[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013206821A - Electrode structure and power storage device using the same - Google Patents

Electrode structure and power storage device using the same Download PDF

Info

Publication number
JP2013206821A
JP2013206821A JP2012076849A JP2012076849A JP2013206821A JP 2013206821 A JP2013206821 A JP 2013206821A JP 2012076849 A JP2012076849 A JP 2012076849A JP 2012076849 A JP2012076849 A JP 2012076849A JP 2013206821 A JP2013206821 A JP 2013206821A
Authority
JP
Japan
Prior art keywords
electrode
sintered body
tab
positive electrode
current collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012076849A
Other languages
Japanese (ja)
Other versions
JP5829564B2 (en
Inventor
Takashi Oto
貴司 大戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012076849A priority Critical patent/JP5829564B2/en
Publication of JP2013206821A publication Critical patent/JP2013206821A/en
Application granted granted Critical
Publication of JP5829564B2 publication Critical patent/JP5829564B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode structure ensuring easy extraction of a current even if a plurality of sintered compact electrodes having a thin collector layer are laminated, and high bonding reliability of an extraction part, and to provide a power storage device using the same.SOLUTION: The electrode structure includes an electrode body 26P consisting of a first sintered compact 21P and a second sintered compact 21P' of an active material, and a tub member having a tub bonding part 24Pi located between the first and second sintered compacts and a tub part 24Po led out from the aperture of the electrode body to the outside. The tub bonding part is larger than the aperture of the electrode body.

Description

本発明は、電極構造およびそれを用いた蓄電デバイスに関するものである。   The present invention relates to an electrode structure and an electricity storage device using the same.

二次電池は携帯電話やノートPC等の携帯用電子機器に多く使用されており、これらの機器の小型軽量化に伴い、よりエネルギー密度の高い二次電池が求められている。特に、リチウムイオン二次電池は高エネルギー密度であるという理由から、広く普及するに至っている。   Secondary batteries are often used in portable electronic devices such as mobile phones and notebook PCs. As these devices become smaller and lighter, secondary batteries with higher energy density are required. In particular, lithium ion secondary batteries have become widespread because of their high energy density.

リチウムイオン二次電池の更なる高エネルギー密度化のため、活物質の焼結体を電極として用いることが試みられているが、焼結体を電極として用いる場合、従来のように集電材料にバインダや導電材を含む活物質層を形成して電極とする場合とは異なり、金属箔などからなる集電材料と焼結体との密着性や、本来電池の容量には寄与しない集電材料の厚さを薄くすることが難しいという問題があり、種々の対応策が提案されている。   In order to further increase the energy density of lithium ion secondary batteries, attempts have been made to use a sintered body of an active material as an electrode. However, when a sintered body is used as an electrode, Unlike the case where an electrode is formed by forming an active material layer containing a binder or a conductive material, the current collecting material does not contribute to the adhesion between the current collecting material made of metal foil and the sintered body or the capacity of the battery originally. There is a problem that it is difficult to reduce the thickness of the film, and various countermeasures have been proposed.

例えば、特許文献1では、集電材料と焼結体との密着性向上のため、第1活物質層と第2活物質層との間に集電層を設け、これらを焼結により一体化させて正極部材とし、その正極部材の側面に集電部材を形成して電流を取り出すことが提案されている。   For example, in Patent Document 1, in order to improve the adhesion between the current collecting material and the sintered body, a current collecting layer is provided between the first active material layer and the second active material layer, and these are integrated by sintering. It has been proposed that a positive electrode member is formed, and a current collecting member is formed on a side surface of the positive electrode member to extract current.

また、特許文献2では、活物質焼結体上にスパッタリング法または蒸着法で集電体を形成することにより、1μm以下という厚さで集電機能を発現することが開示されている。   Further, Patent Document 2 discloses that a current collecting function is expressed with a thickness of 1 μm or less by forming a current collector on the active material sintered body by sputtering or vapor deposition.

特開2010−170972号公報JP 2010-170972 A 特開平11−365526号公報JP-A-11-365526

しかしながら、特許文献1に記載された発明では、各活物質層と集電層との同時焼成時の各活物質層と集電層との焼成収縮の差や、電池を構成して充放電を繰り返した際の活物質の体積変化による応力に起因して、各活物質層と集電層との間でクラックが発生し、内部抵抗が増大して電池としての機能が損なわれるという課題があった。また、集電層から電流を取り出すために、正極部材の側面に集電層と電気的に接続された集電部材を設けているが、集電体と集電部材との接触面積が小さく、電気抵抗が大きくなったり、断線しやすいという課題があった。   However, in the invention described in Patent Document 1, the difference in firing shrinkage between each active material layer and the current collecting layer at the time of simultaneous firing of each active material layer and the current collecting layer, and the battery is charged and discharged. Due to the stress due to the volume change of the active material when it is repeated, there is a problem that a crack occurs between each active material layer and the current collecting layer, the internal resistance increases and the function as a battery is impaired. It was. Moreover, in order to take out an electric current from a current collection layer, although the current collection member electrically connected with the current collection layer is provided in the side surface of a positive electrode member, the contact area of a current collector and a current collection member is small, There existed a subject that electrical resistance became large or it was easy to disconnect.

特許文献2では、活物質焼結体上に導電性の高い金属をスパッタリングまたは蒸着することで集電体を形成しているが、複数の焼結体電極を積層した場合の電流引出方法については記載されていなかった。   In Patent Document 2, a current collector is formed by sputtering or vapor-depositing a highly conductive metal on an active material sintered body. Regarding a current extraction method when a plurality of sintered body electrodes are stacked, It was not listed.

本発明はこのような課題に鑑みてなされたものであり、薄い集電層を有する複数の焼結体電極を積層しても、電流の取り出しが容易で取出し部の接合信頼性が高い電極構造およびそれを用いた蓄電デバイスを提供することにある。   The present invention has been made in view of such a problem, and even when a plurality of sintered electrodes having a thin current collecting layer are laminated, an electrode structure in which current can be easily taken out and bonding reliability of the takeout part is high. And it is providing the electrical storage device using the same.

本発明の電極構造は、活物質の焼結体である第1焼結体および第2焼結体からなる電極
本体と、タブ部材とを備え、前記第1焼結体および前記第2焼結体は、それぞれの一方の主面に設けられた集電層が互いに対向するように配置されるとともに、前記第1焼結体および前記第2焼結体の少なくともいずれか一方の前記主面に、該主面に隣接する側面に開口部を有するように凹部が設けられており、前記タブ部材は、前記電極本体の外部に位置するタブ部と、前記第1焼結体と前記第2焼結体との間に位置するとともに、前記凹部に配置され、前記集電層と電気的に接続されたタブ接合部と、を有し、該タブ接合部は、前記開口部が位置する前記電極本体の側面に沿う平面に前記タブ接合部の輪郭を投影した時、前記タブ接合部の輪郭の少なくとも一部が、前記開口部の輪郭の外側に位置することを特徴とする。
The electrode structure of the present invention includes an electrode body composed of a first sintered body and a second sintered body that are sintered bodies of active materials, and a tab member, and the first sintered body and the second sintered body. The body is disposed such that current collecting layers provided on one main surface of each of the bodies face each other, and on the main surface of at least one of the first sintered body and the second sintered body A recess is provided on the side surface adjacent to the main surface, and the tab member includes a tab portion located outside the electrode body, the first sintered body, and the second sintered body. And a tab joint disposed in the recess and electrically connected to the current collecting layer, wherein the tab joint is the electrode on which the opening is located. When the contour of the tab joint is projected on a plane along the side surface of the main body, the contour of the tab joint is small. Some and also characterized in that, located outside the contour of the opening.

本発明の蓄電デバイスは、複数の正極と負極とがセパレータを介して交互に積層された極群を備え、前記正極または前記負極の少なくともいずれか一方が、上記の電極構造を有することを特徴とする。   An electricity storage device of the present invention comprises a pole group in which a plurality of positive electrodes and negative electrodes are alternately stacked via separators, and at least one of the positive electrode and the negative electrode has the electrode structure described above. To do.

