[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010170972A - Positive electrode member, nonaqueous electrolyte battery, and method of manufacturing positive electrode member - Google Patents

Positive electrode member, nonaqueous electrolyte battery, and method of manufacturing positive electrode member Download PDF

Info

Publication number
JP2010170972A
JP2010170972A JP2009054494A JP2009054494A JP2010170972A JP 2010170972 A JP2010170972 A JP 2010170972A JP 2009054494 A JP2009054494 A JP 2009054494A JP 2009054494 A JP2009054494 A JP 2009054494A JP 2010170972 A JP2010170972 A JP 2010170972A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
layer
material layer
current collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009054494A
Other languages
Japanese (ja)
Inventor
Hideaki Awata
英章 粟田
Osamu Mizuno
修 水野
Takeshi Kanno
毅 寒野
Mitsuho Ueda
光保 上田
Rikizo Ikuta
力三 生田
Taku Kamimura
卓 上村
Katsuji Emura
勝治 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009054494A priority Critical patent/JP2010170972A/en
Publication of JP2010170972A publication Critical patent/JP2010170972A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode member, which allows manufacturing a nonaqueous electrolyte battery with large capacity. <P>SOLUTION: The positive electrode member includes a first active material layer 2A having a positive electrode active material, a second active material layer 2B having a positive electrode active material and disposed to face the first active material layer 2A, and a positive electrode current collecting layer 1 disposed between the first active material layer 2A and the second active material layer 2B. The positive electrode member 10 is a sintered body in which the first active material layer 2A, the second active material layer 2B and the positive electrode current collecting layer 1 are integrated, and is high in adhesion between the active material layers 2A and 2B and the current collecting layer 1. Therefore, when a lithium ion battery 20 is manufactured using the positive electrode material 10, the increase in internal resistance can be suppressed to increase the capacity. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、正極と負極とこれら電極の間に配置される非水電解質を備える非水電解質電池、およびこの電池に使用される正極部材、並びに、この正極部材の製造方法に関するものである。   The present invention relates to a nonaqueous electrolyte battery including a positive electrode, a negative electrode, and a nonaqueous electrolyte disposed between the electrodes, a positive electrode member used in the battery, and a method for manufacturing the positive electrode member.

携帯機器といった比較的小型の電気機器の電源に、非水電解質電池(代表的には、リチウムイオン電池)が利用されている。リチウムイオン電池は、正極と、負極と、これら電極の間に配置される電解質層とを備える。例えば、特許文献1や2には、リチウム複合酸化物の焼結体である正極活物質層の片面に、主として金属で形成される正極集電層を形成した正極部材を用いた非水電解質型リチウムイオン電池が開示されている。   A nonaqueous electrolyte battery (typically, a lithium ion battery) is used as a power source for a relatively small electric device such as a portable device. A lithium ion battery includes a positive electrode, a negative electrode, and an electrolyte layer disposed between these electrodes. For example, Patent Documents 1 and 2 disclose a non-aqueous electrolyte type using a positive electrode member in which a positive electrode current collecting layer formed mainly of metal is formed on one surface of a positive electrode active material layer which is a sintered body of a lithium composite oxide. A lithium ion battery is disclosed.

特開平8−180904号公報JP-A-8-180904 特開2001−143687号公報JP 2001-143687 A

しかし、リチウム複合酸化物の焼結体である正極活物質層と、金属箔などで構成される正極集電層との密着性が悪く、その密着性の悪さがリチウムイオン電池としたときに内部抵抗を増加させる要因となっていた。そのため、このような正極部材を使用したリチウムイオン電池は、上記内部抵抗のために容量が抑えられていた。   However, the adhesion between the positive electrode active material layer, which is a sintered body of lithium composite oxide, and the positive electrode current collecting layer composed of a metal foil or the like is poor. It was a factor that increased resistance. Therefore, the capacity of the lithium ion battery using such a positive electrode member is suppressed due to the internal resistance.

また、正極集電層は、リチウムイオン電池に必要な部材であるが、電池の容量には寄与しない部材であるので、可能な限り薄いことが好ましい。しかし、正極集電層に利用される金属箔は、技術的な問題から一定の厚さ(およそ10μm)以下に薄くすることが難しい。しかも、金属箔は薄くすればするほど取り扱いが難しくなるし、仮に正極活物質層の表面に貼り付けることができたとしても、活物質層と集電層との密着性が悪く、電池の内部抵抗が高くなってしまう。   Moreover, although the positive electrode current collection layer is a member necessary for the lithium ion battery, it is preferably as thin as possible since it is a member that does not contribute to the capacity of the battery. However, it is difficult to reduce the metal foil used for the positive electrode current collecting layer to a certain thickness (approximately 10 μm) or less because of technical problems. In addition, the thinner the metal foil, the more difficult it is to handle, and even if it can be attached to the surface of the positive electrode active material layer, the adhesion between the active material layer and the current collecting layer is poor, and the inside of the battery Resistance becomes high.

本発明は、上記事情に鑑みてなされたものであり、その目的の一つは、正極集電層と正極活物質層との密着性を高めることで放電容量を確保した非水電解質電池を作製することができる正極部材、およびその製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to produce a nonaqueous electrolyte battery that secures a discharge capacity by enhancing the adhesion between the positive electrode current collecting layer and the positive electrode active material layer. It is providing the positive electrode member which can do, and its manufacturing method.

また、本発明の別の目的は、この正極部材を使用したリチウム電池を提供することにある。   Another object of the present invention is to provide a lithium battery using this positive electrode member.

(1)本発明正極部材は、正極と負極とこれら電極の間に配置される非水電解質層とを備える非水電解質電池に使用される正極部材に係る。この本発明正極部材は、正極活物質を有する第1活物質層と、正極活物質を有し、第1活物質層に対向して配置される第2活物質層と、第1活物質層と第2活物質層との間に配置される正極集電層とを備える。そして、本発明正極部材は、これら第1活物質層と第2活物質層と正極集電層とが焼結により一体化されていることを特徴とする。 (1) This invention positive electrode member concerns on the positive electrode member used for a nonaqueous electrolyte battery provided with a positive electrode, a negative electrode, and the nonaqueous electrolyte layer arrange | positioned between these electrodes. The positive electrode member of the present invention includes a first active material layer having a positive electrode active material, a second active material layer having a positive electrode active material and disposed opposite to the first active material layer, and a first active material layer And a positive electrode current collecting layer disposed between the first active material layer and the second active material layer. The positive electrode member of the present invention is characterized in that the first active material layer, the second active material layer, and the positive electrode current collecting layer are integrated by sintering.

本発明正極部材の構成によれば、正極集電層が第1活物質層と第2活物質層との間に挟み込まれた状態で焼結により一体化されているため、正極集電層と活物質層との間に、両層を構成する物質が混在した界面層が形成される。そのため、正極集電層と活物質層とを確実に密着させることができ、その結果、この正極部材を使用した本発明非水電解質電池は、内部抵抗が低く容量の大きな非水電解質電池となる。また、正極部材は正極集電層が2つの活物質層に挟まれた構成を有するので、正極集電層が2つの活物質層で共用される。その結果、非水電解質電池に占める正極集電層の厚さを薄くすることができるので、電池の体積あたりの容量を大きくすることができる。   According to the configuration of the positive electrode member of the present invention, since the positive electrode current collecting layer is integrated by sintering in a state of being sandwiched between the first active material layer and the second active material layer, Between the active material layers, an interface layer in which substances constituting both layers are mixed is formed. Therefore, the positive electrode current collecting layer and the active material layer can be reliably adhered, and as a result, the nonaqueous electrolyte battery of the present invention using this positive electrode member becomes a nonaqueous electrolyte battery having a low internal resistance and a large capacity. . In addition, since the positive electrode member has a configuration in which the positive electrode current collecting layer is sandwiched between two active material layers, the positive electrode current collecting layer is shared by the two active material layers. As a result, since the thickness of the positive electrode current collecting layer in the nonaqueous electrolyte battery can be reduced, the capacity per volume of the battery can be increased.

