JP2011051203A - Multilayer polyimide film and printed wiring board - Google Patents
Multilayer polyimide film and printed wiring board Download PDFInfo
- Publication number
- JP2011051203A JP2011051203A JP2009201542A JP2009201542A JP2011051203A JP 2011051203 A JP2011051203 A JP 2011051203A JP 2009201542 A JP2009201542 A JP 2009201542A JP 2009201542 A JP2009201542 A JP 2009201542A JP 2011051203 A JP2011051203 A JP 2011051203A
- Authority
- JP
- Japan
- Prior art keywords
- polyimide film
- layer
- copper
- multilayer polyimide
- multilayer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本発明は電子機器、部品の小型化、軽量化をになうフレキシブルプリント配線基板などに用いられる多層ポリイミドフィルム、それ銅層を積層した銅貼り多層ポリイミドフィルム、銅層を一部除去して回路パターンを形成してなるプリント配線板、およびこれらを積層してなる多層プリント配線板に関する。 The present invention is a multilayer polyimide film used for electronic devices, flexible printed wiring boards that reduce the size and weight of components, a copper-coated multilayer polyimide film laminated with a copper layer, and a circuit by removing a part of the copper layer. The present invention relates to a printed wiring board formed with a pattern and a multilayer printed wiring board formed by laminating these.
一般に、高周波領域における信号伝送において伝送速度の向上とノイズの低減が求められており、フレキシブルプリント配線板においても基板材料、配線技術、回路形態等からの検討が進められている。
従来、導電体層と電気絶縁体層を有する積層体からなるフレキシブルプリント配線板における電気絶縁体層としては耐熱性に優れるポリイミド樹脂が使用される。ポリイミド樹脂層と導電体層からなる積層体の製造方法としては、次の3つの方法が用いられる。
(1)ポリイミドフィルムと銅箔とを接着剤層を介して接着する方法、
(2)蒸着及び/又は金属メッキ等の方法により金属層をポリイミド樹脂フィルム上に形成する方法、
(3)金属箔にポリイミド樹脂前駆体をコーティングし、ついで熱処理等により該前駆体からポリイミド樹脂を形成させ、金属箔上にポリイミド樹脂層を形成する方法(特許文献1参照)。
しかし、このような方法では、ポリイミド樹脂層と導電体層との接着性が充分ではなく、回路の作動不良を引き起こす場合があった。
電気絶縁体層と接する側の導電体層の表面に3μm程度の凹凸を形成することで、導電体層と電気絶縁体層との接着性が向上することが開示されている(特許文献2参照)。しかし、このような方法では、高周波領域における表皮効果により、該凹凸を有する表面と非粗化面とで信号到達時間にズレが生ずるため、該凹凸はできるだけロープロファイル化する必要がある。
一般に、ポリイミドの分子内にフッ素原子を導入すると、誘電率が低下することが知られている。例えば、フッ素化ポリイミドフィルムの表面に形成された金属層を有するポリイミド−金属複合フィルムが開示されている(特許文献3参照)。また、フッ素化ポリイミドフィルムを、基材、接着層および表面保護膜からなる群から選択される少なくとも1種に用いた多層配線基板が開示されている(特許文献4参照)。しかし、このような方法では、ポリイミドの分子内に導入するフッ素原子の含有率が高くなるにつれて、このポリイミドからなるフィルムの引張弾性率および引張破壊ひずみが低下し、ひいては機械的強度が低下するという問題がある。
In general, improvement in transmission speed and reduction in noise are demanded in signal transmission in a high-frequency region, and studies on substrate materials, wiring technology, circuit form, etc. are also being advanced for flexible printed wiring boards.
Conventionally, a polyimide resin excellent in heat resistance is used as an electrical insulator layer in a flexible printed wiring board composed of a laminate having a conductor layer and an electrical insulator layer. The following three methods are used as a manufacturing method of the laminated body which consists of a polyimide resin layer and a conductor layer.
(1) A method of bonding a polyimide film and a copper foil through an adhesive layer,
(2) A method of forming a metal layer on a polyimide resin film by a method such as vapor deposition and / or metal plating,
(3) A method of coating a metal foil with a polyimide resin precursor, then forming a polyimide resin from the precursor by heat treatment or the like, and forming a polyimide resin layer on the metal foil (see Patent Document 1).