本発明によれば、薄い集電層を有する複数の焼結体電極を積層しても、電流の取り出しが容易で取出し部の接合信頼性が高い電極構造およびそれを用いた蓄電デバイスを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, even if it laminates | stacks the some sintered compact electrode which has a thin electrical power collection layer, it can take out an electric current easily and can provide an electrode structure with high joining reliability of an extraction part, and an electrical storage device using the same. .

積層型蓄電デバイスを模式的に示した(a)斜視図、および(b)(a)のタブ集合部とリードの接合部付近のA−A'断面図である。1A is a perspective view schematically showing a stacked power storage device, and FIG. 2B is a cross-sectional view taken along the line AA ′ in the vicinity of a joint portion between a tab assembly portion and a lead in FIG. 本発明の一実施形態である電極構造を模式的に示した(a)斜視図、(b)(a)のタブ部材を除いた凹部付近のB−B’断面図、および(c)(a)のタブ部材を凹部に配置した状態を示すC−C’断面図である。The electrode structure which is one Embodiment of this invention typically showed (a) perspective view, (b) BB 'sectional drawing of the recessed part vicinity except the tab member of (a), and (c) (a It is CC 'sectional drawing which shows the state which has arrange | positioned the tab member of () to the recessed part. 図2(a)におけるxz平面上に、開口部の輪郭およびタブ接合部の輪郭を投影した図である。It is the figure which projected the outline of the opening part, and the outline of a tab junction part on xz plane in Fig.2 (a). 凹部の開口部についての説明図である。It is explanatory drawing about the opening part of a recessed part. 本発明における凹部およびタブ接合部の形状の例を示す図である。It is a figure which shows the example of the shape of the recessed part and tab junction part in this invention.

まず、蓄電デバイスついて図1を基に説明する。蓄電デバイスは、図1(a)に示すように、外装体1の内部に、複数の正極11Pと負極11Nとをセパレータ12を介して交互に積層した極群15を備えている。外装体1の内部に収納された極群15と、外部回路とは、外装体1の封止部から露出した端子電極2によって電気的に接続される構造となっている。   First, the electricity storage device will be described with reference to FIG. As illustrated in FIG. 1A, the electricity storage device includes a pole group 15 in which a plurality of positive electrodes 11 </ b> P and negative electrodes 11 </ b> N are alternately stacked via separators 12 inside the exterior body 1. The pole group 15 housed inside the exterior body 1 and the external circuit are electrically connected by the terminal electrode 2 exposed from the sealing portion of the exterior body 1.

外装体1は、ラミネートフィルムと呼ばれる水分やガスを通さない柔軟なフィルムを用いればよく、一般的にはポリエチレンテレフタレート(PET)フィルムとアルミ箔と封止樹脂層とを、この順序で積層することにより形成されている。本実施形態において用いるラミネートフィルムとしては、食品用や電池用に市販されている一般的なアルミラミネートフィルムを使用することができ、さらに最終的な積層型蓄電デバイスの用途や電池形状などを考慮して材質を選定すればよい。また、接続端子を備えたセラミックあるいはガラス製の耐熱性容器を外装体1として用いることもできる。   The exterior body 1 may be a flexible film that does not allow moisture or gas to pass, which is called a laminate film. Generally, a polyethylene terephthalate (PET) film, an aluminum foil, and a sealing resin layer are laminated in this order. It is formed by. As the laminate film used in the present embodiment, a general aluminum laminate film marketed for foods and batteries can be used, and further, considering the use of the final laminated power storage device, battery shape, and the like. Select the material. Further, a ceramic or glass heat-resistant container provided with connection terminals can be used as the exterior body 1.

端子電極2の材料としては、たとえば、正極用としてはアルミニウムを、負極用としては銅やニッケルを用いることができる。端子電極2の厚みや幅については、正極用、負極用のいずれの場合も、蓄電デバイスの容量や使用電流値などを考慮して、通電時に発熱などの不具合が発生しない厚みや幅を選定すればよい。なお、厚い端子電極2を用いる場合には、端子電極2とラミネートフィルムからなる外装体1との接着不良による気密不良を
防ぐため、外装体1であるラミネートフィルムの封止樹脂層を厚くしたり、予め端子電極2に別途封止用の樹脂を接着してもよい。
As the material of the terminal electrode 2, for example, aluminum can be used for the positive electrode, and copper or nickel can be used for the negative electrode. As for the thickness and width of the terminal electrode 2, in either case of the positive electrode or the negative electrode, take into consideration the capacity of the power storage device, the current value used, etc. That's fine. In addition, when using the thick terminal electrode 2, in order to prevent the airtight defect by the adhesion failure with the exterior body 1 which consists of a terminal electrode 2 and a laminate film, the sealing resin layer of the laminate film which is the exterior body 1 is made thick. Alternatively, a sealing resin may be separately bonded to the terminal electrode 2 in advance.

図1(b)は、正極11Pと負極11Nとがセパレータ12を介して4組積層された構成の蓄電デバイスの内部構造を示している。なお、正極11Pと負極11Nの組数は、1〜3組でも、5組以上でも構わない。このように正極11Pおよび負極11Nとセパレータ12が積層されたものを極群15とする。なお、極群15には、正極集電層10Pおよび負極集電層10Nを含む場合もある。また、正極集電層10Pと正極11Pとを合わせて正極11P、負極集電層10Nと負極11Nとを合わせて負極11Nという場合もある。積層された極群15の最外層部に位置する電極としては、正極11Pが配置されており、その正極11Pは正極集電層10Pの一方の主面のみに正極11Pが配置されたものである。極群15の最外層部に位置する正極11P以外の電極はいずれも、正極集電層10Pの両主面に正極11Pが配置されたもの、または負極集電層10Nの両主面に負極11Nが配置されたものである。   FIG. 1B shows the internal structure of an electricity storage device having a configuration in which four pairs of positive electrodes 11P and negative electrodes 11N are stacked with separators 12 interposed therebetween. Note that the number of pairs of the positive electrode 11P and the negative electrode 11N may be 1 to 3, or 5 or more. The electrode group 15 is formed by stacking the positive electrode 11P, the negative electrode 11N, and the separator 12 in this manner. The pole group 15 may include a positive electrode current collector layer 10P and a negative electrode current collector layer 10N. Moreover, the positive electrode current collecting layer 10P and the positive electrode 11P may be collectively referred to as a positive electrode 11P, and the negative electrode current collector layer 10N and the negative electrode 11N may be collectively referred to as a negative electrode 11N. As an electrode located in the outermost layer portion of the stacked electrode group 15, a positive electrode 11P is disposed, and the positive electrode 11P is configured such that the positive electrode 11P is disposed only on one main surface of the positive electrode current collecting layer 10P. . Any electrode other than the positive electrode 11P located in the outermost layer portion of the pole group 15 is one in which the positive electrode 11P is disposed on both main surfaces of the positive electrode current collecting layer 10P, or the negative electrode 11N on both main surfaces of the negative electrode current collecting layer 10N. Are arranged.

そして、極群15は、蓄電デバイスとしての機能を発現するために電解質(図示せず)を含んでいる。   And the pole group 15 contains electrolyte (not shown) in order to express the function as an electrical storage device.

集電層には、いずれも端子電極2のリードを電気的に接続するためのタブが設けられている。図1(b)では、正極集電層10Pに設けられた正極タブ4Pについて示している。複数の正極集電層10Pに設けられた複数の正極タブ4Pは、正極タブ集合部5Pにおいてひとつに束ねられている。正極リード3Pの一端は、正極タブ集合部5Pに電気的に接続されており、正極リード3Pの他端は外装体1の封止部を通じて外装体1の外部に引き出され、正極端子2Pとなっている。   Each of the current collecting layers is provided with a tab for electrically connecting the lead of the terminal electrode 2. In FIG.1 (b), it has shown about the positive electrode tab 4P provided in the positive electrode current collection layer 10P. The plurality of positive electrode tabs 4P provided on the plurality of positive electrode current collecting layers 10P are bundled together in the positive electrode tab assembly portion 5P. One end of the positive electrode lead 3P is electrically connected to the positive electrode tab assembly portion 5P, and the other end of the positive electrode lead 3P is drawn out of the exterior body 1 through the sealing portion of the exterior body 1 and becomes a positive electrode terminal 2P. ing.

