JP2012172607A - 過給機付き内燃機関の制御装置 - Google Patents
過給機付き内燃機関の制御装置 Download PDFInfo
- Publication number
- JP2012172607A JP2012172607A JP2011036095A JP2011036095A JP2012172607A JP 2012172607 A JP2012172607 A JP 2012172607A JP 2011036095 A JP2011036095 A JP 2011036095A JP 2011036095 A JP2011036095 A JP 2011036095A JP 2012172607 A JP2012172607 A JP 2012172607A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- fuel
- valve
- wgv
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Supercharger (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
【課題】この発明は、過給機付き内燃機関の制御装置に関し、ターボ過給機のタービンをバイパスする排気バイパス通路を開閉するウェイストゲートバルブを備える構成を用いる場合に、ウェイストゲートバルブの開度変化に伴う燃料の微粒化状態の悪化を抑制することを目的とする。
【解決手段】燃料を吸気ポート12bに噴射する燃料噴射弁28と、排気エネルギーにより作動するタービン20bを排気通路14に備えるターボ過給機20と、タービン20bをバイパスする排気バイパス通路42と、排気バイパス通路42を開閉するWGV44と、を備える。バルブオーバーラップ期間が設けられている場合において、WGV44の開度が大きい場合には、当該WGV44の開度が小さい場合と比べ、ポート噴射燃圧と吸気マニホールド圧力との差圧が大きくなるように、ポート噴射燃圧を調整する。
【選択図】図4
【解決手段】燃料を吸気ポート12bに噴射する燃料噴射弁28と、排気エネルギーにより作動するタービン20bを排気通路14に備えるターボ過給機20と、タービン20bをバイパスする排気バイパス通路42と、排気バイパス通路42を開閉するWGV44と、を備える。バルブオーバーラップ期間が設けられている場合において、WGV44の開度が大きい場合には、当該WGV44の開度が小さい場合と比べ、ポート噴射燃圧と吸気マニホールド圧力との差圧が大きくなるように、ポート噴射燃圧を調整する。
【選択図】図4
Description
この発明は、過給機付き内燃機関の制御装置に係り、特に、吸気ポートに燃料を噴射する燃料噴射弁に供給される燃料圧力を調整するうえで好適な過給機付き内燃機関の制御装置に関する。
従来、例えば特許文献1には、燃料を吸気ポートに噴射するポート噴射弁と、燃料を筒内に噴射する筒内噴射弁とを備える内燃機関の制御装置が開示されている。この従来の制御装置では、吸気ポート等の吸気通路構成部材に付着する燃料量の過度な増大を回避するために、吸気ポート圧力と筒内圧力との差圧に基づいて、ポート噴射割合(ポート噴射量と筒内噴射量との和に対するポート噴射量の割合)を変更するようにしている。