However, in such a method, the adhesiveness between the polyimide resin layer and the conductor layer is not sufficient, which may cause malfunction of the circuit.
It is disclosed that adhesion between the conductor layer and the electrical insulator layer is improved by forming irregularities of about 3 μm on the surface of the conductor layer on the side in contact with the electrical insulator layer (see Patent Document 2). ). However, in such a method, due to the skin effect in the high frequency region, the signal arrival time is shifted between the uneven surface and the non-roughened surface, so that the uneven surface needs to be made as low profile as possible.
In general, it is known that when a fluorine atom is introduced into a polyimide molecule, the dielectric constant decreases. For example, a polyimide-metal composite film having a metal layer formed on the surface of a fluorinated polyimide film is disclosed (see Patent Document 3). Also disclosed is a multilayer wiring board using a fluorinated polyimide film as at least one selected from the group consisting of a base material, an adhesive layer and a surface protective film (see Patent Document 4). However, in such a method, as the content of fluorine atoms introduced into the polyimide molecule increases, the tensile modulus and tensile fracture strain of the polyimide film decrease, and the mechanical strength decreases. There's a problem.
プラスチックの中では最も小さい誘電率を有するフッ素樹脂のみからなる基板が開示されている(特許文献5参照)。しかし、フッ素樹脂の機械特性である引張り強度、伸度は室温でポリオレフィンと同等であり、また、線膨張係数は60ppm/℃〜160ppm/℃であり(非特許文献1参照)、例えば線膨張係数が16ppm/℃である銅層を積層した際は、互いの線膨張係数の乖離が大きく、使用中に剥離してしまう恐れや反りが発生する恐れがある。
フッ素樹脂の線膨張係数を抑制する手段としてポリイミド樹脂と積層した例がある(特許文献6、7参照)(非特許文献2参照)。しかし、この方法で得られた積層体の線膨張係数は、銅箔との反りを解決するには至っていない。
A substrate made of only a fluororesin having the smallest dielectric constant among plastics is disclosed (see Patent Document 5). However, the tensile strength and elongation, which are mechanical properties of fluororesin, are equivalent to polyolefin at room temperature, and the linear expansion coefficient is 60 ppm / ° C. to 160 ppm / ° C. (see Non-Patent Document 1). When a copper layer having a thickness of 16 ppm / ° C. is laminated, there is a great difference between the coefficients of linear expansion of each other, which may cause peeling during use or warpage.
As a means for suppressing the linear expansion coefficient of the fluororesin, there is an example in which it is laminated with a polyimide resin (see Patent Documents 6 and 7) (see Non-Patent Document 2). However, the linear expansion coefficient of the laminate obtained by this method has not yet solved the warp with the copper foil.
本発明は、電子部品の基材として好適である高温処理しても変形の少なく、かつ耐熱性に優れたポリイミド樹脂を、フッ素樹脂層を介して積層することで、ポリイミド樹脂の特長である低い線膨張係数(多層ポリイミドフィルムとして、銅と同等の線膨張係数)、高い力学特性と、フッ素樹脂の特長である低い誘電率、低い吸水率を両立する多層ポリイミドフィルム、銅貼り多層ポリイミドフィルム、プリント配線板、および多層プリント配線板などを提供することを目的とする。 The present invention is a feature of a polyimide resin by laminating a polyimide resin, which is suitable for a base material of an electronic component, with little deformation even under high temperature treatment and excellent heat resistance through a fluororesin layer. Linear expansion coefficient (linear expansion coefficient equivalent to copper as multilayer polyimide film), high mechanical properties, low dielectric constant and low water absorption that are the characteristics of fluororesin, multilayer polyimide film, copper-coated multilayer polyimide film, print It aims at providing a wiring board, a multilayer printed wiring board, etc.
