光記録装置であるディスクドライブ31の構成を示す図である。
このディスクドライブ31は、光ピックアップ32を備える。光ピックアップ32は、記録再生光に対応する記録再生光学系と、ガイド光に対応するガイド光学系とを備える。
図5は光記録装置であるディスクドライブ31の構成を示す図である。
このディスクドライブ31は、光ピックアップ32を備える。光ピックアップ32は、記録再生光に対応する記録再生光学系と、ガイド光に対応するガイド光学系とを備える。
記録再生光学系は、第1の光源33、第1のコリメータレンズ34、第1の偏光ビームスプリッタ35、第1のリレーレンズ36、第2のコリメータレンズ37、合成プリズム38、1/4波長板39、対物レンズ60、第1の受光レンズ61および第1の受光部62などで構成される。ここで、合成プリズム38、1/4波長板39、対物レンズ60は、当該記録再生光学系と後述するガイド光学系の両方に属する。
第1の光源33は第1の波長のレーザ光を記録再生光R1として出射するレーザダイオードを備える。第1の光源33から出射された記録再生光R1は第1のコリメータレンズ34によって平行光とされ、第1の偏光ビームスプリッタ35、第1のリレーレンズ36及び第2のコリメータレンズ37を介して合成プリズム38に入射する。合成プリズム38は、第2のコリメータレンズ37から入射される記録再生光R1と、後述するガイド光学系に属する第3のコリメータレンズから入射される第2の波長のガイド光R2とを互いの光軸が一致するように合成し、1/4波長板39を介して対物レンズ60に入射させる。対物レンズ60にて、入射された記録再生光は、両面ディスクである光ディスク11の一方のガイド層付き光ディスク111の目的の記録層113(図3)に合焦させるように集光される。
記録層113によって反射された記録再生光(戻り光)は、対物レンズ60、1/4波長板39を介して合成プリズム38に入射し、合成プリズム38を入射方向のまま透過して、第2のコリメータレンズ37及び第1のリレーレンズ36を介して第1の偏光ビームスプリッタ35に戻る。第1の偏光ビームスプリッタ35は、第1のリレーレンズ36からの第1の波長の戻り光を約90度の角度で反射して第1の受光レンズ61を介して第1の受光部62に入射させる。
第1の受光部62は、例えば受光面が縦横に計4分割された受光素子を有し、分割された受光面毎の受光強度に応じたレベルの電圧信号を再生信号として出力する。
ガイド光学系(第1のガイド光学系、第2のガイド光学系)は、第2の光源63、第3のコリメータレンズ64、第2の偏光ビームスプリッタ65、第2のリレーレンズ66、第4のコリメータレンズ67、合成プリズム38、1/4波長板39、対物レンズ60、第2の受光レンズ68および第2の受光部69などで構成される。
第2の光源63は、赤色レーザ光であるガイド光R2を出射する。第2の光源63から出射されたガイド光R2は第3のコリメータレンズ64によって平行光とされ、第2の偏光ビームスプリッタ65、第2のリレーレンズ66及び第4のコリメータレンズ67を介して合成プリズム38に入射する。合成プリズム38に入射されたガイド光R2は、前述したように、合成プリズム38にて記録再生光学系の第2のコリメータレンズ37から入射される第1の波長の記録再生光R1と光軸が一致するように合成され、1/4波長板39を介して対物レンズ60に入射される。対物レンズ60にて、入射されたガイド光R2は、両面ディスクである光ディスク11の一方のガイド層付き光ディスク111のガイド層112(図3)に合焦させるように集光される。
ガイド層112によって反射されたガイド光R2(戻り光)は、対物レンズ60、1/4波長板39を介して合成プリズム38に入射し、合成プリズム38にて約90度の角度で反射され、第4のコリメータレンズ67及び第2のリレーレンズ66を介して第2の偏光ビームスプリッタ65に戻る。第2の偏光ビームスプリッタ65は、第2のリレーレンズ66からのガイド光R2の戻り光を、約90度の角度で反射して第2の受光レンズ68を介して第2の受光部69に入射させる。
第2の受光部69は、例えば受光面が縦横に計4分割された受光素子を有し、分割された受光面毎の受光強度に応じたレベルの電圧信号を再生信号として出力する。
また、光ピックアップ32には、トラッキングアクチュエータ70とフォーカシングアクチュエータ(図示せず)が設けられている。トラッキングアクチュエータ70はトラッキング制御部71による制御のもとで対物レンズ60を光軸に対して垂直な方向であるディスク半径方向に移動させる。フォーカシングアクチュエータは、図示しないフォーカス制御部による制御のもと対物レンズ60を光軸方向に移動させる。
さらに、図示は省略したが、光ピックアップ32には、記録再生光が照射される記録層113を切り替えるように第1のリレーレンズ36を光軸方向に移動させる第1のリレーレンズアクチュエータと、第2のリレーレンズ66を光軸方向に移動させる第2のリレーレンズアクチュエータが設けられている。
以上が、光ピックアップ32の説明である。
以上が、光ピックアップ32の説明である。
ディスクドライブ31は、上記の光ピックアップ32のほか、データ変調部72、第1の光源駆動部73、第2の光源駆動部74、等化器75、データ再生部76、トラッキングエラー生成部77、トラッキング制御部71、物理アドレス再生部78、ディスクモータ駆動部79、フィード機構80、コントローラ81、さらには図示しないフォーカス制御部、リレーレンズ制御部などを有する。
データ変調部72は、コントローラ81より供給された記録用のデータを変調し、変調信号を第1の光源駆動部73に供給する。
第1の光源駆動部73は、データ変調部72からの変調信号をもとに第1の光源33を駆動するための駆動パルスを生成する。
等化器75は、第1の受光部62からの再生RF信号に対して、例えばPRML(Partial Response Maximum Likelihood)などの等化処理を行って二値信号を生成する。