吸気ポートに噴射される燃料の微粒化状態は、燃料噴射弁に供給される燃料の圧力と、燃料噴射弁の噴射雰囲気であるスロットルバルブの下流側の吸気通路圧力(吸気マニホールド圧力)との差圧によって決まる。その一方で、吸気ポートの壁面に付着した噴射燃料の微粒化状態は、バルブオーバーラップ期間が設けられている場合には、当該バルブオーバーラップ期間中における筒内から吸気ポートへの吸気の吹き返し量によっても変化する。この場合の吹き返し量自体は、筒内圧力と、上記吸気通路圧力(吸気マニホールド圧力)との差圧によって決まる。ここで、バルブオーバーラップ期間中の筒内圧力は、ほぼ排気圧力によって定まることになる。従って、バルブオーバーラップ期間中には、排気圧力の高低に応じて、吸気の吹き返し量が変化し、その結果として、燃料の微粒化状態が変化することになる。
ターボ過給機を備える内燃機関において、タービンをバイパスする排気バイパス通路を開閉するウェイストゲートバルブを備えている場合には、排気圧力は、ウェイストゲートバルブの開度に応じて変化することになる。従って、バルブオーバーラップ期間が設けられている場合には、ウェイストゲートバルブの開度次第で、燃料の微粒化状態が悪化してしまうことが起こり得る。
この発明は、上述のような課題を解決するためになされたもので、ターボ過給機のタービンをバイパスする排気バイパス通路を開閉するウェイストゲートバルブを備える構成を用いる場合に、ウェイストゲートバルブの開度変化に伴う燃料の微粒化状態の悪化を抑制することのできる過給機付き内燃機関の制御装置を提供することを目的とする。
第1の発明は、過給機付き内燃機関の制御装置であって、
燃料を吸気ポートに噴射する燃料噴射弁と、
排気エネルギーにより作動するタービンを排気通路に備えるターボ過給機と、
前記タービンよりも上流側の部位において前記排気通路から分岐し、前記タービンよりも下流側の部位において前記排気通路と合流する排気バイパス通路と、
前記排気バイパス通路を開閉するウェイストゲートバルブと、
前記燃料噴射弁に供給される燃料圧力を調整する燃料圧力調整手段と、
を備え、
前記燃料圧力調整手段は、吸気弁の開弁期間と排気弁の開弁期間とが重なるバルブオーバーラップ期間が設けられている場合において、前記ウェイストゲートバルブの開度が大きい場合には、当該ウェイストゲートバルブの開度が小さい場合と比べ、前記燃料圧力と前記燃料噴射弁の雰囲気の吸気通路圧力との差圧が大きくなるように、前記燃料圧力を調整することを特徴とする。
燃料を吸気ポートに噴射する燃料噴射弁と、
排気エネルギーにより作動するタービンを排気通路に備えるターボ過給機と、
前記タービンよりも上流側の部位において前記排気通路から分岐し、前記タービンよりも下流側の部位において前記排気通路と合流する排気バイパス通路と、
前記排気バイパス通路を開閉するウェイストゲートバルブと、
前記燃料噴射弁に供給される燃料圧力を調整する燃料圧力調整手段と、
を備え、
前記燃料圧力調整手段は、吸気弁の開弁期間と排気弁の開弁期間とが重なるバルブオーバーラップ期間が設けられている場合において、前記ウェイストゲートバルブの開度が大きい場合には、当該ウェイストゲートバルブの開度が小さい場合と比べ、前記燃料圧力と前記燃料噴射弁の雰囲気の吸気通路圧力との差圧が大きくなるように、前記燃料圧力を調整することを特徴とする。
ウェイストゲートバルブの開度に応じて、(タービン上流側の)排気圧力が変化するので、バルブオーバーラップ期間中の吹き返し量が変化し、燃料の微粒化状態が変化する。第1の発明によれば、バルブオーバーラップ期間が設けられている場合において、ウェイストゲートバルブの開度が大きい場合には、ウェイストゲートバルブの開度が小さい場合と比べ、燃料圧力と燃料噴射弁の雰囲気の吸気通路圧力との差圧が大きくなるように、燃料圧力が調整される。これにより、ウェイストゲートバルブの開度の変化に応じた排気圧力の変化に伴う燃料の微粒化状態の悪化を抑制することができる。
実施の形態1.