本発明者らは鋭意検討した結果、ポリイミドフィルムを、フッ素樹脂層を介して積層した多層ポリイミドフィルムが、銅貼り積層板およびプリント配線板およびFPC、TABテープ、COFテープなどに使用されたとき、高温高湿時に剥がれなどがなく、かつ電気特性に優れた製品が得られることを見出し、本発明を完成させた。
すなわち本発明は、下記の構成からなる。
1. (B)ポリイミド樹脂層/(A)フッ素樹脂層/(B)ポリイミド樹脂層がこの順に積層されてなる多層ポリイミドフィルムであって、該多層ポリイミドフィルムの線膨張係数が10ppm/℃〜25ppm/℃であり、(A)層の厚さ比{全(A)層/多層ポリイミドフィルム}が60%〜90%であり、かつ該(A)層がテトラフルオロエチレン・パ−フルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・ヘキサフルオロプロピレン・パーフルオロアルキルビニルエーテル共重合体(EPE)のいずれかからなる熱可塑性フッ素樹脂の層である多層ポリイミドフィルム。
2. (A)層が、官能基含有熱可塑性フッ素樹脂の層である1.の多層ポリイミドフィルム。
3. (B)層が、ポリイミドベンゾオキサゾール成分を有するポリイミドの層であり、線膨張係数が−10ppm/℃〜10ppm/℃である1.または2.の多層ポリイミドフィルム。
4. (A)層の厚みが1.0μm〜100μmであり、かつ(B)層の厚みが1.0μm〜38μmである1.〜3.いずれかの多層ポリイミドフィルム。
5. (A)層の室温での貯蔵弾性率:E’(A)と(B)層の室温での貯蔵弾性率:E’(B)の比{E’(A)/E’(B)}が2.0%〜20%である1.〜4.いずれかの多層ポリイミドフィルム
6. 1.〜5.いずれかの多層ポリイミドフィルムの少なくとも片面に銅層が積層された銅貼り多層ポリイミドフィルム。
7. 6.の銅貼り多層ポリイミドフィルムの銅層を一部除去して回路パターンを形成してなるプリント配線板。
8. 1.〜7.いずれかの多層ポリイミドフィルム、銅貼り多層ポリイミドフィルム、およびプリント配線版を積層してなる多層プリント配線板。
As a result of intensive studies, the present inventors have found that when a multilayer polyimide film obtained by laminating a polyimide film through a fluororesin layer is used for a copper-clad laminate and a printed wiring board, FPC, TAB tape, COF tape, etc. The present invention has been completed by finding that a product that does not peel off at high temperature and high humidity and has excellent electrical characteristics can be obtained.
That is, this invention consists of the following structures.
1. (B) Polyimide resin layer / (A) Fluororesin layer / (B) A polyimide resin layer is laminated in this order, and the linear expansion coefficient of the multilayer polyimide film is 10 ppm / ° C. to 25 ppm / ° C. And (A) layer thickness ratio {total (A) layer / multilayer polyimide film} is 60% to 90%, and the (A) layer is a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer. A multilayer which is a thermoplastic fluororesin layer comprising any one of (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and tetrafluoroethylene / hexafluoropropylene / perfluoroalkyl vinyl ether copolymer (EPE) Polyimide film.
2. (A) The layer is a layer of a functional group-containing thermoplastic fluororesin. Multilayer polyimide film.
3. (B) The layer is a polyimide layer having a polyimide benzoxazole component, and the linear expansion coefficient is −10 ppm / ° C. to 10 ppm / ° C. Or 2. Multilayer polyimide film.
4). (A) The thickness of the layer is 1.0 μm to 100 μm, and (B) the thickness of the layer is 1.0 μm to 38 μm. ~ 3. Any multilayer polyimide film.
5). (A) Storage elastic modulus at room temperature of layer: E ′ (A) and storage elastic modulus at room temperature of layer (B): ratio of E ′ (B) {E ′ (A) / E ′ (B)} Is 2.0% to 20%. ~ 4. 5. Any multilayer polyimide film 1. ~ 5. A copper-clad multilayer polyimide film in which a copper layer is laminated on at least one surface of any multilayer polyimide film.
7). 6). A printed wiring board obtained by removing a part of the copper layer of the copper-coated multilayer polyimide film and forming a circuit pattern.
8). 1. ~ 7. A multilayer printed wiring board formed by laminating any one of the multilayer polyimide films, the copper-coated multilayer polyimide film, and the printed wiring board.