データ再生部76は、等化器75より出力された二値信号からデータを復調し、復調されたデータから誤り訂正などの復号処理を行って再生データを生成し、コントローラ81に供給する。
トラッキングエラー生成部77は、第2の受光部69の出力をもとに、例えば差動プッシュプル法などによってトラッキングエラー信号を生成し、トラッキング制御部71に供給する。
トラッキング制御部71は、トラッキングエラー生成部77からのトラッキングエラー信号をもとにトラッキングアクチュエータ70を制御して対物レンズ60を光軸に対して垂直な方向に移動させてトラッキング制御を行う。
物理アドレス再生部78は、第2の受光部69の出力をもとに、ガイド層のガイドトラックに例えばウォブルあるいはピット列などに変調された管理情報および物理アドレス(セクタ番号)を再生してコントローラ81に供給する。
ディスクモータ駆動部79は、コントローラ81による制御のもと光ディスク11を回転駆動させるディスクモータ82に駆動信号を供給する。
フィード機構80は、光ピックアップ32を光ディスク11の半径方向に搬送する機構である。
図示しないフォーカス制御部は、図示しないフォーカシングアクチュエータを駆動させることにより、対物レンズ60を光軸方向に移動させる。
コントローラ81(制御部)は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などを備える。コントローラ81は、RAMに割り当てられたメインメモリの領域にロードされたプログラムに基づいて、ディスクドライブ31の全体の制御を行う。
ドライブユニット30には、上記のディスクドライブ31が複数搭載され、それぞれ独立して制御可能とされ、装填された光ディスク11に対する情報の記録および再生をそれぞれ同時に行うことができる。
本実施形態の光記録システム1は、両面ディスクへの対応を想定しているため、それぞれのディスクドライブ31には、当該光ディスク11の一方の面(表面)と他方の面(裏面)のそれぞれに対応して光ピックアップ32が一機ずつ第1の光ピックアップ(第1のガイド光光学系を含む。)および第2の光ピックアップ(第2のガイド光光学系を含む。)として配置され、それぞれの光ピックアップ32に対応してデータ変調部72、第1の光源駆動部73、第2の光源駆動部74、等化器75、データ再生部76、トラッキングエラー生成部77、トラッキング制御部71、物理アドレス再生部78、フィード機構80、フォーカス制御部、リレーレンズ制御部などが設けられている。そしてコントローラ81は、上記2系統の制御を総括して行うものとされている。
[RAIDコントローラ40]
RAID(Redundant Arrays of Inexpensive Disks)コントローラ40は、ホスト装置50からの記録命令などに対して、ドライブユニット30内の1以上のディスクドライブ31にデータを多重に記録したり、ストライピングにより分散して記録したりするRAID制御を行う。
RAID(Redundant Arrays of Inexpensive Disks)コントローラ40は、ホスト装置50からの記録命令などに対して、ドライブユニット30内の1以上のディスクドライブ31にデータを多重に記録したり、ストライピングにより分散して記録したりするRAID制御を行う。
RAIDコントローラ40より記録または再生の指示が与えられたそれぞれのディスクドライブ31のコントローラ81は、光ディスク11の両側のガイド層付き光ディスク111に対してデータを記録したり再生したりするための制御を行う。
[ホスト装置50]
ホスト装置50は、本光記録システム1を制御する最上位の装置である。ホスト装置50はパーソナルコンピュータでもよい。ホスト装置50は、記録用のデータを作成または準備し、RAIDコントローラ40に対して当該記録用のデータの記録命令を供給する。また、ホスト装置50は、ユーザなどより指定されたファイル名を含む読出命令をRAIDコントローラ40に供給し、RAIDコントローラ40よりその応答として該当するファイル名のデータを取得する。
ホスト装置50は、本光記録システム1を制御する最上位の装置である。ホスト装置50はパーソナルコンピュータでもよい。ホスト装置50は、記録用のデータを作成または準備し、RAIDコントローラ40に対して当該記録用のデータの記録命令を供給する。また、ホスト装置50は、ユーザなどより指定されたファイル名を含む読出命令をRAIDコントローラ40に供給し、RAIDコントローラ40よりその応答として該当するファイル名のデータを取得する。
[光記録システム1の動作]
次に、本実施形態の光記録システム1において代表される動作として、記録層のデータ領域に記録されるデータフレームの作成手順を説明する。
次に、本実施形態の光記録システム1において代表される動作として、記録層のデータ領域に記録されるデータフレームの作成手順を説明する。
ディスクドライブ31のコントローラ81は、まず、図6に示したデータフレームに付加すべきID(Identification data)を作成する。このIDの作成において、コントローラ81は、ホスト装置50より予め指定されたディスク層数に対応するディスク層数情報と、記録先の記録層に対応する記録層識別子(レイヤ情報)とを連結してセクタ情報(Sector Information)を作成する。なお、本実施形態では、片面に4層の記録層が設けられた多層ディスクを想定している。
続いてコントローラ81は、IDを構成するもう一つの要素である論理アドレスを次のようにして生成する。
ここで、論理アドレスの作成処理を詳細に説明する。
図8はガイド層のデータ領域の物理アドレスと各記録層のデータ領域に割り当てられる論理アドレスとの関係を示す図である。