次に、本発明の一実施形態である電極構造について、図2を用いて説明する。本実施形態においては、正極活物質を焼結した正極用の第1焼結体21Pおよび第2焼結体21P’は、それぞれ一方の主面に集電層10Pおよび10P’が設けられており、集電層10Pおよび10P’が互いに対向するように配置され、正極本体26Pを形成している。また、第1焼結体21Pの集電層10Pが形成された主面には、主面に隣接する一方の側面に開口部を有し、内壁に集電体28Pを有する凹部27Pが設けられており、集電体28Pは、集電層10Pにつながっている。   Next, an electrode structure according to an embodiment of the present invention will be described with reference to FIG. In the present embodiment, the first sintered body 21P and the second sintered body 21P ′ for positive electrode obtained by sintering the positive electrode active material are provided with current collecting layers 10P and 10P ′ on one main surface, respectively. The current collecting layers 10P and 10P ′ are arranged so as to face each other to form the positive electrode body 26P. The main surface of the first sintered body 21P on which the current collecting layer 10P is formed is provided with a recess 27P having an opening on one side surface adjacent to the main surface and having a current collector 28P on the inner wall. The current collector 28P is connected to the current collecting layer 10P.

正極タブ部材24Pは、図2(c)に示すように、正極本体26Pの外部に位置する正極タブ部(以下、単に正極タブともいう場合もある)24Poと、第1焼結体21Pの凹部27Pにおいて第1焼結体21Pおよび第2焼結体21P’との間に挟まれた正極タブ接合部24Piを有しており、正極タブ接合部24Piは、凹部27Pの内壁に設けられた集電体28Pと電気的に接続されている。   As shown in FIG. 2C, the positive electrode tab member 24P includes a positive electrode tab portion (hereinafter also referred to simply as a positive electrode tab) 24Po located outside the positive electrode main body 26P and a concave portion of the first sintered body 21P. 27P has a positive electrode tab joint 24Pi sandwiched between the first sintered body 21P and the second sintered body 21P ′, and the positive electrode tab joint 24Pi is a collection provided on the inner wall of the recess 27P. It is electrically connected to the electric body 28P.

本実施形態においては、図3に示すように、凹部27Pが開口する正極本体26Pの側面に沿う平面(図2(a)におけるxz平面、以下、単にxz平面ともいう)上に、凹部27Pによって形成される正極本体26Pの開口部の輪郭(実線)と正極タブ接合部24Piの輪郭(破線)を投影した時、正極タブ接合部24Piの輪郭の少なくとも一部が、開口部の輪郭の外側に位置している。なお、正極本体26Pの開口部の輪郭とは、図4(a)に示すように、凹部27Pによって形成される正極本体26Pの開口部において、集電体28Pおよび集電層10P’の表面によって形成される開口部の内周を指す。また、図4(b)のように、凹部27Pの内壁に集電体28Pが設けられていない部分が存在する場合には、正極本体26Pの開口部における集電体28P、第1焼結体21P、集電層10Pおよび10P’の表面によって形成される開口部の内周とすればよい。   In the present embodiment, as shown in FIG. 3, a recess 27P is provided on a plane along the side surface of the positive electrode body 26P where the recess 27P opens (the xz plane in FIG. 2A, hereinafter also referred to simply as the xz plane). When the contour (solid line) of the opening of the positive electrode main body 26P to be formed and the contour (broken line) of the positive electrode tab joint 24Pi are projected, at least a part of the contour of the positive electrode tab joint 24Pi is outside the contour of the opening. positioned. As shown in FIG. 4A, the outline of the opening of the positive electrode main body 26P is defined by the surface of the current collector 28P and the current collecting layer 10P ′ in the opening of the positive electrode main body 26P formed by the recess 27P. It refers to the inner periphery of the opening to be formed. Further, as shown in FIG. 4B, when there is a portion where the current collector 28P is not provided on the inner wall of the recess 27P, the current collector 28P and the first sintered body at the opening of the positive electrode body 26P. The inner periphery of the opening formed by 21P and the surfaces of the current collecting layers 10P and 10P ′ may be used.

さらに、第1焼結体21Pおよび第2焼結体21P’の両方に、第1凹部27Pおよび第2凹部27P’が設けられていてもよく、その場合、正極本体26Pの開口部の輪郭とは、第1凹部27Pの内壁に設けられた集電体28P、第2凹部27P’の内壁に設けられた集電体28P’、集電層10Pおよび集電層10P’によって形成される開口部の内周とする。この場合も、凹部27P、27P’の内壁に集電体28P、28P’が設けられていない部分が存在する場合には、集電体28P、28P’集電層10P、10P’、第1焼結体21Pおよび第2焼結体21P’によって形成される開口部の内周とすればよい。   Furthermore, both the first sintered body 21P and the second sintered body 21P ′ may be provided with a first concave portion 27P and a second concave portion 27P ′. In that case, the contour of the opening of the positive electrode body 26P and Is an opening formed by the current collector 28P provided on the inner wall of the first recess 27P, the current collector 28P ′ provided on the inner wall of the second recess 27P ′, the current collection layer 10P and the current collection layer 10P ′. The inner circumference of Also in this case, if there are portions where the current collectors 28P, 28P ′ are not provided on the inner walls of the recesses 27P, 27P ′, the current collectors 28P, 28P ′ the current collecting layers 10P, 10P ′, the first firing What is necessary is just to set it as the inner periphery of the opening part formed by the joined body 21P and 2nd sintered compact 21P '.

以上、正極側を例として本実施形態における電極構造について述べたが、これは正極側に限るものではなく、負極側の電極構造についても同様な構造が適用できる。以下、正極側と負極側の区別が必要ない場合には、符号にPまたはNを付さずに記載するものとする。   As described above, the electrode structure in the present embodiment has been described by taking the positive electrode side as an example. However, this is not limited to the positive electrode side, and the same structure can be applied to the electrode structure on the negative electrode side. Hereinafter, when it is not necessary to distinguish between the positive electrode side and the negative electrode side, it is described without adding P or N to the reference numeral.

このように、タブ部材24Pのタブ接合部24iを、集電体28が形成された活物質の焼結体21の凹部27に配置して、集電層10が対向するように配置された2枚の焼結体21の間に挟むことで、薄い集電層10を有する焼結体21を積層した極群15においても、タブ部24oにより電流の取り出しが容易となり、タブ接合部24iと集電体28との接触面積が電極11の側面に集電部材を設けた場合と比較して大きいことから、電気抵抗の増大も抑制できる。さらにxz平面上において、そこに投影されたタブ接合部24iの輪郭の少なくとも一部が、タブ接合部24iが配置された凹部27によって形成される電極本体26の開口部の輪郭よりも外側に位置することにより、タブ部材24を電極本体26から抜け落ち難くすることができる。また、蓄電デバイスの電極11に、このような電極構造を適用することで、極群15の積層構造および外部回路との接続構造を単純化でき、信頼性の高い蓄電デバイスとすることができる。   In this way, the tab joint portion 24i of the tab member 24P is disposed in the concave portion 27 of the active material sintered body 21 on which the current collector 28 is formed, and the current collector layer 10 is disposed so as to face each other. In the pole group 15 in which the sintered bodies 21 having the thin current collecting layer 10 are laminated, the current can be easily taken out by the tab portions 24o, and the tab joint portions 24i and the current collectors are collected. Since the contact area with the electric body 28 is large as compared with the case where a current collecting member is provided on the side surface of the electrode 11, an increase in electric resistance can also be suppressed. Further, on the xz plane, at least a part of the outline of the tab joint 24 i projected thereon is positioned outside the outline of the opening of the electrode body 26 formed by the recess 27 in which the tab joint 24 i is disposed. By doing so, the tab member 24 can be made difficult to come off from the electrode body 26. In addition, by applying such an electrode structure to the electrode 11 of the electricity storage device, the stacked structure of the pole group 15 and the connection structure with an external circuit can be simplified, and a highly reliable electricity storage device can be obtained.