本発明の(B)ポリイミド樹脂層/(A)フッ素樹脂層/(B)ポリイミド樹脂層がこの順に積層されてなる多層ポリイミドフィルムは、ポリイミド樹脂の特長である低い線膨張係数(多層ポリイミドフィルムとして、銅と同等の線膨張係数)、高い力学特性と、フッ素樹脂の特長である低い誘電率、低い吸水率を両立することが可能な多層フィルムである。
本発明の多層ポリイミドフィルムは銅層の線膨張係数である16ppm/℃との乖離が小さいことや、吸水率が低いことから、高温高湿などの環境下においても、反りや歪みを殆ど生じなく、その結果得られたプリント配線板などの品質、生産時の歩留まりも向上する。
本発明の多層ポリイミドフィルムを使用した銅貼り多層ポリイミドフィルム、プリント配線板、および多層プリント配線板は、高温に曝される電子部品などとして使用され、その製造時に該基材の反りや歪みが発生し難く、かつ電気特性に優れた高品質の電子部品製造や歩留まり向上が実現でき産業上極めて有意義である。
The multilayer polyimide film obtained by laminating the (B) polyimide resin layer / (A) fluororesin layer / (B) polyimide resin layer in this order of the present invention has a low linear expansion coefficient (as a multilayer polyimide film), which is a feature of the polyimide resin. , A linear expansion coefficient equivalent to that of copper), a multilayer film capable of satisfying both high mechanical properties and low dielectric constant and low water absorption, which are the characteristics of fluororesin.
The multilayer polyimide film of the present invention has little deviation from the copper layer linear expansion coefficient of 16 ppm / ° C. and has a low water absorption rate, so that it hardly causes warping or distortion even in an environment of high temperature and high humidity. As a result, the quality of the printed wiring board obtained as a result and the yield during production are improved.
The copper-coated multilayer polyimide film, printed wiring board, and multilayer printed wiring board using the multilayer polyimide film of the present invention are used as electronic components exposed to high temperatures, and warpage and distortion of the base material occur during its production. This makes it possible to produce high-quality electronic components that are difficult to achieve and have excellent electrical characteristics and to improve yields, which is extremely meaningful in the industry.
以下、本発明を詳述する。
本発明で用いる(A)フッ素樹脂層は、フッ素樹脂溶融体を流延してフィルムとなす方法で得られるフッ素樹脂フィルム、また前記フッ素樹脂溶融体をポリイミド樹脂層(フィルム)に塗布して形成した層などであるが、取り扱いや生産性などからフッ素樹脂フィルムの形態が好ましい。
前記フッ素樹脂は、一般成形に用いられている従来公知の熱可塑性フッ素樹脂から適宜選択して使用することができる。
熱可塑性フッ素樹脂の例として、不飽和フッ素化炭化水素、不飽和フッ素化塩素化炭化水素、エーテル基含有不飽和炭化水素などの重合体又は共重合体、またはこれら不飽和フッ素化炭化水素類とエチレンの共重合体などを挙げることができる。具体的な例としては、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテ)、ビニリデンフルオライド及びビニルフルオライドから選ばれるモノマーの重合体又は共重合体、あるいはこれらモノマーとエチレンの共重合体などを挙げることができる。
熱可塑性フッ素樹脂のより具体的な例として、テトラフルオロエチレン・パ−フルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・ヘキサフルオロプロピレン・パーフルオロアルキルビニルエーテル共重合体(EPE)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエテレン・エチレン共重合体(ECTFE)などを挙げることができる。
中でも、耐熱性、難燃性、および電気特性の点から、全フッ素の共重合体であるテトラフルオロエチレン・パ−フルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・ヘキサフルオロプロピレン・パーフルオロアルキルビニルエーテル共重合体(EPE)が好ましい。
The present invention is described in detail below.
The (A) fluororesin layer used in the present invention is formed by applying a fluororesin film obtained by casting a fluororesin melt into a film, or applying the fluororesin melt to a polyimide resin layer (film). In view of handling and productivity, the form of a fluororesin film is preferable.
The fluororesin can be appropriately selected from conventionally known thermoplastic fluororesins used for general molding.
