JP2012064590A - ハイブリッド電池 - Google Patents
ハイブリッド電池 Download PDFInfo
- Publication number
- JP2012064590A JP2012064590A JP2011243838A JP2011243838A JP2012064590A JP 2012064590 A JP2012064590 A JP 2012064590A JP 2011243838 A JP2011243838 A JP 2011243838A JP 2011243838 A JP2011243838 A JP 2011243838A JP 2012064590 A JP2012064590 A JP 2012064590A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- active material
- activated carbon
- negative electrode
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Cell Separators (AREA)
Abstract
【課題】瞬間的にパワーを出すことができ、なお且つエネルギー容量が大きいハイブリッド電池を提供すること。
【解決手段】本発明のハイブリッド電池は、セパレーターを介して一方の側に正極活物質成形体を配し、セパレーターを介して他方の側に繊維状活性炭の成形体に続けて負極活物質成形体を配し、正極活物質成形体を正極集電体と接続し、負極活物質成形体を負極集電体と接続し、繊維状活性炭の成形体を負極集電体と接続したことを特徴とする。
【選択図】図9
【解決手段】本発明のハイブリッド電池は、セパレーターを介して一方の側に正極活物質成形体を配し、セパレーターを介して他方の側に繊維状活性炭の成形体に続けて負極活物質成形体を配し、正極活物質成形体を正極集電体と接続し、負極活物質成形体を負極集電体と接続し、繊維状活性炭の成形体を負極集電体と接続したことを特徴とする。
【選択図】図9
Description
本発明は、出力密度およびエネルギー密度がともに高いハイブリッド電池に関する。
近年、ビデオカメラや携帯型電話機等のコードレス電子機器の発達はめざましく、これら民生用途の電源として電池電圧が高く、高エネルギー密度を有するリチウム二次電池が注目され、実用化が進んでいる。
一方、地球環境の問題から、エンジン駆動であるガソリン車やディーゼル車に代わってモーター駆動である電気自動車、あるいはモーターとエンジンの両方を搭載したハイブリッド車への期待が高まっている。それら電気自動車やハイブリッド車では、モーターを駆動させるための電源として二次電池が使用されている。このような背景から、容量が大きく、しかも大出力を出すことが可能な二次電池に対する需要が高まっている。そこで、二次電池用電極の特性改善に関して以下に説明するような提案がされている。
例えば、特許文献1には、初回のクーロン効率の高い二次電池用負極として、リチウム塩を含む電解液中であらかじめ充放電処理を施した炭素繊維を用いることが記載されている。
また、特許文献2には、充電パワー密度が大きいリチウム二次電池用正極として、活性炭を5重量%以上15重量%以下の割合で含み、残部をスピネル構造リチウムマンガン複合酸化物としたものを使用し、負極として、活性炭を15重量%以下の割合で含み、残部を、リチウムを吸蔵・離脱可能な炭素材料としたものを使用することが記載されている。
また、特許文献3には、リチウム二次電池を主電源とし、短時間の高電力需要に対応しうる蓄電装置として、リチウム二次電池と電気二重層キャパシタとを並列接続したものが記載されている。
さらに、特許文献4には、低温での短時間出力特性を満足するリチウム二次電池用負極として、リチウムイオンを吸蔵乃至は放出できる活物質と、この活物質の平均粒径以下の活性炭からなるキャパシタ材料とを混合したものを使用することが記載されている。
そして、特許文献5には、高速の充放電条件下でも高エネルギー密度を示す二次電源用負極材料として、活物質を活性炭表面に担持したものが記載されている。
従来の二次電池は、大電流で充放電できるが、電池容量が小さい電池(比較的出力密度が高いパワー用電池)と、大電流では充放電できないが、小電流の充放電で電池容量が大きい電池(比較的エネルギー密度が高いエネルギー用電池)を作り分けており、大電流で充放電できることと、電池容量が大きいことは同一の電池では同時に成立しない。
すなわち、特許文献1には、単に初回のクーロン効率の高い二次電池用負極として、炭素繊維を用いることが開示されているに過ぎず、エネルギー密度および出力密度の向上のいずれについても検討されていない。
また、特許文献2に開示されたリチウム二次電池では、充電パワー密度は向上するが、同文献の段落番号0045には、「放電パワー密度は、各二次電池においてその値に大きな差違はない。」と記載されており、放電パワー密度の向上は期待できない。
また、特許文献3は、リチウム二次電池の出力を向上させるために、リチウム二次電池に単純に電気二重層キャパシタを付加したので、設備のコンパクト化を図ることができず、設備コストの上昇を招くとともに、制御システムも複雑になる。
さらに、特許文献4は、低温での短時間出力特性を満足するためにリチウム二次電池の負極活物質に粉末または粒子状の活性炭を混合しているが、後記するように、粉末または粒子状の活性炭を活物質に添加しても、粉末同士の接触抵抗が大きいため、性能に限界がある。
そして、特許文献5は、単に高エネルギー密度の二次電池用負極材料が記載されているに過ぎない。
上記のように、大電流で充放電できて、且つ電池容量が大きい電池というものは存在しない。
大電流で充放電できて、且つ電池容量が大きい電池が必要な場合、次の二通りの方法が考えられる。
(1) パワー用電池(大電流で充放電できるが電池容量が小さい電池)を使用し、必要な電池容量を確保するまで複数個の電池を接続する。このときは、パワーが極めて過剰スペックとなり、不経済な状態となる。
(2) エネルギー用電池(小電流の充放電で電池容量が大きい電池)を使用し、必要なパワーを確保するまで複数個の電池を接続する。このときは、エネルギーが極めて過剰スペックとなり、不経済な状態となる。