図8において、実線はガイド層のデータ領域の物理アドレス、点線は4つの記録層のデータ領域に割り当てられる論理アドレスを示している。4つの記録層はガイド層に近いものから順に記録層L0、記録層L1、記録層L2、記録層L3と表記される。なお、4つの記録層へのユーザデータの記録はL0、L1、L2、L3の順で行われ、個々の記録層においてユーザデータの記録は内周から外周へ向けて行われることとする。
図8はガイド層のデータ領域の物理アドレスと各記録層のデータ領域に割り当てられる論理アドレスとの関係を示す図である。
図8において、実線はガイド層のデータ領域の物理アドレス、点線は4つの記録層のデータ領域に割り当てられる論理アドレスを示している。4つの記録層はガイド層に近いものから順に記録層L0、記録層L1、記録層L2、記録層L3と表記される。なお、4つの記録層へのユーザデータの記録はL0、L1、L2、L3の順で行われ、個々の記録層においてユーザデータの記録は内周から外周へ向けて行われることとする。
ガイド層のデータ領域の物理アドレス空間は一つの記録層のデータ領域の容量分しかないため、そのままでは一つの記録層のデータ領域の論理アドレス空間だけにしか割り当てられない。そこで、本実施形態では、ガイド層の物理アドレスと記録層情報とから、点線で示される全ての記録層のデータ領域の論理アドレスを計算によって得るようにした。
この計算は具体的には、
ガイド層における物理アドレスの最大値(最終物理アドレス)をPSN_max、
記録層Lxの記録層情報をx(x=0,1,2,・・・)、
記録層Lxのデータ領域における記録先の位置に対応する物理アドレスをPSN、
記録層Lxのデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSNとして、
LSN=(PSN_max×x)+PSN・・・(1)
の式により行われる。
ガイド層における物理アドレスの最大値(最終物理アドレス)をPSN_max、
記録層Lxの記録層情報をx(x=0,1,2,・・・)、
記録層Lxのデータ領域における記録先の位置に対応する物理アドレスをPSN、
記録層Lxのデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSNとして、
LSN=(PSN_max×x)+PSN・・・(1)
の式により行われる。
図9は論理アドレスの割り当ての具体的を示す図である。
例えば、ガイド層には内周側より"1"から"100"までの物理アドレスが割り当てられているものとし、ガイド層のデータ領域の先頭物理アドレスを"10"、ガイド層のデータ領域の最終物理アドレスを"90"とする。なお、これら物理アドレスの値は説明の便宜上決められた値にすぎない。
例えば、ガイド層には内周側より"1"から"100"までの物理アドレスが割り当てられているものとし、ガイド層のデータ領域の先頭物理アドレスを"10"、ガイド層のデータ領域の最終物理アドレスを"90"とする。なお、これら物理アドレスの値は説明の便宜上決められた値にすぎない。
(1)式に従って論理アドレスLSNを計算すると、
記録層L0(x=0)のデータ領域の場合には、(100×0)+PSNの計算結果が論理アドレスとなるため、ガイド層のデータ領域の物理アドレスである"10"から"90"がそのまま記録層L0のデータ領域の論理アドレスとして割り当てられる。
記録層L1(x=1)のデータ領域には、(100×1)+PSNの計算結果が論理アドレスとなるため、"110"から"190"が記録層L1のデータ領域の論理アドレスとして割り当てられる。
記録層L2(x=2)のデータ領域には、(100×2)+PSNの計算結果が論理アドレスとなるため、"210"から"290"が記録層L2のデータ領域の論理アドレスとして割り当てられる。
記録層L3(x=3)のデータ領域には、(100×3)+PSNの計算結果が論理アドレスとなるため、"310"から"390"が記録層L3のデータ領域の論理アドレスとして割り当てられる。
記録層L0(x=0)のデータ領域の場合には、(100×0)+PSNの計算結果が論理アドレスとなるため、ガイド層のデータ領域の物理アドレスである"10"から"90"がそのまま記録層L0のデータ領域の論理アドレスとして割り当てられる。
記録層L1(x=1)のデータ領域には、(100×1)+PSNの計算結果が論理アドレスとなるため、"110"から"190"が記録層L1のデータ領域の論理アドレスとして割り当てられる。
記録層L2(x=2)のデータ領域には、(100×2)+PSNの計算結果が論理アドレスとなるため、"210"から"290"が記録層L2のデータ領域の論理アドレスとして割り当てられる。
記録層L3(x=3)のデータ領域には、(100×3)+PSNの計算結果が論理アドレスとなるため、"310"から"390"が記録層L3のデータ領域の論理アドレスとして割り当てられる。
なお、記録層からユーザデータを読み出す場合には、ホスト装置50より指定された論理アドレス(LSN)をガイド層の物理アドレスの最大値(PSN_MAX)で割る。この計算による得られる商の値が記録層情報(x)、余りが物理アドレス(PSN)となる。
以上のようにして論理アドレスが作成された後、コントローラ81は、作成されたセクタ情報(Sector Information)と論理アドレスとをマージしてIDを作成する。続いてコントローラ81は、IDに当該IDのエラー検出コード、ユーザデータ、エラー検出コードを付加してデータフレームを作成する。さらに、コントローラ81は、データフレームに対するスクランブル処理、ECCブロックの作成、インターリーブを行い、その結果をデータ変調部72に記録用のデータとして供給する。
データ変調部72は、記録用のデータを8/16変換符号などの記録符号で変調して、変調信号を第1の光源駆動部73に供給する。第1の光源駆動部73は、データ変調部72からの変調信号をもとに第1の光源33に駆動パルスを供給する。これにより第1の光源33から記録再生光R1が出射され、ガイド層付き光ディスク111の記録層のデータ領域にユーザデータが記録される。