Examples of thermoplastic fluororesins include polymers or copolymers such as unsaturated fluorinated hydrocarbons, unsaturated fluorinated chlorinated hydrocarbons, ether group-containing unsaturated hydrocarbons, or these unsaturated fluorinated hydrocarbons. Examples include ethylene copolymers. Specific examples include polymers or copolymers of monomers selected from tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether), vinylidene fluoride and vinyl fluoride, or these monomers and Examples include ethylene copolymers.
More specific examples of the thermoplastic fluororesin include tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / hexafluoropropylene / Perfluoroalkyl vinyl ether copolymer (EPE), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer ( ECTFE).
Among them, from the viewpoint of heat resistance, flame retardancy, and electrical properties, a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) and a tetrafluoroethylene / hexafluoropropylene copolymer, which are copolymers of total fluorine. (FEP) and tetrafluoroethylene / hexafluoropropylene / perfluoroalkyl vinyl ether copolymer (EPE) are preferred.
前記フッ素樹脂は、官能基含有熱可塑性フッ素樹脂を使用するのがより好ましい。 官能基を含有しない熱可塑性フッ素樹脂を用いると、実用に耐え得る接着性を得るためにポリイミドフィルムをホ−ニング処理、コロナ処理、プラズマ処理、イオンガン処理、エッチング処理等の表面処理を行う必要があるため、コストが高くなる恐れがある。
官能基を含有する熱可塑性フッ素樹脂としては、カルボン酸基又はその誘導基、水酸基、ニトリル基、シアナト基、カルバモイルオキシ基、ホスホノオキシ基、ハロホスホノオキシ基、スルホン酸基又はその誘導基及びスルホハライド基から選ばれる官能基を含有する熱可塑性フッ素樹脂(官能基含有フッ素樹脂)を挙げることができる。このように官能基含有フッ素樹脂は、通常前記一般成形に用いられる熱可塑性フッ素樹脂に、その性質を大きく損なわない範囲で前記官能基を含有させたものが使用される。このような官能基含有フッ素樹脂を得るには、例えば一般成形に用いられる前記例で示すような熱可塑性フッ素樹脂を合成しておき、後からこれら官能基を付加あるいは置換することにより導入するか、あるいは前記例示の熱可塑性フッ素樹脂の合成時にこれら官能基を持ったモノマーを共重合させることによって得ることができる。
前記官能基の具体例として、―COOH、−CH2COOH、−COOCH3、−CONH2、−OH、−CH2OH、−CN、−CH2O(CO)NH2、−CH2OCN、−CH2OP(O)(OH)2、−CH2OP(O)Cl2、−SO2Fなどの基を例示することができる。これらの官能基は、官能基を有するフッ素含有モノマーをフッ素樹脂製造時に共重合することによりフッ素樹脂中に導入するのが好ましい。
The fluororesin is more preferably a functional group-containing thermoplastic fluororesin. When a thermoplastic fluororesin that does not contain a functional group is used, it is necessary to subject the polyimide film to surface treatment such as honing treatment, corona treatment, plasma treatment, ion gun treatment, and etching treatment in order to obtain adhesiveness that can withstand practical use. Therefore, the cost may increase.
The thermoplastic fluororesin containing a functional group includes a carboxylic acid group or a derivative group thereof, a hydroxyl group, a nitrile group, a cyanato group, a carbamoyloxy group, a phosphonooxy group, a halophosphonooxy group, a sulfonic acid group or a derivative group thereof, and a sulfo group. Mention may be made of thermoplastic fluororesins (functional group-containing fluororesins) containing functional groups selected from halide groups. Thus, as the functional group-containing fluororesin, a thermoplastic fluororesin usually used in the general molding is used in which the functional group is contained within a range that does not significantly impair the properties. In order to obtain such a functional group-containing fluororesin, for example, a thermoplastic fluororesin as shown in the above example used for general molding is synthesized and then introduced by adding or substituting these functional groups. Alternatively, it can be obtained by copolymerizing monomers having these functional groups during the synthesis of the thermoplastic fluororesin exemplified above.