[システム構成の説明]
図1は、本発明の実施の形態1における内燃機関10のシステム構成を説明するための図である。本実施形態のシステムは、火花点火式の内燃機関(ガソリンエンジン)10を備えている。内燃機関10の筒内には、吸気通路12および排気通路14が連通している。
[システム構成の説明]
図1は、本発明の実施の形態1における内燃機関10のシステム構成を説明するための図である。本実施形態のシステムは、火花点火式の内燃機関(ガソリンエンジン)10を備えている。内燃機関10の筒内には、吸気通路12および排気通路14が連通している。
吸気通路12の入口近傍には、エアクリーナ16が取り付けられている。エアクリーナ16の下流近傍には、吸気通路12に吸入される空気の流量に応じた信号を出力するエアフローメータ18が設けられている。エアフローメータ18の下流には、ターボ過給機20のコンプレッサ20aが設置されている。コンプレッサ20aは、排気通路14に配置されたタービン20bと連結軸を介して一体的に連結されている。
コンプレッサ20aの下流には、圧縮された空気を冷却するインタークーラ22が設けられている。インタークーラ22の下流には、電子制御式のスロットルバルブ24が設けられている。スロットルバルブ24の下流(吸気マニホールド12a)には、吸気圧力(過給圧力)を検出するための吸気圧力センサ26が配置されている。
内燃機関10の各気筒には、吸気ポート12b(図2参照)に燃料を噴射するための燃料噴射弁28と、混合気に点火するための点火プラグ30とがそれぞれ設置されている。各燃料噴射弁28は、共通の燃料供給配管32に接続されている。燃料供給配管32は、燃料ポンプ34を介して燃料タンク36に連通している。燃料供給配管32には、可変プレッシャレギュレータ38が取り付けられている。可変プレッシャレギュレータ38は、燃料噴射弁28に供給される燃料圧力(以下、「ポート噴射燃圧」と称する)と、燃料噴射弁28の噴射雰囲気であるスロットルバルブ24の下流側の吸気圧力(吸気マニホールド圧力)との差圧(以下、単に「噴射差圧」と略することがある)が一定となるように、当該ポート噴射燃圧を連続的に調整するものである。また、可変プレッシャレギュレータ38には、調圧時の余剰燃料を燃料タンク36に戻すためのリターン配管40が接続されている。尚、ここでは、可変プレッシャレギュレータ38は、後述するECU56からの指令に基づいて例えば電磁的に駆動されることにより、ポート噴射燃圧を連続的に調整可能に構成されているものとする。ただし、可変プレッシャレギュレータは、上記のようにポート噴射燃圧を連続的に調整可能なものに限定されず、例えば、ポート噴射燃圧を段階的(例えば2段階)に調整可能とするものであってもよい。
また、排気通路14には、タービン20bよりも上流側の部位において排気通路14から分岐し、タービン20bよりも下流側の部位において排気通路14と合流するように(すなわち、タービン20bをバイパスするように)構成された排気バイパス通路42が接続されている。排気バイパス通路42の途中には、排気バイパス通路42の開閉を担うウェイストゲートバルブ(WGV)44が設けられている。WGV44は、ここでは、電動式もしくは調圧式のアクチュエータ(図示省略)によって任意の開度に調整可能に構成されているものとする。WGV44の開度を調整することとすれば、タービン20bに流入する排気エネルギー量が変化する。その結果、タービン20bの回転数(ターボ回転数)が変化するので、過給圧力を調整することができる。また、タービン20bよりも下流側における排気バイパス通路42との接続部位よりも更に下流側の排気通路14には、排気ガスを浄化するための触媒46が配置されている。
また、内燃機関10は、吸気弁48(図2参照)および排気弁50(図2参照)を開閉駆動するための吸気可変動弁機構52および排気可変動弁機構54を備えている。ここでは、これらの可変動弁機構52、54は、吸気弁48または排気弁50の開閉時期を変更可能な可変バルブタイミング(VVT(Variable Valve Timing)機構であるものとする。このような可変動弁機構52、54によれば、吸気弁48の開弁期間と排気弁50の開弁期間とが重なるバルブオーバーラップ期間を任意の値に調整することができる。