(2)本発明正極部材の一形態として、第1活物質層および第2活物質層の少なくとも一方の空隙率が10%以下であることが好ましい。特に、両活物質層の空隙率が10%以下であることが好ましい。 (2) As one form of this invention positive electrode member, it is preferable that the porosity of at least one of a 1st active material layer and a 2nd active material layer is 10% or less. In particular, the porosity of both active material layers is preferably 10% or less.

非水電解質電池においては、活物質層に空隙があると、この空隙により活物質層におけるリチウムイオンの拡散が阻害される。その結果、非水電解質電池の内部抵抗の増大を招き、電池の容量が低下する。これに対して、上記のように空隙率を10%以下とすると、正極部材の活物質層におけるリチウムイオンの伝導が阻害され難い。   In the nonaqueous electrolyte battery, if there is a gap in the active material layer, the gap inhibits diffusion of lithium ions in the active material layer. As a result, the internal resistance of the nonaqueous electrolyte battery is increased, and the capacity of the battery is reduced. On the other hand, when the porosity is 10% or less as described above, the conduction of lithium ions in the active material layer of the positive electrode member is difficult to be inhibited.

(3)本発明正極部材の一形態として、正極部材に備わる正極集電層は、導電性物質と正極活物質とを有し、導電性物質と正極活物質との混合比が、質量比で、1:0.05〜0.3であることが好ましい。 (3) As one form of this invention positive electrode member, the positive electrode current collection layer with which a positive electrode member is equipped has an electroconductive substance and a positive electrode active material, and the mixing ratio of an electroconductive substance and a positive electrode active material is mass ratio. 1: 0.05 to 0.3 is preferable.

正極集電層に正極活物質を混合させると、正極集電層と活物質層との密着性が増すので、充放電に伴う正極集電層と活物質層との剥離を効果的に防止することができる。混合比が下限を下回ると、集電層と活物質層との密着性を高める効果が小さくなる。逆に、混合比が上限を上回ると集電層の導電率が低くなる。   When the positive electrode active material is mixed with the positive electrode current collector layer, the adhesion between the positive electrode current collector layer and the active material layer is increased, so that separation between the positive electrode current collector layer and the active material layer accompanying charge / discharge is effectively prevented. be able to. When the mixing ratio is lower than the lower limit, the effect of increasing the adhesion between the current collecting layer and the active material layer is reduced. On the contrary, when the mixing ratio exceeds the upper limit, the conductivity of the current collecting layer is lowered.

(4)正極集電層を正極活物質と導電性物質との混合体とする場合、正極集電層が、その厚さ方向の中央部から両活物質層に向かって正極活物質の量が段階的あるいは連続的に増加する傾斜組成を有することが好ましい。 (4) When the positive electrode current collecting layer is a mixture of the positive electrode active material and the conductive material, the positive electrode current collecting layer has an amount of the positive electrode active material from the central portion in the thickness direction toward both active material layers. It is preferred to have a graded composition that increases stepwise or continuously.

上記構成によれば、正極集電層の中央部においては導電性物質が豊富に含まれているため十分な導電性を有する正極集電層とできる。また、正極集電層における活物質層の近傍においては正極活物質が豊富に含まれているため、正極集電層と活物質層との密着性が高い。   According to the said structure, since the electroconductive substance is abundantly contained in the center part of the positive electrode current collection layer, it can be set as the positive electrode current collection layer which has sufficient electroconductivity. In addition, since the positive electrode active material is abundant in the vicinity of the active material layer in the positive electrode current collector layer, the adhesion between the positive electrode current collector layer and the active material layer is high.

(5)本発明正極部材の一形態として、正極集電層の厚みが、1〜20μmであることが好ましい。 (5) As one form of this invention positive electrode member, it is preferable that the thickness of a positive electrode current collection layer is 1-20 micrometers.

この程度の厚さを有する正極集電層であれば、十分に集電機能を発揮する。ここで、従来のように、正極活物質層の片面に正極集電層を形成した構成では、集電層を薄くすると集電層が活物質層から剥離し易いが、正極集電層を2つの活物質層で挟み込むので、集電層を薄くしても剥離の問題が生じ難い。   A positive electrode current collecting layer having such a thickness sufficiently exhibits a current collecting function. Here, in the configuration in which the positive electrode current collector layer is formed on one surface of the positive electrode active material layer as in the past, the current collector layer is easily peeled off from the active material layer when the current collector layer is thinned. Since the two active material layers are sandwiched, even if the current collecting layer is thinned, the problem of peeling hardly occurs.

(6)本発明正極部材の一形態として、正極部材の側面で、正極集電層に電気的に接続される正極集電部材を備えることが好ましい。 (6) As one form of this invention positive electrode member, it is preferable to provide the positive electrode current collection member electrically connected to a positive electrode current collection layer by the side surface of a positive electrode member.

このような構成の正極部材を利用してリチウム電池を作製した場合、リチウム電池の厚さを厚くすることなくリチウム電池から端子を引き出すことができる。   When a lithium battery is manufactured using the positive electrode member having such a configuration, a terminal can be drawn from the lithium battery without increasing the thickness of the lithium battery.

(7)本発明正極部材の一形態として、正極集電層が開口部を有する網状に形成されていることが好ましい。 (7) As one form of this invention positive electrode member, it is preferable that the positive electrode current collection layer is formed in the net shape which has an opening part.

正極集電層を網状に形成すると、集電層の厚み方向に集電層を貫通する網目状の開口部が形成される。その結果、開口部を介して第1活物質層と第2活物質層とが直接繋がった状態になるので、正極部材の各層間の密着性が向上し、層間の剥離が生じ難い。   When the positive electrode current collector layer is formed in a net shape, a mesh-like opening that penetrates the current collector layer is formed in the thickness direction of the current collector layer. As a result, since the first active material layer and the second active material layer are directly connected through the opening, the adhesion between the layers of the positive electrode member is improved, and separation between the layers hardly occurs.

開口部は、一定パターンの繰り返しとすることができる。例えば、矩形の開口部が規則的に配列された格子状パターンや、円形の開口部が規則的に配列されたパンチングメタル様のパターンなどを挙げることができる。その他、開口部を多角形(例えば、三角形・五角形・六角形など)としたり、楕円形としたり、雲形などの不定形としたりしても良い。また、上記列挙した形状の少なくとも1種の形状の開口部を任意の数選択して適当に配置した不規則パターンであっても良い。   The openings can be repeated in a certain pattern. For example, a lattice pattern in which rectangular openings are regularly arranged, or a punching metal-like pattern in which circular openings are regularly arranged can be used. In addition, the opening may be a polygon (for example, a triangle, pentagon, hexagon, etc.), an ellipse, or an indefinite shape such as a cloud. Further, it may be an irregular pattern in which an arbitrary number of openings having at least one of the shapes listed above are selected and arranged appropriately.

(8)本発明正極部材の一形態として、網状の正極集電層を平面視したときの開口部の内接円の半径が、2つの活物質層のうち厚い方の厚み以下であることが好ましい。 (8) As one form of this invention positive electrode member, the radius of the inscribed circle of an opening part when planarly viewing a net-like positive electrode current collection layer is below the thickness of the thicker one of two active material layers preferable.