具体的な機器を例にとって説明すると、一部の電気機器は、起動時(瞬間的)には定常運転時の何倍もの電流量が必要となる。従って、電気機器を電池で稼働させるときは、上記の特性があるので、定常運転時の機器スペックで電池を選択すると、電池は起動時の瞬間的な大電流に耐えることができず、電池寿命が短くなるとともに機器を起動することができなくなる。
特に、電気自動車や電気二輪車などの場合、加速する際に瞬間的な大電流が必要であるが、走行距離を長くするためにエネルギー量も大量に必要であり、電気自動車や電気二輪車の性能は電池性能に大きく依存する。
また、セルモーターなどは始動初期に大電流が必要なだけでなく、複数回始動できることが要求されるため、エネルギー量も必要である。
以上のように、瞬間的に大出力を出すことが可能で、しかも、比較的長い時間にわたり一定量のエネルギーを放出することができる電池が必要とされているにも関わらず、現在までそのような電池は提供されていない。
本発明は上記の諸点に鑑みてなされたものであって、本発明の目的は、起動時などに瞬間的にパワーを出すことができ、なお且つエネルギー容量が大きいハイブリッド電池を提供することにある。
本発明は、繊維状活性炭の成形体を正極構成材料または負極構成材料として用いることにより、従来の二次電池の欠点を解消し、エネルギー密度および出力密度がともに高いハイブリッド電池を提供しうるのであり、活性炭の中でも特に繊維状活性炭を用いることが特徴である。
この活性炭は、特に、鉛蓄電池等の二次電池と比べて大電流による急速充放電が可能であるという理由で駆動系パワーアシスト用途への実用化が注目されている電気二重層キャパシタの電極材料として用いられている。上記の特許文献3は、この電気二重層キャパシタをリチウム二次電池に付加したものであって、キャパシタを二次電池とは別体として設けることで、電極材料として高価な活性炭を相当量必要とし、電気二重層キャパシタをリチウム二次電池に外付けすることにより、相互に関連する充放電特性に応じて滑らかな作動を確保するための高度な制御手段を必要とし、設備が複雑になるという不都合な点がある。すなわち、電池材料として有用な活性炭であっても、使用形態を誤れば、その特長を発揮できないと言える。
ところで、活性炭は、形状の点から、粒状活性炭、粉末状活性炭、繊維状活性炭に分けることができるが、粒状活性炭や粉末状活性炭は点接触であるから接触抵抗が大きいという欠点がある。そこで、本発明者は、繊維状活性炭に着目し、正極構成材料または負極構成材料としての最適用途を見出したのである。
本発明のハイブリッド電池は、セパレーターを介して一方の側に正極活物質成形体を配し、セパレーターを介して他方の側に繊維状活性炭の成形体に続けて負極活物質成形体を配し、正極活物質成形体を正極集電体と接続し、負極活物質成形体を負極集電体と接続し、繊維状活性炭の成形体を負極集電体と接続したことを特徴としている。
本発明は上記のとおり構成されているので、次の効果を奏する。
(1)出力密度の大きなキャパシタを二次電池とは別体にして配置するのではなく、二次電池の正極構成材料または負極構成材料として活性炭を用いることにより、設備のコンパクト化・軽量化を図ることができ、高度な制御手段も必要としない。また、活性炭を正極構成材料または負極構成材料のどちらか一方に添加するのみでキャパシタ機能を付与できるため、キャパシタを別置型とする構造のものに比べて高価な活性炭の使用量を半分程度に削減できるので、設備コストを低減することができる。
(2)繊維状活性炭の成形体を正極構成材料または負極構成材料とすることにより、あたかもキャパシタの機能が付与されるので、通常の二次電池では不可能な急激な負荷変動に対応することができるとともに、キャパシタ単体のものと比較して大きいエネルギー密度が得られる。
(3)通常の二次電池は、化学反応により充放電するため、低温では出力密度は大きく低下するのに対し、キャパシタは活性炭電極と電解液界面におけるイオンの吸脱着反応でエネルギーを蓄えるため、低温でも出力密度が低下しにくいという特性を持っている。本発明のハイブリッド電池はキャパシタの機能を有するため、通常の二次電池と比較して低温での出力密度が向上することが期待できる。
(4)通常の二次電池を高速充電すると、充電電圧が大きく上昇し、活物質や導電助剤などの劣化や電解液の分解が促進されるが、本発明のハイブリッド電池において高速充電した場合、短時間であれば、内部抵抗の小さいキャパシタ成分に充電電流が主に流れるため、充電電圧の上昇を少なくすることができ、活物質や導電助剤などの劣化を抑制することができる。高速放電した場合も同様であり、短時間であれば、内部抵抗の小さいキャパシタ成分から主に放電するため、過度の放電電圧の低下を避けることができ、活物質や導電助剤などの劣化を抑制することができる。さらに、キャパシタは活性炭電極と電解液界面におけるイオンの吸脱着反応という物理反応によりエネルギーを蓄えるため、劣化しにくい。このように、本発明のハイブリッド電池は、充放電における負荷の一部を寿命の長いキャパシタ成分が受け持つので、従来の二次電池に比べて寿命を延長することが期待できる。
次に、本発明のハイブリッド電池の好ましい実施の形態について説明する。
活物質成形体の形状は、粒状、板状、ブロック状、棒状、シート状などを挙げることができ、特に、限定されない。
活物質としては、電池の種類を問わず、全ての活物質材料を用いることができる。例えば、負極活物質と正極活物質の組合せとしては、水素吸蔵合金と水酸化ニッケル、水酸化カドミウムと水酸化ニッケル、鉛と酸化鉛、グラファイトとコバルト酸リチウムなどの組合せを挙げることができる。
活物質成形体は、活物質に導電性フィラーと樹脂を加えて成形したものや、箱状の集電体に活物質を充填したもの(ポケット式)、金属多孔体にペースト状の活物質を塗って成形したもの(ペースト式)、金属粉末を焼結して作製した多孔体に活物質を充填したもの(焼結式)などが使用できる。
活物質の導電性を保つ方法としては、炭素繊維、炭素粉末、ニッケル粉末などの導電性フィラーを活物質に混合する方法や、活物質をコバルト被覆する方法などが挙げられる。