タブ接合部24iの形状は、xz平面上において、そこに投影されたタブ接合部24iの輪郭の少なくとも一部が、タブ接合部24iが配置された凹部27によって形成される電極本体26の開口部の輪郭よりも外側に位置していればどのような形状でもよい。特に、xz平面に平行な断面において、タブ接合部24iの断面積が、電極本体26の開口部の断面積よりも大きい部位を有する形状であることが、タブ部材24を電極本体26からより抜け落ち難くすることができることから好ましい。タブ接合部24iの具体的な形状としては、たとえば図2(c)に示すように、図2(a)のxy平面に平行な断面において、タブ接合部の端部が先端に向けて広がる台形状や、図5に示すように(a)T字状、(b)L字状、(c)端部が円形状、(e)矢印状のもの等が挙げられる。なお、タブ接合部24iのxz平面上に投影した輪郭が、電極本体26の開口部の輪郭に対してz軸方向に突出していてもよいが、焼結体21の強度確保という点から、x軸方向すなわち焼結体21の主面に沿う方向に突出していることが好ましい。   The shape of the tab joint 24i is such that at least a part of the outline of the tab joint 24i projected thereon is formed by the recess 27 in which the tab joint 24i is disposed on the xz plane. Any shape may be used as long as it is located outside the outline of the. In particular, in a cross section parallel to the xz plane, the tab member 24 is more likely to fall out of the electrode body 26 such that the cross section of the tab joint 24i has a portion larger than the cross section of the opening of the electrode body 26. It is preferable because it can be made difficult. As a specific shape of the tab joint 24i, for example, as shown in FIG. 2 (c), in the cross section parallel to the xy plane of FIG. 2 (a), the end of the tab joint extends toward the tip. As shown in FIG. 5, (a) T-shaped, (b) L-shaped, (c) circular end, (e) arrow-shaped, and the like. Note that the contour projected on the xz plane of the tab joint 24 i may protrude in the z-axis direction with respect to the contour of the opening of the electrode body 26, but from the viewpoint of securing the strength of the sintered body 21, x It is preferable to protrude in the axial direction, that is, the direction along the main surface of the sintered body 21.

また、第1焼結体21の集電層10と第2焼結体21’の集電層10’は密着していることが好ましい。第1焼結体21の集電層10と第2焼結体21’の集電層10’とが密着することで、内部抵抗が低く容量の大きな蓄電デバイスとなる。   Further, the current collecting layer 10 of the first sintered body 21 and the current collecting layer 10 'of the second sintered body 21' are preferably in close contact with each other. When the current collecting layer 10 of the first sintered body 21 and the current collecting layer 10 'of the second sintered body 21' are in close contact with each other, an electric storage device having a low internal resistance and a large capacity is obtained.

凹部27の大きさは、第1焼結体21の集電層10と第2焼結体21’の集電層10’が密着した際に形成される空間の容積は、タブ接合部24iを収納可能な容積、すなわちタブ接合部24iの体積以上の大きさであることが好ましい。凹部27をこのような大きさとすることで、電極本体26やタブ部材24にかかる負荷を低減でき、その劣化や破損を抑制できる。また、凹部27の形状を、タブ接合部24iの形状に沿う形状とすることが、容量形成に寄与しない空間を最低限に抑えるこという点から好ましい。なお、タブ接合部24iは、集電体28と直接接触していてもよいが、導電性フィラーを含有する接着
剤等で集電体28に接着してもよい。また、導電性接着剤や導電性樹脂を集電体28として用いてもよい。
The size of the recess 27 is such that the volume of the space formed when the current collecting layer 10 of the first sintered body 21 and the current collecting layer 10 ′ of the second sintered body 21 ′ are in close contact with each other is determined by the tab joint 24i. It is preferable that the volume is storable, that is, the size of the tab joint 24i or more. By setting the concave portion 27 to such a size, a load applied to the electrode body 26 and the tab member 24 can be reduced, and deterioration and breakage thereof can be suppressed. In addition, it is preferable that the shape of the concave portion 27 is a shape that follows the shape of the tab joint portion 24i from the viewpoint of minimizing a space that does not contribute to capacity formation. The tab joint 24i may be in direct contact with the current collector 28, but may be bonded to the current collector 28 with an adhesive containing a conductive filler. Further, a conductive adhesive or a conductive resin may be used as the current collector 28.

集電層10の厚さは、例えば、0.1〜5μmとすればよい。このような厚さであれば、充分な集電機能を有するとともに、電極容量に対する影響を最小限にとどめることができる。このような集電層10は、導電性ペーストを塗布したり、スパッタや蒸着により金属層を形成することにより形成できる。特に、スパッタや蒸着により形成された金属層は、例えば1μm以下の厚さでも焼結体との密着性が高く、充分な集電機能が得られるため本実施形態の集電層10として好ましい。   The thickness of the current collecting layer 10 may be 0.1 to 5 μm, for example. With such a thickness, a sufficient current collecting function can be obtained, and the influence on the electrode capacity can be minimized. Such a current collecting layer 10 can be formed by applying a conductive paste or forming a metal layer by sputtering or vapor deposition. In particular, a metal layer formed by sputtering or vapor deposition is preferable as the current collecting layer 10 of the present embodiment because it has a high adhesiveness with a sintered body even if it has a thickness of 1 μm or less and a sufficient current collecting function is obtained.

タブ部材24としては、例えば厚さ5〜40μmの金属箔を用いればよい。金属箔の厚さは、その材質の柔軟性と強度などから生産工程上差し支えない範囲で適宜選定すればよい。電極本体26の内部に位置するタブ接合部24iの大きさは、蓄電デバイスの大きさ、容量、使用条件などに応じて、蓄電デバイスの容量を確保できる程度に小さく、かつタブ接合部24iの信頼性を確保できる程度に適宜設計すればよい。また、タブ部24oの幅についても、蓄電デバイスの容量、使用条件などに応じて、発熱などの不具合が起こらない程度に大きく、かつ対極のタブ4やリード3と接触して短絡を起こさない程度に設計すればよい。   For example, a metal foil having a thickness of 5 to 40 μm may be used as the tab member 24. The thickness of the metal foil may be appropriately selected within the range that does not interfere with the production process from the flexibility and strength of the material. The size of the tab joint 24i located inside the electrode body 26 is small enough to ensure the capacity of the power storage device according to the size, capacity, use conditions, etc. of the power storage device, and the reliability of the tab joint 24i. It is sufficient to design appropriately to such an extent that the property can be secured. In addition, the width of the tab portion 24o is large enough not to cause a problem such as heat generation according to the capacity of the power storage device, usage conditions, etc., and does not cause a short circuit due to contact with the tab 4 or the lead 3 of the counter electrode. To design.

なお、本実施形態の蓄電デバイスでは、正極11Pと負極11Nの少なくともいずれか一方が本発明の電極構造を有していればよく、他方の電極11は塗膜電極、すなわち、活物質とバインダを含む塗液を集電体上に塗布し、乾燥又は熱処理して集電体に接合させた塗膜を電極として用いてもよい。   In the electricity storage device of this embodiment, it is sufficient that at least one of the positive electrode 11P and the negative electrode 11N has the electrode structure of the present invention, and the other electrode 11 is a coated electrode, that is, an active material and a binder. A coating film in which a coating liquid containing the coating liquid is applied onto a current collector and dried or heat-treated to be bonded to the current collector may be used as an electrode.

正極集電層10P、10P’の材質には、正極の電位において溶解などの反応が発生しない耐食性を有する材料を用いればよい。このような材料としては、たとえば、アルミニウム、タンタル、ニオブ、チタン、金、白金等を含む金属材料や合金、黒鉛、ハードカーボン、ガラス状炭素等の炭素質材料を用いることができる。その中でもアルミニウム、金、白金は耐食性に優れ、容易に入手できるため好ましい。特にアルミニウムは、表面に酸化被膜を形成して不動態化し、高い電位においても耐食性に優れる点から好ましい。   As the material of the positive electrode current collecting layers 10P and 10P ', a material having corrosion resistance that does not cause a reaction such as dissolution at the potential of the positive electrode may be used. As such a material, for example, a metal material or alloy containing aluminum, tantalum, niobium, titanium, gold, platinum, or the like, or a carbonaceous material such as graphite, hard carbon, or glassy carbon can be used. Among these, aluminum, gold, and platinum are preferable because they are excellent in corrosion resistance and easily available. Aluminum is particularly preferable because it is passivated by forming an oxide film on the surface and excellent in corrosion resistance even at a high potential.