Specific examples of the functional group include -COOH, -CH2COOH, -COOCH3, -CONH2, -OH, -CH2OH, -CN, -CH2O (CO) NH2, -CH2OCN, -CH2OP (O) (OH) 2,- Groups such as CH2OP (O) Cl2 and -SO2F can be exemplified. These functional groups are preferably introduced into the fluororesin by copolymerizing a fluorine-containing monomer having a functional group during the production of the fluororesin.
これら官能基を含有するモノマーは、官能基含有フッ素樹脂中に0.5〜10重量%の量で共重合されていることが好ましい、より好ましくは1〜5重量%である。官能基を含有するモノマーの、官能基含有フッ素樹脂中の分布は、均一でも不均一でも良い。官能基含有フッ素樹脂中における官能基含有モノマーの含有割合が少なすぎると相溶化剤としての効果が少なく、一方その含有割合が多くなると官能基含有フッ素樹脂同士の強い相互作用で架橋反応に類似した反応が起こる可能性があり、粘度が急に増加し溶融成形が困難になる場合がある。また、官能基含有モノマーの含有割合が多くなると官能基含有フッ素樹脂の耐熱性が悪くなる傾向がある。
前記官能基含有フッ素樹脂の粘度あるいは分子量にはとくに制限がないが、これら官能基含有フッ素樹脂を配合する一般成形用の熱可塑性フッ素樹脂の粘度あるいは分子量を越えない範囲であって、好ましくは同じレベルのものがよい。
前記フッ素樹脂は、帯電防止性を付与する帯電防止剤の0.1〜2質量%を含有することも好ましい。帯電防止剤としては、ノニオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、両性イオン界面活性剤等の界面活性剤が好ましい。
These monomers containing functional groups are preferably copolymerized in the functional group-containing fluororesin in an amount of 0.5 to 10% by weight, more preferably 1 to 5% by weight. Distribution of the functional group-containing monomer in the functional group-containing fluororesin may be uniform or non-uniform. If the content ratio of the functional group-containing monomer in the functional group-containing fluororesin is too small, the effect as a compatibilizer is small, while if the content ratio increases, the functional group-containing fluororesin is similar to the crosslinking reaction due to strong interaction between the functional group-containing fluororesins. Reactions can occur and the viscosity can suddenly increase, making melt molding difficult. Moreover, when the content rate of a functional group containing monomer increases, there exists a tendency for the heat resistance of a functional group containing fluororesin to worsen.
There is no particular limitation on the viscosity or molecular weight of the functional group-containing fluororesin, but it is within the range not exceeding the viscosity or molecular weight of the thermoplastic fluororesin for general molding blended with these functional group-containing fluororesins, preferably the same. Good level.
The fluororesin preferably contains 0.1 to 2% by mass of an antistatic agent that imparts antistatic properties. As the antistatic agent, surfactants such as nonionic surfactants, anionic surfactants, cationic surfactants, and zwitterionic surfactants are preferable.
前記フッ素樹脂は、誘電率や誘電正接を低くする無機フィラーを含有することも好ましい。無機フィラーとしては、シリカ、クレー、タルク、炭酸カルシウム、マイカ、珪藻土、アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドーソナイト、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、珪酸カルシウム、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカ系バルーン、カーボンブラック、グラファイト、炭素繊維、炭素バルーン、木粉、ホウ酸亜鉛等が挙げられる。
前記無機フィラーは1種単独で用いてもよく、2種以上を併用してもより。無機フィラーの含有量はフッ素樹脂に対して1〜100質量%が好ましい。また、これらの無機フィラーが多孔質であることが誘電率や誘電正接がさらに低くなるので好ましい。
The fluororesin preferably contains an inorganic filler that lowers the dielectric constant and dielectric loss tangent. Inorganic fillers include silica, clay, talc, calcium carbonate, mica, diatomaceous earth, alumina, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, calcium hydroxide, magnesium hydroxide, water Aluminum oxide, basic magnesium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, dosonite, hydrotalcite, calcium sulfate, barium sulfate, calcium silicate, montmorillonite, bentonite, activated clay, sepiolite, imogolite, sericite, glass fiber, glass Examples include beads, silica-based balloons, carbon black, graphite, carbon fibers, carbon balloons, wood powder, and zinc borate.