活物質に加える樹脂としては、熱可塑性樹脂、熱硬化性樹脂、溶剤に溶解する樹脂、水に可溶な溶剤に溶解する樹脂、アルコールに可溶な溶剤に溶解する樹脂、または樹脂微粉末を液中に分散させたものなどを用いることができる。また、電解液には水酸化カリウム水溶液や水酸化ナトリウム水溶液などのアルカリ性電解液、硫酸水溶液などの酸性電解液、プロピレンカーボネートやエチレンカーボネートなどの有機溶媒に塩を溶解させた有機電解液、イオン性液体と呼ばれる常温溶融塩等を用いることができる。さらに、液体状の電解液だけでなく、ポリマー電解質などゲル状、固体状の電解質も用いることができる。このため、活物質に添加する樹脂はこれらの電解液や電解質への耐性が必要である。具体的には、ポリエチレン、ポリプロピレン、エチレン酢酸ビニルコポリマー、エポキシ樹脂、フェノール樹脂、ポリエーテルスルホン樹脂、ポリスチレン、ポリアクリロニトリル、ポリテトラフルオロエチレン、ポリビニルアルコール、ポリフッ化ビニリデン、ポリアミド、または酢酸セルロース等が使用可能である。
セパレーターとしては、アルカリ性電解液、酸性電解液、有機電解液などで腐食など変質せず、電気的絶縁が可能でイオンが通過するものが使用可能である。例えば、4フッ化エチレン樹脂、ポリエチレン、ポリプロピレン、ナイロンなどの織物や不織布またはメンブレンフィルター等が挙げられる。
正極集電体、負極集電体としては、電解液中で腐食など変質せず、電気伝導性があるものを用いることができる。例えば、アルカリ電解液中では、ニッケル金属板、ニッケル金属箔、ニッケルメッキした鉄やステンレス鋼等が、酸性電解液中では鉛や鉛合金等が、有機電解液であれば、アルミニウム箔等が使用可能である。
繊維状活性炭は、比表面積に応じて静電容量が増加するので比表面積が大きいほど好ましく、電気抵抗が小さいほど好ましく、強度が高いほど好ましく、フェノール系、PAN系、ピッチ系、セルロース系等を使用することができる。なお、ニッケル水素二次電池の場合は、正極の方が反応が速いので、負極構成材料として繊維状活性炭の成形体を配置するのが高出力放電を達成する上で有利である。
使用する活物質の充放電特性は、電池反応を起こす材料、導電性フィラー、および樹脂の混合割合、成形体の大きさ及び/又は密度などを調整して任意に選定することが可能である。
[実施例]
以下に、実施例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではなく、本発明の技術的範囲を逸脱しない範囲において、適宜変更と修正が可能である。
以下に、実施例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではなく、本発明の技術的範囲を逸脱しない範囲において、適宜変更と修正が可能である。
(1)ハイブリッド電池の構造例
図1〜図4にハイブリッド電池の構造例を示す。
図1〜図4にハイブリッド電池の構造例を示す。
図1において、1は正極活物質成形体、2はセパレーターであり、正極活物質成形体1の一方の側にセパレーター2を介して負極活物質成形体3を配し、正極活物質成形体1の他方の側にセパレーター2を介して繊維状活性炭の成形体4を配している。正極活物質成形体1を正極集電体5と接続し、負極活物質成形体3と繊維状活性炭の成形体4を負極集電体6と接続している。この場合、セパレーター2は、正極活物質成形体1、負極活物質成形体3および繊維状活性炭の成形体4の表面近傍に位置するように、略プリーツ状(ひだを呈するような波打つ状態)に配置されている。なお、図1では、繊維状活性炭の成形体4を負極集電体6と接続しているが、これに代えて、繊維状活性炭の成形体4を正極集電体5と接続する構成を採用することもできる。
図2において、セパレーター2を介して一方の側に正極活物質成形体1を配し、他方の側に繊維状活性炭を含有する負極活物質成形体7を配し、正極活物質成形体1を正極集電体5と接続し、繊維状活性炭を含有する負極活物質成形体7を負極集電体6と接続している。なお、図2では、負極活物質成形体7が繊維状活性炭を含有しているが、これに代えて、正極活物質成形体1が繊維状活性炭を含有する構成を採用することもできる。
繊維状活性炭としては、例えば、クラレケミカル社製の商品名CH700−20のクロス状のもの(比表面積2000m2/g、細孔半径16Å、細孔容積0.75ml/g、静電容量38F/g、繊維径8〜10μm)、クラレケミカル社製の商品名FT300−20のフェルト状のもの(比表面積2000m2/g、細孔半径16Å、細孔容積0.75ml/g、静電容量39F/g、繊維径8〜10μm)のものを用いることができるが、必ずしもこれに限るものではなく、異なる性状の繊維状活性炭であっても、本発明のハイブリッド電池の負極構成材料として採用することができる。
図3において、正極活物質シート8、セパレーター9、繊維状活性炭シート10、負極活物質シート11、セパレーター9の順に重ねて、渦巻き状に巻き取り、円筒形の電池を構成する。この円筒形電池では、ケース12が負極端子となり、キャップ13が正極端子となる。なお、図3における正極活物質シート8と負極活物質シート11の配置を交換した構成を採用することもできる。
図4において、正極活物質シート8、セパレーター9、繊維状活性炭を含有する負極活物質シート14、セパレーター9の順に重ねて、渦巻き状に巻き取り、円筒形の電池を構成する。この円筒形電池では、ケース12が負極端子となり、キャップ13が正極端子となる。なお、図4では、負極活物質シート14が繊維状活性炭を含有しているが、これに代えて、正極活物質シート8が繊維状活性炭を含有する構成を採用することもできる。
(2)電池の特性評価試験
(1) 負極構成材料の相違による特性の変化
a.電池の構成
比較例の電極の特性評価試験として、図5に示すように、白金板15を補助電極とし、水素吸蔵合金粉末とEVA樹脂と導電性フィラー(カーボンブラックとカーボン繊維)を混合した後、加圧成形することによって得た電極16を作用電極とする試験セルを作製した。
(1) 負極構成材料の相違による特性の変化
a.電池の構成
比較例の電極の特性評価試験として、図5に示すように、白金板15を補助電極とし、水素吸蔵合金粉末とEVA樹脂と導電性フィラー(カーボンブラックとカーボン繊維)を混合した後、加圧成形することによって得た電極16を作用電極とする試験セルを作製した。
他の比較例の電極の特性評価試験として、図6に示すように、白金板15を補助電極とし、重量比で3:2の水素吸蔵合金粉末と粉末状活性炭、EVA樹脂および導電性フィラー(カーボンブラックとカーボン繊維)を混合した後、加圧成形することによって得た電極17を作用電極とする試験セルを作製した。