正極タブ部材24Pおよび一端が外装体1の外部に引き出され正極端子2Pとなる正極リード3Pには、基本的に正極集電層10P、10P’の材質として挙げた金属を用いればよい。具体的には、アルミニウムがコストや柔軟性、強度などの点から好適に用いられ、チタンやステンレスも使用可能である。外装体1の内部に位置する正極リード3P部分と、外装体1の外部に位置する正極端子2P部分の幅は、基本的に同じでよいが、必要に応じて変更しても差し支えない。また、正極リード3Pの厚さは、特に限定はしないが、たとえば0.1mm程度が適当である。   For the positive electrode tab member 24P and the positive electrode lead 3P whose one end is drawn out of the exterior body 1 and becomes the positive electrode terminal 2P, basically, the metal mentioned as the material of the positive electrode current collecting layers 10P, 10P ′ may be used. Specifically, aluminum is suitably used in terms of cost, flexibility, strength, etc., and titanium and stainless steel can also be used. The widths of the positive electrode lead 3P portion located inside the outer package 1 and the positive electrode terminal 2P portion located outside the outer package 1 may be basically the same, but may be changed as necessary. The thickness of the positive electrode lead 3P is not particularly limited, but for example, about 0.1 mm is appropriate.

なお、正極集電層10Pおよび10P’、正極タブ部材24Pおよび正極リード3Pは、基本的に同じ材質でよいが、それぞれ異なる材質であっても構わない。   The positive electrode current collecting layers 10P and 10P ', the positive electrode tab member 24P, and the positive electrode lead 3P may basically be made of the same material, but may be made of different materials.

負極集電層10Nの材質には、負極の電位において、イオン伝導体である金属(たとえば、Li、Na等)との合金化などの副反応が発生しない材料を用いればよい。このような材料としては、たとえば、銅、ニッケル、真鍮、亜鉛、アルミニウム、ステンレス、タングステン、金、白金等を含む金属材料や合金、黒鉛、ハードカーボン、ガラス状炭素等の炭素質材料を用いることができる。特に、導電性が高く比較的安価な点から、銅またはニッケルを用いることが好ましい。   As the material of the negative electrode current collecting layer 10N, a material that does not cause a side reaction such as alloying with a metal (for example, Li, Na) that is an ionic conductor at the potential of the negative electrode may be used. As such a material, for example, a metal material or alloy including copper, nickel, brass, zinc, aluminum, stainless steel, tungsten, gold, platinum or the like, or a carbonaceous material such as graphite, hard carbon, or glassy carbon is used. Can do. In particular, it is preferable to use copper or nickel from the viewpoint of high conductivity and relatively low cost.

負極11Nにおいて本実施形態の電極構造を適用する場合、負極タブ部材24N(図示
せず)、および一端が外装体1の外部に引き出され負極端子2N(図示せず)となる負極リード3N(図示せず)には、基本的に負極集電層10Nの材質として挙げた金属を用いればよい。具体的には、銅やニッケル、ステンレスなどが挙げられるが、銅にニッケルをコートしたものや、異種金属を貼り合わせたクラッド材なども使用可能である。外装体1の内部に位置する負極リード3N部分と、外装体1の外部に位置する負極端子2N部分の幅は、基本的に同じでよいが、必要に応じて変更しても差し支えない。また、負極リード3Nの厚さは、特に限定はしないが、たとえば0.1mm程度が適当である。
When the electrode structure of the present embodiment is applied to the negative electrode 11N, the negative electrode tab member 24N (not shown), and the negative electrode lead 3N (not shown), one end of which is drawn out of the exterior body 1 and becomes the negative electrode terminal 2N (not shown). For example, the metals mentioned as the material of the negative electrode current collecting layer 10N may be basically used. Specific examples include copper, nickel, and stainless steel, but it is also possible to use a copper-coated nickel or a clad material bonded with a dissimilar metal. The width of the negative electrode lead 3N portion located inside the exterior body 1 and the width of the negative electrode terminal 2N portion located outside the exterior body 1 may be basically the same, but may be changed as necessary. The thickness of the negative electrode lead 3N is not particularly limited, but for example, about 0.1 mm is appropriate.

なお、負極集電層10N、負極タブ部材24Nおよび負極リード3Nは、基本的に同じ材質でよいが、それぞれ異なる材質であっても構わない。   The negative electrode current collecting layer 10N, the negative electrode tab member 24N, and the negative electrode lead 3N may be basically made of the same material, but may be made of different materials.

集電体28とタブ接合部24iとの電気的接続確保のため、導電性接着剤を用いる場合は、たとえば、金、銀、ニッケル、酸化亜鉛、酸化錫、酸化インジウム、酸化チタン、チタン酸化カリム等の導電性フィラーと、アクリル系樹脂、エポキシ樹脂、シリコン系樹脂、ポリアミド系樹脂、フェノール樹脂、ポリエステル樹脂、ポリイミド系樹脂等の高分子粘着材とからなる混合物を用いることができる。導電性接着剤の厚さは、導電性接着剤による電気抵抗を最小限に抑えるために、10μm以下とすることが望ましい。また、導電性接着剤を集電体28として用いてもよい。   In order to ensure electrical connection between the current collector 28 and the tab joint 24i, when using a conductive adhesive, for example, gold, silver, nickel, zinc oxide, tin oxide, indium oxide, titanium oxide, and titanium oxide kalim. A mixture comprising a conductive filler such as an acrylic resin, an epoxy resin, a silicon resin, a polyamide resin, a phenol resin, a polyester resin, a polyimide resin, or the like can be used. The thickness of the conductive adhesive is desirably 10 μm or less in order to minimize the electrical resistance due to the conductive adhesive. Further, a conductive adhesive may be used as the current collector 28.

次に、本実施形態の極群15の構成について、リチウムイオン二次電池を代表例として説明する。極群15は、正極集電層10Pを有する正極11Pと、負極集電層10Nを有する負極11Nとが、セパレータ12を介して交互に積層された構造となっている。   Next, the configuration of the pole group 15 of the present embodiment will be described using a lithium ion secondary battery as a representative example. The pole group 15 has a structure in which the positive electrode 11P having the positive electrode current collecting layer 10P and the negative electrode 11N having the negative electrode current collecting layer 10N are alternately stacked via the separator 12.

正極11Pに用いる活物質としては、リチウムを含む遷移金属の複合酸化物、たとえばリチウムコバルト複合酸化物、リチウムマンガン複合酸化物、二酸化マンガン、リチウムニッケル複合酸化物、リチウムニッケルコバルト複合酸化物、リチウムバナジウム複合酸化物などが挙げられる。このうち、特にリチウムコバルト複合酸化物は電子伝導性が高く、出力特性に優れた二次電池とすることができる。また、リチウムニッケルマンガン複合酸化物(LiNiMn(x=0.1〜0.5、y=1.5〜1.9))は、他の材料に比べ電位が高く、起電力の高い二次電池とすることが出来る。なお、正極11Pは相対密度の高い焼結体として用いることが好ましく、その相対密度は85%以上、さらには90%以上であることが好ましい。 As an active material used for the positive electrode 11P, a transition metal composite oxide containing lithium, for example, lithium cobalt composite oxide, lithium manganese composite oxide, manganese dioxide, lithium nickel composite oxide, lithium nickel cobalt composite oxide, lithium vanadium. Examples include complex oxides. Among these, in particular, lithium cobalt composite oxide has a high electron conductivity and can be a secondary battery excellent in output characteristics. Further, lithium nickel manganese composite oxide (LiNi x Mn y O 4 (x = 0.1 to 0.5, y = 1.5 to 1.9)) has a higher potential than other materials, and an electromotive force. High secondary battery. The positive electrode 11P is preferably used as a sintered body having a high relative density, and the relative density is preferably 85% or more, and more preferably 90% or more.