更に、図1に示すシステムは、ECU(Electronic Control Unit)56を備えている。ECU56の入力部には、上述したエアフローメータ18および吸気圧力センサ26に加え、エンジン回転数NEを検出するためのクランク角センサ58等の内燃機関10の運転状態を検知するための各種センサが接続されている。また、ECU56の出力部には、上述したスロットルバルブ24、燃料噴射弁28、点火プラグ30、燃料ポンプ34、可変プレッシャレギュレータ38、WGV44および可変動弁機構52、54等の内燃機関10の運転状態を制御するための各種アクチュエータが接続されている。ECU56は、上述した各種センサの出力に基づき、所定のプログラムに従って各種アクチュエータを作動させることにより、内燃機関10の運転状態を制御するものである。
[バルブオーバーラップ期間中の吸気の吹き返しによるポート付着燃料の微粒化状態の変化について]
図2は、同一吸気マニホールド圧力下における、燃料の粒径とポート噴射燃圧との関係を表した図である。また、図3は、燃料の微粒化状態へのバルブオーバーラップ期間中の吸気の吹き返しの影響を説明するための図である。
吸気ポート12bに噴射される燃料の微粒化状態は、燃料噴射弁28に供給される燃料圧力(ポート噴射燃圧)と、燃料噴射弁28の噴射雰囲気である吸気マニホールド圧力との差圧(噴射差圧)によって決まる。このため、同一吸気マニホールド圧力下では、ポート噴射燃圧が高くなるにつれ、噴射差圧が大きくなるので、図2に示すように、燃料の粒径がより小さくなる(すなわち、燃料がより微粒化する)。
図2は、同一吸気マニホールド圧力下における、燃料の粒径とポート噴射燃圧との関係を表した図である。また、図3は、燃料の微粒化状態へのバルブオーバーラップ期間中の吸気の吹き返しの影響を説明するための図である。
吸気ポート12bに噴射される燃料の微粒化状態は、燃料噴射弁28に供給される燃料圧力(ポート噴射燃圧)と、燃料噴射弁28の噴射雰囲気である吸気マニホールド圧力との差圧(噴射差圧)によって決まる。このため、同一吸気マニホールド圧力下では、ポート噴射燃圧が高くなるにつれ、噴射差圧が大きくなるので、図2に示すように、燃料の粒径がより小さくなる(すなわち、燃料がより微粒化する)。
その一方で、吸気ポート12bの壁面に付着した噴射燃料の微粒化状態は、バルブオーバーラップ期間が設けられている場合には、当該バルブオーバーラップ期間中における筒内から吸気ポート12bへの吸気の吹き返し量によっても変化する。すなわち、図3に示すように、吸気ポート12bの壁面に付着した燃料は、吸気の吹き返しにより引きちぎられ、微粒化する。
上記の場合の吸気の吹き返し量自体は、筒内圧力と吸気マニホールド圧力との差圧によって決まる。ここで、バルブオーバーラップ期間中の筒内圧力は、ほぼ排気圧力(タービン20bの上流側の排気圧力)によって定まることになる。従って、バルブオーバーラップ期間中には、排気圧力の高低に応じて、吸気の吹き返し量が変化し、その結果として、燃料の微粒化状態が変化することになる。
本実施形態のように、排気バイパス通路42を開閉するWGV44を備えている場合には、排気圧力は、WGV44の開度に応じて変化することになる。従って、バルブオーバーラップ期間が設けられている場合には、WGV44の開度次第で、燃料の微粒化状態が変化する。より具体的には、筒内のガス量が同一の場合であっても、WGV44が閉じ側の開度に制御されている時は、排気圧力が高くなるので、吸気の吹き返し量が増加し、燃料の微粒化は良好となる。逆に、WGV44が開き側の開度に制御されている時は、排気圧力が低くなるので、吸気の吹き返し量が減少し、燃料の微粒化が悪化する。
[実施の形態1におけるポート噴射燃圧の制御]
ECU56には、内燃機関10の運転領域(例えば、負荷とエンジン回転数とで規定)との関係で、内燃機関10の燃費最適化などを目的とするWGV44の開度が予め設定されている。以下、このようにECU56に運転領域との関係で予め設定されたWGV44の開度のことを、「ベースWGV開度」と称する。
ECU56には、内燃機関10の運転領域(例えば、負荷とエンジン回転数とで規定)との関係で、内燃機関10の燃費最適化などを目的とするWGV44の開度が予め設定されている。以下、このようにECU56に運転領域との関係で予め設定されたWGV44の開度のことを、「ベースWGV開度」と称する。
図4は、本発明の実施の形態1におけるポート噴射燃圧の制御を説明するための図である。