ハイブリッド電池の電極の一例の特性評価試験として、図7に示すように、白金板15を補助電極とし、繊維状活性炭とEVA樹脂と導電性フィラー(カーボンブラックとカーボン繊維)を混合した後、加圧成形することによって得た繊維状活性炭の板状体18を有し、水素吸蔵合金粉末とEVA樹脂と導電性フィラー(カーボンブラックとカーボン繊維)を混合した後、加圧成形することによって得た電極19を作用電極とする試験セルを作製した。
図5〜図7において、20は集電体である。電解液は、図5〜図7のいずれの試験セルにおいても、KOH水溶液である。
なお、粉末状活性炭としては、「比表面積3000m2/g、静電容量72F/g、平均粒子径60〜150μm」相当のものを使用し、繊維状活性炭としては、「クラレケミカル社製の商品名CH700−20のクロス状のもの」を使用し、水素吸蔵合金としては、LaNi5型水素吸蔵合金を使用した。この水素吸蔵合金は、ミッシュメタルをベースに、電池特性を改良するために、マンガン、アルミニウム、コバルトが添加されたものである。
b.電位の変化
電流が0.5Cの通常放電と5Cの大電流放電を交互に行った場合において、Ag/AgClを基準電極とする放電電位の推移を図8に示す。なお、1Cとは、電極の定格容量(Ah)を1時間で充放電できる電流値をいう。従って、例えば、0.5Cとは、2時間で電極の定格容量を充放電できる電流値をいい、例えば、5Cとは、12分で電極の定格容量を充放電できる電流値をいう。
電流が0.5Cの通常放電と5Cの大電流放電を交互に行った場合において、Ag/AgClを基準電極とする放電電位の推移を図8に示す。なお、1Cとは、電極の定格容量(Ah)を1時間で充放電できる電流値をいう。従って、例えば、0.5Cとは、2時間で電極の定格容量を充放電できる電流値をいい、例えば、5Cとは、12分で電極の定格容量を充放電できる電流値をいう。
図8において、太線A、点線B、細線Cは、それぞれ図7に示す構成の作用極、図6に示す構成の作用極、図5に示す構成の作用極の放電電位の推移を示す。
図8の太線Aに示すように、本発明のハイブリッド電池の負極の一例を採用した図7に示す構成の電極は、大電流放電時の電位変化が小さく、高出力を達成することができる。
図8の点線Bに示すように、図6に示す構成の電極は、大電流放電を行うと、大きく電位が変化している。この理由は、活性炭が粉末であるため、接触抵抗が大きいことによるものであると思われる。
(2) 大電流放電による電圧の変化
本発明のハイブリッド電池の一例として、図9に示すように、水酸化ニッケル粉末とEVA樹脂と導電性フィラー(カーボンブラックとカーボン繊維)を混合した後、加圧成形することによって得た板状正極活物質21と、同上繊維状活性炭の板状体18と、水素吸蔵合金粉末とEVA樹脂と導電性フィラー(カーボンブラックとカーボン繊維)を混合した後、加圧成形することによって得た板状負極活物質19aを有する電池を作製した。22はセパレーター、23aは正極集電体、23bは負極集電体であり、電解液はKOH水溶液である。
本発明のハイブリッド電池の一例として、図9に示すように、水酸化ニッケル粉末とEVA樹脂と導電性フィラー(カーボンブラックとカーボン繊維)を混合した後、加圧成形することによって得た板状正極活物質21と、同上繊維状活性炭の板状体18と、水素吸蔵合金粉末とEVA樹脂と導電性フィラー(カーボンブラックとカーボン繊維)を混合した後、加圧成形することによって得た板状負極活物質19aを有する電池を作製した。22はセパレーター、23aは正極集電体、23bは負極集電体であり、電解液はKOH水溶液である。
そして、電流が0.5Cの通常放電に次いで20Cの大電流放電を行った場合における放電曲線を図10に示す。図10において、実線Dは図9に示す構成の本発明のハイブリッド電池の放電曲線、点線Eは図9から繊維状活性炭の板状体18を取り除いた従来の二次電池の放電曲線を示す。従来の二次電池では、大電流放電による電圧低下が大きく、短時間のうちに放電できなくなってしまうが、本発明のハイブリッド電池では、電圧低下を大幅に抑制できることが分かる。
(3) 出力密度とエネルギー密度
図11は下記の試算に用いた電気二重層キャパシタの概略構成を示す断面図であり、24、25は活性炭分極性電極であり、これら電極はセパレーター26を介して対向している。27は正極集電体、28は負極集電体、29はガスケット(絶縁体)である。
図11は下記の試算に用いた電気二重層キャパシタの概略構成を示す断面図であり、24、25は活性炭分極性電極であり、これら電極はセパレーター26を介して対向している。27は正極集電体、28は負極集電体、29はガスケット(絶縁体)である。
図11に示すような構造の電気二重層キャパシタと、図9に示す構成の本発明のハイブリッド電池と、図9から繊維状活性炭の板状体18を取り除いた従来の二次電池について、20℃における最大出力密度とエネルギー密度を試算したものを図12と図13に示す。なお、条件に差違がないようにするため、各電池の活物質重量(活性炭を含む)は同じにした。
図12と図13において、Fは電気二重層キャパシタ、Gは本発明のハイブリッド電池、Hは従来の二次電池の試算結果を示す。図12に示すように、本発明のハイブリッド電池の最大出力密度は従来の二次電池の約2倍あり、図13に示すように、本発明のハイブリッド電池のエネルギー密度は電気二重層キャパシタの約7倍もある。
(4) 最大出力密度の試算
a.負極側に繊維状の活性炭を添加した場合
図9に示す構成の電池(本発明の電池例1)と、図9に示す構成の電池において、繊維状活性炭の板状体18と板状負極活物質19aに代えて、水素吸蔵合金粉末と繊維状活性炭を重量比で3:2で混合したものを負極活物質材料とする電池(本発明の電池例2)と、図9に示す構成の電池において、繊維状活性炭の板状体18に代えて粉末状活性炭の板状体を用いた電池(比較例1の電池)と、図9に示す構成の電池において、繊維状活性炭の板状体18と板状負極活物質19aに代えて、水素吸蔵合金粉末と粉末状活性炭を重量比で3:2で混合したものを負極活物質材料とする電池(比較例の電池2)と、図9から繊維状活性炭の板状体18を取り除いた従来の二次電池について、各電池の活物質重量(活性炭を含む)を同じにして最大出力密度を試算した結果は、次のとおりである。
a.負極側に繊維状の活性炭を添加した場合