網状の集電層を形成した場合、集電層を平面視したときに開口部の位置で集電層から距離のある活物質が生じる。例えば、矩形状の開口部であれば、開口部の幅の中間位置にある活物質は、幅方向のどちら側にある集電層からも距離がある。一方で、正極部材の厚み方向において、活物質層の集電体と当接する面とは反対側の面に位置する活物質は、もともと集電層から距離がある。そこで、網状の正極集電層を平面視したときの開口部の内接円の半径を活物質層の厚み以下とすれば、集電層から最も遠い位置にある活物質は、活物質層の表面にある活物質ということになる。つまり、開口部を上記のように規定すれば、集電層に開口部を形成したことによる正極部材の内部抵抗の増大を抑えることができる。   When the net-like current collecting layer is formed, an active material having a distance from the current collecting layer is generated at the position of the opening when the current collecting layer is viewed in plan. For example, in the case of a rectangular opening, the active material in the middle position of the opening has a distance from the current collecting layer on either side in the width direction. On the other hand, in the thickness direction of the positive electrode member, the active material located on the surface of the active material layer opposite to the surface in contact with the current collector is originally at a distance from the current collection layer. Therefore, if the radius of the inscribed circle of the opening when the net-like positive electrode current collecting layer is viewed in plan is set to be equal to or smaller than the thickness of the active material layer, the active material farthest from the current collecting layer is It is an active material on the surface. That is, if the opening is defined as described above, an increase in the internal resistance of the positive electrode member due to the opening being formed in the current collecting layer can be suppressed.

(9)本発明非水電解質電池は、本発明正極部材と、この正極部材に積層される固体電解質層とを備えることを特徴とする。 (9) The nonaqueous electrolyte battery of the present invention includes the positive electrode member of the present invention and a solid electrolyte layer laminated on the positive electrode member.

上記構成を備える本発明非水電解質電池において、正極集電層は2つの活物質層で共用される。その結果、非水電解質電池に占める正極集電層の厚さを薄くすることができるので、電池の体積あたりの容量を大きくすることができる。   In the nonaqueous electrolyte battery of the present invention having the above configuration, the positive electrode current collecting layer is shared by two active material layers. As a result, since the thickness of the positive electrode current collecting layer in the nonaqueous electrolyte battery can be reduced, the capacity per volume of the battery can be increased.

(10)本発明正極部材の製造方法は、以下の工程を備えることを特徴とする。
第1活物質層となる正極活物質と、正極集電層となる導電性粉末と、第2活物質層となる正極活物質とを積層した成形体を形成する工程。
この成形体を焼結により一体化させる工程。
(10) The method for producing a positive electrode member of the present invention includes the following steps.
The process of forming the molded object which laminated | stacked the positive electrode active material used as a 1st active material layer, the electroconductive powder used as a positive electrode current collection layer, and the positive electrode active material used as a 2nd active material layer.
A step of integrating the molded body by sintering.

本発明の方法によれば、扱いの難しい薄い金属箔を用いることなく薄い集電層を容易に形成することができる。また、集電層と活物質層との間に、両層の構成物質が混在する界面層が形成され易く、両層の密着性が高い本発明正極部材を製造できる。   According to the method of the present invention, it is possible to easily form a thin current collecting layer without using a thin metal foil which is difficult to handle. In addition, the positive electrode member of the present invention can be produced, in which an interface layer in which constituent materials of both layers are mixed is easily formed between the current collecting layer and the active material layer, and the adhesiveness between both layers is high.

(11)また、本発明正極部材の製造方法は、以下の工程を備えることを特徴とする。
第1活物質層となる正極活物質を含むスラリーをシート状に形成する工程。
シート状成形体に正極集電層となる金属ペーストを塗工する工程。
シート状成形体との間に金属ペーストを挟み込むようにして第2活物質層となる正極活物質を含むスラリーをシート状に形成する工程。
金属ペーストを挟み込んだ状態の成形体を焼結する工程。
(11) Moreover, the manufacturing method of this invention positive electrode member is equipped with the following processes, It is characterized by the above-mentioned.
The process of forming the slurry containing the positive electrode active material used as a 1st active material layer in a sheet form.
A step of applying a metal paste to be a positive electrode current collecting layer to the sheet-like molded body.
The process of forming the slurry containing the positive electrode active material used as a 2nd active material layer in a sheet form so that a metal paste may be pinched | interposed between a sheet-like molded object.
The process of sintering the compact in the state where the metal paste is sandwiched.

本発明の方法によれば、扱いの難しい薄い金属箔を用いることなく薄い集電層を容易に形成することができる。また、集電層と活物質層との間に上記界面層が形成され易く、両層の密着性が高い本発明正極部材を製造できる。   According to the method of the present invention, it is possible to easily form a thin current collecting layer without using a thin metal foil which is difficult to handle. Moreover, the said interface layer is easy to be formed between a current collection layer and an active material layer, and this invention positive electrode member with high adhesiveness of both layers can be manufactured.

(12)金属ペーストを塗工する工程において、金属ペーストを網状のパターンに形成することができる。 (12) In the step of applying the metal paste, the metal paste can be formed into a net-like pattern.

網状に形成された正極集電層は、集電層の厚み方向に集電層を貫通する網目状の開口部を有するので、開口部を介して第1活物質層と第2活物質層とが直接繋がった状態の正極部材を製造することができる。このような正極部材の各層は、既に述べたように、高い密着性を持って接合される。   The positive electrode current collecting layer formed in a net shape has a net-like opening that penetrates the current collecting layer in the thickness direction of the current collecting layer, so that the first active material layer and the second active material layer are formed through the opening. The positive electrode member in a state in which are directly connected can be manufactured. Each layer of such a positive electrode member is bonded with high adhesion as described above.

本発明の構成によれば、正極集電層が第1活物質層と第2活物質層との間に挟み込まれているので、正極集電層と活物質層との密着性を向上させることができ、両層が容易に剥離しないようにすることができる。そのため、この正極部材を利用して非水電解質電池を作製した場合、内部抵抗が低く、放電容量が高い電池とすることができる。また、この正極部材を利用して非水電解質電池を作製した場合、1つの正極集電層が2つの活物質層で共用され、非水電解質電池に占める正極集電層の割合を小さくすることができるので、電池の体積あたりの容量を大きくすることができる。   According to the configuration of the present invention, since the positive electrode current collecting layer is sandwiched between the first active material layer and the second active material layer, the adhesion between the positive electrode current collecting layer and the active material layer is improved. It is possible to prevent both layers from peeling off easily. Therefore, when a nonaqueous electrolyte battery is produced using this positive electrode member, a battery having a low internal resistance and a high discharge capacity can be obtained. Further, when a non-aqueous electrolyte battery is manufactured using this positive electrode member, one positive current collecting layer is shared by two active material layers, and the proportion of the positive current collecting layer in the non-aqueous electrolyte battery is reduced. Therefore, the capacity per volume of the battery can be increased.

(A)は本発明正極部材の概略構成図、(B)は(A)の正極部材を使用した本発明非水電解質電池の概略構成図である。また、(C)は(B)の非水電解質電池を複数積層することで構成した本発明非水電解質電池の概略構成図である。(A) is a schematic block diagram of this invention positive electrode member, (B) is a schematic block diagram of this invention nonaqueous electrolyte battery which uses the positive electrode member of (A). Moreover, (C) is a schematic block diagram of this invention nonaqueous electrolyte battery comprised by laminating | stacking two or more nonaqueous electrolyte batteries of (B). 実施例2に係る正極部材の製造方法についての説明図であって、(A)はグリーンシートの斜視図、(B)はグリーンシートの上面図である。It is explanatory drawing about the manufacturing method of the positive electrode member which concerns on Example 2, Comprising: (A) is a perspective view of a green sheet, (B) is a top view of a green sheet.

以下、本発明の実施形態を図に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1(A)は、本発明正極部材の概略構成図、(B)は(A)の正極部材を使用した全固体型リチウムイオン電池(非水電解質電池)の概略構成図である。また、図1(C)は、図1(B)のリチウムイオン電池を複数積層して形成したリチウムイオン電池の概略構成図である。まず、正極部材の構成について詳細に説明し、次いで正極部材を使用したリチウムイオン電池の構成について説明する。   FIG. 1A is a schematic configuration diagram of a positive electrode member of the present invention, and FIG. 1B is a schematic configuration diagram of an all solid-state lithium ion battery (non-aqueous electrolyte battery) using the positive electrode member of FIG. FIG. 1C is a schematic configuration diagram of a lithium ion battery formed by stacking a plurality of the lithium ion batteries of FIG. First, the configuration of the positive electrode member will be described in detail, and then the configuration of a lithium ion battery using the positive electrode member will be described.