負極11Nに用いる活物質としては、例えば、黒鉛、ハードカーボン、ガラス状炭素などの炭素質材料、金属ケイ素およびその合金、ケイ素と酸素や窒素とを含む化合物等のケイ素含有材料、酸化チタン、酸化ニオブ、リチウムチタン複合酸化物などが挙げられる。なかでもリチウムチタン複合酸化物は、相対密度が85%以上、さらには90%以上の焼結体として用いた場合も、充放電における負極11Nの体積変化を小さくすることができ、サイクル特性の良い二次電池とすることが出来る。   Examples of the active material used for the negative electrode 11N include carbonaceous materials such as graphite, hard carbon, and glassy carbon, metal silicon and its alloys, silicon-containing materials such as compounds containing silicon, oxygen, and nitrogen, titanium oxide, and oxidation. Examples include niobium and lithium titanium composite oxide. In particular, the lithium titanium composite oxide can reduce the volume change of the negative electrode 11N during charge and discharge even when used as a sintered body having a relative density of 85% or more, and further 90% or more, and has good cycle characteristics. A secondary battery can be obtained.

また、金属ケイ素およびその合金、ケイ素と酸素や窒素とを含む化合物等は、高容量を得られるという点から好ましい。このようなケイ素含有材料は、その粒子と、炭素とを含む塗膜や焼結体として用いればよい。なお、ケイ素を含む粒子は充放電時に体積変化するが、焼結体として用いる場合でも、気孔率を10〜60%の範囲とすることにより、体積変化により発生した応力を焼結体内部に存在する気孔で吸収することができる。ケイ素含有材料を含む焼結体は、ケイ素含有材料の原料粉末と、熱処理により炭化して炭素質材料となる炭素質材料前駆体とを混合し、所望の形状に成形、乾燥して、非酸化雰囲気で熱処理を行うことで得られる。炭素質材料前駆体としては、フェノール樹脂、エポキシ樹脂、ポリエステル樹脂、フラン樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、キシレン樹脂等の熱硬化性樹脂、ナフタレン、アセナフチレン、フェナントレン、アントラセン、ト
リフェニレン、ピレン、ペリレン、ペンタフェン、ペンタセン等の縮合系多環炭化水素化合物またはその誘導体、あるいはその混合物を主成分とするピッチ等の有機材料が挙げられる。なお、熱処理により炭化して炭素質材料となる炭素質材料前駆体には、さらに上述した黒鉛、ハードカーボン等の炭素質材料の粒子を加えてもよい。また、気孔を形成するために、熱処理時に消失して気孔となる樹脂材料等を造孔剤として添加してもよい。
Metal silicon and its alloys, compounds containing silicon, oxygen and nitrogen, and the like are preferable from the viewpoint of obtaining a high capacity. Such a silicon-containing material may be used as a coating film or a sintered body containing the particles and carbon. In addition, although the particle | grains containing silicon change at the time of charging / discharging, even when using as a sintered compact, the stress which generate | occur | produced by the volume change exists in a sintered compact by making a porosity into the range of 10 to 60%. Can be absorbed by pores. A sintered body containing a silicon-containing material is prepared by mixing a raw material powder of a silicon-containing material with a carbonaceous material precursor that is carbonized by heat treatment to form a carbonaceous material, and molding and drying it into a desired shape. It is obtained by performing a heat treatment in an atmosphere. As the carbonaceous material precursor, thermosetting resins such as phenol resin, epoxy resin, polyester resin, furan resin, urea resin, melamine resin, alkyd resin, xylene resin, naphthalene, acenaphthylene, phenanthrene, anthracene, triphenylene, pyrene, Examples thereof include organic materials such as pitch mainly composed of condensed polycyclic hydrocarbon compounds such as perylene, pentaphen, and pentacene, derivatives thereof, or mixtures thereof. The carbonaceous material precursor that is carbonized by heat treatment to become a carbonaceous material may further contain particles of carbonaceous material such as graphite and hard carbon described above. In order to form pores, a resin material that disappears during heat treatment and becomes pores may be added as a pore-forming agent.

正極11Pおよび負極11Nの厚さは、それぞれ20μm〜200μmとすることが好ましい。これにより、電池容量を得るために必要な活物質の絶対量が確保できるとともに、良好な充放電特性の二次電池が得られる。   The thickness of each of the positive electrode 11P and the negative electrode 11N is preferably 20 μm to 200 μm. Thereby, the absolute amount of the active material necessary for obtaining the battery capacity can be secured, and a secondary battery having good charge / discharge characteristics can be obtained.

セパレータ12としては、例えばポリオレフィン繊維性の不織布やポリオレフィン製の微多孔膜、セラミックの多孔質材料を用いることができる。ここで、ポリオレフィンとしてはポリエチレン、ポリプロピレンを挙げることができ、一般的にリチウムイオン電池に用いられるセパレータが適用可能である。   As the separator 12, for example, a polyolefin fibrous nonwoven fabric, a microporous membrane made of polyolefin, or a ceramic porous material can be used. Here, examples of the polyolefin include polyethylene and polypropylene, and a separator generally used for a lithium ion battery is applicable.

極群15に含まれる電解質としては、有機電解液、高分子固体電解質、無機固体電解質、イオン液体等のいずれも用いることができる。有機電解液は、有機溶媒と電解質塩によって構成され、必要に応じて、電極表面への被膜形成、過充電防止、難燃性の付与等を目的とした添加剤を加えてもよい。有機溶媒としては、高誘電率を有し、低粘性、低蒸気圧のものが好適に用いられ、このような材料としては、たとえば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、スルホラン、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン、メチルエチルカーボネート、ジメチルカーボネート、ジエチルカーボネートから選ばれる1種もしくは2種以上を混合した溶媒が挙げられる。電解質塩としては、例えばLiClO、LiBF、LiPF、LiCFSO、LiN(CFSO、LiN(CSOなどのリチウム塩が挙げられる。 As the electrolyte contained in the electrode group 15, any of organic electrolyte solution, polymer solid electrolyte, inorganic solid electrolyte, ionic liquid, and the like can be used. The organic electrolyte is composed of an organic solvent and an electrolyte salt, and an additive for the purpose of forming a film on the electrode surface, preventing overcharge, imparting flame retardancy, or the like may be added as necessary. As the organic solvent, those having a high dielectric constant, low viscosity and low vapor pressure are suitably used. Examples of such materials include ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane, Examples thereof include a solvent in which one or two or more selected from 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, methylethyl carbonate, dimethyl carbonate, and diethyl carbonate are mixed. Examples of the electrolyte salt include lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiN (C 2 F 5 SO 2 ) 2 .

また、電解質として、高分子固体電解質、無機固体電解質を用いる場合は、セパレータ12にかえてこれらの電解質を配置してもよい。   Further, when a polymer solid electrolyte or an inorganic solid electrolyte is used as the electrolyte, these electrolytes may be disposed in place of the separator 12.

以上、本実施形態について、一例としてリチウムイオン電池を取り上げて詳述したが、本発明はこれに限定されるものではなく、ナトリウムイオン二次電池、鉛電池、ニッケルカドミウム電池、ニッケル水素電池、電気二重層キャパシタ、リチウムイオンキャパシタなど各種二次電池やキャパシタ、その他類似の蓄電デバイスにも適用可能である。   As described above, the present embodiment has been described in detail by taking a lithium ion battery as an example, but the present invention is not limited to this, and a sodium ion secondary battery, a lead battery, a nickel cadmium battery, a nickel hydrogen battery, an electric battery The present invention can also be applied to various secondary batteries such as double layer capacitors and lithium ion capacitors, capacitors, and other similar power storage devices.

次に、本実施形態の電極構造を形成する方法の一例について説明する。   Next, an example of a method for forming the electrode structure of this embodiment will be described.

まず、タブ部材24を準備する。タブ部材24としては、例えば金属箔を所定の形状に加工すればよい。所定の形状とは、一端を例えば図2(c)や図4に示すような形状としたものであり、第1焼結体21と第2焼結体21’の間に配置した際に、タブ接合部24iが、電極本体26の内部に位置する部位において、タブ接合部24iとタブ部24oとの境界部分よりも大きい幅を有している。   First, the tab member 24 is prepared. As the tab member 24, for example, a metal foil may be processed into a predetermined shape. The predetermined shape is, for example, one end having a shape as shown in FIG. 2 (c) or FIG. 4, and when placed between the first sintered body 21 and the second sintered body 21 ′, The tab joint portion 24i has a width larger than the boundary portion between the tab joint portion 24i and the tab portion 24o at a portion located inside the electrode body 26.