上記のベースWGV開度を吸気マニホールド圧力(≒負荷)との関係で表すと、図4に示すようになる。すなわち、ここでは、図4中に太線で示すように、ベースWGV開度は、吸気マニホールド圧力が高くなるにつれ、小さくなるように設定されている。
上記のベースWGV開度を吸気マニホールド圧力(≒負荷)との関係で表すと、図4に示すようになる。すなわち、ここでは、図4中に太線で示すように、ベースWGV開度は、吸気マニホールド圧力が高くなるにつれ、小さくなるように設定されている。
ポート噴射燃圧が一定であるとすると、吸気マニホールド圧力が高くなるにつれ、噴射差圧が小さくなる。このため、吸気マニホールド圧力が高くなるにつれ、燃料の微粒化状態が悪くなる。また、既述したように、WGV44の開度が大きい(WGV44が開き側)場合には、WGV44の開度が小さい(WGV44が閉じ側)場合よりも、燃料の微粒化状態が悪くなる。従って、図4に示すように、吸気マニホールド圧力が低くなり、また、WGV44の開度が小さくなると、燃料の微粒化状態が良くなり、一方、吸気マニホールド圧力が高くなり、また、WGV44の開度が大きくなると、燃料の微粒化状態が悪くなる。
そこで、本実施形態では、上述したWGV開度の変化に伴う燃料の微粒化状態の悪化を抑制するために、ベースWGV開度に応じて、ポート噴射燃圧を変更するようにした。具体的には、WGV開度が大きい場合には、それが小さい場合と比べて、ポート噴射燃圧と吸気マニホールド圧力との差圧(噴射差圧)が大きくなるように、ポート噴射燃圧を調整するようにした。
また、内燃機関10の運転中に使用されるWGV44の開度が上記ベースWGV開度ではなくなる場合がある。このベースWGV開度が使用されない場合とは、例えば、触媒46の暖機要求時、内燃機関10が備えるアクチュエータへの故障発生時、および、空燃比の気筒間のインバランス検出時などのことである。ベースWGV開度が使用される場合であれば、図4に示すように、WGV44の開度と吸気マニホールド圧力との間に、一義的な関係が設定されているのに対し、ベースWGV開度が使用されない場合には、そのような関係が存在しない。そこで、本実施形態では、このようにベースWGV開度が使用されない場合には、噴射差圧を適切に制御するために次のような制御を行うようにした。すなわち、ベースWGV開度から外れたWGV44の開度に加えて吸気マニホールド圧力に基づいて、WGV開度が大きい場合には、それが小さい場合と比べて、ポート噴射燃圧と吸気マニホールド圧力との差圧が大きくなるように、ポート噴射燃圧を調整するようにした。
次に、図4を参照して、ポート噴射燃圧を可変させるシステムの構成の違い(連続的に可変するものであるか、もしくは段階的(例えば、2段階)に可変するものであるか)に応じた、具体的なポート噴射燃圧の決定手法について説明する。
先ず、本実施形態の可変プレッシャレギュレータ38を備えている場合のように、ポート噴射燃圧を連続的に可変させられるシステムの場合のポート噴射燃圧の決定手法について説明する。
ポート噴射燃圧は、図4に示すように、吸気マニホールド圧力とWGV開度との関係で、吸気マニホールド圧力が高くなるほど、また、WGV開度が大きくなるほど、高くなるように設定されている。また、ベースWGV開度の場合には、図4に示すように、吸気マニホールド圧力との関係が予め設定されている。従って、現在のベースWGV開度に従ってWGV44の開度が制御される場合に、図4に示す関係に従ってベースWGV開度に基づいてポート噴射燃圧を算出するようにすることで、WGV44の開度に応じてポート噴射燃圧が算出されることになる。すなわち、上記図4に示す設定によれば、吸気マニホールド圧力が高くなるほどポート噴射燃圧が高くなるようにすることで、内燃機関10の運転中の吸気マニホールド圧力の変化にかかわらず、安定した噴射差圧を確保できるようになる。そのうえで、WGV44の開度が大きくなるほどポート噴射燃圧が高くなるように設定されているので、WGV開度が大きくなるほど、噴射差圧が大きくなるように、ポート噴射燃圧を調整することができる。
また、WGV44の開度がベースWGV開度から外れて制御される場合には、図4に示す関係に従って、現在のWGV開度と吸気マニホールド圧力に基づいて、ポート噴射燃圧が算出される。これにより、WGV44の開度がベースWGV開度から外れて制御されている場合においても、内燃機関10の運転中の吸気マニホールド圧力の変化にかかわらず、安定した噴射差圧を確保できるようにしつつ、WGV開度が大きくなるほど、噴射差圧が大きくなるように、ポート噴射燃圧を調整することができる。