The inorganic filler may be used alone or in combination of two or more. As for content of an inorganic filler, 1-100 mass% is preferable with respect to a fluororesin. Further, it is preferable that these inorganic fillers are porous because the dielectric constant and dielectric loss tangent are further reduced.
前記フッ素樹脂層の厚さは、1.0μm〜100μmが好ましく、より好ましくは1.0μm〜75μm、さらに好ましくは1.0μm〜50μmである。膜厚が100μmより厚いものは、電子部品の軽小化という目的からして好ましくない。一方、膜厚が1.0μmより薄いと、フッ素樹脂による電気特性の向上、吸水性の低減、接着性の向上等の表面改質効果が小さくなるため好ましくない。
前記フッ素樹脂層の貯蔵弾性率:E’(A)は特に限定されず、前記組成のフッ素樹脂を用いれば一般的に0.3GPa〜1.0GPaの値を取ることが知られている。
また、前記フッ素樹脂層の線膨張係数は特に限定されず、前記組成のフッ素樹脂を用いれば一般的に60ppm/℃〜160ppm/℃の値を取ることが知られている。
さらに、高周波対応の観点からフィルムの誘電率、および誘電正接は小さい方が好ましい。前記フッ素樹脂層の誘電率、および誘電正接は特に限定されず、前記組成のフッ素樹脂を用いれば一般的に低い値を取ることが知られている。具体的には、1MHzにおける誘電率は2.0〜2.2であり、1MHzおける誘電正接は3.0×10−4〜5.0×10−4である。
前記フッ素樹脂層の表面には、必要に応じてカップリング剤(アミノシラン、エポキシシランなど)による処理、サンドプラスト処理、ホ−リング処理、コロナ処理、プラズマ処理、イオンガン処理、エッチング処理などに供してもよい。
As for the thickness of the said fluororesin layer, 1.0 micrometer-100 micrometers are preferable, More preferably, they are 1.0 micrometer-75 micrometers, More preferably, they are 1.0 micrometer-50 micrometers. Thicknesses greater than 100 μm are not preferred for the purpose of reducing the weight of electronic components. On the other hand, a film thickness of less than 1.0 μm is not preferable because surface modification effects such as improvement of electrical characteristics, reduction of water absorption, and improvement of adhesiveness due to the fluororesin are reduced.
The storage elastic modulus: E ′ (A) of the fluororesin layer is not particularly limited, and it is known that a value of 0.3 GPa to 1.0 GPa is generally used when the fluororesin having the above composition is used.
Moreover, the linear expansion coefficient of the said fluororesin layer is not specifically limited, If it uses the fluororesin of the said composition, it will be generally taken as the value of 60 ppm / degrees C-160 ppm / degrees C.
Furthermore, it is preferable that the film has a small dielectric constant and dielectric loss tangent from the viewpoint of high frequency response. The dielectric constant and dielectric loss tangent of the fluororesin layer are not particularly limited, and it is known that generally low values are obtained when the fluororesin having the composition is used. Specifically, the dielectric constant at 1 MHz is 2.0 to 2.2, and the dielectric loss tangent at 1 MHz is 3.0 × 10 −4 to 5.0 × 10 −4 .
The surface of the fluororesin layer is subjected to a treatment with a coupling agent (aminosilane, epoxysilane, etc.), a sand plast treatment, a rolling treatment, a corona treatment, a plasma treatment, an ion gun treatment, an etching treatment as necessary. Also good.