主面に凹部27を有する活物質の焼結体21は、次のようにして作製する。活物質の原料粉末と、ブチラール等のバインダとを、必要に応じて分散剤、可塑剤を加えた水、またはトルエン等の有機溶剤を溶媒として周知の方法でそれぞれ混合し、スラリーを作製する。このスラリーをポリエチレンテレフタレート(PET)製フィルム等の基材フィルム上に周知の方法で塗工、乾燥して所望の厚さのグリーンシートを作製する。このとき、スラリーを乾燥造粒し、ロールプレスによりグリーンシートを作製したり、所望の形状にプレ
ス成形してもよい。得られたグリーンシートを所望の形状に2枚打ち抜き、一方については所望の箇所に型押しプレス等の手段を用いて凹部27を形成する。このとき、凹部27は焼成および集電層10の形成後にタブ接続部24iを収納可能な形状および寸法であり、かつ電極本体26を形成した時、凹部27により形成される空間の内部の幅が、開口部の幅よりも大きいことが重要である。その後、必要に応じて脱脂処理を行い、焼成することで、凹部27を有する焼結体21が得られる。なお、焼成温度は原料粉末である活物質の焼結性に応じて適宜選択すればよい。また、グリーンシートに凹部27を形成せずに、焼結体21を直接加工して所望の凹部27を形成してもよい。なお、活物質の焼結体21の相対密度や気孔率は、アルキメデス法、水銀圧入法、焼結体21の断面写真の画像解析等の手法を用いて算出できる。
The active material sintered body 21 having the concave portion 27 on the main surface is produced as follows. The raw material powder of the active material and a binder such as butyral are mixed by a known method using a dispersant, water added with a plasticizer, or an organic solvent such as toluene as a solvent, if necessary, to prepare a slurry. The slurry is coated on a base film such as a polyethylene terephthalate (PET) film by a known method and dried to produce a green sheet having a desired thickness. At this time, the slurry may be dried and granulated, and a green sheet may be produced by roll pressing, or may be press-formed into a desired shape. Two of the obtained green sheets are punched into a desired shape, and one of them is formed with a recess 27 at a desired location using means such as an embossing press. At this time, the concave portion 27 has a shape and a dimension capable of accommodating the tab connecting portion 24i after firing and the formation of the current collecting layer 10, and when the electrode main body 26 is formed, the width of the space formed by the concave portion 27 is small. It is important that it is larger than the width of the opening. Then, the degreasing process is performed as needed, and the sintered compact 21 which has the recessed part 27 is obtained by baking. In addition, what is necessary is just to select a calcination temperature suitably according to the sinterability of the active material which is raw material powder. Alternatively, the desired recesses 27 may be formed by directly processing the sintered body 21 without forming the recesses 27 in the green sheet. The relative density and the porosity of the sintered body 21 of the active material can be calculated using techniques such as Archimedes method, mercury intrusion method, and image analysis of a cross-sectional photograph of the sintered body 21.

焼結体21の主面には、例えばスパッタリング法や蒸着法を用いて、例えばPtなどの金属層を形成し、集電層10とする。特に蒸着法では、焼結体の凹部27の内壁にも均一に金属層を形成することができ、焼結体21の主面に形成する集電層10と、凹部27の内壁に形成する集電体28とを電気的に接続するという点で好適である。   For example, a metal layer such as Pt is formed on the main surface of the sintered body 21 by using, for example, a sputtering method or a vapor deposition method to form the current collecting layer 10. In particular, in the vapor deposition method, a metal layer can be uniformly formed on the inner wall of the recessed portion 27 of the sintered body, and the current collecting layer 10 formed on the main surface of the sintered body 21 and the current collector formed on the inner wall of the recessed portion 27. This is preferable in terms of electrical connection with the electric body 28.

集電層10を形成した焼結体21の凹部27に、タブ部材24のタブ接合部24iを配置して、凹部27を形成していない他方の焼結体21の集電層10を形成した主面を重ね合わせる。このとき、必要に応じてタブ接合部24iと接する集電体28とを、例えばPtペースト等を用いて接着してもよい。   The tab junction 24i of the tab member 24 is arranged in the concave portion 27 of the sintered body 21 on which the current collecting layer 10 is formed, and the current collecting layer 10 of the other sintered body 21 in which the concave portion 27 is not formed is formed. Superimpose the main surfaces. At this time, the current collector 28 in contact with the tab joint 24i may be bonded using, for example, a Pt paste or the like as necessary.

なお、2枚の焼結体21の両方に凹部27を形成して電極本体を構成する場合には、凹部27同士が対向して形成される空間に、タブ接続部24iを収納可能なように形成すればよい。   In addition, when the recessed part 27 is formed in both of the two sintered bodies 21 to constitute the electrode body, the tab connecting part 24i can be accommodated in the space formed by the recessed parts 27 facing each other. What is necessary is just to form.

このようにして作製したタブ24o付きの電極本体26を、正極11Pと負極11Nとがセパレータ12を介して交互に配置されるように積層することで、極群15を形成すればよい。   The electrode group 15 with the tab 24o thus manufactured may be stacked so that the positive electrodes 11P and the negative electrodes 11N are alternately arranged with the separators 12 interposed therebetween, thereby forming the electrode group 15.

1・・・・外装体
2・・・・端子電極
2P・・・正極端子
3P・・・正極リード
4P・・・正極タブ
5P・・・正極タブ集合部
10P・・・正極集電層
10N・・・負極集電層
11P・・・正極
11N・・・負極
12・・・・セパレータ
15・・・・極群
21P・・・正極用の焼結体
24P・・・正極タブ部材
24Pi・・正極タブ接合部
24Po・・正極タブ部
26P・・・正極本体
27P・・・正極側の焼結体の凹部
28P・・・正極側の凹部の内壁に設けられた集電体
DESCRIPTION OF SYMBOLS 1 ... Exterior body 2 ... Terminal electrode 2P ... Positive electrode terminal 3P ... Positive electrode lead 4P ... Positive electrode tab 5P ... Positive electrode tab assembly part 10P ... Positive electrode current collection layer 10N ··· Negative electrode current collecting layer 11P · · · Positive electrode 11N · · · Negative electrode 12 · · · Separator 15 · · · Electrode group 21P · · · Sintered body for positive electrode 24P · · · Positive electrode tab member 24Pi · · · Positive electrode Tab joint 24Po .. Positive electrode tab 26P... Positive electrode body 27P... Recessed portion of sintered body on positive electrode side 28P... Current collector provided on inner wall of recessed portion on positive electrode side

Claims (8)