次に、本実施形態の可変プレッシャレギュレータ38を備えている場合とは異なり、ポート噴射燃圧を2段階に可変させられるシステムの場合のポート噴射燃圧の決定手法について補足的に説明する。
この場合のポート噴射燃圧は、図4に示すように、吸気マニホールド圧力とWGV開度との関係で、吸気マニホールド圧力が低くかつWGV開度が小さい側の低燃圧値と、吸気マニホールド圧力が高くかつWGV開度が大きい側の高燃圧値(>低燃圧値)として、2段階に設定されている。そして、現在のベースWGV開度に従ってWGV44の開度が制御される場合には、図4に示すように、現在のWGV44の開度が低燃圧値と高燃圧値との境界線とベースWGV開度線とが交差する時の値以下の場合には、ポート噴射燃圧が低燃圧値に決定され、一方、現在のWGV44の開度が上記値よりも大きい場合には、ポート噴射燃圧が高燃圧値に決定される。これにより、ポート噴射燃圧が2段階に制御される場合においても、吸気マニホールド圧力が高い場合には、それが低い場合よりもポート噴射燃圧が高くなるようにすることで、内燃機関10の運転中の吸気マニホールド圧力の変化にかかわらず、安定した噴射差圧を確保できるようになる。そのうえで、WGV44の開度が大きい場合には、それが小さい場合よりもポート噴射燃圧が高くなるようにすることで、WGV開度が大きい場合には、それが小さい場合よりも噴射差圧が大きくなるように、ポート噴射燃圧を調整することができる。
また、WGV44の開度がベースWGV開度から外れて制御される場合には、図4に示す関係に従って、現在のWGV開度と吸気マニホールド圧力に基づいて、ポート噴射燃圧が低燃圧値と高燃圧値との中から選択される。これにより、WGV44の開度がベースWGV開度から外れて制御されている場合においても、内燃機関10の運転中の吸気マニホールド圧力の変化にかかわらず、安定した噴射差圧を確保できるようにしつつ、WGV開度が大きくなるほど、噴射差圧が大きくなるように、ポート噴射燃圧を調整することができる。
図5は、ECU56が実行するポート噴射燃圧決定ルーチンを表したフローチャートである。尚、本ルーチンは、所定の制御周期毎に繰り返し実行されるものとする。また、本ルーチンの起動時には、可変動弁機構52、54の制御により、もしくは内燃機関10に予め設定された吸排気弁48、50のバルブタイミングにより、バルブオーバーラップ期間が設けられているものとする。
図5に示すルーチンでは、先ず、現在のWGV44の開度がベースWGV開度に従って制御される状況であるか否かが判定される(ステップ100)。具体的には、触媒46の暖機要求時などのベースWGV開度が使用されない状況ではないか否かが判断される。
上記ステップ100において、現在のWGV44の開度がベースWGV開度に従って制御される状況であると判定された場合には、ポート噴射燃圧が、WGV開度に基づく関数f(WGV開度)に従って算出される(ステップ102)。本ステップ102における関数f(WGV開度)は、上述した図4に示す関係(ベースWGV開度時の関係)を定めたものである。尚、WGV44の開度は、例えば、WGV44を駆動するアクチュエータ(電動モータ等)への駆動指令値に基づいて取得することができる。
一方、上記ステップ100において、現在のWGV44の開度がベースWGV開度に従って制御されない状況であると判定された場合には、ポート噴射燃圧が、吸気マニホールド圧力およびWGV開度に基づく関数f(吸気マニホールド圧力、WGV開度)に従って算出される(ステップ104)。本ステップ102における関数f(吸気マニホールド圧力、WGV開度)も、上述した図4に示す関係を定めたものである。
以上説明した図5に示すルーチンによれば、内燃機関10の運転中に制御されるWGV開度の大小を考慮して、WGV開度が大きい場合には、それが小さい場合と比べて、ポート噴射燃圧と吸気マニホールド圧力との差圧(噴射差圧)が大きくなるように、ポート噴射燃圧が決定されるようになる。言い換えれば、WGV開度が大きい場合には、それが小さい場合と比べて、ポート噴射燃圧が高くなる方向に当該ポート噴射燃圧がより大きく補正されることになる。