<正極部材>
正極部材10は、正極活物質を含有する第1活物質層2Aおよび第2活物質層2Bと、これら活物質層2A,2Bの間に配置される正極集電層1とを備える。これらの層2A,1,2Bは、後述するように焼結により一体化されている。この正極部材10の厚さは、20〜300μmとすると良い。
<Positive electrode member>
The positive electrode member 10 includes a first active material layer 2A and a second active material layer 2B containing a positive electrode active material, and a positive electrode current collecting layer 1 disposed between the active material layers 2A and 2B. These layers 2A, 1 and 2B are integrated by sintering as will be described later. The thickness of the positive electrode member 10 is preferably 20 to 300 μm.

第1活物質層2Aと第2活物質層2Bに含有される活物質としては、LiCoOや、LiNiO、LiMnO、LiMn、LiCo1/3Ni1/3Mn1/3などを挙げることができる。これら活物質層2は、カーボンブラックなどの導電助材を含んでいても良い。 As the active material contained in the first active material layer 2A and the second active material layer 2B, LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 etc. can be mentioned. These active material layers 2 may contain a conductive additive such as carbon black.

これら活物質層2A,2Bの空隙率は、10%以下とすると良い。空隙率が10%以下であれば、活物質層2A,2Bのリチウムイオン導電性を十分に確保することができる。各活物質層2A,2Bの厚さは、9.5〜149.5μmとすれば良い。これらの層2A,2Bの好ましい厚さは、40〜100μmである。   The porosity of these active material layers 2A and 2B is preferably 10% or less. If the porosity is 10% or less, the lithium ion conductivity of the active material layers 2A and 2B can be sufficiently secured. The thickness of each active material layer 2A, 2B may be 9.5 to 149.5 μm. A preferable thickness of these layers 2A and 2B is 40 to 100 μm.

正極集電層1は、金属あるいは導電性の金属酸化物で構成することができる。金属としては、例えば、CuやNi、Pd,Agなどを利用できる。また、金属酸化物としては、例えば、ITO(Indium Tin Oxide:酸化インジウムスズ)やZnOなどを挙げることができる。また、集電層1の厚さは、1〜100μm、好ましくは1〜20μmの範囲とすると良い。この範囲の厚さとすることで、十分な集電機能を有する集電層1とすることができる。   The positive electrode current collecting layer 1 can be composed of a metal or a conductive metal oxide. For example, Cu, Ni, Pd, Ag or the like can be used as the metal. Examples of the metal oxide include ITO (Indium Tin Oxide) and ZnO. Moreover, the thickness of the current collection layer 1 is 1-100 micrometers, Preferably it is good to set it as the range of 1-20 micrometers. By setting it as the thickness of this range, it can be set as the current collection layer 1 which has sufficient current collection function.

正極集電層1は、導電性物質と正極活物質との混合層としても良い。集電層1を混合層とすると、正極集電層1と活物質層2A,2Bとの密着性が高くなる。正極活物質と導電性物質との混合比は、質量比で、正極活物質が1に対して、導電性物質が0.05〜0.3とすることが好ましい。混合比が上記範囲であれば、正極集電層1の導電性と、活物質層2A,2Bに対する正極集電層1の密着性の両方を確実に確保することができる。   The positive electrode current collecting layer 1 may be a mixed layer of a conductive material and a positive electrode active material. When the current collecting layer 1 is a mixed layer, the adhesion between the positive electrode current collecting layer 1 and the active material layers 2A and 2B increases. The mixing ratio of the positive electrode active material and the conductive material is preferably a mass ratio, with the positive electrode active material being 1 and the conductive material being 0.05 to 0.3. When the mixing ratio is in the above range, both the conductivity of the positive electrode current collecting layer 1 and the adhesion of the positive electrode current collecting layer 1 to the active material layers 2A and 2B can be reliably ensured.

また、集電層1を混合層とする場合、集電層1は、その厚さ方向の中央部から両活物質層2A,2Bに向かって活物質の量が段階的あるいは連続的に増加する傾斜組成を有することが好ましい。集電層1を傾斜組成とすると、集電層1と両活物質層2A,2Bとの密着性をより高くすることができ、しかも、集電層1の導電性を十分に確保することができる。正極集電層1の厚さ方向の中央部を実質的に導電性物質のみからなるようにしても良い。即ち、混合層、導電性物質のみからなる層、混合層の順に積層された構造を有する集電層1としても良い。   Further, when the current collecting layer 1 is a mixed layer, the amount of the active material increases stepwise or continuously from the central portion in the thickness direction toward both the active material layers 2A and 2B. It preferably has a gradient composition. When the current collecting layer 1 has a gradient composition, the adhesion between the current collecting layer 1 and the two active material layers 2A and 2B can be further increased, and the conductivity of the current collecting layer 1 can be sufficiently secured. it can. You may make it the center part of the thickness direction of the positive electrode current collection layer 1 consist only of an electroconductive substance substantially. That is, the current collecting layer 1 may have a structure in which a mixed layer, a layer made of only a conductive material, and a mixed layer are stacked in this order.

上記構成を備える正極部材10を作製するには、代表的には、加圧焼結法やグリーンシート法を利用することができる。   To produce the positive electrode member 10 having the above-described configuration, typically, a pressure sintering method or a green sheet method can be used.

加圧焼結法で正極部材10を作製するには、例えば、以下に示すようにすると良い。まず、金型に第1活物質層となる正極活物質粉末、集電層となる導電性粉末、第2活物質層となる正極活物質粉末がそれぞれ層をなすように配置する。そして、層状に金型に配置された粉末を加圧した後、この加圧成形体を焼結すれば良い。加圧焼結法を利用すれば、正極集電層1を傾斜組成にすることが容易である。具体的には、集電層となる加圧前の層を正極活物質粉末と導電性粉末との混合粉末とすれば良い。また、混合粉末の層も、その厚さ方向に活物質粉末と導電性粉末の割合を容易に変更できる。   In order to produce the positive electrode member 10 by the pressure sintering method, for example, the following may be performed. First, the positive electrode active material powder that becomes the first active material layer, the conductive powder that becomes the current collecting layer, and the positive electrode active material powder that becomes the second active material layer are arranged on the mold so as to form layers. And after pressing the powder arrange | positioned to the metal mold | die in layers, this press-molded body should just sinter. If the pressure sintering method is used, it is easy to make the positive electrode current collecting layer 1 have a gradient composition. Specifically, the layer before pressurization that becomes the current collecting layer may be a mixed powder of the positive electrode active material powder and the conductive powder. Moreover, the ratio of the active material powder and the conductive powder can be easily changed in the thickness direction of the mixed powder layer.

一方、グリーンシート法(例えば、ドクターブレード装置などを使用)で正極部材を作製するには、例えば、以下に示すようにすると良い。まず、正極活物質粉末とバインダとを混合した活物質混合スラリーを作製し、このスラリーでシート状の成形体を作製する。次に、金属粉末を溶剤中に分散させた金属ペーストをこのシート状成形体の上に塗工する。さらに、金属ペーストの上に別の活物質混合スラリーを塗工する。そして、この3層構造の積層体を焼結し、正極部材を完成させる。   On the other hand, in order to produce the positive electrode member by the green sheet method (for example, using a doctor blade device), for example, the following may be performed. First, an active material mixed slurry in which a positive electrode active material powder and a binder are mixed is prepared, and a sheet-like molded body is manufactured using this slurry. Next, a metal paste in which a metal powder is dispersed in a solvent is applied onto the sheet-like molded body. Furthermore, another active material mixed slurry is applied on the metal paste. And the laminated body of this 3 layer structure is sintered, and a positive electrode member is completed.