図9に示す構成の電池(本発明の電池例1)と、図9に示す構成の電池において、繊維状活性炭の板状体18と板状負極活物質19aに代えて、水素吸蔵合金粉末と繊維状活性炭を重量比で3:2で混合したものを負極活物質材料とする電池(本発明の電池例2)と、図9に示す構成の電池において、繊維状活性炭の板状体18に代えて粉末状活性炭の板状体を用いた電池(比較例1の電池)と、図9に示す構成の電池において、繊維状活性炭の板状体18と板状負極活物質19aに代えて、水素吸蔵合金粉末と粉末状活性炭を重量比で3:2で混合したものを負極活物質材料とする電池(比較例の電池2)と、図9から繊維状活性炭の板状体18を取り除いた従来の二次電池について、各電池の活物質重量(活性炭を含む)を同じにして最大出力密度を試算した結果は、次のとおりである。
本発明の電池例1=2620W/kg、本発明の電池例2=2450W/kg、
比較例1の電池=1670W/kg、比較例2の電池=1400W/kg、
従来の二次電池=1320W/kg
上記試算結果に示されているように、本発明の電池の出力密度が高いことは明らかである。
比較例1の電池=1670W/kg、比較例2の電池=1400W/kg、
従来の二次電池=1320W/kg
上記試算結果に示されているように、本発明の電池の出力密度が高いことは明らかである。
b.正極側に繊維状の活性炭を添加した場合
図9とは異なり、図14に示すように、繊維状活性炭の板状体18を正極側に添加した電池(本発明の電池例3)と、図14に示す構成の電池において、繊維状活性炭の板状体18と板状正極活物質21に代えて、水酸化ニッケル粉末と繊維状活性炭を重量比で3:2で混合したものを正極活物質材料とする電池(本発明の電池例4)と、図14に示す構成の電池において、繊維状活性炭の板状体18に代えて粉末状活性炭の板状体を用いた電池(比較例3の電池)と、図14に示す構成の電池において、繊維状活性炭の板状体18と板状正極活物質21に代えて、水酸化ニッケル粉末と粉末状活性炭を重量比で3:2で混合したものを正極活物質材料とする電池(比較例の電池4)と、図14から繊維状活性炭の板状体18を取り除いた従来の二次電池について、各電池の活物質重量(活性炭を含む)を同じにして最大出力密度を試算した結果は、次のとおりである。
図9とは異なり、図14に示すように、繊維状活性炭の板状体18を正極側に添加した電池(本発明の電池例3)と、図14に示す構成の電池において、繊維状活性炭の板状体18と板状正極活物質21に代えて、水酸化ニッケル粉末と繊維状活性炭を重量比で3:2で混合したものを正極活物質材料とする電池(本発明の電池例4)と、図14に示す構成の電池において、繊維状活性炭の板状体18に代えて粉末状活性炭の板状体を用いた電池(比較例3の電池)と、図14に示す構成の電池において、繊維状活性炭の板状体18と板状正極活物質21に代えて、水酸化ニッケル粉末と粉末状活性炭を重量比で3:2で混合したものを正極活物質材料とする電池(比較例の電池4)と、図14から繊維状活性炭の板状体18を取り除いた従来の二次電池について、各電池の活物質重量(活性炭を含む)を同じにして最大出力密度を試算した結果は、次のとおりである。
本発明の電池例3=2200W/kg、本発明の電池例4=2020W/kg、
比較例3の電池=1370W/kg、比較例4の電池=1340W/kg、
従来の二次電池=1320W/kg
上記試算結果に示されているように、負極側に添加するよりも出力密度の増加は少ないが、正極側に繊維状の活性炭を添加した場合にも、活性炭のない従来の二次電池や粉末状活性炭を添加した電池に比べて、明らかに出力密度が向上することが分かる。
比較例3の電池=1370W/kg、比較例4の電池=1340W/kg、
従来の二次電池=1320W/kg
上記試算結果に示されているように、負極側に添加するよりも出力密度の増加は少ないが、正極側に繊維状の活性炭を添加した場合にも、活性炭のない従来の二次電池や粉末状活性炭を添加した電池に比べて、明らかに出力密度が向上することが分かる。
(5) 出力推移
モーター等の回転機類は起動時に大電流を必要とするので、本発明のハイブリッド電池の用途として好ましいと考えられる。そこで、単車(排気量1200cc)の起動用セルモーターについて、図9に示す構成の本発明のハイブリッド電池と、図9から繊維状活性炭の板状体18を取り除いた従来の二次電池について、電池重量を同じにした場合における出力推移を試算した。その結果を図15に示す。
モーター等の回転機類は起動時に大電流を必要とするので、本発明のハイブリッド電池の用途として好ましいと考えられる。そこで、単車(排気量1200cc)の起動用セルモーターについて、図9に示す構成の本発明のハイブリッド電池と、図9から繊維状活性炭の板状体18を取り除いた従来の二次電池について、電池重量を同じにした場合における出力推移を試算した。その結果を図15に示す。
図15において、細線Jは上記単車のセルモーターの必要電力である。太線Kは本発明のハイブリッド電池の出力、点線Lは従来の二次電池の出力を示す。
図15に示すように、本発明のハイブリッド電池はセルモーターの必要電力を供給することができるが、同重量の二次電池では必要電力を供給できないことが分かる。従って、従来の二次電池に代えて本発明のハイブリッド電池を用いることにより、電池重量を軽減しうることが分かる。
本発明のハイブリッド電池は、電気自動車用の電源やエンジン始動用のセルモーター用の電源などの高出力且つ高エネルギーを必要とする用途に適している。
1 正極活物質成形体
2 セパレーター
3 負極活物質成形体
4 繊維状活性炭の成形体
5 正極集電体
6 負極集電体
7 負極活物質成形体
8 正極活物質シート
9 セパレーター
10 繊維状活性炭シート
11 負極活物質シート
12 ケース
13 キャップ
14 繊維状活性炭を含有する負極活物質シート
15 白金板
16 電極
17 電極
18 繊維状活性炭の板状体
19 電極
19a 板状負極活物質
20 集電体
21 板状正極活物質
22 セパレーター
23a 正極集電体
23b 負極集電体
24 活性炭分極性電極
25 活性炭分極性電極
26 セパレーター
27 正極集電体
28 負極集電体
29 ガスケット(絶縁体)
2 セパレーター
3 負極活物質成形体
4 繊維状活性炭の成形体
5 正極集電体
6 負極集電体
7 負極活物質成形体
8 正極活物質シート
9 セパレーター
10 繊維状活性炭シート
11 負極活物質シート
12 ケース
13 キャップ
14 繊維状活性炭を含有する負極活物質シート
15 白金板
16 電極
17 電極
18 繊維状活性炭の板状体
19 電極
19a 板状負極活物質
20 集電体
21 板状正極活物質
22 セパレーター
23a 正極集電体
23b 負極集電体
24 活性炭分極性電極
25 活性炭分極性電極
26 セパレーター
27 正極集電体
28 負極集電体
29 ガスケット(絶縁体)
Claims (1)
- セパレーターを介して一方の側に正極活物質成形体を配し、セパレーターを介して他方の側に繊維状活性炭の成形体に続けて負極活物質成形体を配し、正極活物質成形体を正極集電体と接続し、負極活物質成形体を負極集電体と接続し、繊維状活性炭の成形体を負極集電体と接続したことを特徴とするハイブリッド電池。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005066684A JP2006252902A (ja) | 2005-03-10 | 2005-03-10 | ハイブリッド電池 |
JP2011243838A JP2012064590A (ja) | 2005-03-10 | 2011-11-07 | ハイブリッド電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005066684A JP2006252902A (ja) | 2005-03-10 | 2005-03-10 | ハイブリッド電池 |
JP2011243838A JP2012064590A (ja) | 2005-03-10 | 2011-11-07 | ハイブリッド電池 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005066684A Division JP2006252902A (ja) | 2005-03-10 | 2005-03-10 | ハイブリッド電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012064590A true JP2012064590A (ja) | 2012-03-29 |
Family
ID=61156898
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005066684A Pending JP2006252902A (ja) | 2005-03-10 | 2005-03-10 | ハイブリッド電池 |
JP2011243838A Pending JP2012064590A (ja) | 2005-03-10 | 2011-11-07 | ハイブリッド電池 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005066684A Pending JP2006252902A (ja) | 2005-03-10 | 2005-03-10 | ハイブリッド電池 |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP2006252902A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2966709A1 (de) * | 2014-07-09 | 2016-01-13 | VARTA Microbattery GmbH | Sekundäres elektrochemisches Element |
WO2016005529A1 (de) * | 2014-07-09 | 2016-01-14 | Varta Microbattery Gmbh | Sekundäre elektrochemische zelle und ladeverfahren |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AR064292A1 (es) * | 2006-12-12 | 2009-03-25 | Commw Scient Ind Res Org | Dispositivo mejorado para almacenamiento de energia |
JP4983304B2 (ja) * | 2007-02-26 | 2012-07-25 | 新神戸電機株式会社 | エネルギ変換デバイス |
AR067238A1 (es) | 2007-03-20 | 2009-10-07 | Commw Scient Ind Res Org | Dispositivos optimizados para el almacenamiento de energia |
KR20120027260A (ko) | 2009-04-23 | 2012-03-21 | 후루카와 덴치 가부시키가이샤 | 납 축전지용 부극판의 제조법 및 납 축전지 |
JP5711483B2 (ja) | 2009-08-27 | 2015-04-30 | 古河電池株式会社 | 鉛蓄電池用複合キャパシタ負極板の製造法及び鉛蓄電池 |
ES2609657T3 (es) | 2009-08-27 | 2017-04-21 | Commonwealth Scientific And Industrial Research Organisation | Dispositivo de almacenamiento eléctrico y su electrodo |
JP5797384B2 (ja) | 2009-08-27 | 2015-10-21 | 古河電池株式会社 | 鉛蓄電池用複合キャパシタ負極板及び鉛蓄電池 |
JP5115591B2 (ja) | 2010-06-10 | 2013-01-09 | 株式会社デンソー | 電池の電極積層体 |
JP2012133959A (ja) | 2010-12-21 | 2012-07-12 | Furukawa Battery Co Ltd:The | 鉛蓄電池用複合キャパシタ負極板及び鉛蓄電池 |
CN104125925A (zh) | 2011-12-21 | 2014-10-29 | 加州大学评议会 | 互连波纹状碳基网络 |