そして、本実施形態のシステムでは、このように決定されたポート噴射燃圧となるように可変プレッシャレギュレータ38によってポート噴射燃圧が調整される。既述したように、噴射差圧が大きくなると、燃料の微粒化が促進される。このため、上記のようにWGV44の開度に応じてポート噴射燃圧を調整(補正)することにより、WGV44の開度の変化に応じた排気圧力の変化に伴う燃料の微粒化状態の悪化を抑制することができる。以上のように、本実施形態のポート噴射燃圧の制御によれば、噴射された燃料の微粒化および微粒化によるポート壁面付着燃料量の減少に加え、WGV44の開度変化に伴う吸気の吹き返しが燃料の微粒化に与える影響を最小限に抑えることができるので、本制御を行わない場合と比較して、WGV44の開度が変わっても常に最適な燃料の微粒化状態が得られるようになる。
尚、上述した実施の形態1においては、ECU56が上記図5に示すルーチンの処理によって決定されたポート噴射燃圧となるように可変プレッシャレギュレータ38を制御することにより、前記第1の発明における「燃料圧力調整手段」が実現されている。
10 内燃機関
12 吸気通路
12a 吸気マニホールド
12b 吸気ポート
14 排気通路
18 エアフローメータ
20 ターボ過給機
20a コンプレッサ
20b タービン
24 スロットルバルブ
26 吸気圧力センサ
28 燃料噴射弁
30 点火プラグ
32 燃料供給配管
34 燃料ポンプ
36 燃料タンク
38 可変プレッシャレギュレータ
40 リターン配管
42 排気バイパス通路
44 ウェイストゲートバルブ(WGV)
48 吸気弁
50 排気弁
52 吸気可変動弁機構
54 排気可変動弁機構
56 ECU(Electronic Control Unit)
58 クランク角センサ
12 吸気通路
12a 吸気マニホールド
12b 吸気ポート
14 排気通路
18 エアフローメータ
20 ターボ過給機
20a コンプレッサ
20b タービン
24 スロットルバルブ
26 吸気圧力センサ
28 燃料噴射弁
30 点火プラグ
32 燃料供給配管
34 燃料ポンプ
36 燃料タンク
38 可変プレッシャレギュレータ
40 リターン配管
42 排気バイパス通路
44 ウェイストゲートバルブ(WGV)
48 吸気弁
50 排気弁
52 吸気可変動弁機構
54 排気可変動弁機構
56 ECU(Electronic Control Unit)
58 クランク角センサ
Claims (1)
- 燃料を吸気ポートに噴射する燃料噴射弁と、
排気エネルギーにより作動するタービンを排気通路に備えるターボ過給機と、
前記タービンよりも上流側の部位において前記排気通路から分岐し、前記タービンよりも下流側の部位において前記排気通路と合流する排気バイパス通路と、
前記排気バイパス通路を開閉するウェイストゲートバルブと、
前記燃料噴射弁に供給される燃料圧力を調整する燃料圧力調整手段と、
を備え、
前記燃料圧力調整手段は、吸気弁の開弁期間と排気弁の開弁期間とが重なるバルブオーバーラップ期間が設けられている場合において、前記ウェイストゲートバルブの開度が大きい場合には、当該ウェイストゲートバルブの開度が小さい場合と比べ、前記燃料圧力と前記燃料噴射弁の雰囲気の吸気通路圧力との差圧が大きくなるように、前記燃料圧力を調整することを特徴とする過給機付き内燃機関の制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011036095A JP2012172607A (ja) | 2011-02-22 | 2011-02-22 | 過給機付き内燃機関の制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011036095A JP2012172607A (ja) | 2011-02-22 | 2011-02-22 | 過給機付き内燃機関の制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012172607A true JP2012172607A (ja) | 2012-09-10 |
Family