[効果について]
本実施形態の光記録システム1では、ガイド層の物理アドレスと記録層情報とから複数の記録層のデータ領域の論理アドレスが計算によって生成される。これにより、個々の記録層にウォブルやピット列で物理アドレスを記録しておき、これを利用して各記録層の論理アドレスを生成する方式に比較して、多層ディスクの製造歩留りを向上させることができる。すなわち、記録層毎にウォブルやプリピットなどによって物理アドレスが記録された光ディスクでは、物理アドレスの読み込みでエラーが発生する記録層が一つでも存在するような光ディスクは不良品として処分されねばならない。したがって、このような多層ディスクの場合には記録層の積層数が増加するにつれて不良品の発生確率が増大する傾向となるのに対し、本実施形態では、ガイド層から物理アドレスを読み出すことができればよいため、記録層の多層化が比較的容易となり、製造歩留りの向上も期待できる。
本実施形態の光記録システム1では、ガイド層の物理アドレスと記録層情報とから複数の記録層のデータ領域の論理アドレスが計算によって生成される。これにより、個々の記録層にウォブルやピット列で物理アドレスを記録しておき、これを利用して各記録層の論理アドレスを生成する方式に比較して、多層ディスクの製造歩留りを向上させることができる。すなわち、記録層毎にウォブルやプリピットなどによって物理アドレスが記録された光ディスクでは、物理アドレスの読み込みでエラーが発生する記録層が一つでも存在するような光ディスクは不良品として処分されねばならない。したがって、このような多層ディスクの場合には記録層の積層数が増加するにつれて不良品の発生確率が増大する傾向となるのに対し、本実施形態では、ガイド層から物理アドレスを読み出すことができればよいため、記録層の多層化が比較的容易となり、製造歩留りの向上も期待できる。
<第2の実施形態>
次に、本発明に係る第2の実施形態を説明する。
上記の第1の実施形態では、複数の記録層の記録方向はすべて内周から外周への方向と共通化されている。このため、ある記録層から別の記録層へ連続してアクセスする場合には、光ピックアップをデータ領域の外周位置から内周位置へと一挙に移動(ジャンプ)させる必要があり、この移動分のタイムロスが発生する。そこで、スパイラルの向きを互いに逆にした2層のガイド層を設ける方式が考えられる。
次に、本発明に係る第2の実施形態を説明する。
上記の第1の実施形態では、複数の記録層の記録方向はすべて内周から外周への方向と共通化されている。このため、ある記録層から別の記録層へ連続してアクセスする場合には、光ピックアップをデータ領域の外周位置から内周位置へと一挙に移動(ジャンプ)させる必要があり、この移動分のタイムロスが発生する。そこで、スパイラルの向きを互いに逆にした2層のガイド層を設ける方式が考えられる。
図10に示すように、この方式では、ガイド層G0のガイドトラックのスパイラルの向きを「内→外」とし、ガイド層G1のガイドトラックのスパイラルの向きを「外→内」とすることで、隣り合う記録層に連続して記録されたユーザデータをアクセスする際に光ピックアップの長距離のジャンプが発生せず、上記のタイムロスを回避することができる。
本発明は、このような方式においても応用することが可能である。
図11は2つのガイド層G0、G1のデータ領域の物理アドレスと4つの記録層L0、L1、L2、L3のデータ領域に割り当てられる論理アドレスとの関係を示す図である。図12は2つのガイド層G0、G1に割り当てられた物理アドレスを示す図である。
図11は2つのガイド層G0、G1のデータ領域の物理アドレスと4つの記録層L0、L1、L2、L3のデータ領域に割り当てられる論理アドレスとの関係を示す図である。図12は2つのガイド層G0、G1に割り当てられた物理アドレスを示す図である。
ガイド層G0には内周から外周へ向けて"1"から"PSN_max"までの物理アドレスが連続して記録され、ガイド層G1には逆に外周から内周へ向けて"PSN_max+1"から"PSN_max×2"までの物理アドレスが連続して記録されている。
この場合、各記録層に割り当てられる論理アドレスは、
ガイド層G0における物理アドレスの最大値をPSN_max、
記録層Lxの記録層情報をx(x=0,1,2,・・・)、
偶数番目の記録層Lx(x=0,2,・・・)のデータ領域における記録先の位置に対応するガイド層G0における物理アドレスをPSN0、
奇数番目の記録層Lx(x=1,3,・・・)のデータ領域における記録先の位置に対応するガイド層G1における物理アドレスをPSN1、
偶数番目の記録層Lx(x=0,2,・・・)のデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSN0、
奇数番目の記録層Lx(x=1,3,・・・)のデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSN1として、
LSN0=(PSN_max×x)+PSN0・・・(2)
LSN1=(PSN_max×(x−1))+PSN1・・・(3)
によって計算される。
ガイド層G0における物理アドレスの最大値をPSN_max、
記録層Lxの記録層情報をx(x=0,1,2,・・・)、
偶数番目の記録層Lx(x=0,2,・・・)のデータ領域における記録先の位置に対応するガイド層G0における物理アドレスをPSN0、
奇数番目の記録層Lx(x=1,3,・・・)のデータ領域における記録先の位置に対応するガイド層G1における物理アドレスをPSN1、
偶数番目の記録層Lx(x=0,2,・・・)のデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSN0、
奇数番目の記録層Lx(x=1,3,・・・)のデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSN1として、
LSN0=(PSN_max×x)+PSN0・・・(2)