活物質の焼結体である第1焼結体および第2焼結体からなる電極本体と、タブ部材とを備え、
前記第1焼結体および前記第2焼結体は、それぞれの一方の主面に設けられた集電層が互いに対向するように配置されるとともに、
前記第1焼結体および前記第2焼結体の少なくともいずれか一方の前記主面に、該主面に隣接する側面に開口部を有するように凹部が設けられており、
前記タブ部材は、前記電極本体の外部に位置するタブ部と、
前記第1焼結体と前記第2焼結体との間に位置するとともに、前記凹部に配置され、前記集電層と電気的に接続されたタブ接合部と、を有し、
該タブ接合部は、前記開口部が位置する前記電極本体の側面に沿う平面に前記タブ接合部の輪郭を投影した時、前記タブ接合部の輪郭の少なくとも一部が、前記開口部の輪郭の外側に位置することを特徴とする電極構造。
An electrode body composed of a first sintered body and a second sintered body, which are sintered bodies of active materials, and a tab member;
The first sintered body and the second sintered body are arranged such that current collecting layers provided on one main surface of the first sintered body and the second sintered body face each other,
The main surface of at least one of the first sintered body and the second sintered body is provided with a recess so as to have an opening on a side surface adjacent to the main surface,
The tab member includes a tab portion located outside the electrode body,
A tab joint located between the first sintered body and the second sintered body, disposed in the recess, and electrically connected to the current collecting layer;
When projecting the outline of the tab joint on the plane along the side surface of the electrode body on which the opening is located, at least a part of the outline of the tab joint is the contour of the opening. An electrode structure characterized by being located outside.
前記タブ接合部は、前記凹部の前記開口部が位置する前記電極本体の側面に沿う方向の断面における断面積が、前記開口部の断面積よりも大きい部位を有することを特徴とする請求項1に記載の電極構造。   2. The tab joint portion has a portion in which a cross-sectional area in a cross-section in a direction along a side surface of the electrode body in which the opening of the concave portion is located is larger than a cross-sectional area of the opening. The electrode structure described in 1. 前記凹部の容積が、前記タブ接合部の体積以上であるとともに、前記凹部は、前記タブ接合部の形状に沿う形状を有することを特徴とする請求項1または2に記載の電極構造。   3. The electrode structure according to claim 1, wherein a volume of the concave portion is equal to or larger than a volume of the tab joint portion, and the concave portion has a shape along a shape of the tab joint portion. 複数の正極と負極とがセパレータを介して交互に積層された極群を備え、前記正極または前記負極の少なくともいずれか一方が、請求項1乃至3のいずれかに記載の電極構造を有することを特徴とする蓄電デバイス。   It comprises a pole group in which a plurality of positive electrodes and negative electrodes are alternately stacked via separators, and at least one of the positive electrode and the negative electrode has the electrode structure according to any one of claims 1 to 3. A power storage device characterized. 前記正極が、請求項1乃至3のいずれかに記載の電極構造を有するとともに、前記正極の前記第1焼結体および前記第2焼結体の前記主面に、白金、金およびアルミニウムのうち少なくともいずれか1種が前記集電層として蒸着されていることを特徴とする請求項4
に記載の蓄電デバイス。
The positive electrode has the electrode structure according to any one of claims 1 to 3, and the main surface of the first sintered body and the second sintered body of the positive electrode is made of platinum, gold, and aluminum. 5. At least one of them is deposited as the current collecting layer.
The electricity storage device described in 1.
前記正極の前記集電層に接合されたタブ部材が、アルミニウム箔からなることを特徴とする請求項4または5に記載の蓄電デバイス。   The electric storage device according to claim 4, wherein the tab member joined to the current collecting layer of the positive electrode is made of an aluminum foil. 前記負極が、請求項1乃至3のいずれかに記載の電極構造を有するとともに、前記負極の前記第1焼結体および前記第2焼結体の前記主面に、銅およびニッケルのうち少なくともいずれか一方が前記集電層として蒸着されていることを特徴とする請求項4乃至6のいずれかに記載の蓄電デバイス。   The negative electrode has the electrode structure according to any one of claims 1 to 3, and at least one of copper and nickel on the main surface of the first sintered body and the second sintered body of the negative electrode. One of these is deposited as said current collection layer, The electrical storage device in any one of the Claims 4 thru | or 6 characterized by the above-mentioned. 前記負極の前記集電層に接合されたタブ部材が、銅箔またはニッケル箔からなることを特徴とする請求項4乃至7のいずれかに記載の蓄電デバイス。   The electric storage device according to claim 4, wherein the tab member joined to the current collecting layer of the negative electrode is made of a copper foil or a nickel foil.
JP2012076849A 2012-03-29 2012-03-29 Electrode structure and power storage device using the same Expired - Fee Related JP5829564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012076849A JP5829564B2 (en) 2012-03-29 2012-03-29 Electrode structure and power storage device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012076849A JP5829564B2 (en) 2012-03-29 2012-03-29 Electrode structure and power storage device using the same

Publications (2)

Publication Number Publication Date
JP2013206821A true JP2013206821A (en) 2013-10-07
JP5829564B2 JP5829564B2 (en) 2015-12-09

Family

ID=49525681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012076849A Expired - Fee Related JP5829564B2 (en) 2012-03-29 2012-03-29 Electrode structure and power storage device using the same

Country Status (1)

Country Link
JP (1) JP5829564B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020024922A (en) * 2018-08-08 2020-02-13 輝能科技股▲分▼有限公司Prologium Technology Co., Ltd. Horizontal composite power-feeding structure
JP2023504380A (en) * 2020-02-10 2023-02-03 エルジー エナジー ソリューション リミテッド An electrode assembly including an electrode lead connection part connected by an adhesive part and a spot weld, and a pouch-type battery cell including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50137538U (en) * 1974-04-27 1975-11-12
JP2007036026A (en) * 2005-07-28 2007-02-08 Sanyo Electric Co Ltd Electric double layer capacitor and electrolyte battery
JP2008293717A (en) * 2007-05-22 2008-12-04 Nissan Motor Co Ltd Secondary battery and vehicle which mounts this
JP2010021183A (en) * 2008-07-08 2010-01-28 Panasonic Corp Electric double layer capacitor
JP2010170972A (en) * 2008-12-22 2010-08-05 Sumitomo Electric Ind Ltd Positive electrode member, nonaqueous electrolyte battery, and method of manufacturing positive electrode member
JP2013089604A (en) * 2011-10-21 2013-05-13 Research In Motion Ltd Fitted tab for high-density energy thin-type battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50137538U (en) * 1974-04-27 1975-11-12
JP2007036026A (en) * 2005-07-28 2007-02-08 Sanyo Electric Co Ltd Electric double layer capacitor and electrolyte battery
JP2008293717A (en) * 2007-05-22 2008-12-04 Nissan Motor Co Ltd Secondary battery and vehicle which mounts this
JP2010021183A (en) * 2008-07-08 2010-01-28 Panasonic Corp Electric double layer capacitor
JP2010170972A (en) * 2008-12-22 2010-08-05 Sumitomo Electric Ind Ltd Positive electrode member, nonaqueous electrolyte battery, and method of manufacturing positive electrode member
JP2013089604A (en) * 2011-10-21 2013-05-13 Research In Motion Ltd Fitted tab for high-density energy thin-type battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020024922A (en) * 2018-08-08 2020-02-13 輝能科技股▲分▼有限公司Prologium Technology Co., Ltd. Horizontal composite power-feeding structure
KR20200017371A (en) * 2018-08-08 2020-02-18 프로로지움 테크놀로지 코., 엘티디. Horizontal composite electricity supply structure
CN110828759A (en) * 2018-08-08 2020-02-21 辉能科技股份有限公司 Horizontal combined type electric energy supply structure
KR102257133B1 (en) * 2018-08-08 2021-05-27 프로로지움 테크놀로지 코., 엘티디. Horizontal composite electricity supply structure
JP2023504380A (en) * 2020-02-10 2023-02-03 エルジー エナジー ソリューション リミテッド An electrode assembly including an electrode lead connection part connected by an adhesive part and a spot weld, and a pouch-type battery cell including the same
JP7410295B2 (en) 2020-02-10 2024-01-09 エルジー エナジー ソリューション リミテッド An electrode assembly including an electrode lead joint part joined by an adhesive part and spot welding, and a pouch type battery cell including the same

Also Published As

Publication number Publication date
JP5829564B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP6608862B2 (en) Lithium battery using nanoporous separator layer
US20240258043A1 (en) Compositions and methods for multilayer electrode films
KR101792296B1 (en) Lithium ion secondary battery
JP6704295B2 (en) All-solid-state lithium secondary battery and manufacturing method thereof
JP2021009851A (en) Anode, lithium secondary battery including the same, battery module including lithium secondary battery, and manufacturing method of anode
US20210135276A1 (en) Coin-shaped battery and method for producing same
TW201547085A (en) Sheet-laminated lithium ion secondary battery and method for producing sheet-laminated lithium ion secondary battery
WO2014162532A1 (en) All-solid-state battery, and method for producing all-solid-state battery
KR20130076802A (en) Lithium ion secondary battery
CN109792079B (en) All-solid lithium ion secondary battery
JP2016001595A (en) Lithium ion secondary battery
JP2013182677A (en) Laminate type power storage device
CN109792080B (en) All-solid lithium ion secondary battery
CN107528043B (en) Battery with a battery cell
JP2016207576A (en) Nonaqueous electrolyte secondary battery
JP7246196B2 (en) All-solid lithium secondary battery
JP5812884B2 (en) Secondary battery
JP2017059538A (en) Laminated battery
CN105934845A (en) Electrical device
JP5829564B2 (en) Electrode structure and power storage device using the same
US12074277B2 (en) All-solid-state battery
JP2010015852A (en) Secondary battery
JP6926910B2 (en) Rechargeable battery
JP2011119093A (en) Method for manufacturing solid battery module, and solid battery module obtained by the method
JP2006134697A (en) Lithium-ion rechargeable battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151022

R150 Certificate of patent or registration of utility model

Ref document number: 5829564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees