[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011076810A - 荷電粒子顕微鏡装置及びこれを用いた試料の検査方法 - Google Patents

荷電粒子顕微鏡装置及びこれを用いた試料の検査方法 Download PDF

Info

Publication number
JP2011076810A
JP2011076810A JP2009225855A JP2009225855A JP2011076810A JP 2011076810 A JP2011076810 A JP 2011076810A JP 2009225855 A JP2009225855 A JP 2009225855A JP 2009225855 A JP2009225855 A JP 2009225855A JP 2011076810 A JP2011076810 A JP 2011076810A
Authority
JP
Japan
Prior art keywords
sample
charged particle
captured image
image
design data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009225855A
Other languages
English (en)
Other versions
JP5380230B2 (ja
Inventor
Kenji Nakahira
健治 中平
Atsushi Miyamoto
敦 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009225855A priority Critical patent/JP5380230B2/ja
Priority to US13/379,663 priority patent/US9341584B2/en
Priority to PCT/JP2010/004071 priority patent/WO2011039908A1/ja
Publication of JP2011076810A publication Critical patent/JP2011076810A/ja
Application granted granted Critical
Publication of JP5380230B2 publication Critical patent/JP5380230B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2255Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident ion beams, e.g. proton beams
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20004Adaptive image processing
    • G06T2207/20012Locally adaptive
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20021Dividing image into blocks, subimages or windows
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/22Treatment of data
    • H01J2237/221Image processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2814Measurement of surface topography
    • H01J2237/2815Depth profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Landscapes

  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】
多層レイヤにおける下層パターンやホールパターンの穴底などの鮮明度の低い領域に対して高画質化が行える,高性能な画質改善処理を行う。
【解決手段】
設計データの高さ情報または画像から求めた試料の高さ情報の推定値を用いて鮮明化強度を計算し,該鮮明化強度を用いて撮像画像の画質改善処理を行う。
【選択図】 図1

Description

本発明は,荷電粒子を試料に照射して画像を取得する荷電粒子顕微鏡装置又はこれを用いた試料の検査方法に係り,特に取得した画像に対して画像処理による画質改善処理を施し、処理された画像を用いて試料を検査する装置又は方法に関する。
荷電粒子顕微鏡は,光学顕微鏡に比べて分解能が非常に高く,被観察対象の微細な構造を鮮明に観察するために広く利用されている。荷電粒子顕微鏡では,荷電粒子ビームを対象試料に照射し,対象試料から放出される,または対象試料を透過する粒子(照射した荷電粒子と同種または別種の荷電粒子,または電磁波,光子)を検出することで,対象試料の拡大画像を取得する。
特に,半導体製造プロセスにおいては,半導体ウェハの検査,パターン寸法の計測,パターン形状の計測などの用途として,走査型電子顕微鏡(Scanning Electron Microscope)や走査型イオン顕微鏡(Scanning Ion Microscope),走査型透過電子顕微鏡(Scanning Transmission Electron Microscope)などの荷電粒子顕微鏡が用いられている。これらの用途においては,撮像した画像を用いて,半導体パターンや欠陥の観察,欠陥の検出および発生要因解析,パターンの寸法計測などの検査が行われる。
荷電粒子顕微鏡において,高画質な画像を提供する機能は,最も重要な機能の一つである。画質改善処理としては,例えば、特許文献1、特許文献2又は非特許文献1のように、エッジ強調処理,画像復元処理,ノイズ除去処理,コントラスト補正処理が提案されている。
特開昭63−211472号公報 特開平3−44613号公報
Y.I.Gold and A.Goldenshtein: Proc. SPIE, 3332, pp.620-624 (1998)
近年,半導体パターンの微細化,高密度化が進むにつれて,多層レイヤの対象試料において下層パターンから放出される粒子を十分な量だけ検出することが困難になってきており,下層パターンのS/Nやコントラストが低くなるなど視認性が非常に低下するという問題がある。ホールパターンにおいても,同様に穴底からの荷電粒子を検出しにくいために,穴底の領域において良好な画質が得られない。荷電粒子光学系や検出系等のハードウェアを改良することにより,下層パターンや穴底等からの荷電粒子をより多く検出することも可能であるが,検出量を増やすには限界があり,大幅な改善は困難である。また,ソフトウェアの改良として,撮像画像に対して画像処理による高画質化を行うことにより,良好な視認性を得る方法もある。
特許文献1,2や非特許文献1で提案されている手法では,下層パターンやホールパターンの穴底などの良好な画質が得られにくい複雑なパターンの領域に対して,画像全体の画質を損なうことなく,その領域の鮮明度(コントラスト,S/N,シャープネス,分解能)が向上するような画像処理がなされておらず、試料パターンの高さ情報に着目した処理は行われていない。また,前記の従来手法では,撮像画像のみを用いて画質改善処理が行われるか,もしくは,撮像画像および撮像条件(荷電粒子ビームの加速電圧,プローブ電流等)を用いた画質改善処理が行われているのみであり,設計データを用いた処理は行われていなかった。ここで,設計データとは,製造する半導体パターンの形状情報を示すデータのことを表し,多くの場合,半導体パターンの輪郭に関する情報等によりパターンの形状が記述されている。また,設計データには,試料特性(材質特性・電気特性・レイヤ特性等)に関する情報が含まれていても良い。このため,従来の処理では,以下に列挙するように十分な画質改善性能が得られない場合がある。
例えば、従来の処理では、画像全体の画質を低下することなく,多層レイヤにおける下層パターンやホールパターンの穴底などの試料から放出される粒子を検出しにくい領域に対して十分な視認性を得るような処理ができなかった。また、局所コントラスト補正のような画像の局所位置毎にコントラストを調整するような処理も提案されているが,各々の領域において試料から放出される粒子をどの程度多く検出できるかについては考慮しないため,下層パターンや穴底を精度良く認識して適切な鮮明化処理を行うことはできなかった。
また、画像内に特性が類似した下層パターンやホールパターンが複数個表示されているような場合に,それらの複数個のパターンに対して大きく異なる鮮明度となるような処理を行うと,不自然な画像になってしまう場合もある。従来の処理では,これらの領域に対して自然な画像が得られるように同一または値の近い鮮明化強度を用いることができなかった。
また、画像によっては,特に視認性を向上したい領域をユーザが指定したい場合も多い。従来の処理ではユーザがこのような指定を行えるようなインターフェイスを備えておらず,またこのようなインターフェイスにより入力された情報に基づいて処理を行うこともできなかった。
本発明は,上記のような場合においても十分な画質改善を行い、処理された画像を用いて、試料のパターンや欠陥の観察、欠陥の検出および発生要因解析、パターンの寸法計測などの検査が可能な検査装置又は検査方法を実現するものである。
本願において開示される発明のうち代表的なもの概要を簡単に説明すれば次の通りである。
(1)荷電粒子顕微鏡装置を用いた試料の検査方法であって、前記試料に荷電粒子を照射し、前記試料から放出される同種または異種の粒子を検出して撮像画像を取得する撮像画像取得ステップと、前記撮像画像を複数の局所領域に分割する領域分割ステップと、前記試料の高さ情報に基づいて、前記撮像画像を前記複数の局所領域ごとに画像処理する画像処理ステップと、前記画像処理された撮像画像を用いて試料を検査する検査ステップと、を有することを特徴とする荷電粒子顕微鏡を用いた試料の検査方法である。
(2)(1)記載の荷電粒子顕微鏡を用いた試料の検査方法であって、さらに、前記撮像画像取得ステップで取得した前記撮像画像に対応する設計データを読み込む設計データ読込ステップを有し、前記画像処理ステップでは、前記試料の高さ情報として、前記読み込んだ設計データから得た試料の高さ情報を用いることを特徴とする荷電粒子顕微鏡を用いた試料の検査方法である。
(3)(2)記載の荷電粒子顕微鏡を用いた試料の検査方法であって、前記画像処理ステップでは、前記設計データから得た試料の高さ情報に基づいて前記複数の局所領域各々について鮮明化強度を算出し、前記鮮明化強度を用いて、前記撮像画像を前記複数の局所領域ごとに画像処理することを特徴とする荷電粒子顕微鏡を用いた試料の検査方法である。
(4)(3)記載の荷電粒子顕微鏡を用いた試料の検査方法であって、前記鮮明化強度の算出において、前記設計データにおける最上層レイヤ以外の少なくとも一つのレイヤに対する鮮明化強度を、前記レイヤよりも上層にあるレイヤ情報を用いて計算することを特徴とする荷電粒子顕微鏡を用いた試料の検査方法である。それぞれのレイヤに荷電粒子を照射した際,試料から放出された粒子の一部はそのレイヤよりも上層にあるレイヤに衝突し,吸収される。このため,試料から放出された粒子が検出器に届く量は,上層のレイヤにどの程度衝突するかに大きく影響する。そこで,処理の対象とするレイヤに対して,そのレイヤよりも上層のレイヤの情報を用いることによって,鮮明度をどの程度高める必要があるかを適切に判断することができる。
(5)(1)記載の荷電粒子顕微鏡を用いた試料の検査方法であって、前記画像処理ステップでは、前記試料の高さ情報として、前記撮像画像から推定した試料の高さ情報を用いることを特徴とする荷電粒子顕微鏡を用いた試料の検査方法である。設計データを組み合わせて用いることで、より高性能な画質改善処理を行うことが可能となる。
(6)試料に荷電粒子を照射する荷電粒子照射光学系手段と,前記荷電粒子照射光学系手段により荷電粒子が照射された前記試料から発生した同種または別種の粒子を検出する電粒子検出光学系手段と,前記粒子検出光学系手段で検出した信号を処理して前記試料の撮像画像を得る撮像画像取得手段と,前記撮像画像取得手段で取得した前記試料の撮像画像を処理する画像処理手段とを備えた荷電粒子顕微鏡装置であって,前記画像処理手段は,前記撮像画像を複数の局所領域に分割し,前記試料の高さ情報に基づいて、前記撮像画像を前記複数の局所領域ごとに画像処理することを特徴とする荷電粒子顕微鏡装置である。
本発明によれば,上記した従来技術の課題を解決し、十分に画質改善処理がなされた画像を用いて、試料のパターンや欠陥の観察、欠陥の検出および発生要因解析、パターンの寸法計測などの検査が可能な検査装置又は検査方法を実現することができる。
本発明における画質改善処理のシーケンスを表す一実施例図である。 本発明における画質改善処理のシーケンスを表す一実施例図である。 本発明の一実施形態である荷電粒子顕微鏡の基本構成である。 設計データの情報を利用せずに画質改善処理を行う一実施例図である。 設計データを利用しない場合における画質改善部の実施形態を表す一実施例図である。 試料の形状と試料から放出される粒子が検出される量との関係を表す一実施例図である。 画質改善処理を表す一実施例図である。 撮像画像と設計データの位置合わせを行う処理および設計データを撮像画像に合わせるように変形する処理を表す一実施例図である。 領域分割方法および鮮明化強度の計算方法を表す一実施例図である。 設計データに含まれる試料の高さ情報を用いて鮮明化強度を計算する一実施例図である。 アスペクト比の異なる画像に対して,鮮明化強度を計算する一実施例図である。 荷電粒子画像を取得して画質改善処理を行う基本動作を表す一実施例図である。 設計データを撮像画像に合わせるように変形する処理を表す一実施例図である。 ステップ201の撮像画像と設計データの位置合わせを行う処理を表す一実施例図である。 撮像画像から試料の高さ情報を推定する一実施例図である。 撮像画像から計算される現状の鮮明度を用いて鮮明化強度の制約条件を設定する方法の一実施例図である。 鮮明化強度を指定したい領域または鮮明化強度に関する情報の入力をユーザに促し,ユーザから指定された情報に基づいて鮮明化強度を計算するシーケンスの一実施例図である。 鮮明化強度を指定したい領域または鮮明化強度に関する情報の入力をユーザに促し,ユーザから指定された情報に基づいて鮮明化強度を計算するシーケンスの一実施例図である。 鮮明化強度を指定したい領域または鮮明化強度に関する情報の入力をユーザに促すためのインターフェイスを表す一実施例図である。 類似した領域をグループ化して,同一のグループに対して同一の鮮明化強度または値の近い鮮明化強度を設定するシーケンスの一実施例図である。 類似した領域をグループ化する方法の一実施例図である。 類似した領域をグループ化する方法の一実施例図である。 試料に対して荷電粒子ビームを垂直でない方向から照射して取得した撮像画像に対して設計データを変形させる方法を表す一実施例図である。 設計データのレイヤ情報を利用して画質改善処理を行う方法の一実施例図である。 パターンの形状と粒子検出量との関係を表す一実施例図である。 設計データを撮像画像に合わせるように変形する処理を表す一実施例図である。 設計データを撮像画像に合わせるように変形する処理を表す一実施例図である。
図1は,荷電粒子画像を取得して画質改善処理を行うシーケンスの一実施例図である。まず,ステップ101で撮像したい試料の情報を含む設計データを読み込む。また,ステップ102で荷電粒子画像を取得する。以下,取得した荷電粒子画像を撮像画像と呼ぶ。ステップ102はステップ101の前に実施しても良い。次に,ステップ103で撮像画像を複数の局所領域に分割する。ステップ103では設計データの情報を用いることもできる。局所領域の説明は後述する。次に,ステップ104で設計データの高さ情報を用いて各局所領域について鮮明化強度を計算し,ステップ105で鮮明化強度に基づいて撮像画像に対して画質改善処理を実施する。画質改善画像の出力を画質改善画像と呼ぶ。鮮明化強度が強いほど画質改善画像の鮮明度が高くなるように,画質改善処理を強く施す。
設計データの高さ情報を用いることで,試料から放出される粒子が検出器に到達する量を推定することができる。このため,視認性が悪い領域(多層レイヤの下層パターンやホールパターンの穴底等)を自動で認識して,これらの領域の鮮明度を向上すると共に,それ以外の領域の画質も損なわないような画像を得ることができる。高さ情報とは,ある基準点からの長さを表す具体的な数値でも良いし,周囲と比べて高いか低いかを表すだけのような相対的な高さ関係を表す情報でも良い。多層レイヤにおける上層,下層の関係を表す情報も高さ情報の一つである。
図2に,図1のシーケンスとは別の実施形態を表す一実施例図を示す。図1と同一の処理については,図1と同じ番号で示してある。以下,同一の処理やデータ等を表す場合には,同一の番号を振って示すものとする。ステップ101,102の処理は,図1と同じであり、これらは前後しても構わない。一般に設計データと撮像画像の間には位置ずれが発生するため,ステップ101では,少なくとも取得する撮像画像の視野よりも広い視野の設計データを読み込み,位置ずれが発生した場合でも撮像画像に対応する領域が含まれるようにしておく。次に,ステップ201において,撮像画像と設計データの位置合わせを行う。次に,必要に応じて、ステップ202において,設計データを撮像画像に合わせるように変形する。ここで、設計データの変形については後に詳説するが、設計データと撮像画像とのパターン形状の差が許容範囲であれば、本ステップは省略しても構わない。なお、撮像画像と設計データの位置合わせを行うステップ201と、必要に応じて実施する設計データを変形するステップ202とは、図1に示すシーケンスのステップ102の後で、同様に実施しても構わない。次に,ステップ203において,撮像画像を複数の局所領域に分割する。ステップ203では,設計データの情報を用いることもできる。次に,ステップ204にて,撮像画像における現状の鮮明度(以下,現状鮮明度)を計算する。ここで,鮮明度とは,画像の局所位置毎におけるコントラスト,S/N,シャープネス,分解能のうち一つ以上を表す指標のことである。例えば,対象とする局所位置を含む局所的な領域(以下,近傍領域)における微分の平均,近傍領域における明度値の分散,近傍領域における明度値の四分位範囲(第一四分位点と第三四分位点との差),近傍領域に含まれる高周波成分の強度,エッジ(明度値が急激に変化する線分)における明度変化,S/N,等を鮮明度として定義できるが,これに限らない。次に,ステップ205の処理で現状鮮明度および設計データの高さ情報を用いて各局所領域について鮮明化強度を計算した後,ステップ105で鮮明化強度に基づき,画質改善処理を実施することにより,画質改善画像を得る。ここで、鮮明化強度とは、撮像画像に対して画質改善画像の鮮明度をどれくらい強めるかを表す度合いのことである。
図12は,荷電粒子画像を取得して画質改善処理を行う基本動作を表す一実施例図である。まず,画質改善処理を行う前に,あらかじめ1201に示す一連の処理により,鮮明化強度を計算する際に用いる処理ルール1215を作成しておく。次に,1202に示す一連の処理により,撮像画像に対して画質改善処理を施し,画質改善画像1230を生成する。1201に示す一連の処理では,まず各種の想定される試料情報1211を準備しておく。試料情報とは,試料の高さ情報、試料の3次元形状情報(2次元形状情報および高さ情報),電気特性,材質特性等を表す情報である。各試料情報1211に対して,ステップ1212により荷電粒子顕微鏡の撮像原理に関する物理モデルに基づいて撮像画像を推定する。試料情報1211と撮像画像の推定値1213を用いれば,画像内のどの箇所において鮮明度が低くなるかを推測できるため,どのように鮮明化強度を計算すべきかに関する処理ルールを適切に設計することができる。このように,ステップ1214で,試料情報1211と撮像画像の推定値1213に基づいて処理ルール1215を作成する。次に1202に示す一連の処理について説明する。まず,ステップ1223により,試料情報を推定する。この推定では,撮像画像1221を用いても良いし,設計データ1222を用いても良い。例えば,設計データの高さ情報やレイヤ情報を,そのまま試料情報の推定値1224とすることもできる。また,ステップ1225により,撮像画像を局所領域に分割する。ステップ1225では,試料情報の推定値1224を用いることもできる。次に,ステップ1227で,ステップ1201で求めた処理ルール1215に基づき,試料情報の推定値1224を用いて各局所領域について鮮明化強度1228を計算する。最後に,ステップ1229で鮮明化強度に基づいて撮像画像に対して画質改善処理を実施する。
試料情報として,試料の高さ情報は,後述するように撮像画像の鮮明度と深い関係にある。また,撮像画像が鮮明に表示されるか否かは,電気特性や材質特性にも大きく影響することも多い。このように試料情報を用いることにより,どの領域をどの程度の強度で鮮明化する必要があるかを推定することができるため,適切な画質改善処理を行うことができる。
図3は,本発明の一実施形態である荷電粒子顕微鏡装置の基本構成である。荷電粒子顕微鏡装置は,例えば,撮像装置301,入出力部321,制御部322,処理部323,記憶部324,および画質改善部325等を適宜用いて構成される。撮像装置301では,荷電粒子銃302から荷電粒子ビーム303を発生し,前記荷電粒子ビーム303をコンデンサレンズ304や対物レンズ305に通すことにより試料306の表面に集束する。ここで、コンデンサレンズ304や対物レンズ305は複数個設けていても構わない。次に,試料306から発生する粒子(荷電粒子または電磁波または光子)を検出器308で検出し,画像生成器309により前記検出して得られた信号からディジタル画像を生成することにより,撮像画像を取得する。撮像画像は,バス線310を介して記憶部324に保存される。検出器308としては、ホトマルやAPD(avalanche photodiode)などを用いればよく、1個であっても複数個備わっていても構わない。さらに,電子を検出する検出器と電磁波を検出する検出器のように異なる粒子を検出する検出器を適宜組み合わせても,例えばSEMの場合,二次電子検出器と後方散乱電子検出器のように異なる性質の粒子を検出する検出器の組み合わせであっても良い。検出器が複数個備わっている場合には,通常1回の撮像で,撮像画像を複数枚取得することができる。試料306はステージ307に接しており,ステージ307を移動することにより,試料の任意の位置における画像の取得が可能である。本実施例により,設計データの情報を用いて視認性向上が求められる領域を自動で認識することができ,これらの領域に対して十分高い鮮明化強度を設定して画質を向上すると共に,それ以外の領域の画質も損なわないような画像を得ることができる。
入出力部321では,画像撮像位置や撮像条件の入力,撮像画像や画質改善画像の出力などを行う。制御部322では,撮像装置の制御として,荷電粒子銃302等に印加する電圧や,コンデンサレンズ304および対物レンズ305の焦点位置の調整,ステージ307の移動,画像生成器309の動作タイミング等を制御する。また,制御部322は,入出力部321,処理部323,記憶部324,画質改善部325の制御も行う。処理部323では,画質改善処理以外の処理である,例えば,荷電粒子ビーム303の焦点を試料306の表面に合わせるために必要な自動焦点合わせに関する処理などを行う。また、処理部323では、撮像したパターンの測長や欠陥の検出、分類などを行う。記憶部324では,撮像画像,設計データ,試料特性情報,画質改善画像,画質改善のための処理パラメータ等が保存される。画質改善部325では,図1に示した,撮像画像から画質改善画像を生成するための一連の処理を行う。画質改善部325は,ステップ101の設計データ読込を行う設計データ読込部331,ステップ103の領域分割を行う領域分割部332,ステップ104の鮮明化強度の計算を行う鮮明化強度計算部333,およびステップ105の画質改善処理を行う画質改善処理部334を適宜用いて構成される。ここで、設計データ読込部による設計データの読み込みは、設計データを記憶部324に記憶させ、ここから読み込むようにしてもよく、また、図示しないが、ネットワークを介して他の装置やファイルサーバから読み込むようにしてもよい。なお、本例では、設計データ読込部331は画質改善処理部334に含まれるものとして記載したが、画質改善処理部334とは別個に設ける構成としても構わない。また,図示しないが、ステップ201の設計データと撮像画像の位置合わせを行う位置合わせ部や,ステップ202の設計データを変形する設計データ変形部,ステップ204の現状鮮明度を計算する現状鮮明度計算部などを備えていても良い。
図4に,図1のシーケンスとは別の実施形態として,設計データの情報を利用せずに画質改善処理を行う一実施例図を示す。ステップ102,103の処理は,図1と同じである。次に,ステップ401で撮像画像から試料の高さ情報を推定する。高さ情報の推定方法については後述するが、例えば、撮像画像からの試料の輪郭線情報を抽出し、輪郭線同士がどのように交差しているかといった情報から、パターンの上層、下層に関する高さ情報を得ることができる。次に,ステップ402で,試料の高さ情報の推定値に基づき,鮮明化強度を計算する。最後に,ステップ105で,鮮明化強度に基づき画質改善処理を実施する。ここで、ステップ103とステップ401の間、若しくは、ステップ401とステップ402の間で前述の現状鮮明度を計算するステップ204を実施し、現状鮮明度と試料の高さ情報の推定値に基づいて鮮明化強度を計算するようにしてもよい。
本実施例により,設計データの情報が入力されていないような荷電粒子顕微鏡装置である場合や,設計データには記載されていない欠陥などに対して鮮明度を向上したい場合においても,試料の高さ情報を推定することにより,視認性が悪い領域を自動で認識することができる。このため,これらの領域の鮮明度を向上すると共に,それ以外の領域の画質も損なわないような画像を得ることができる。更に,設計データの情報を組み合わせて用いることにより,より高性能な画質改善処理を行うこともできる。
図5は,図3の基本構成において設計データを利用しない場合における画質改善部の一実施形態である。撮像装置301等の基本構成は図3と同様であり、ここでは画質改善部のみ説明する。画質改善部325bは,図3の画質改善部325に代わる別の構成からなり,331の設計データ読込部の代わりに,ステップ401の試料の高さ情報を推定する試料の高さ情報推定部531を備える。また,画質改善部325bは,ステップ402の鮮明化強度を計算する鮮明化強度計算部532を備える。さらに,画質改善部325bは,設計データの情報を組み合わせて用いる場合に対応すべく、設計データ読込部331を備えていても良い。本実施例により,撮像画像の情報を用いて視認性向上が求められる領域を自動で認識することができ,これらの領域に対して十分高い鮮明化強度を設定して画質を向上すると共に,それ以外の領域の画質も損なわないような画像を得ることができる。
図6に,試料の形状と試料から放出される粒子が検出される量との関係を表す一実施例図を示す。荷電粒子銃302から試料602,612,622,632,642,652に対して,それぞれ,荷電粒子ビーム303を照射したときに,試料から放出される粒子の軌跡を矢印で示している。説明を簡単にするために,それぞれの試料は同一の電気特性,材質特性を持っているものとする。それぞれの例において,荷電粒子ビームの照射した位置から6本の矢印を記述しており,矢印が試料に衝突している矢印の数が多いほど粒子を検出器で検出できないことを表す。試料602の例では,試料の高い位置603に荷電粒子ビームを照射しているため,試料から放出される粒子は矢印604のように再び試料に衝突することはほとんどない。このため,多くの粒子を検出することができる。試料612の例では,荷電粒子ビームの照射位置613よりも周囲の試料614が高い位置にあるため,矢印616のように,放出された粒子の一部は試料に衝突して吸収される。このため,613の位置に対応する撮像画像の鮮明度は低い。なお,矢印615のように曲がった矢印は,粒子の軌跡がその矢印で示すような曲線を描くことを示している。例えば粒子が電荷を持っている場合には,試料の上方に適切な電磁場を設定することによって,このように粒子の軌跡を曲げ,より多くの粒子を検出できる。試料622の例では,荷電粒子ビームの照射位置623よりも周囲の試料624が高い位置にある。この例では,614と613の高さの差と,624と623の高さの差は同じであるが,試料622の場合では,位置623からx方向に沿ってある程度離れた距離に試料624があるため,矢印625で示すように、試料612の場合に比べると試料に衝突する粒子の数は少ない。このため,位置623に対応する撮像画像の鮮明度は,位置613の場合と比べると高くなる。試料632の例では,荷電粒子ビームの照射位置633よりも周囲の試料634が高い位置にあり,試料612の例と比べると634と633の高さの差が大きい。この場合には,矢印635で示すように、試料612の場合に比べて試料に衝突する粒子の数は多くなり,従って,位置633に対応する撮像画像の鮮明度は,位置613の場合と比べると低くなる。試料642の例では,荷電粒子ビームの照射位置643よりも周囲の試料644,645が高い位置にあるが,試料644と645の高さはそれぞれ異なっている。試料644の高さは試料634の高さと同じ,試料645の高さは試料614の高さと同じである。この場合,矢印646のように、試料645に衝突する粒子の数と,試料644に衝突する粒子の数には差ができる。その結果,試料に衝突する粒子の数は,試料612の場合よりも多く,試料632の場合よりも少なくなる。従って,位置643に対応する撮像画像の鮮明度は,位置613の場合と比べると低くなり,位置633の場合と比べると高くなる。試料652の例では,エッジ651の付近の位置654に荷電粒子ビームを照射している。長方形の内部は試料の高い位置を表しており,その外部では高さが低い。このように試料の高い位置でかつエッジの付近に照射した場合には,矢印653が示すように照射位置654とエッジとの距離が近い方向に多くの粒子が放出される。図6に示したような,試料の形状と,試料から放出される粒子が検出される量との関係を用いることによって,試料の形状に関する情報から,撮像画像の各領域における鮮明度を推定することができる。
図7に,ステップ105の画質改善処理を表す一実施例図を示す。まず,算出された鮮明化強度702を用いて,画質改善パラメタを計算し(ステップ711)、所定の画質パラメタ705を算出する。次に,撮像画像703に対して,算出された画質改善パラメタ705を用いてステップ712の画質改善を施し,処理結果706を求める。ステップ712の画質改善では,コントラスト補正処理721,信号強調処理722,ガンマ補正処理723,ノイズ除去処理724,画像復元処理725,超解像処理726,あるいはこれらの処理を任意に組合せて行う。画質改善パラメタ705の例としては,721のコントラスト補正処理を行う場合では,例えば,鮮明度の一つである,明度値の分散や明度値の四分位範囲の目標値そのものや,または明度値の平均値などの鮮明化強度から計算される別の値や,またはそれらの値の組合せである。処理結果706に対して,ステップ713で鮮明度を計算する。次に,計算した鮮明度を用いて,ステップ715で画質改善をやり直すか否かを判断する。例えば,ステップ713で計算した鮮明度が一定値を下回っていればやり直しとする。やり直しの場合には,ステップ716で画質改善パラメタを再計算し,ステップ712の画質改善を再び施す。やり直しでない場合には,処理結果706を画質改善画像704とする。ステップ713,715,716の処理は,必要でなければ施さなくても良い。なお、ここで示したステップ105の画質改善処理は、図1、図2、図4で示したいずれのシーケンスにおいて用いても構わない。本実施例により,撮像画像に対して画質改善処理を施し,希望した鮮明度を持つ画質改善画像を得ることができる。
図8に,ステップ201の撮像画像と設計データの位置合わせを行う処理およびステップ202の設計データを撮像画像に合わせるように変形する処理を表す一実施例図を示す。ここでは、ホールパターンに対する撮像画像801を用いて場合を例にとって説明する。設計データ802は,撮像画像801に対応する設計データ(位置合わせ前)である。撮像画像801と設計データ802に対してステップ201で位置合わせを行い,位置合わせ後の設計データ803を得る。位置合わせを行っても撮像画像に対応する設計データの情報に欠落が生じないようにするために,位置合わせ前の設計データ802の視野は,撮像画像の視野よりも大きめにとっておく。この例のように,位置合わせ後の設計データ803は,撮像画像801と映っているパターンの形状が大きく異なることもある。そこで,撮像画像801を用いて,ステップ202により位置合わせ後の設計データ803を変形する。設計データの変形には,リソシミュレータ等のシミュレータを用いることもできる。位置合わせ・変形後の設計データ810としては,本来設計データには存在しなかった,ホールのエッジ部分に現れるホワイトバンドのような構造を表現しても良い。
図13に,ステップ202の設計データを撮像画像に合わせるように変形する処理を表す実施例図を示す。撮像画像から算出したパターンや欠陥等の輪郭線(以下,画像輪郭線)を実線で,設計データの輪郭線を点線で示している。例えば撮像画像に対して微分フィルタなどのエッジを抽出する処理を行うことによって,画像輪郭線を算出できる。(1)の例では,設計データの輪郭線1301と比べて,画像輪郭線1302が丸まっている。この例では設計データの輪郭線を徐々に変化させることによって,設計データの輪郭線1301を変形後の輪郭線1303のように画像輪郭線と同様の形状に変形することができる。(2)の例では,画像輪郭線1312は,正しくは1302と同一であるが,画像処理の算出ミスにより一部1313のように断線している。このように,撮像画像から画像処理により画像輪郭線を算出すると,算出方法によっては断線することも多い。しかし,画像輪郭線がある程度断線している場合でも,設計データの輪郭線1311を断線せずかつ複雑な曲線にならないように画像輪郭線1312に近づけることによって,変形後の輪郭線1314のような形に変形することができる。(3)の例では,実際のパターンが断線したことにより,画像輪郭線が,第一の画像輪郭線1322と第二の画像輪郭線1323とに切れている例である。この場合は,(2)の画像輪郭線の算出ミスとは異なり,実際にパターンが断線しており,画像輪郭線1322,1323からもその間の位置1326で断線していることが明瞭にわかる。従って,設計データの輪郭線1321は,パターン1322,1323と同様の形状に変形させることが望ましい。画像輪郭線1322,1323から,画像輪郭線が2個の閉曲線からなることが容易に判断できるため,設計データの輪郭線1321も2個の閉曲線で表されるように変化させることによって,変形後の第一の輪郭線1324と変形後の第二の輪郭線1325のような形状に変形することが可能である。(4)の例では,設計データの輪郭線1331は2個の閉曲線(輪郭線1332、輪郭線1335)で表されているが,対応するパターンがショートしており画像輪郭線1333は1個の閉曲線で表されるような例である。この場合も,画像輪郭線が1個の閉曲線からなることが判断できるため,設計データの輪郭線を1個の閉曲線で表されるように変化させることによって,変形後の輪郭線1334のような画像輪郭線と同様の形状に変形することができる。これらのように,設計データを変形し,設計データの輪郭線を,画像処理により正しく算出されたときの画像輪郭線に近づけることによって,後段の処理であるステップ203の領域分割処理や,ステップ205の鮮明化強度を計算する処理を高精度に行うことができる。
図27に,図13の1321の例において,設計データを撮像画像に合わせるように変形する処理を表す一実施例図を示す。図13と同様に,撮像画像から算出した画像輪郭線を実線で,設計データの輪郭線を点線で示している。まず,設計データの輪郭線を徐々に変化させることで,1個の閉曲線で表される形状2705を得る。具体的な処理としては,例えば設計データの輪郭線上にある幾つかの点2711について,その点の近傍の画像輪郭線に移動させる。本例において,各点の移動を矢印2712で示す。設計データの輪郭線を形状2705に変形させた後,変形後の設計データと画像輪郭線との差分を計算する。この例では,差分を求めると,画像輪郭線の一部2701,2702と,設計データの輪郭線の一部2703,2704が得られる。この差分がある場合には,例えば設計データの輪郭線の閉曲線の数と画像輪郭線の閉曲線の数を調べる等の解析を行う。この例では,設計データの輪郭線の閉曲線が1個なのに対して,画像輪郭線の閉曲線は2個あるため,断線等の理由により画像輪郭線の閉曲線の数が増えたことがわかる。そこで,設計データの輪郭線の閉曲線の数を増やした後,設計データの輪郭線を徐々に変化させることで,変形後の第一の輪郭線1324と変形後の第二の輪郭線1325のような形状を得ることができる。このような処理により,画像輪郭線に合わせて設計データを適切に変形することが可能である。
図14に,ステップ201の撮像画像と設計データの位置合わせを行う処理を表す一実施例図を示す。設計データ1401は,撮像画像1402に対応する設計データである。設計データ1401は、上層パターン1411、下層パターンを有する。撮像画像1402では,鮮明度が高い信号成分を実線で示し,鮮明度が低い信号成分を点線で示している。この例では,下層パターン1414は鮮明度が低く,画像処理では認識が困難であるとする。この場合,設計データと撮像画像の位置合わせを行う際,上層パターン1411を用いることにより横方向の位置合わせは可能であるが,上層パターン1411は縦方向の変化は非常に少ないので縦方向の位置合わせを行うことはできない。また,撮像画像において下層パターン1414が認識できれば設計データの下層パターン1412と位置合わせを行うことで縦方向の位置合わせができるが,この例では下層パターン1414が認識困難なため,設計データと撮像画像の縦方向の位置合わせが困難である。本例のような場合での位置合わせ後の設計データ1403を示す。点線は,位置合わせができなかったパターンを示す。ここで、位置合わせ後の設計データ1403をみると、縦方向の位置合わせができず,下層パターンの正確な位置を認識できなかったことがわかるものの、一方で認識できなかったという事実から下層パターンが存在することは読み取ることができるため,後述するような下層パターンの位置を特定しなくても適用できるような処理を行う。これにより,適切に鮮明度を向上することができる。
図26に,ステップ202の設計データを撮像画像に合わせるように変形する処理を表す一実施例図を示す。設計データ2601は,撮像画像2602に対応する設計データの例である。撮像画像には,画像輪郭線を実線で示している。設計データと撮像画像の画像輪郭線を比較することにより,設計データの輪郭線2611は画像輪郭線2612に対応していることがわかる。設計データの輪郭線2611を徐々に変化させることにより,画像輪郭線2612の形状に近づけることができる。また,本例の撮像画像2602では,設計データには含まれていない,異物2613の画像輪郭線が含まれている。例えば,設計データの輪郭線2611を変化させて画像輪郭線に近づけた後で,変形後の設計データの輪郭線と画像輪郭線を比較することで,異物2613の画像輪郭線を抽出することができる。このため,変形後の設計データには,設計データには含まれていないが撮像画像に含まれているような異物2605の輪郭線の情報を付加することもできる。
図9に,領域分割方法および鮮明化強度の計算方法を表す一実施例図を示す。設計データ901は、撮像画像902に対応する設計データである。撮像画像902には,上層パターン911と,下層パターン912が映っている。撮像画像902における点線は,視認性が悪いことを表している。多層パターンにおいては,下層パターンから放出される粒子は,上層のパターンに衝突するなどの理由により十分な量だけ検出することが困難であるため,下層パターンの視認性が悪くなってしまうという問題がある。903に,領域分割により得られた局所領域の例を示す。上層パターンとそれ以外の領域として,局所領域a913,局所領域b914,局所領域c915,局所領域d916,局所領域e917の五つの局所領域に分割した例を示している。設計データ901の情報,または撮像画像902の情報を用いることによって,このように領域分割を行うことができる。904に,903における各局所領域について計算した鮮明化強度の例を示す。904の鮮明化強度の例では,鮮明化強度がゼロの領域を白色,十分高い値を持つ領域をハッチングで塗り潰して表現している。この例では,下層パターンの視認性向上を図るため,上層パターンに対応する領域918は鮮明化強度をゼロとし,上層パターン以外の領域919に対して,十分高い鮮明化強度を設定している。この例では,下層パターンの位置を特定しなくても鮮明化強度を計算することができるため,例えば図14の例のような下層パターンの正確な位置を認識できないような場合においても,適用することができる。905に,領域分割により得られた局所領域として,903とは別の例を示す。この例では,画像全体を小さなサイズの局所領域に分割している。この例のように,設計データや撮像画像の情報とは無関係に領域分割を行うこともできる。906に,905における各局所領域について計算した鮮明化強度の例を示す。904の例と同様の塗り潰し方法で表現している。本例では,下層パターンのエッジの箇所920において鮮明化強度を高く設定している。このような鮮明化強度により,下層パターンの視認性を向上することができる。なお、鮮明化強度は,負の値をとることもできる。鮮明化強度が正の値のときは,現状鮮明度と比べて画質改善画像の鮮明度が高くなるように画質改善処理を行い,逆に鮮明化強度が負の値のときは,現状鮮明度と比べて画質改善画像の鮮明度が高くなるように画質改善処理を行う。
図10に,設計データに含まれる試料の高さ情報を用いて鮮明化強度を計算する一実施例図を示す。設計データ1001に対して,対応する高さ情報1002をプロットした図を示す。z軸が高さ方向を表している。この例では,設計データに,1001の2次元情報の他に,1002に示す高さ情報も含まれている。設計データ1001の情報のみでは,パターン1011aとパターン1012aはどちらも同様の上層パターンに見えるが,パターンの高さは異なっており,1015aおよび1016aに示すように,パターン1012aのほうがパターン1011aよりも高い。また,高さ情報を用いれば、パターン1011bはパターン1011aと同じ高さえあり,パターン1012bはパターン1012aと同じ高さであることが分かる。高さ情報1002において1015a,1015b,1016a,1016bは,それぞれ2次元情報1001におけるパターン1011a,1011b,1012a,1012bに対応している。この例では,下層パターンの高さは一様である。パターン1012aとパターン1012bはともに高いパターンであるため,これらのパターンで囲まれた領域1030からは,試料から放出される粒子の検出が特に困難となる。グラフ1003に,試料から放出される粒子の検出量(以下,粒子検出量)を示す。1021,1022,1023は,共に下層パターンに対応している。1023は,1021と比べて,粒子検出量が少なくなっている。この理由は,それぞれに対応する位置において,両隣の上層パターンの高さが異なることから説明できる。1023における両隣の上層パターン1016a,1016bの高さは,1021における両隣の上層パターン1015a,1015bよりも高いため,試料から放出される粒子は両隣の試料に衝突しやすくなり,粒子検出量は少ない。1022では,1021よりも粒子検出量が少なく,1023よりも粒子検出量が多くなっている。これは,図6で説明した現象と同様で,両隣のパターンが,1015bと1016aであることから容易に理解することができる。1004に,鮮明化強度の例を示す。設計データの高さ情報を用いて,グラフ1003で示した粒子検出量を予測することができるため,粒子検出量が少ない箇所ほど鮮明化強度を強くすることによって,相対的に視認性が悪い領域に対して大幅な視認性向上を行うことができる。
図11に,アスペクト比の異なる画像に対して,鮮明化強度を計算する一実施例図を示す。設計データ1101および設計データ1102は,同一工程内の位置の異なる試料に対応する設計データの例である。高さ情報1111および高さ情報1112として,それぞれ,設計データ1101,設計データ1102に対応する設計データの高さ情報を示す。どちらの設計データにおいても,上層パターンと下層パターンの高さは同一であるが,設計データ1102のほうが設計データ1101に対して上層パターンが密に配線されている。このように,パターンの高さ情報は同じ場合でも,上層パターンが密に配線されているほうが下層から放出される粒子は上層パターンに衝突しやすくなるため,検出が困難となる。すなわち,設計データ1102に対応する撮像画像のほうが,一般的に下層パターンの視認性が悪い。設計データの情報を用いれば,設計データ1101と比べて設計データ1102のほうがパターンが密に配線されていることが容易にわかるため,下層パターンの鮮明度が低いことが予想できる。本実施例では,上層パターンと下層パターンの高さの差のみでなく,パターンの粗密度合い,または上層パターンがどれほど近傍にあるかに関する情報を用いて,鮮明化強度を計算する。鮮明化強度1121,鮮明化強度1122として,それぞれ設計データ1101,設計データ1102に対応する鮮明化強度の例を示す。このような処理により,1102のようなより鮮明度が低くなる場合に対して鮮明化強度を強く設定することができる。
図15に,撮像画像から試料の高さ情報を推定する一実施例図を示す。撮像画像1501の例では,明度値の高い領域1511を白色,明度値の低い領域1512をハッチングで塗り潰して表現している。一般に高さの低い領域からは,試料から放出される粒子を検出しにくいため,明度値が低くなる傾向にある。そこで,明度値の低い領域を高さの低い領域,明度値の高い領域を高さの高い領域とみなすことにより,試料の高さ情報を推定することができる。試料の高さ情報は,例えば(ある基準位置からの高さが)200nmのような,具体的な値でも良いし,「高い」または「低い」のような,相対的な高さ関係を表すだけの情報でも良い。多層レイヤにおける上層,下層の関係を表す情報も高さ情報の一つである。撮像画像1502の例では,パターンのエッジを黒い線分で表している。撮像画像1502は、上層パターン1513,1514と,下層パターン1516とを有する。その間にある領域1515では,下層パターンの視認性が悪く,エッジを検出しにくい。しかし,パターンのエッジを表す線分の位置関係に着目すると,撮像画像1502のみから,縦方向の上層パターン1513,1514があり,その下に横方向の下層パターン1516があることが予測できる。このため,領域1515は,上層パターン1513,1514と比べると高さが低いことを画像処理により推定することができる。このように,パターンのエッジを表す線分の位置関係を用いて,相対的な高さ関係を推定することができる。
また、撮像画像1503および撮像画像1504は別の例である。試料の同一の箇所に対して荷電粒子を照射して,2組の後方散乱粒子検出器で検出して得られた2枚の画像を表している。撮像画像1503及び撮像画像1504では,明度値が高い領域1521を白色,明度値の低い領域1522を黒色,中間的な明度値を持つ領域1523をハッチングで塗り潰して表現している。これらの撮像画像には,縦方向のパターンが2本映っている。撮像画像から見てそれぞれ左側と右側に放出される後方散乱粒子を多く検出するように後方散乱粒子検出器を配置している。このように得られた撮像画像1503と撮像画像1504の減算を行うと,試料の凹凸に関する情報が得られることが知られている。これら差画像1505では,値がほぼゼロの領域を白色,それ以外の領域で値が正および負の領域をそれぞれハッチングおよび黒で塗り潰して表現している。ハッチングで塗り潰した領域1526では,その領域の左側よりも右側のほうが試料の高さが高いことを表しており,また黒色で塗り潰した領域1527では,その領域の左側よりも右側のほうが試料の高さが低いことを表している。この情報を用いることで,画像処理により相対的な高さ関係を得ることができる。
高さ情報を推定することができれば,例えば周囲と比べて高さが高い局所領域では放出される粒子の検出が容易であるため鮮明化を行う必要がないといった判断を行うことができる。このように,高さ情報を用いることにより,鮮明化強度の計算をより適切に行うことができる。なお,高さ情報の推定に用いる画像と,鮮明化強度の計算や画質改善処理を行う画像は,別の画像であっても良い。例えば,撮像画像1503および撮像画像1504の例において,これらの画像を用いて高さ情報を推定した後,この高さ情報を用いて,別の検出器で得られた画像に対して画質改善処理を行うことができる。
図16に,撮像画像から計算される現状の鮮明度を用いて鮮明化強度の制約条件を設定する方法の一実施例図を示す。

3層レイヤのパターンを撮像した画像の例に対して,撮像画像の各レイヤにおける現状鮮明度と制約条件の関係を示すグラフ1601を例示する。黒丸1611が現状鮮明度を表す。白い長方形1612が制約条件を表し,上側の線分が画質改善画像に要求する鮮明度(以下,目標鮮明度)の上限,下側の線分が目標鮮明度の下限を示している。この例では,下層のレイヤほど鮮明度が低くなっている。上層から2番目のレイヤや,上層から3番目のレイヤの鮮明度が低いため,これらのレイヤに対して高い鮮明化強度を設定することが必要となる。ただし,鮮明化強度は高いほど良いという訳ではなく,画像全体の画質を低下しないためには,一般的には画質改善画像における下層レイヤの鮮明度を上層レイヤの鮮明度より低く設定する必要がある。また,鮮明度が過度に高すぎる場合にも,その領域が目立ち過ぎることにより鮮明度が低い領域の画質を損なう場合がある。さらに,画質改善処理の前後において、相対的な鮮明度の高低関係が崩れてしまうと、画像全体として不自然になることもあり、現状鮮明度と比べて相対的に画質改善画像の鮮明度が高すぎる場合では,ノイズが増幅されたり,人工的な模様が現れたりするなど副作用が生じるようになる。そこで,本実施例では,これらの副作用を抑えるべく、必要に応じて、鮮明度に対する制約条件を設定する。これらの制約条件は,例えば,前述したように,上層レイヤの鮮明度を超えず,かつ過度に高い値にすることなく,かつ現状鮮明度と比べて相対的に高すぎる値にしないようにする等で決定することができる。このように,鮮明度に対して制約条件を設定することにより,これらの副作用を抑えることができる。グラフ1602に,鮮明化強度に対する制約条件を示す。この制約条件は,例えば,画質改善画像の鮮明度に対する制約条件から現状鮮明度を減算することで求めることができる。ここでは、3層レイヤのパターンを例にとって説明したが、他の複数層レイヤのパターンでも同様に制約条件を設定できることは言うまでもない。
図17に,鮮明化強度を指定したい領域または鮮明化強度に関する情報の入力をユーザに促し,ユーザから指定された情報に基づいて鮮明化強度を計算するシーケンスの一実施例図を示す。図17の(1)は,設計データを用いる場合のシーケンスの一実施例図である。ステップ101,102の処理は,図1と同じである。次に,ステップ1701において撮像画像に対して領域分割を行った後,1702で設計データの高さ情報を用いて領域分割により得られた撮像画像の局所領域の各々について鮮明化強度を計算する。次に,1703で鮮明化強度に基づき画質改善処理を実施して画質改善画像を得る。その後,ステップ1704でユーザからの鮮明化強度を指定したい領域または鮮明化強度に関する要求を入力してユーザからの要求があれば,その要求に基づいてステップ1701〜1703の処理をやり直す。以下,ステップ1704でユーザからの要求がなくなるまで,ステップ1701〜1704を繰り返す。図17の(2)は,撮像画像の情報を用いて鮮明化強度を計算する場合のシーケンスの一実施例図である。ステップ102の処理は,図1と同じである。ここで、図4の場合と同様、設計データの利用と併用する場合に備えて、設計データを読み込むステップがあっても構わない。次に,ステップ1711において撮像画像に対して領域分割を行った後,1712で撮像画像から試料の高さ情報を推定する。次に,1712で撮像画像から試料の高さ情報を推定する。1713で試料の高さ情報の推定値を用いて領域分割により得られた撮像画像の局所領域の各々について鮮明化強度を計算する。次に,1714で鮮明化強度に基づき画質改善処理を実施して画質改善画像を得る。その後,ステップ1715でユーザからの鮮明化強度を指定したい領域または鮮明化強度に関する要求を入力し,要求があれば,その要求に基づいてステップ1711〜1714の処理をやり直す。以下,ステップ1715でユーザからの要求がなくなるまで,ステップ1711〜1715を繰り返す。
図18に,鮮明化強度を指定したい領域または鮮明化強度に関する情報の入力をユーザに促し,ユーザから指定された情報に基づいて鮮明化強度を計算するシーケンスの,図17とは別の一実施例図を示す。このシーケンスでは,試料の複数箇所を撮像する。ステップ102からステップ1715の処理は,図17と同じであり,これらの処理により最初に取得した撮像画像における出力画像を生成する。次に,ステップ1801〜1807の処理をループさせることで,残りの撮像画像における出力画像を得る。ステップ1802で撮像画像を取得し,ステップ1803で領域分割を行う。次にステップ1804では,撮像画像から試料の高さ情報を推定し,ステップ1805で試料の高さ情報の推定値に基づき鮮明化強度を計算する。ステップ1806でこの鮮明化強度に基づき画質改善処理を実施する。同一の工程の試料を複数箇所撮像する場合には,各箇所における撮像画像の性質は類似しているため,それぞれの箇所についてユーザからの要求を読み込む必要はなく,このシーケンスのように最初に1回だけ入力を促せば良い。このシーケンスにより,試料の複数箇所を撮像する場合において,撮像を行う毎にユーザからの鮮明化強度を指定したい領域または鮮明化強度に関する要求を入力する必要がなく,最初の1回だけ入力すれば良いような処理を行うことができ,ユーザが出力画像の画質について調整するために必要な手間を大幅に低減することができる。なお、ステップ1801〜1807の処理のループの途中で,必要に応じてユーザからの要求を再入力するステップがあっても良い。
図19に,鮮明化強度を指定したい領域または鮮明化強度に関する情報の入力をユーザに促すためのインターフェイスを表す一実施例図を示す。画面上には設計データ1901,撮像画像1902などが適宜表示されている。この例では,上層パターン1911と下層パターン1912がある箇所を撮像している。設計データを用いない場合には,設計データ1901は表示しない。ここで、撮像画像1902では,鮮明度が高い信号成分を実線,鮮明度が低い信号成分を点線で表現しているが、これに限られず、色を変えるなどして表示しても構わない。この例では,下層パターン1913は鮮明度が低く,また欠陥1914も撮像されている。1903には,目標鮮明度のデフォルト値が表示されている。目標鮮明度1903において,黒で塗り潰した領域は鮮明度が高い領域,ハッチングで塗り潰した領域は黒で塗り潰した領域よりも鮮明度が低い領域を表現している。また,1903の目標鮮明度から計算した鮮明化強度に基づいて画質改善処理を行って得られた画質改善画像が1904に表示されている。画質改善画像1904では,撮像画像1902と同様に,鮮明度が高い箇所を実線,鮮明度が低い箇所を点線で表現している。画質改善画像1904の例では,下層パターン1917は鮮明に表示されているが,欠陥1918の鮮明度は十分でない。1905は,目標鮮明度を指定するためのインターフェイスである。目標鮮明度を指定したい局所領域は,例えば1903の目標鮮明度を表す画像の上で指定することができる。例えば,1915の「領域a」「領域b」のように,上層パターンを表す領域と,それ以外の領域に分けて,それぞれの目標鮮明度を指定することができる。また,例えば,1916の「領域A」のように欠陥を表す領域の目標鮮明度を指定することができる。目標鮮明度を指定するためのインターフェイス1905は,例えばスクロールバーにより実現することができる。この例において,1921はユーザが指定した目標鮮明度,1922は目標鮮明度のデフォルト値である。1923の「デフォルト」ボタンを押すと,1921のユーザが指定した目標鮮明度を1922のデフォルト値に戻す。さらに,ユーザが指定した目標鮮明度を用いて画質改善処理を行う1906の「適用」ボタンや,ユーザが指定した現在の目標鮮明度を最終的な目標鮮明度としてユーザからの入力を終了する1907の「決定」ボタンや,ユーザからの入力を初期状態に戻す1908の「クリア」ボタンが付いている。本実施例では,鮮明化強度に関する情報として,目標鮮明度を入力するためのインターフェイスについて示したが,鮮明化強度そのものや別の鮮明化強度に関する情報を指定するためのインターフェイスであっても良い。このように,画像毎,または工程毎にユーザが鮮明化強度を指定したい領域または鮮明化強度に関する情報を入力できるインターフェイスを持ち,その入力に基づいて鮮明化強度を計算することにより,ユーザの希望に合わせてより適切な鮮明度を持つ画像を出力することができる。
図20に,類似した領域をグループ化して,同一のグループに対して同一の鮮明化強度または値の近い鮮明化強度を設定するシーケンスの一実施例図を示す。ステップ101〜103の処理は,図1と同じである。次に,ステップ2001で類似した領域をグループ化し,ステップ2002で設計データの高さ情報を用いてグループ毎に鮮明化強度を計算する。最後に,ステップ105で鮮明化強度に基づき画質改善処理を実施する。本実施例では,設計データを用いる場合における例について示したが,設計データを用いず、高さ情報の推定値を用いる場合でも同様にグループ化して,同一のグループに対して同一の鮮明化強度または値の近い鮮明化強度を設定することができる。
図21に,図20のステップ2001における類似した領域をグループ化する方法の一実施例図を示す。2101に設計データの例と,2102に対応する撮像画像の例を示す。この例では,2111の上層パターンと2112の下層パターンを撮像している。図21では,鮮明度が高い信号成分を実線で示し,鮮明度が低い信号成分を点線で示している。2113の下層パターンは鮮明度が低い。2102の撮像画像に対して,図20のステップ2001で類似した領域をグループ化した結果を示す三つの例を,2103〜2105に示す。2103のグループ1aの例では,上層パターンを表す2122のグループBと,それ以外の領域を表す2121のグループAにグループ化している。領域Aは,空間的位置が離れた三つの領域2141,2142,2143をグループ化しており,下層パターンを含む領域であるという意味で互いに類似している。このようにグループ化すれば,グループAに対して一様に高めの鮮明化強度を設定して画質改善処理を行うことにより,出力画像におけるこのグループの鮮明度を一様に保つことができる。2104のグループ1bの例では,上層パターンを表す2124のグループBと,下層パターンを表す2125のグループCと,それ以外の領域を表す2123のグループAにグループ化している。例えば,グループCに対してのみ正の鮮明化強度を設定することにより,下層パターンの表面の鮮明度のみを高くするような処理ができる。また,2105のグループ1cの例のように,上層パターンを表す2127のグループBと,上層パターンのホワイトバンドの領域を表す2128のグループCと,それ以外の領域を表す2126のグループAにグループ化することもできる。このようにグループ化すれば,例えばホワイトバンドの鮮明度を維持した上で,上層パターンのホワイトバンド以外の領域と下層パターンの鮮明度を高くするといった処理ができる。
2106に,設計データ2101に対応する別の撮像画像の例を示す。この例では,上層パターン2131が2132のように断線しており,また2133の欠陥が表示されている。撮像画像2106に対してグループ化を行った例を2107に示す。この例では,上層パターンを表す2135のグループBと,欠陥領域を表す2136のグループCと,それ以外の領域を表す2134のグループAにグループ化している。設計データ2101と,2106の撮像画像2を用いれば,パターンが断線していることを認識できるため,2107のようにグループ化することは容易にできる。本実施例では設計データを用いたが,撮像画像を用いて各領域を認識する方法でも,同様のグループ化を行うことができる。
図22に,図20のステップ2001における類似した領域をグループ化する方法の,図21とは別の一実施例図を示す。2102の撮像画像1,2103のグループ1aは,図21と同じである。また,図21と同様に,図22でも,鮮明度が高い信号成分を実線で示し,鮮明度が低い信号成分を点線で示している。2202は,2102の撮像画像と同一の工程における試料の別の位置を撮像した画像である。横方向の上層パターン2221と,縦方向の下層パターン2223,および2226のような大きな欠陥が映っている。2203は,2202の撮像画像に対してグループ化を行った結果の例である。2203のグループ3では,上層パターンを表す2224のグループAと,欠陥領域を表す2227のグループCと,それ以外の領域を表す2225のグループBにグループ化している。撮像画像2102と2202が同一工程の試料を撮像した画像であるため,類似した領域における鮮明度が類似した出力画像となることが望ましい場合も多い。この場合,2103のグループ1aと2203のグループ3において,グループA同士,およびグループB同士で,それぞれ値の近い鮮明度となるように鮮明化強度を設定することが望ましい。本実施例では,2102と2202の撮像画像を用いれば上層パターンや下層パターンを認識することができる。また,同一工程という事前情報も得られるため,2102と2202のように複数の撮像画像の間で類似した領域に同一のグループ化を行い,値の近い鮮明度となるように鮮明化強度を設定することができる。本実施例では撮像画像の情報のみを用いてグループ化を行う方法について述べたが,設計データを用いても,同様のグループ化を行うことができる。
図23に,試料に対して荷電粒子ビームを垂直でない方向から照射して取得した撮像画像(以下,チルト像)に対して図2のステップ204の設計データを変形させる方法を表す一実施例図を示す。2301は設計データの例である。2311の上層パターンと,2312の下層パターンが映っている。2302は,2301の設計データに対応するチルト像の例である。チルト像では,2313のように上層パターンの側壁や,2314のように下層パターンの側壁が映る場合が多い。この場合,設計データと比べると複雑な形状となり,例えば,2315のようにパターンの側面と下地の境界なども表示されるようになる。2302のチルト像では,鮮明度が高い信号成分を実線で示し,鮮明度が低い信号成分を点線で示している。チルト像では,試料に対して荷電粒子ビームを垂直な方向から照射して得られる画像と比べると,照射する荷電粒子ビームの径を絞ることができず,分解能が悪くなるなどの性質があり,このため十分な鮮明度が得られない場合もある。チルト像に対して設計データを用いて鮮明化強度を計算する場合,2301と2302に表示されている構造の形状は大きく異なっているため,これらを直接比較することは困難である。そこで,設計データ2301を撮像画像2302に近づけるように変形させる。試料と照射した荷電粒子ビームとの角度や設計データの高さ情報などの情報を用いれば,2303のような画像を求められるため,2302のチルト像と2303の変形後の設計データを用いれば,チルト像ではない場合と同様の方法によって,鮮明化強度を計算することができる。
図24に,設計データのレイヤ情報を利用して画質改善処理を行う方法の一実施例図を示す。2401は試料の断面であり,z軸が高さ方向を表している。2421,2422,2423は,それぞれ,上層から1番目,2番目,3番目のレイヤを表す。2411,2412はコンタクトホールであり,ホール2411は最上層のレイヤ2421と上層から2番目のレイヤ2422を繋いでいる。また,ホール2412は最上層のレイヤ2421と上層から3番目のレイヤ2423を繋いでいる。2414も最上層のレイヤ2421と上層から2番目のレイヤ2422を繋いでいるコンタクトホールであるが,2413のようにホール間がショートしている。2402および2403は,それぞれ,2401の試料に対応する撮像画像および画質改善画像の例である。黒く塗り潰したホールは平均明度値が低く,白く塗り潰したホールは平均明度値が低く,ハッチングで塗り潰したホールは平均明度値が中間的な値を持つことを表現している。撮像画像2402の例では,上層から3番目のレイヤに繋がっているホール2432の平均明度値が高く表示されており他のホールと識別しやすいが,ショートしているホール2433は他のショートしていないホールと識別し辛い。しかし,用途によっては,ショートしているホールを高い鮮明度で観察したい場合も多い。これに対し,設計データのレイヤ情報を用いれば,例えば,最上層のレイヤと上層から2番目のレイヤを繋ぐホールは,一様に高いコントラスト差が付くように(すなわち高い鮮明度が得られるように)鮮明化強度を高く設定し,ホール2432のような最上層のレイヤと上層から3番目のレイヤを繋ぐホールは,ホール2431に似たコントラストとなるように(すなわち鮮明度を抑えるように)鮮明化強度を低く設定することによって,画質改善画像2403のようにショートしているホールを明瞭に表示することができる。撮像画像からは,上層から2番目のレイヤや上層から3番目のレイヤは見ることができないが,このような撮像画像には表示されていないレイヤの情報を用いることで,注目している観察対象の鮮明度を高くすることができる。
図25に,パターンの形状と粒子検出量との関係を表す一実施例図を示す。図25では,説明を簡単にするために,それぞれの試料は同一の電気特性,材質特性を持っているものとする。2501,2503,2505に,設計データの例を示す。2501の例では,縦方向の上層パターン2511,2512,2513の下に,横方向の下層パターン2514がある。2502に,2501内の線分ABに沿った各位置における粒子検出量を示す。上層パターンでは,一般に下層パターンと比べて粒子検出量は多い。また,2522のような上層パターンの近傍と比べると,2523のような上層パターンから離れた位置のほうが粒子検出量が多い。2523では上層パターンから十分な距離だけ離れているため,試料から放出された粒子が上層パターンに衝突することは少なく,上層パターンの粒子検出量とほぼ同じ値になっている。251のような近傍に上層パターンが多く存在する位置では,2522のような近傍に上層パターンが相対的に少ない位置と比べて粒子検出量が少ない。2503の例では,上層パターン2531の下に,横方向の下層パターン2532,2533がある。2504に,2503内の線分CD,EFに沿った各位置における粒子検出量を示す。2534のように,下層パターンでは上層パターンと比べて粒子検出量は少ないが,上層パターンから離れた位置にあるほど,試料から放出された粒子が上層パターンに衝突することは少なくなるため,粒子検出量は多くなる。また,2503の設計データを見ると,2535の位置では,左側,右側,上側の近傍の位置に上層パターンが存在しているのに対し,2536の位置では上側の上層パターンとの距離は相対的に長くなっている。このため,2536の位置と比べて2535の位置のほうが試料から放出された粒子が上層パターンに衝突しやすくなり,粒子検出量は少なくなる。2505の例では,縦方向の上層パターン2541,2542,2543があり,またそれらのパターンの間に,縦方向の下層パターン2544と,横方向の下層パターン2545がある。2506に,2505内の線分GH,IJに沿った各位置における粒子検出量を示す。線分GHに沿った位置では,位置に応じて上層パターンからの距離が変化しており,その距離が短いほど粒子検出量は少なくなる。一方,線分IJに沿った位置では,上層パターンからの距離は一定である。ただし,パターンのエッジ付近では,一般に,放出される粒子の量が多くなることが知られており,そのため粒子検出量も多くなる。
試料から放出された粒子が検出器に届く量は,放出された後でその試料に再び衝突しやすいか否かに大きく影響する。この荷電粒子の試料への衝突のしやすさは,荷電粒子を照射した位置に対して,その近傍のパターンがどの程度高さがあるか,高さのあるパターンがどの程度近くにあり,どの程度密集しているか,等によって決まる。従って,高さ情報や近傍の位置における設計データまたは撮像画像の情報を用いれば,放出される粒子の検出量を推定できる。本発明では,この性質を利用して,例えば,粒子の検出量が少ない箇所ほど鮮明化強度を高く設定する。このような処理により,鮮明度が低い領域の視認性向上を行うことができる。
以上、本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
101…設計データ読込処理,102…撮像画像取得処理,103…領域分割処理,104…鮮明化強度計算処理,105…画質改善処理,201…設計データと撮像画像との位置合わせ処理,202…設計データ変形処理,203…領域分割処理,204…現状鮮明度計算処理,205…鮮明化強度計算処理,301…撮像装置,302…荷電粒子銃,303…荷電粒子ビーム,304…コンデンサレンズ,305…対物レンズ,306…試料,307…ステージ,308…検出器,309…画像生成器,321…入出力部,322…制御部,323…処理部,324…記憶部,325…画質改善部,331…設計データ読込部,332…領域分割部,333…鮮明化強度計算部,334…画質改善処理部

Claims (16)

  1. 荷電粒子顕微鏡装置を用いた試料の検査方法であって、
    前記試料に荷電粒子を照射し、前記試料から放出される同種または異種の粒子を検出して撮像画像を取得する撮像画像取得ステップと、
    前記撮像画像を複数の局所領域に分割する領域分割ステップと、
    前記試料の高さ情報に基づいて、前記撮像画像を前記複数の局所領域ごとに画像処理する画像処理ステップと、
    前記画像処理された撮像画像を用いて試料を検査する検査ステップと、
    を有することを特徴とする荷電粒子顕微鏡を用いた試料の検査方法。
  2. 請求項1記載の荷電粒子顕微鏡を用いた試料の検査方法であって、
    さらに、前記撮像画像取得ステップで取得した前記撮像画像に対応する設計データを読み込む設計データ読込ステップを有し、
    前記画像処理ステップでは、前記試料の高さ情報として、前記読み込んだ設計データから得た試料の高さ情報を用いることを特徴とする荷電粒子顕微鏡を用いた試料の検査方法。
  3. 請求項2記載の荷電粒子顕微鏡を用いた試料の検査方法であって、
    前記画像処理ステップでは、前記設計データから得た試料の高さ情報に基づいて前記複数の局所領域各々について鮮明化強度を算出し、前記鮮明化強度を用いて、前記撮像画像を前記複数の局所領域ごとに画像処理することを特徴とする荷電粒子顕微鏡を用いた試料の検査方法。
  4. 請求項3記載の荷電粒子顕微鏡を用いた試料の検査方法であって、
    前記鮮明化強度の算出において、
    前記設計データにおける最上層レイヤ以外の少なくとも一つのレイヤに対する鮮明化強度を、前記レイヤよりも上層にあるレイヤ情報を用いて計算することを特徴とする荷電粒子顕微鏡を用いた試料の検査方法。
  5. 請求項3記載の荷電粒子顕微鏡を用いた試料の検査方法であって、
    前記画像処理ステップでは、前記撮像画像から現状鮮明度を算出し、前記鮮明化強度と前記現状鮮明度を用いて、前記撮像画像を前記複数の局所領域ごとに画像処理することを特徴とする荷電粒子顕微鏡を用いた試料の検査方法。
  6. 請求項5記載の荷電粒子顕微鏡を用いた試料の検査方法であって、
    前記画像処理ステップでは、前記現状鮮明度を用いて鮮明化強度の制約条件を設定し、前記制約条件の設定に基づいて画像処理することを特徴とする荷電粒子顕微鏡を用いた試料の検査方法。
  7. 請求項1記載の荷電粒子顕微鏡を用いた試料の検査方法であって、
    前記画像処理ステップでは、前記試料の高さ情報として、前記撮像画像から推定した試料の高さ情報を用いることを特徴とする荷電粒子顕微鏡を用いた試料の検査方法。
  8. 請求項7記載の荷電粒子顕微鏡を用いた試料の検査方法であって、
    前記画像処理ステップでは、前記撮像画像から計算した前記試料の輪郭線情報を用いて試料の高さ情報を推定することを特徴とする荷電粒子顕微鏡を用いた試料の検査方法。
  9. 請求項7記載の荷電粒子顕微鏡を用いた試料の検査方法であって、
    前記画像処理ステップでは、前記撮像画像から現状鮮明度を算出し、前記鮮明化強度と前記現状鮮明度を用いて、前記撮像画像を前記複数の局所領域ごとに画像処理することを特徴とする荷電粒子顕微鏡を用いた試料の検査方法。
  10. 請求項9記載の荷電粒子顕微鏡を用いた試料の検査方法であって、
    前記画像処理ステップでは、前記現状鮮明度を用いて鮮明化強度の制約条件を設定し、前記制約条件の設定に基づいて画像処理することを特徴とする荷電粒子顕微鏡を用いた試料の検査方法。
  11. 試料に荷電粒子を照射する荷電粒子照射光学系手段と,
    前記荷電粒子照射光学系手段により荷電粒子が照射された前記試料から発生した同種または別種の粒子を検出する電粒子検出光学系手段と,
    前記粒子検出光学系手段で検出した信号を処理して前記試料の撮像画像を得る撮像画像取得手段と,
    前記撮像画像取得手段で取得した前記試料の撮像画像を処理する画像処理手段とを備えた荷電粒子顕微鏡装置であって,
    前記画像処理手段は,前記撮像画像を複数の局所領域に分割し,前記試料の高さ情報に基づいて、前記撮像画像を前記複数の局所領域ごとに画像処理する
    ことを特徴とする荷電粒子顕微鏡装置。
  12. 請求項11記載の荷電粒子顕微鏡装置であって、
    さらに、前記撮像画像に対応する設計データを読み込む設計データ読込手段を有し、
    前記画像処理手段では、前記試料の高さ情報として、前記設計データ読込手段により読み込んだ設計データから得た資料の高さ情報を用いる
    ことを特徴とする荷電粒子顕微鏡装置。
  13. 請求項12記載の荷電粒子顕微鏡装置であって、
    前記画像処理手段では、前記設計データから得た試料の高さ情報に基づいて前記複数の局所領域各々について鮮明化強度を算出し、前記鮮明化強度を用いて、前記撮像画像を前記複数の局所領域ごとに画像処理する
    ことを特徴とする荷電粒子顕微鏡装置。
  14. 請求項13記載の荷電粒子顕微鏡装置であって、
    前記画像処理手段では、前記鮮明化強度の算出において、
    前記設計データにおける最上層レイヤ以外の少なくとも一つのレイヤに対する鮮明化強度を、前記レイヤよりも上層にあるレイヤ情報を用いて計算する
    ことを特徴とする荷電粒子顕微鏡装置。
  15. 請求項11記載の荷電粒子顕微鏡装置であって、
    前記画像処理手段では、前記試料の高さ情報として、前記撮像画像から推定した試料の高さ情報を用いる
    ことを特徴とする荷電粒子顕微鏡装置。
  16. 請求項15記載の荷電粒子顕微鏡装置であって、
    前記画像処理手段では、前記撮像画像から計算した前記試料の輪郭線情報を用いて試料の高さ情報を推定する
    ことを特徴とする荷電粒子顕微鏡装置。
JP2009225855A 2009-09-30 2009-09-30 荷電粒子顕微鏡装置及びこれを用いた試料の検査方法 Active JP5380230B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009225855A JP5380230B2 (ja) 2009-09-30 2009-09-30 荷電粒子顕微鏡装置及びこれを用いた試料の検査方法
US13/379,663 US9341584B2 (en) 2009-09-30 2010-06-18 Charged-particle microscope device and method for inspecting sample using same
PCT/JP2010/004071 WO2011039908A1 (ja) 2009-09-30 2010-06-18 荷電粒子顕微鏡装置及びこれを用いた試料の検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009225855A JP5380230B2 (ja) 2009-09-30 2009-09-30 荷電粒子顕微鏡装置及びこれを用いた試料の検査方法

Publications (2)

Publication Number Publication Date
JP2011076810A true JP2011076810A (ja) 2011-04-14
JP5380230B2 JP5380230B2 (ja) 2014-01-08

Family

ID=43825762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009225855A Active JP5380230B2 (ja) 2009-09-30 2009-09-30 荷電粒子顕微鏡装置及びこれを用いた試料の検査方法

Country Status (3)

Country Link
US (1) US9341584B2 (ja)
JP (1) JP5380230B2 (ja)
WO (1) WO2011039908A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015204A1 (ja) * 2011-07-27 2013-01-31 株式会社日立ハイテクノロジーズ 半導体検査システム
WO2015182224A1 (ja) * 2014-05-27 2015-12-03 株式会社日立ハイテクノロジーズ 荷電粒子線を用いたパターン寸法計測方法及びそのシステム
KR102727314B1 (ko) 2018-06-13 2024-11-08 어플라이드 머티리얼즈 이스라엘 리미티드 상부 표면 및 홀을 포함하는 영역의 이미지화

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5948138B2 (ja) * 2012-05-11 2016-07-06 株式会社日立ハイテクノロジーズ 欠陥解析支援装置、欠陥解析支援装置で実行されるプログラム、および欠陥解析システム
JP6193776B2 (ja) * 2014-02-12 2017-09-06 株式会社日立ハイテクノロジーズ 走査荷電粒子顕微鏡画像の高画質化方法および走査荷電粒子顕微鏡装置
JP6179551B2 (ja) * 2015-05-12 2017-08-16 コニカミノルタ株式会社 画像検査装置及び画像形成装置
JP2017134596A (ja) * 2016-01-27 2017-08-03 株式会社東芝 画像処理方法及びプロセスシミュレーション装置
US10991542B2 (en) * 2017-01-27 2021-04-27 Hitachi High-Tech Corporation Charged particle beam device
JP7171010B2 (ja) * 2018-03-07 2022-11-15 株式会社日立ハイテクサイエンス 断面加工観察装置、断面加工観察方法及びプログラム
US20210407074A1 (en) * 2018-11-01 2021-12-30 Tokyo Electron Limited Image processing method and image processing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219343A (ja) * 2003-01-17 2004-08-05 Hitachi High-Technologies Corp 微細パターンの3次元形状測定方法
JP2006351888A (ja) * 2005-06-17 2006-12-28 Hitachi High-Technologies Corp パターン検査装置およびそれを用いた半導体検査システム
JP2006351746A (ja) * 2005-06-15 2006-12-28 Hitachi High-Technologies Corp 走査型電子顕微鏡用撮像レシピ作成装置及びその方法並びに半導体パターンの形状評価装置
JP2007214009A (ja) * 2006-02-10 2007-08-23 Topcon Corp 荷電粒子ビーム装置の画像鮮鋭度評価方法、非点収差評価方法、それらの方法を用いた荷電粒子ビーム装置、コンピュータプログラム
JP2008177064A (ja) * 2007-01-19 2008-07-31 Hitachi High-Technologies Corp 走査型荷電粒子顕微鏡装置および走査型荷電粒子顕微鏡装置で取得した画像の処理方法
JP2009198338A (ja) * 2008-02-22 2009-09-03 Hitachi High-Technologies Corp 電子顕微鏡システム及びそれを用いたパターン寸法計測方法
JP2009245674A (ja) * 2008-03-31 2009-10-22 Hitachi High-Technologies Corp 荷電粒子顕微鏡装置及びそれを用いた画像処理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2549647B2 (ja) 1987-02-27 1996-10-30 株式会社東芝 Sem画像の復元処理方法
JP2946466B2 (ja) 1989-07-13 1999-09-06 アンリツ株式会社 顕微方法及び装置
JPH0536128A (ja) * 1990-12-20 1993-02-12 Hitachi Ltd 高密度情報記録媒体及びそれを用いた記録装置
US20060160037A1 (en) * 2005-01-18 2006-07-20 International Business Machines Corporation Automated sub-field blading for leveling optimization in lithography exposure tool
JP2008034458A (ja) * 2006-07-26 2008-02-14 Fujitsu Ltd 欠陥検査方法及び欠陥検査装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219343A (ja) * 2003-01-17 2004-08-05 Hitachi High-Technologies Corp 微細パターンの3次元形状測定方法
JP2006351746A (ja) * 2005-06-15 2006-12-28 Hitachi High-Technologies Corp 走査型電子顕微鏡用撮像レシピ作成装置及びその方法並びに半導体パターンの形状評価装置
JP2006351888A (ja) * 2005-06-17 2006-12-28 Hitachi High-Technologies Corp パターン検査装置およびそれを用いた半導体検査システム
JP2007214009A (ja) * 2006-02-10 2007-08-23 Topcon Corp 荷電粒子ビーム装置の画像鮮鋭度評価方法、非点収差評価方法、それらの方法を用いた荷電粒子ビーム装置、コンピュータプログラム
JP2008177064A (ja) * 2007-01-19 2008-07-31 Hitachi High-Technologies Corp 走査型荷電粒子顕微鏡装置および走査型荷電粒子顕微鏡装置で取得した画像の処理方法
JP2009198338A (ja) * 2008-02-22 2009-09-03 Hitachi High-Technologies Corp 電子顕微鏡システム及びそれを用いたパターン寸法計測方法
JP2009245674A (ja) * 2008-03-31 2009-10-22 Hitachi High-Technologies Corp 荷電粒子顕微鏡装置及びそれを用いた画像処理方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015204A1 (ja) * 2011-07-27 2013-01-31 株式会社日立ハイテクノロジーズ 半導体検査システム
JP2013029386A (ja) * 2011-07-27 2013-02-07 Hitachi High-Technologies Corp 半導体検査システム
KR101615829B1 (ko) * 2011-07-27 2016-04-26 가부시키가이샤 히다치 하이테크놀로지즈 반도체 검사 시스템
US9704235B2 (en) 2011-07-27 2017-07-11 Hitachi High-Technologies Corporation Semiconductor inspection system
WO2015182224A1 (ja) * 2014-05-27 2015-12-03 株式会社日立ハイテクノロジーズ 荷電粒子線を用いたパターン寸法計測方法及びそのシステム
KR102727314B1 (ko) 2018-06-13 2024-11-08 어플라이드 머티리얼즈 이스라엘 리미티드 상부 표면 및 홀을 포함하는 영역의 이미지화

Also Published As

Publication number Publication date
JP5380230B2 (ja) 2014-01-08
WO2011039908A1 (ja) 2011-04-07
US9341584B2 (en) 2016-05-17
US20120098952A1 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
JP5380230B2 (ja) 荷電粒子顕微鏡装置及びこれを用いた試料の検査方法
US11170483B2 (en) Sample observation device and sample observation method
JP5202071B2 (ja) 荷電粒子顕微鏡装置及びそれを用いた画像処理方法
CN104903712B (zh) 缺陷观察方法以及缺陷观察装置
US6538249B1 (en) Image-formation apparatus using charged particle beams under various focus conditions
JP5537488B2 (ja) 荷電粒子顕微鏡装置および画像撮像方法
KR101523159B1 (ko) 패턴 매칭 장치 및 컴퓨터 프로그램을 기록한 기록 매체
US7932493B2 (en) Method and system for observing a specimen using a scanning electron microscope
JP2014207110A (ja) 観察装置および観察方法
JP5118872B2 (ja) 半導体デバイスの欠陥観察方法及びその装置
TWI494537B (zh) A pattern measuring method, a device condition setting method of a charged particle beam device, and a charged particle beam device
JP4261743B2 (ja) 荷電粒子線装置
JP5313939B2 (ja) パターン検査方法、パターン検査プログラム、電子デバイス検査システム
WO2016121265A1 (ja) 試料観察方法および試料観察装置
JP2008177064A (ja) 走査型荷電粒子顕微鏡装置および走査型荷電粒子顕微鏡装置で取得した画像の処理方法
KR101987726B1 (ko) 전자선식 패턴 검사 장치
US8263935B2 (en) Charged particle beam apparatus
JP2015099054A (ja) オーバーレイ計測方法および計測装置
JP5775948B2 (ja) 荷電粒子顕微鏡装置および画像撮像方法
KR102001715B1 (ko) 상대적 임계 치수의 측정을 위한 방법 및 장치
WO2013180043A1 (ja) 計測方法、画像処理装置、及び荷電粒子線装置
CN116964721A (zh) 学习器的学习方法以及图像生成系统
JP2006190693A (ja) 荷電粒子線装置
US8675948B2 (en) Mask inspection apparatus and mask inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Ref document number: 5380230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350