LSN1=(PSN_max×(x−1))+PSN1・・・(3)
によって計算される。
図13は第2の実施形態による論理アドレスの割り当ての具体的を示す図である。
例えば、ガイド層G0には内周から外周へ向けて"1"から"100"までの物理アドレスが連続して記録され、他方のガイド層G1には逆に外周から内周へ向けて"101"から"200"までの物理アドレスが連続して記録されている。
例えば、ガイド層G0には内周から外周へ向けて"1"から"100"までの物理アドレスが連続して記録され、他方のガイド層G1には逆に外周から内周へ向けて"101"から"200"までの物理アドレスが連続して記録されている。
(2)式および(3)式に従って論理アドレスLSN0,LSN1を計算すると、
記録層L0(x=0)のデータ領域の場合には、(100×0)+PSN0の計算結果が論理アドレスとなるため、ガイド層G0のデータ領域の物理アドレスである"10"から"90"がそのまま記録層L0のデータ領域の論理アドレスとして割り当てられる。
記録層L1(x=1)のデータ領域には、(100×(1−1))+PSN1の計算結果が論理アドレスとなるため、"110"から"190"が記録層L1のデータ領域の論理アドレスとして割り当てられる。
記録層L2(x=2)のデータ領域には、(100×2)+PSN0の計算結果が論理アドレスとなるため、"210"から"290"が記録層L2のデータ領域の論理アドレスとして割り当てられる。
記録層L3(x=3)のデータ領域には、(100×(3−1))+PSN1の計算結果が論理アドレスとなるため、"310"から"390"が記録層L3のデータ領域の論理アドレスとして割り当てられる。
記録層L0(x=0)のデータ領域の場合には、(100×0)+PSN0の計算結果が論理アドレスとなるため、ガイド層G0のデータ領域の物理アドレスである"10"から"90"がそのまま記録層L0のデータ領域の論理アドレスとして割り当てられる。
記録層L1(x=1)のデータ領域には、(100×(1−1))+PSN1の計算結果が論理アドレスとなるため、"110"から"190"が記録層L1のデータ領域の論理アドレスとして割り当てられる。
記録層L2(x=2)のデータ領域には、(100×2)+PSN0の計算結果が論理アドレスとなるため、"210"から"290"が記録層L2のデータ領域の論理アドレスとして割り当てられる。
記録層L3(x=3)のデータ領域には、(100×(3−1))+PSN1の計算結果が論理アドレスとなるため、"310"から"390"が記録層L3のデータ領域の論理アドレスとして割り当てられる。
以上のように、本実施形態においても、ガイド層の物理アドレスと記録層情報から計算によって、全ての記録層のデータ領域に対して連続した論理アドレスを割り当てることができる。また、本実施形態によれば、隣り合う記録層に連続して記録されたユーザデータをアクセスする際に光ピックアップの長距離のジャンプが発生しないので、長距離のジャンプによるタイムロスを回避することができる。
<第3の実施形態>
次に、本発明に係る第3の実施形態を説明する。
第2の実施形態では、2つのガイド層G0、G1の2つのガイドトラックに記録された物理アドレスがそれぞれのスパイラルの向きに沿って増大する場合を例示した。しかし、本発明は、図14に示すように、ガイド層G0のガイドトラックに記録された物理アドレスが一つの物理アドレス空間においてスパイラルの向きに沿って増大し、ガイド層G1のガイドトラックに記録された物理アドレスの値が同一の物理アドレス空間において逆にスパイラルの向きに沿って減少する場合にも適用できる。
次に、本発明に係る第3の実施形態を説明する。
第2の実施形態では、2つのガイド層G0、G1の2つのガイドトラックに記録された物理アドレスがそれぞれのスパイラルの向きに沿って増大する場合を例示した。しかし、本発明は、図14に示すように、ガイド層G0のガイドトラックに記録された物理アドレスが一つの物理アドレス空間においてスパイラルの向きに沿って増大し、ガイド層G1のガイドトラックに記録された物理アドレスの値が同一の物理アドレス空間において逆にスパイラルの向きに沿って減少する場合にも適用できる。
図14は、本実施形態において2つのガイド層G0、G1のデータ領域の物理アドレスと各記録層L0、L1、L2、L3のデータ領域に割り当てられる論理アドレスとの関係を示す図である。図15は2つのガイド層G0、G1に割り当てられた物理アドレスを示す図である。
先行して用いられる一方のガイド層G0には内周から外周へ向けて"1"から"PSN_max"までの物理アドレスが連続して記録され、ガイド層G1のデータ領域には外周から内周へ向けて"PSN_max"から"1"までの物理アドレスが連続して記録されている。
この場合、各記録層に割り当てられる論理アドレスは、
LSN0=(PSN_max×x)+PSN0・・・(4)
LSN1=(PSN_max×x)+PSN_max−PSN1+1・・・(5)
によって計算される。
LSN0=(PSN_max×x)+PSN0・・・(4)
LSN1=(PSN_max×x)+PSN_max−PSN1+1・・・(5)
によって計算される。
図16は第3の実施形態による論理アドレスの割り当ての具体的を示す図である。
例えば、ガイド層G0には内周から外周へ向けて"1"から"100"までの物理アドレスが連続して記録され、他方のガイド層G1には逆に外周から内周へ向けて"100"から"1"までの物理アドレスが連続して記録されている。
例えば、ガイド層G0には内周から外周へ向けて"1"から"100"までの物理アドレスが連続して記録され、他方のガイド層G1には逆に外周から内周へ向けて"100"から"1"までの物理アドレスが連続して記録されている。
(4)式および(5)式に従って論理アドレスLSN0,LSN1を計算すると、
記録層L0(x=0)のデータ領域の場合には、(100×0)+PSN0の計算結果が論理アドレスとなるため、ガイド層G0のデータ領域の物理アドレスである"10"から"90"がそのまま記録層L0のデータ領域の論理アドレスとして割り当てられる。
記録層L1(x=1)のデータ領域には、(100×1)+100−PSN1+1の計算結果が論理アドレスとなるため、"111"から"191"が記録層L1のデータ領域の論理アドレスとして割り当てられる。
記録層L2(x=2)のデータ領域には、(100×2)+PSN0の計算結果が論理アドレスとなるため、"210"から"290"が記録層L2のデータ領域の論理アドレスとして割り当てられる。
記録層L3(x=3)のデータ領域には、(100×3)+100−PSN1+1の計算結果が論理アドレスとなるため、"311"から"391"が記録層L3のデータ領域の論理アドレスとして割り当てられる。
記録層L0(x=0)のデータ領域の場合には、(100×0)+PSN0の計算結果が論理アドレスとなるため、ガイド層G0のデータ領域の物理アドレスである"10"から"90"がそのまま記録層L0のデータ領域の論理アドレスとして割り当てられる。
記録層L1(x=1)のデータ領域には、(100×1)+100−PSN1+1の計算結果が論理アドレスとなるため、"111"から"191"が記録層L1のデータ領域の論理アドレスとして割り当てられる。
記録層L2(x=2)のデータ領域には、(100×2)+PSN0の計算結果が論理アドレスとなるため、"210"から"290"が記録層L2のデータ領域の論理アドレスとして割り当てられる。
記録層L3(x=3)のデータ領域には、(100×3)+100−PSN1+1の計算結果が論理アドレスとなるため、"311"から"391"が記録層L3のデータ領域の論理アドレスとして割り当てられる。
以上のように、本実施形態においても、ガイド層の物理アドレスと記録層情報から計算によって、全ての記録層のデータ領域に対して連続した論理アドレスを割り当てることができる。また、本実施形態によっても、隣り合う記録層に連続して記録されたユーザデータをアクセスする際に光ピックアップの長距離のジャンプが発生しないので、長距離のジャンプによるタイムロスを回避することができる。
なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
1…光記録システム
30…ドライブユニット
31…ディスクドライブ
32…光ピックアップ
78…物理アドレス再生部
81…コントローラ
111…ガイド層付き光ディスク
112…ガイド層
113…記録層
30…ドライブユニット
31…ディスクドライブ
32…光ピックアップ
78…物理アドレス再生部
81…コントローラ
111…ガイド層付き光ディスク
112…ガイド層
113…記録層
Claims (5)
- 物理アドレス情報が記録されたガイドトラックが設けられた1以上のガイド層と、前記ガイドトラックに従って記録が行われる複数の記録層とを有するディスクに記録を行う光記録装置であって、
前記ガイド層の前記ガイドトラックから前記物理アドレスの情報を取得する物理アドレス再生部と、
前記取得された物理アドレスの情報と前記記録層を特定する情報から、当該記録層に記録されるデータ単位に付与される論理アドレスを計算する制御部と
を具備する光記録装置。 - 請求項1に記載の光記録装置であって、
前記制御部は、
前記ガイドトラックに記録された物理アドレスの最大値をPSN_max、
前記記録層Lxを特定する情報をx(前記ガイド層に近いまたは遠い記録層より順にx=0,1,2,・・・)、
前記記録層Lxのデータ領域における記録先の位置に対応する前記物理アドレスをPSN、
前記記録層Lxのデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSNとして、
LSN=(PSN_max×x)+PSN
の式によりLSNを計算する
光記録装置。 - 請求項1に記載の光記録装置であって、
前記ガイド層は、第1のガイドトラックを有する第1のガイド層と、第1のガイドトラックに対してスパイラルの向きが逆の第2のガイドトラックを有する第2のガイド層とで構成され、前記第1のガイドトラックに記録された物理アドレスを開始側として当該第1のガイドトラックと前記第2のガイドトラックに全体として1つの物理アドレス空間が割り当てられ、
前記制御部は、
前記第1のガイドトラックに記録された物理アドレスの最大値をPSN_max、
前記記録層Lxを特定する情報をx(前記第1のガイド層に近いまたは遠い記録層より順にx=0,1,2,・・・)、
偶数番目の記録層Lx(x=0,2,・・・)のデータ領域における記録先の位置に対応する前記第1のガイドトラックの物理アドレスをPSN0、
奇数番目の記録層Lx(x=1,3,・・・)のデータ領域における記録先の位置に対応する前記第2のガイドトラックの物理アドレスをPSN1、
偶数番目の記録層Lx(x=0,2,・・・)のデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSN0、
奇数番目の記録層Lx(x=1,3,・・・)のデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSN1として、
LSN0=(PSN_max×x)+PSN0
LSN1=(PSN_max×(x−1))+PSN1
の式によりLSN0およびLSN1をそれぞれ計算する
光記録装置。 - 請求項1に記載の光記録装置であって、
前記ガイド層は、第1のガイドトラックを有する第1のガイド層と、第1のガイドトラックに対してスパイラルの向きが逆の第2のガイドトラックを有する第2のガイド層とで構成され、前記第1のガイドトラックに記録された物理アドレスが一つの物理アドレス空間においてスパイラルの向きに沿って増大し、前記第2のガイドトラックに記録された物理アドレスが前記物理アドレス空間において前記スパイラルの向きに沿って減少するように記録され、
前記制御部は、
前記第1のガイドトラックに記録された物理アドレスの最大値をPSN_max、
前記記録層Lxを特定する情報をx(前記第1のガイド層に近いまたは遠い記録層より順にx=0,1,2,・・・)、
偶数番目の記録層Lx(x=0,2,・・・)のデータ領域における記録先の位置に対応する前記第1のガイドトラックの物理アドレスをPSN0、
奇数番目の記録層Lx(x=1,3,・・・)のデータ領域における記録先の位置に対応する前記第2のガイドトラックの物理アドレスをPSN1、
偶数番目の記録層Lx(x=0,2,・・・)のデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSN0、
奇数番目の記録層Lx(x=1,3,・・・)のデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSN1として、
LSN0=(PSN_max×x)+PSN0
LSN1=(PSN_max×x)+PSN_max−PSN1+1
の式によりLSN0およびLSN1をそれぞれ計算する
光記録装置。 - 物理アドレス情報が記録されたガイドトラックが設けられた1以上のガイド層と、前記ガイドトラックに従って記録が行われる複数の記録層とを有するディスクに記録を行う方法であって、
前記ガイド層の前記ガイドトラックから前記物理アドレスの情報を取得し、
前記取得された物理アドレスの情報と前記記録層を特定する情報から、当該記録層に記録されるデータ単位に付与される論理アドレスを計算する
光記録方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012111804A JP2013239221A (ja) | 2012-05-15 | 2012-05-15 | 光記録装置および光記録方法 |
TW102116045A TW201405553A (zh) | 2012-05-15 | 2013-05-06 | 光記錄裝置及光記錄方法 |
US14/399,801 US20150109894A1 (en) | 2012-05-15 | 2013-05-13 | Optical recording device and optical recording method |
PCT/JP2013/063252 WO2013172285A1 (ja) | 2012-05-15 | 2013-05-13 | 光記録装置および光記録方法 |
CN201380025405.4A CN104520928A (zh) | 2012-05-15 | 2013-05-13 | 光记录装置及光记录方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012111804A JP2013239221A (ja) | 2012-05-15 | 2012-05-15 | 光記録装置および光記録方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013239221A true JP2013239221A (ja) | 2013-11-28 |
Family
ID=49583690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012111804A Pending JP2013239221A (ja) | 2012-05-15 | 2012-05-15 | 光記録装置および光記録方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150109894A1 (ja) |
JP (1) | JP2013239221A (ja) |
CN (1) | CN104520928A (ja) |
TW (1) | TW201405553A (ja) |
WO (1) | WO2013172285A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9423965B2 (en) * | 2014-07-11 | 2016-08-23 | Dell Products L.P. | Method and system for writing to and reading from computer readable media |
US9766977B2 (en) * | 2014-11-10 | 2017-09-19 | Dell Products, Lp | System and method for improving read performance of a distributed parity RAID solution |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004206849A (ja) * | 2002-01-22 | 2004-07-22 | Matsushita Electric Ind Co Ltd | 情報記録媒体、記録装置、再生装置、記録方法、再生方法 |
WO2008099705A1 (ja) * | 2007-02-16 | 2008-08-21 | Sanyo Electric Co., Ltd. | 記録媒体および記録再生装置 |
JP2009252295A (ja) * | 2008-04-07 | 2009-10-29 | Pioneer Electronic Corp | 多層記録媒体のデータ記録方法 |
WO2012063326A1 (ja) * | 2010-11-09 | 2012-05-18 | 株式会社 東芝 | 情報記録媒体、情報再生装置及び情報記録装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69609076T2 (de) * | 1995-10-19 | 2001-03-08 | Matsushita Electric Industrial Co., Ltd. | Informationsspeichermedium, informationswiedergabeverfahren und informationswiedergabegerät |
-
2012
- 2012-05-15 JP JP2012111804A patent/JP2013239221A/ja active Pending
-
2013
- 2013-05-06 TW TW102116045A patent/TW201405553A/zh unknown
- 2013-05-13 WO PCT/JP2013/063252 patent/WO2013172285A1/ja active Application Filing
- 2013-05-13 US US14/399,801 patent/US20150109894A1/en not_active Abandoned
- 2013-05-13 CN CN201380025405.4A patent/CN104520928A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004206849A (ja) * | 2002-01-22 | 2004-07-22 | Matsushita Electric Ind Co Ltd | 情報記録媒体、記録装置、再生装置、記録方法、再生方法 |
WO2008099705A1 (ja) * | 2007-02-16 | 2008-08-21 | Sanyo Electric Co., Ltd. | 記録媒体および記録再生装置 |
JP2009252295A (ja) * | 2008-04-07 | 2009-10-29 | Pioneer Electronic Corp | 多層記録媒体のデータ記録方法 |
WO2012063326A1 (ja) * | 2010-11-09 | 2012-05-18 | 株式会社 東芝 | 情報記録媒体、情報再生装置及び情報記録装置 |
Also Published As
Publication number | Publication date |
---|---|
WO2013172285A1 (ja) | 2013-11-21 |
TW201405553A (zh) | 2014-02-01 |
CN104520928A (zh) | 2015-04-15 |
US20150109894A1 (en) | 2015-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4580033B2 (ja) | 多層光記録媒体の製造方法および多層光記録媒体記録装置 | |
JP2006527457A (ja) | 情報記録媒体 | |
WO2012063326A1 (ja) | 情報記録媒体、情報再生装置及び情報記録装置 | |
JP2011170935A (ja) | 光記録再生方法、光記録媒体 | |
WO2013172285A1 (ja) | 光記録装置および光記録方法 | |
JP2011192377A (ja) | 光記録媒体、光記録再生方法 | |
WO2010067556A1 (ja) | 情報記録媒体、再生装置および再生方法 | |
WO2013146491A1 (ja) | 多層光記録媒体および光記録装置 | |
JPWO2006038689A1 (ja) | 情報記録装置及び方法、並びに記録制御用のコンピュータプログラム | |
WO2014021296A1 (ja) | 光記録システムおよびディスクカートリッジ | |
JP2007048404A (ja) | 情報記録媒体、情報処理装置及び方法、並びに、記録又は再生を行う処理制御用のコンピュータプログラム | |
JP5563480B2 (ja) | 情報記録媒体、再生装置および再生方法 | |
WO2005116995A9 (ja) | 情報記録媒体、情報記録装置及び方法、並びに記録制御用のコンピュータプログラム | |
JP2009037705A (ja) | 情報記録媒体及び情報記録再生装置並びに情報記録再生方法 | |
WO2014050398A1 (ja) | 光記録装置、光記録方法及び多層光ディスク | |
WO2014021295A1 (ja) | ガイド層分離型光記録媒体および光記録装置 | |
US20130074104A1 (en) | Medium having spare area, and recording apparatus and recording method of the medium | |
WO2014030545A1 (ja) | 光記録装置および光記録方法 | |
WO2013146490A1 (ja) | 多層記録媒体および光記録装置 | |
JP2015001998A (ja) | 光記録装置およびその合焦制御方法 | |
WO2014171401A1 (ja) | 光記録装置及び最高記録速度決定方法 | |
WO2014027597A1 (ja) | ディスクカートリッジ、光記録方法および光記録システム | |
WO2013168477A1 (ja) | 光記録装置、光記録方法及び多層ディスク | |
JP5727021B2 (ja) | 情報記録媒体、情報再生装置及び管理情報再生方法、情報記録再生装置及び識別情報再生記録方法 | |
WO2014045801A1 (ja) | 光記録装置及び光記録方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150508 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160712 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170124 |