CN109524246B (zh) | 2012-03-05 | 2021-07-27 | 加州大学评议会 | 具有由互连波纹状碳基网络制成的电极的电容器 |
JP5994977B2 (ja) * | 2012-06-26 | 2016-09-21 | 三菱自動車工業株式会社 | 二次電池 |
CN106575806B (zh) * | 2014-06-16 | 2020-11-10 | 加利福尼亚大学董事会 | 混合电化学电池 |
CA2968139C (en) | 2014-11-18 | 2023-01-10 | The Regents Of The University Of California | Porous interconnected corrugated carbon-based network (iccn) composite |
WO2017112575A1 (en) | 2015-12-22 | 2017-06-29 | The Regents Of The University Of California | Cellular graphene films |
CN108475590B (zh) | 2016-01-22 | 2021-01-26 | 加利福尼亚大学董事会 | 高电压装置 |
CN114784358A (zh) | 2016-03-23 | 2022-07-22 | 加利福尼亚大学董事会 | 用于高电压和太阳能应用的装置和方法 |
BR112018068945B1 (pt) | 2016-04-01 | 2023-11-21 | The Regents Of The University Of California | Supercapacitor, e, método para fabricação de um eletrodo funcionalizado |
US11097951B2 (en) | 2016-06-24 | 2021-08-24 | The Regents Of The University Of California | Production of carbon-based oxide and reduced carbon-based oxide on a large scale |
US10938021B2 (en) | 2016-08-31 | 2021-03-02 | The Regents Of The University Of California | Devices comprising carbon-based material and fabrication thereof |
CA3067725A1 (en) | 2017-07-14 | 2019-01-17 | Volker Strauss | Simple route to highly conductive porous graphene from carbon nanodots for supercapacitor applications |
CN109216050B (zh) * | 2017-09-30 | 2020-06-02 | 中国科学院大连化学物理研究所 | 在任意绝缘基底上制备的线型串联超级电容器 |
US10938032B1 (en) | 2019-09-27 | 2021-03-02 | The Regents Of The University Of California | Composite graphene energy storage methods, devices, and systems |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09283148A (ja) * | 1996-04-18 | 1997-10-31 | Matsushita Electric Ind Co Ltd | アルカリ蓄電池 |
JP2001351688A (ja) * | 2000-06-07 | 2001-12-21 | Fdk Corp | 電池・キャパシタ複合素子 |
JP2007506230A (ja) * | 2003-09-18 | 2007-03-15 | コモンウエルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション | 高性能エネルギー蓄積装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6215767A (ja) * | 1985-07-12 | 1987-01-24 | Matsushita Electric Ind Co Ltd | 有機電解質電池 |
JPS63166144A (ja) * | 1986-12-26 | 1988-07-09 | Matsushita Electric Ind Co Ltd | 有機電解質電池 |
JPH04112631A (ja) * | 1990-09-03 | 1992-04-14 | Matsushita Electric Ind Co Ltd | 電源装置 |
JP2000223373A (ja) * | 1999-02-03 | 2000-08-11 | Nec Corp | 分極性電極及びその製造方法並びに分極性電極を用いた電気二重層コンデンサ及びその製造方法 |
JP4880113B2 (ja) * | 2000-11-21 | 2012-02-22 | 日東電工株式会社 | 電池用セパレータおよびそれを用いた電極群 |
JP3792528B2 (ja) * | 2001-04-17 | 2006-07-05 | 日本碍子株式会社 | 電気二重層コンデンサの製造方法 |
-
2005
- 2005-03-10 JP JP2005066684A patent/JP2006252902A/ja active Pending
-
2011
- 2011-11-07 JP JP2011243838A patent/JP2012064590A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09283148A (ja) * | 1996-04-18 | 1997-10-31 | Matsushita Electric Ind Co Ltd | アルカリ蓄電池 |