ここで、金属ペーストを塗工する工程において、網状のパターンに塗工することもできる。例えば、スクリーン印刷法などにより、金属ペーストを網状に印刷すると良い。網状パターンの正極集電層を形成すれば、集電層の厚み方向に集電層を貫通する開口部(網目)の部分で第1活物質層と第2活物質層とが直接繋がった状態になるので、各層の密着性が高い正極部材を製造することができる。開口部の形状は、特に限定されず、例えば、多角形や楕円形としたり、あるいは雲形のような不定形状であっても良い。また、正極集電層における開口部の内接円の半径を第1活物質層と第2活物質層のうち厚い方の厚み以下とすることで、開口部による正極部材の内部抵抗の増加を抑制することができる。   Here, in the step of applying the metal paste, it can be applied to a net-like pattern. For example, the metal paste may be printed in a net shape by a screen printing method or the like. When the positive electrode current collecting layer having a net pattern is formed, the first active material layer and the second active material layer are directly connected to each other at an opening (mesh) that penetrates the current collecting layer in the thickness direction of the current collecting layer. Therefore, a positive electrode member having high adhesion between layers can be manufactured. The shape of the opening is not particularly limited, and may be, for example, a polygon or an ellipse, or an indefinite shape such as a cloud shape. Further, by setting the radius of the inscribed circle of the opening in the positive electrode current collecting layer to be equal to or smaller than the thicker one of the first active material layer and the second active material layer, the internal resistance of the positive electrode member due to the opening is increased Can be suppressed.

上記いずれの方法を使用するにしても、2つの活物質層と1つの正極集電層とは焼結により一体化される。焼結時の条件は、両層の材料により適宜選択すれば良いが、概ね600〜1000℃×2〜24hである。例えば、正極活物質がLiCoO、正極集電層がAgであれば、焼結の条件は、800〜950℃×2〜12hが好ましい。 Whichever method is used, the two active material layers and the one positive electrode current collecting layer are integrated by sintering. The sintering conditions may be appropriately selected depending on the materials of both layers, but are generally 600 to 1000 ° C. × 2 to 24 hours. For example, if the positive electrode active material is LiCoO 2 and the positive electrode current collecting layer is Ag, the sintering condition is preferably 800 to 950 ° C. × 2 to 12 h.

<全固体型リチウム電池>
上述した正極部材10の表面と裏面の各々に固体電解質層(SE層)3A,3Bを積層し、さらにSE層3A,3Bの上にそれぞれ負極層4A,4Bを積層することで、全固体型リチウム電池20を作製することができる(図1(B)参照)。
<All solid lithium battery>
Solid electrolyte layers (SE layers) 3A and 3B are laminated on the front and back surfaces of the positive electrode member 10 described above, and negative electrode layers 4A and 4B are laminated on the SE layers 3A and 3B, respectively. A lithium battery 20 can be manufactured (see FIG. 1B).

SE層3A,3Bは、例えば、Li−P−O−Nや、Li−P−S−O、LiSとPとからなるLi−P−S、Li−La−Ti−O、Li−La−Zr−Oのアモルファス膜あるいは多結晶膜などで構成することができる。このSE層3A,3Bの厚さは、1〜10μm程度とすると良い。また、SE層3A,3Bの形成には、固相法(粉末焼結法)や気相法(例えば、PVD法やCVD法)を利用できる。 The SE layers 3A and 3B are, for example, Li—P—O—N, Li—P—S—O, Li—P—S composed of Li 2 S and P 2 S 5 , Li—La—Ti—O. Li-La-Zr-O amorphous film or polycrystalline film can be used. The thickness of the SE layers 3A and 3B is preferably about 1 to 10 μm. The SE layers 3A and 3B can be formed by using a solid phase method (powder sintering method) or a gas phase method (for example, PVD method or CVD method).

負極層4A,4Bは、例えば、Li金属及びLi金属と合金を形成することのできる元素よりなる群より選ばれる1つ、若しくはこれらの混合物又は合金が好適に使用できる。Liと合金を形成することのできる元素としては、AlやSi、Sn、Bi、In、Agなどを挙げることができる。これら負極層4A,4Bは、負極層自体に集電層としての機能を持たせることができる。この負極層4A,4Bの厚さは、0.5〜50μm程度とすると良い。また、負極層4A,4Bの形成には、気相法を利用することができる。   As the negative electrode layers 4A and 4B, for example, one selected from the group consisting of Li metal and an element capable of forming an alloy with Li metal, or a mixture or alloy thereof can be preferably used. Examples of elements that can form an alloy with Li include Al, Si, Sn, Bi, In, and Ag. The negative electrode layers 4A and 4B can have a function as a current collecting layer in the negative electrode layer itself. The thickness of the negative electrode layers 4A and 4B is preferably about 0.5 to 50 μm. A vapor phase method can be used for forming the negative electrode layers 4A and 4B.

その他、リチウムイオン電池20は、その側面に正極集電部材1Cを備えるようにすると良い。より具体的には、正極集電部材1Cは、電池20における正極部材10の側面において、正極集電層1に電気的に接続されるようにする。本発明正極部材10は、集電層1が活物質層2A,2Bに挟まれているので、集電層1を外部に接続するための端子を配置し難い。これは、集電層1が電池20の側面にのみ露出しているためである。また、集電層1から導線などを引き出して端子を接続した場合、この導線が電池20の側面に露出する負極層4A,4Bに接触して正・負極が短絡する虞がある。これに対して、正極集電部材1Cは、正極部材10の側面に突出して配置されているので、この正極集電部材1Cに端子を接続することは容易である。また、後述するように電池20を複数積層する場合、各電池20の正極と負極とが短絡することなく正極集電層1同士を接続することができる。この正極集電部材1Cは、電池20の厚さ方向に配置されていないので、集電部材1Cにより電池20の厚さが厚くなることがない。正極集電部材1Cとしては、例えば、カーボン粉末やカーボン繊維、Ni粉末などの導電材料と、エポキシ樹脂などの樹脂材料とを混合し、正極部材10の側面に塗布して硬化させることで形成できる。   In addition, the lithium ion battery 20 may be provided with the positive electrode current collecting member 1C on the side surface. More specifically, the positive electrode current collecting member 1 </ b> C is electrically connected to the positive electrode current collecting layer 1 on the side surface of the positive electrode member 10 in the battery 20. In the positive electrode member 10 of the present invention, since the current collecting layer 1 is sandwiched between the active material layers 2A and 2B, it is difficult to arrange a terminal for connecting the current collecting layer 1 to the outside. This is because the current collecting layer 1 is exposed only on the side surface of the battery 20. Further, when a lead wire or the like is pulled out from the current collecting layer 1 and a terminal is connected, the lead wire may come into contact with the negative electrode layers 4A and 4B exposed on the side surface of the battery 20, and the positive and negative electrodes may be short-circuited. On the other hand, since the positive electrode current collecting member 1C is disposed so as to protrude from the side surface of the positive electrode member 10, it is easy to connect a terminal to the positive electrode current collecting member 1C. Moreover, when laminating | stacking the battery 20 so that it may mention later, the positive electrode current collection layers 1 can be connected, without the positive electrode and negative electrode of each battery 20 short-circuiting. Since the positive electrode current collecting member 1C is not arranged in the thickness direction of the battery 20, the current collecting member 1C does not increase the thickness of the battery 20. The positive electrode current collector 1C can be formed, for example, by mixing a conductive material such as carbon powder, carbon fiber, or Ni powder and a resin material such as an epoxy resin, and applying and curing the mixture on the side surface of the positive electrode member 10. .

一方、リチウムイオン電池20に備わる2つの負極層4A,4Bは、電池20の表裏に存在するので、両負極層4A,4Bからそのまま導線などを介して端子を接続すれば良い。   On the other hand, since the two negative electrode layers 4A and 4B included in the lithium ion battery 20 exist on the front and back of the battery 20, the terminals may be connected to the negative electrode layers 4A and 4B as they are through the conductive wires.

図1(B)に示すリチウムイオン電池20を複数積層して、図1(C)に示すようなリチウムイオン電池30としても良い。この場合、各正極部材10の正極集電部材1Cを正極用集合端子Pで接続して、各正極部材10を電気的に接続すると良い。また、電池30の負極層4A,4B同士を電気的に接続するには、各負極層4A,4Bに接続される負極集電部材4Cを負極集合端子Nで接続することで行えば良い。このとき、各負極集電部材4Cは、正極集電部材1Cと反対側にのみ突出するようにし、この負極集合端子Nと前述の正極集合端子Pとを互いに反対側に引き出すことで、端子Pと端子Nとの短絡を確実に防止できる。   A plurality of lithium ion batteries 20 shown in FIG. 1B may be stacked to form a lithium ion battery 30 as shown in FIG. In this case, the positive electrode current collecting member 1C of each positive electrode member 10 is preferably connected by the positive electrode collecting terminal P, and each positive electrode member 10 is electrically connected. Further, in order to electrically connect the negative electrode layers 4A and 4B of the battery 30, the negative electrode current collecting member 4C connected to the negative electrode layers 4A and 4B may be connected by the negative electrode collecting terminal N. At this time, each negative electrode current collecting member 4C protrudes only on the opposite side to the positive electrode current collecting member 1C, and the negative electrode collecting terminal N and the above-described positive electrode collecting terminal P are pulled out to the opposite sides, whereby the terminal P And the terminal N can be reliably prevented.

なお、リチウムイオン電池20の積層数は、リチウムイオン電池30の用途に応じて適宜選択することができる。   The number of stacked lithium ion batteries 20 can be selected as appropriate according to the use of the lithium ion battery 30.

図1(C)に示すような積層構造を有する全固体リチウム電池30を作製し、その容量を測定した。また、比較例として、非水電解液を使用したリチウム電池を作製し、その容量を測定した。   An all-solid lithium battery 30 having a laminated structure as shown in FIG. 1C was produced, and the capacity was measured. In addition, as a comparative example, a lithium battery using a non-aqueous electrolyte was produced and its capacity was measured.

<実施例>
粒径2μmのLiCoOを5g、バインダ(ユケン工業社製DB17)を1.3g用意し、これらを混練してシート状に形成した。このシートの一面に粒径2μmのAg粒子からなる層をスクリーン印刷法により形成し、この層の上にさらに上記混練物の層を形成した。そして、この積層体に950℃×4時間の熱処理を施し、正極部材10を作製した。熱処理された混練物の層が、第1活物質層2Aおよび第2活物質層2Bとなり、各層の厚さは共に25μmであった。また、熱処理されたAg粒子の層が、正極集電層1となり、その厚さは10μmであった。
<Example>
5 g of LiCoO 2 having a particle size of 2 μm and 1.3 g of a binder (DB17 manufactured by Yuken Kogyo Co., Ltd.) were prepared and kneaded to form a sheet. A layer made of Ag particles having a particle diameter of 2 μm was formed on one surface of the sheet by a screen printing method, and the kneaded material layer was further formed on the layer. Then, the laminated body was subjected to a heat treatment at 950 ° C. for 4 hours to produce the positive electrode member 10. The heat-treated kneaded material layer became the first active material layer 2A and the second active material layer 2B, and the thickness of each layer was 25 μm. Further, the heat-treated layer of Ag particles was the positive electrode current collecting layer 1 and had a thickness of 10 μm.

この正極部材10の活物質層2A,2Bの空隙率を測定したところ、8%であった。空隙率の測定は、作製した活物質層2A,2Bの密度と、原料の理論密度とを比較することで求めた。また、空隙率は、活物質層2A,2Bを顕微鏡観察し、視野中の空隙の面積割合を測定することでも確認した。   When the porosity of the active material layers 2A and 2B of the positive electrode member 10 was measured, it was 8%. The porosity was measured by comparing the density of the produced active material layers 2A and 2B with the theoretical density of the raw material. The porosity was also confirmed by observing the active material layers 2A and 2B under a microscope and measuring the area ratio of the voids in the field of view.

次に、正極部材10の表面と裏面にLiS−PからなるSE層3A,3Bをパルスレーザーデポジション法により形成した。SE層3A,3Bの厚さは5μmであった。 Next, SE layers 3A and 3B made of Li 2 S—P 2 S 5 were formed on the front and back surfaces of the positive electrode member 10 by a pulse laser deposition method. The thickness of the SE layers 3A and 3B was 5 μm.

次いで、SE層3A,3Bの表面にLi金属からなる負極層4A,4Bを抵抗加熱蒸着法により形成した。負極層4A,4Bの厚さは19μmであった。   Next, negative electrode layers 4A and 4B made of Li metal were formed on the surfaces of the SE layers 3A and 3B by a resistance heating vapor deposition method. The thickness of the negative electrode layers 4A and 4B was 19 μm.

さらに、正極部材10の側面に正極集電部材1Cを形成した。正極集電部材1Cは、藤倉化成社製D753を正極部材10の側面に、SE層3A,3Bと接触しないように塗布し、硬化させることで形成した。   Further, the positive electrode current collecting member 1 </ b> C was formed on the side surface of the positive electrode member 10. The positive electrode current collector 1C was formed by applying D753 manufactured by Fujikura Kasei Co., Ltd. on the side surface of the positive electrode member 10 so as not to contact the SE layers 3A and 3B and curing.

以上説明したような正極集電層1と活物質層2A,2BとSE層3A,3Bと負極層4A,4Bと正極集電部材1Cを一単位として、この単位部材を10個積層することで実施例1のリチウム電池を完成させた。単位部材間には、厚さ10μmのCu箔からなる負極集電部材4Cが配置されている。さらに、積層体の上面に露出する負極層4Bと下面に露出する負極層4Aにも負極集電部材4Cが配置されている。   The positive electrode current collecting layer 1, the active material layers 2A and 2B, the SE layers 3A and 3B, the negative electrode layers 4A and 4B, and the positive electrode current collecting member 1C as described above are formed as a unit, and 10 unit members are laminated. The lithium battery of Example 1 was completed. Between the unit members, a negative electrode current collecting member 4C made of a Cu foil having a thickness of 10 μm is disposed. Further, the negative electrode current collecting member 4C is also disposed on the negative electrode layer 4B exposed on the upper surface of the laminate and the negative electrode layer 4A exposed on the lower surface.

そして、最後に、各単位部材の正極集電部材1C同士を正極集合端子Pで電気的に接続すると共に、各負極集電部材4C同士を負極集合端子Nで電気的に接続する。   Finally, the positive electrode current collecting members 1C of the unit members are electrically connected by the positive electrode collecting terminal P, and the negative electrode collecting members 4C are electrically connected by the negative electrode collecting terminal N.

このようにして形成された積層構造のリチウムイオン電池30の寸法は、55mm×35.5mm×3.0mmであった。また、電池の放電容量を測定したところ920mAhであった。このような放電容量が得られたことにより、薄い集電層であっても集電層として機能していることが判った。しかも、この放電容量は、同体積の一般的なリチウムイオン電池よりも高かった。   The dimensions of the lithium-ion battery 30 having a laminated structure formed as described above were 55 mm × 35.5 mm × 3.0 mm. Moreover, it was 920 mAh when the discharge capacity of the battery was measured. By obtaining such a discharge capacity, it was found that even a thin current collecting layer functions as a current collecting layer. Moreover, the discharge capacity was higher than that of a general lithium ion battery having the same volume.

<実施例2>
実施例2では、グリーンシート法により本発明正極部材を作製する例を図2を参照しつつ説明する。
<Example 2>
In Example 2, an example of producing the positive electrode member of the present invention by the green sheet method will be described with reference to FIG.

まず、正極活物質としてLiCoO粉末を用意した。このLiCoO粉末をポリビニールブチラール(PVB)、フタル酸ジブチル(DBP)、トルエンと混合してスラリーを作製する。そして、ドクターブレード装置などの塗工設備でスラリーをシート状に成形してグリーンシート7Aを得た。LiCoO:PVB:DBP:トルエンは、重量部で40:1:1:10とした。また、ドクターブレード装置で設定したグリーンシート7Aの厚さtは、75μmであった。 First, LiCoO 2 powder was prepared as a positive electrode active material. This LiCoO 2 powder is mixed with polyvinyl butyral (PVB), dibutyl phthalate (DBP), and toluene to prepare a slurry. And the slurry was shape | molded in the sheet form with coating equipment, such as a doctor blade apparatus, and the green sheet 7A was obtained. LiCoO 2 : PVB: DBP: toluene was 40: 1: 1: 10 by weight. Further, the thickness t of the green sheet 7A set by the doctor blade device was 75 μm.

次に、上述したグリーンシート7Aの上にスクリーン印刷法により金属ペースト8をメッシュ状にパターン形成した。メッシュパターンの金属ペースト8の厚さは、印刷設定で12μmであった。金属ペースト8が形成されていない部分である開口部8hからはグリーンシート7Aが露出している。本例のメッシュの開口部8hは正方形とし、その幅dをグリーンシート7Aの厚さtの2倍以下に設定した。つまり、正方形の開口部8hにおける内接円の半径をグリーンシート7Aの厚さt以下とした。このように設定することで、電子伝導距離がtに制限されるため、正極部材11内の内部抵抗の増加は抑えられる。   Next, the metal paste 8 was formed into a mesh pattern on the above-described green sheet 7A by screen printing. The thickness of the mesh pattern metal paste 8 was 12 μm in the print setting. The green sheet 7A is exposed from the opening 8h, which is a portion where the metal paste 8 is not formed. The mesh opening 8h in this example is square, and its width d is set to be not more than twice the thickness t of the green sheet 7A. That is, the radius of the inscribed circle in the square opening 8h is set to be equal to or less than the thickness t of the green sheet 7A. By setting in this way, since the electron conduction distance is limited to t, an increase in internal resistance in the positive electrode member 11 can be suppressed.

次に、メッシュパターンの上にさらに前述のスラリーを塗工し、グリーンシート7B(最初のグリーンシートと同じ厚さtと同じ厚さ)を形成し、金型温度50℃、40MPaで加圧して、上下のグリーンシート7A,7Bと金属ペースト層8とを一体化させた積層体を作製した。   Next, the above-mentioned slurry is further coated on the mesh pattern to form a green sheet 7B (the same thickness t as the first green sheet) and pressed at a mold temperature of 50 ° C. and 40 MPa. A laminated body in which the upper and lower green sheets 7A and 7B and the metal paste layer 8 were integrated was produced.

最後に、積層体を大気雰囲気中で600℃×5時間の熱処理を行い、スラリーに含まれるバインダを除去し、続いて1000℃×3時間の焼結を行い、正極部材11を得た。焼結によりグリーンシート7A,7Bは活物質層として、金属ペースト8は正極集電層となる。   Finally, the laminate was heat-treated at 600 ° C. for 5 hours in the air atmosphere to remove the binder contained in the slurry, and then sintered at 1000 ° C. for 3 hours to obtain the positive electrode member 11. By sintering, the green sheets 7A and 7B become active material layers, and the metal paste 8 becomes a positive electrode current collecting layer.

上記正極部材11は、正極集電層8に開口部8hが形成されているため、正極集電層を挟む2つの活物質層7A,7Bが直接繋がった状態で焼結される。そのため、正極部材11の各層間の密着性が増すので、この正極部材11を使用して電池を作製した場合、電池の充放電に伴う各層7A,7B,8の剥離などが生じ難い。   The positive electrode member 11 is sintered in a state in which the two active material layers 7A and 7B sandwiching the positive electrode current collector layer are directly connected to each other because the opening 8h is formed in the positive electrode current collector layer 8. For this reason, the adhesion between the respective layers of the positive electrode member 11 is increased. Therefore, when a battery is manufactured using the positive electrode member 11, the layers 7A, 7B, 8 are not easily peeled off due to charging / discharging of the battery.

なお、上記正極部材を使用して電池を作製する際、実施例1と同様にSE層や負極層を形成し、電池を作製した。   In addition, when producing a battery using the positive electrode member, an SE layer and a negative electrode layer were formed in the same manner as in Example 1 to produce a battery.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention.

本発明の正極部材、高容量の非水電解質電池の作製に好適に利用することができる。また、本発明非水電解質電池は、携帯機器などの電源として好適に利用可能である。   The positive electrode member of the present invention can be suitably used for the production of a high-capacity nonaqueous electrolyte battery. The nonaqueous electrolyte battery of the present invention can be suitably used as a power source for portable devices and the like.

10,11 正極部材
20,30 リチウムイオン電池(非水電解質電池)
1 正極集電層 1C 正極集電部材
2A 第1活物質層 2B 第2活物質層
3A,3B 固体電解質層(SE層)
4A,4B 負極層 4C 負極集電部材
P 正極用集合端子
N 負極用集合端子
7A,7B グリーンシート(活物質層)
8 金属ペースト(正極集電層) 8h 開口部
10, 11 Positive electrode member 20, 30 Lithium ion battery (non-aqueous electrolyte battery)
DESCRIPTION OF SYMBOLS 1 Positive electrode current collection layer 1C Positive electrode current collection member 2A 1st active material layer 2B 2nd active material layer 3A, 3B Solid electrolyte layer (SE layer)
4A, 4B Negative electrode layer 4C Negative electrode current collecting member P Collective terminal for positive electrode N Collective terminal for negative electrode 7A, 7B Green sheet (active material layer)
8 Metal paste (positive electrode current collecting layer) 8h Opening

Claims (12)