ID=46975737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011036095A Withdrawn JP2012172607A (ja) | 2011-02-22 | 2011-02-22 | 過給機付き内燃機関の制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012172607A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10508609B2 (en) | 2016-09-02 | 2019-12-17 | Toyota Jidosha Kabushiki Kaisha | Control device for internal combustion engine using imbalance diagnosis and abnormality determination |
-
2011
- 2011-02-22 JP JP2011036095A patent/JP2012172607A/ja not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10508609B2 (en) | 2016-09-02 | 2019-12-17 | Toyota Jidosha Kabushiki Kaisha | Control device for internal combustion engine using imbalance diagnosis and abnormality determination |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4215069B2 (ja) | 内燃機関の排気還流装置 | |
JP4609541B2 (ja) | 過給機付き内燃機関の制御装置 | |
JP4306703B2 (ja) | 過給機付き内燃機関の制御装置 | |
JP4375369B2 (ja) | 過給機付き内燃機関の制御装置 | |
JP2006274831A (ja) | ターボチャージャ付き内燃機関の制御装置 | |
JP2005233033A (ja) | ディーゼル機関の制御装置 | |
WO2007136142A1 (en) | Exhaust gas recirculation system of internal combustion engine | |
WO2012157108A1 (ja) | 内燃機関の制御装置 | |
WO2012101737A1 (ja) | 過給機付き内燃機関の制御装置 | |
JP2010190070A (ja) | 内燃機関システム制御装置 | |
US20140121941A1 (en) | Intake Pressure Control In Internal Combustion Engine | |
CA2998831C (en) | Control device for internal combustion engine and control method for internal combustion engine | |
JP4858646B2 (ja) | 過給システム制御装置 | |
US8631783B2 (en) | Method and apparatus for controlling engine torque during intrusive testing | |
US20160102603A1 (en) | Internal combustion engine and control device thereof | |
JP2005320937A (ja) | 内燃機関の過給圧制御装置 | |
JP6410216B2 (ja) | 多気筒エンジンの制御装置 | |
JP2007303355A (ja) | 内燃機関のegr制御装置 | |
JP2012172607A (ja) | 過給機付き内燃機関の制御装置 | |
JP6274401B2 (ja) | エンジンの燃料噴射制御装置 | |
JP5136699B2 (ja) | 内燃機関の制御装置 | |
JP2006299892A (ja) | 過給機付き内燃機関 | |
JP2019152122A (ja) | 内燃機関システム | |
CN112664336B (zh) | 增压压力设定装置 | |
JP2010236447A (ja) | 内燃機関システム制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140513 |