JP2001351688A (ja) * | 2000-06-07 | 2001-12-21 | Fdk Corp | 電池・キャパシタ複合素子 |
JP2007506230A (ja) * | 2003-09-18 | 2007-03-15 | コモンウエルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション | 高性能エネルギー蓄積装置 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2966709A1 (de) * | 2014-07-09 | 2016-01-13 | VARTA Microbattery GmbH | Sekundäres elektrochemisches Element |
WO2016005529A1 (de) * | 2014-07-09 | 2016-01-14 | Varta Microbattery Gmbh | Sekundäre elektrochemische zelle und ladeverfahren |
WO2016005528A3 (de) * | 2014-07-09 | 2016-03-31 | Varta Microbattery Gmbh | Sekundäre elektrochemische zelle und ladeverfahren |
CN106471649A (zh) * | 2014-07-09 | 2017-03-01 | 瓦尔达微电池有限责任公司 | 二次电化学电池和充电方法 |
US20170187033A1 (en) * | 2014-07-09 | 2017-06-29 | Varta Microbattery Gmbh | Secondary electrochemical cell and charging method |
US20170194795A1 (en) * | 2014-07-09 | 2017-07-06 | Varta Microbattery Gmbh | Secondary electrochemical cell and charging method |
EP3435449A1 (de) * | 2014-07-09 | 2019-01-30 | VARTA Microbattery GmbH | Sekundäre elektrochemische zelle |
EP3528323A1 (de) | 2014-07-09 | 2019-08-21 | VARTA Microbattery GmbH | Sekundäre elektrochemische zelle |
US10516282B2 (en) | 2014-07-09 | 2019-12-24 | Varta Microbattery Gmbh | Secondary electrochemical cell and charging method |
Also Published As
Publication number | Publication date |
---|---|
JP2006252902A (ja) | 2006-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012064590A (ja) | ハイブリッド電池 | |
US10141559B2 (en) | Porous interlayer for a lithium-sulfur battery | |
KR102166391B1 (ko) | 고출력 응용을 위한 2차 아연-이산화망간 전지 | |
KR101123059B1 (ko) | 혼합형 스택 및 폴딩형 전극조립체와 이를 포함하고 있는이차전지 | |
JP6003041B2 (ja) | 耐熱絶縁層付セパレータ | |
JP5644873B2 (ja) | 空気二次電池 | |
KR101138594B1 (ko) | 리튬 이온 커패시터 | |
JP4788560B2 (ja) | 蓄電デバイス | |
JP2012169576A (ja) | 電気化学デバイス | |
US20220399588A1 (en) | Rechargeable Cell Architecture | |
JP2013038170A (ja) | ナトリウムイオンキャパシタ | |
JP2010287641A (ja) | 蓄電デバイス | |
JPH11224699A (ja) | エネルギー貯蔵素子 | |
US20120148921A1 (en) | Electrode for energy storage device, method of manufacturing the same, and energy storage device using the same | |
JP2012028366A (ja) | 蓄電デバイス | |
JP2019139986A (ja) | 亜鉛電池用負極及び亜鉛電池 | |
JP2018147565A (ja) | 蓄電素子の製造方法及び蓄電素子 | |
CN114127983A (zh) | 蓄电设备的电极的制造方法以及蓄电设备的电极 | |
CN220710345U (zh) | 极片、电极组件、电池单体、电池及用电装置 | |
US12051812B2 (en) | Rechargeable cell architecture | |
KR20190106158A (ko) | 수명이 개선된 하이브리드 전지 및 그 제조방법 | |
JP6523658B2 (ja) | キャパシタ空気電池用の中間層原料組成物、該原料組成物を含有する中間層を有する電極、および該電極を備えたキャパシタ空気電池 | |
JPH09312161A (ja) | 電気化学素子の集電体および電気化学素子 | |
US20220393181A1 (en) | Lead-acid battery having fiber electrode with lead-calcium strap | |
JP3187174U (ja) | Cntキャパシタ蓄電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130827 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131217 |