正極と負極とこれら電極の間に配置される非水電解質層とを備える非水電解質電池に使用される正極部材であって、
正極活物質を有する第1活物質層と、
正極活物質を有し、第1活物質層に対向して配置される第2活物質層と、
第1活物質層と第2活物質層との間に配置される正極集電層とを備え、
これら第1活物質層と第2活物質層と正極集電層とが焼結により一体化されていることを特徴とする正極部材。
A positive electrode member used for a non-aqueous electrolyte battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte layer disposed between the electrodes,
A first active material layer having a positive electrode active material;
A second active material layer having a positive electrode active material and disposed opposite the first active material layer;
A positive electrode current collecting layer disposed between the first active material layer and the second active material layer;
A positive electrode member, wherein the first active material layer, the second active material layer, and the positive electrode current collecting layer are integrated by sintering.
第1活物質層および第2活物質層の少なくとも一方の空隙率が10%以下であることを特徴とする請求項1に記載の正極部材。   The positive electrode member according to claim 1, wherein the porosity of at least one of the first active material layer and the second active material layer is 10% or less. 正極集電層は、導電性物質と正極活物質とを有し、
導電性物質と正極活物質との混合比が、質量比で、1:0.05〜0.3であることを特徴とする請求項1または2に記載の正極部材。
The positive electrode current collecting layer has a conductive material and a positive electrode active material,
The positive electrode member according to claim 1 or 2, wherein a mixing ratio of the conductive material and the positive electrode active material is 1: 0.05 to 0.3 in terms of mass ratio.
正極集電層は、その厚さ方向の中央部から両活物質層に向かって正極活物質の量が段階的あるいは連続的に増加する傾斜組成を有することを特徴とする請求項3に記載の正極部材。   The positive electrode current collecting layer has a graded composition in which the amount of the positive electrode active material increases stepwise or continuously from the center in the thickness direction toward both active material layers. Positive electrode member. 正極集電層の厚みが、1〜20μmであることを特徴とする請求項1〜4のいずれか1項に記載の正極部材。   The positive electrode member according to claim 1, wherein the positive electrode current collecting layer has a thickness of 1 to 20 μm. 正極部材の側面において、正極集電層に電気的に接続される正極集電部材を備えることを特徴とする請求項1〜5のいずれか1項に記載の正極部材。   The positive electrode member according to any one of claims 1 to 5, further comprising a positive electrode current collector member electrically connected to the positive electrode current collector layer on a side surface of the positive electrode member. 正極集電層が開口部を有する網状に形成されていることを特徴とする請求項1〜6のいずれか1項に記載の正極部材。   The positive electrode member according to claim 1, wherein the positive electrode current collecting layer is formed in a net shape having an opening. 網状の正極集電層を平面視したときの開口部の内接円の半径が、2つの活物質層のうち厚い方の厚み以下であることを特徴とする請求項7に記載の正極部材。   The positive electrode member according to claim 7, wherein the radius of the inscribed circle of the opening when the net-like positive electrode current collecting layer is viewed in plan is equal to or less than the thickness of the thicker of the two active material layers. 請求項1〜8のいずれか1項に記載の正極部材と、
この正極部材に積層される固体電解質層と、
を備えることを特徴とする非水電解質電池。
The positive electrode member according to any one of claims 1 to 8,
A solid electrolyte layer laminated on the positive electrode member;
A non-aqueous electrolyte battery comprising:
正極活物質を有する第1活物質層と、
正極活物質を有し、第1活物質層に対向して配置される第2活物質層と、
第1活物質層と第2活物質層との間に配置される正極集電層とを備える正極部材の製造方法であって、
第1活物質層となる正極活物質と、正極集電層となる導電性粉末と、第2活物質層となる正極活物質とを積層した成形体を形成する工程と、
前記成形体を焼結により一体化させる工程と、
を備えることを特徴とする正極部材の製造方法。
A first active material layer having a positive electrode active material;
A second active material layer having a positive electrode active material and disposed opposite the first active material layer;
A method for producing a positive electrode member comprising a positive electrode current collecting layer disposed between a first active material layer and a second active material layer,
Forming a molded body in which a positive electrode active material to be a first active material layer, a conductive powder to be a positive electrode current collecting layer, and a positive electrode active material to be a second active material layer;
Integrating the molded body by sintering; and
The manufacturing method of the positive electrode member characterized by comprising.
正極活物質を有する第1活物質層と、
正極活物質を有し、第1活物質層に対向して配置される第2活物質層と、
第1活物質層と第2活物質層との間に配置される正極集電層とを備える正極部材の製造方法であって、
第1活物質層となる正極活物質を含むスラリーをシート状に形成する工程と、
シート状成形体に正極集電層となる金属ペーストを塗工する工程と、
シート状成形体との間に金属ペーストを挟み込むようにして第2活物質層となる正極活物質を含むスラリーをシート状に形成する工程と、
金属ペーストを挟み込んだ状態の成形体を焼結する工程と、
を備えることを特徴とする正極部材の製造方法。
A first active material layer having a positive electrode active material;
A second active material layer having a positive electrode active material and disposed opposite the first active material layer;
A method for producing a positive electrode member comprising a positive electrode current collecting layer disposed between a first active material layer and a second active material layer,
Forming a slurry containing a positive electrode active material to be a first active material layer into a sheet;
A step of applying a metal paste to be a positive electrode current collecting layer to the sheet-like molded body;
Forming a slurry containing a positive electrode active material to be a second active material layer in a sheet form so that a metal paste is sandwiched between the sheet-shaped formed body; and
A step of sintering the compact in a state of sandwiching the metal paste;
The manufacturing method of the positive electrode member characterized by comprising.
金属ペーストを塗工する工程において、金属ペーストを網状のパターンに形成することを特徴とする請求項11に記載の正極部材の製造方法。   The method for producing a positive electrode member according to claim 11, wherein in the step of applying the metal paste, the metal paste is formed into a net-like pattern.
JP2009054494A 2008-12-22 2009-03-09 Positive electrode member, nonaqueous electrolyte battery, and method of manufacturing positive electrode member Pending JP2010170972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009054494A JP2010170972A (en) 2008-12-22 2009-03-09 Positive electrode member, nonaqueous electrolyte battery, and method of manufacturing positive electrode member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008326394 2008-12-22
JP2009054494A JP2010170972A (en) 2008-12-22 2009-03-09 Positive electrode member, nonaqueous electrolyte battery, and method of manufacturing positive electrode member

Publications (1)

Publication Number Publication Date
JP2010170972A true JP2010170972A (en) 2010-08-05

Family

ID=42702887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009054494A Pending JP2010170972A (en) 2008-12-22 2009-03-09 Positive electrode member, nonaqueous electrolyte battery, and method of manufacturing positive electrode member

Country Status (1)

Country Link
JP (1) JP2010170972A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099225A (en) * 2010-10-29 2012-05-24 Ohara Inc All-solid lithium ion secondary battery and method of manufacturing the same
JP2013206821A (en) * 2012-03-29 2013-10-07 Kyocera Corp Electrode structure and power storage device using the same
WO2014050572A1 (en) * 2012-09-26 2014-04-03 日本碍子株式会社 Method for manufacturing all-solid-state lithium ion secondary battery
KR101517522B1 (en) 2013-07-19 2015-05-06 가천대학교 산학협력단 Anode Substrate, all solid state battery with high capacity, and methods for manufacturing the same
KR20170019969A (en) * 2015-08-13 2017-02-22 삼성전자주식회사 Metal oxide composite, and Preparation method of metal oxide composite
JP2018073840A (en) * 2011-11-02 2018-05-10 アイ テン Method for the production of electrode for fully solid battery
US11967694B2 (en) 2018-05-07 2024-04-23 I-Ten Porous electrodes for electrochemical devices

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099225A (en) * 2010-10-29 2012-05-24 Ohara Inc All-solid lithium ion secondary battery and method of manufacturing the same
JP2018073840A (en) * 2011-11-02 2018-05-10 アイ テン Method for the production of electrode for fully solid battery
JP2013206821A (en) * 2012-03-29 2013-10-07 Kyocera Corp Electrode structure and power storage device using the same
WO2014050572A1 (en) * 2012-09-26 2014-04-03 日本碍子株式会社 Method for manufacturing all-solid-state lithium ion secondary battery
KR101517522B1 (en) 2013-07-19 2015-05-06 가천대학교 산학협력단 Anode Substrate, all solid state battery with high capacity, and methods for manufacturing the same
US10177388B2 (en) 2013-07-19 2019-01-08 Gachon University Of Industry—Academic Cooperation Foundation Cathode substrate, high-capacity all-solid-state battery and method of manufacturing same
KR20170019969A (en) * 2015-08-13 2017-02-22 삼성전자주식회사 Metal oxide composite, and Preparation method of metal oxide composite
KR102475888B1 (en) 2015-08-13 2022-12-08 삼성전자주식회사 Metal oxide composite, and Preparation method of metal oxide composite
US11967694B2 (en) 2018-05-07 2024-04-23 I-Ten Porous electrodes for electrochemical devices

Similar Documents

Publication Publication Date Title
CN108258358B (en) Battery with a battery cell
JP4352016B2 (en) Inorganic solid electrolyte battery and method for producing inorganic solid electrolyte battery
JP6201327B2 (en) Method for producing electrode composite for lithium battery, electrode composite for lithium battery, and lithium battery
JP5519356B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP5508833B2 (en) Lithium ion secondary battery
CN108963320A (en) battery
JP6704295B2 (en) All-solid-state lithium secondary battery and manufacturing method thereof
JP2010170972A (en) Positive electrode member, nonaqueous electrolyte battery, and method of manufacturing positive electrode member
KR20130083828A (en) Lithium ion secondary battery and method for producing same
JP7107389B2 (en) solid state battery
WO2014170998A1 (en) All-solid-state lithium-ion secondary battery
JP2022043327A (en) All-solid battery
CN111048825B (en) Solid state electrode with non-carbon electron conductive additive
JP2014216131A (en) All solid battery and manufacturing method therefor
CN113632286B (en) Solid-state battery
CN113544891B (en) All-solid secondary battery
US20220302506A1 (en) Solid-state battery
JP2021027044A (en) All-solid battery
JP2019212590A (en) Laminated battery
CN112803078B (en) Method for manufacturing all-solid-state battery and all-solid-state battery
KR102264546B1 (en) Electrode assembly for secondary battery
CN111919327A (en) Lithium secondary battery
WO2021132500A1 (en) Solid-state battery
JP2018181525A (en) All-solid battery
WO2023188470A1 (en) All-solid-state secondary battery