本発明で用いる(B)ポリイミド樹脂層は、例えば芳香族テトラカルボン酸類(無水物、酸、およびアミド結合性誘導体を総称して類という、以下同)と芳香族ジアミン類(アミン、およびアミド結合性誘導体を総称して類という、以下同)とを反応させて得られるポリアミド酸溶液を流延、乾燥、熱処理(イミド化)してフィルムとなす方法で得られるポリイミドフィルム、また前記ポリアミド酸溶液をフッ素樹脂層(フィルム)に塗布し乾燥、熱処理(イミド化)して形成した層などであるが、取り扱いや生産性などからポリイミドフィルムの形態が好ましい。
以下主にポリイミドフィルムについて詳述する。
前記ポリイミドは、特に限定されるものではないが、下記の芳香族ジアミン類と芳香族テトラカルボン酸(無水物)類との組み合わせが好ましい例として挙げられる。
A.ピロメリット酸残基を有する芳香族テトラカルボン酸類、ベンゾオキサゾール構造を有する芳香族ジアミン類との組み合わせ。
B.フェニレンジアミン骨格を有する芳香族ジアミン類とビフェニルテトラカルボン酸骨格を有する芳香族テトラカルボン酸類との組み合わせ。
C.ジフェニルエーテル骨格を有する芳香族ジアミン類とピロメリット酸残基を有する芳香族テトラカルボン酸類との組み合わせ。
中でも特にA.のベンゾオキサゾール構造を有する芳香族ジアミン残基を有するポリイ
ミドフィルムが好ましい。
The (B) polyimide resin layer used in the present invention is composed of, for example, aromatic tetracarboxylic acids (anhydrides, acids, and amide bond derivatives are collectively referred to as classes below) and aromatic diamines (amines and amide bonds). A polyimide film obtained by a method of casting, drying, heat treatment (imidization) to form a film, and the polyamic acid solution. Is a layer formed by applying to a fluororesin layer (film), drying, and heat-treating (imidizing), and the form of polyimide film is preferable from the viewpoint of handling and productivity.
Hereinafter, the polyimide film will be mainly described in detail.
Although the said polyimide is not specifically limited, The combination of the following aromatic diamine and aromatic tetracarboxylic acid (anhydride) is mentioned as a preferable example.
A. Combination with aromatic tetracarboxylic acid having pyromellitic acid residue and aromatic diamine having benzoxazole structure.
B. A combination of an aromatic diamine having a phenylenediamine skeleton and an aromatic tetracarboxylic acid having a biphenyltetracarboxylic acid skeleton.
C. A combination of an aromatic diamine having a diphenyl ether skeleton and an aromatic tetracarboxylic acid having a pyromellitic acid residue.
In particular, A. A polyimide film having an aromatic diamine residue having a benzoxazole structure is preferred.
前記のベンゾオキサゾール構造を有する芳香族ジアミン類の分子構造は特に限定されるものではなく、具体的には以下のものが挙げられる。これらのジアミンは全ジアミンの70モル%以上することが好ましく、より好ましくは80モル%以上である。 The molecular structure of the aromatic diamines having the benzoxazole structure is not particularly limited, and specific examples include the following. These diamines are preferably 70 mol% or more, more preferably 80 mol% or more of the total diamine.
これらの中でも、合成のし易さの観点から、アミノ(アミノフェニル)ベンゾオキサゾールの各異性体が好ましく、5−アミノ−2−(p−アミノフェニル)ベンゾオキサゾールがより好ましい。ここで、「各異性体」とは、アミノ(アミノフェニル)ベンゾオキサゾールが有する2つアミノ基が配位位置に応じて定められる各異性体である(例;上記「化1」〜「化4」に記載の各化合物)。これらのジアミンは、単独で用いてもよいし、二種以上を併用してもよい。 Among these, from the viewpoint of easy synthesis, each isomer of amino (aminophenyl) benzoxazole is preferable, and 5-amino-2- (p-aminophenyl) benzoxazole is more preferable. Here, “each isomer” refers to each isomer in which two amino groups of amino (aminophenyl) benzoxazole are determined according to the coordination position (eg, the above “formula 1” to “formula 4”). Each compound described in the above. These diamines may be used alone or in combination of two or more.
さらに、全ジアミンの30モル%以下であれば下記に例示されるジアミン類を一種または二種以上を併用しても構わない。そのようなジアミン類としては、例えば、4,4’−ビス(3−アミノフェノキシ)ビフェニル、ビス[4−(3−アミノフェノキシ)フェニル]ケトン、ビス[4−(3−アミノフェノキシ)フェニル]スルフィド、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、m−フェニレンジアミン、o−フェニレンジアミン、p−フェニレンジアミン、m−アミノベンジルアミン、p−アミノベンジルアミン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホキシド、3,4’−ジアミノジフェニルスルホキシド、4,4’−ジアミノジフェニルスルホキシド、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノベンゾフェノン、3,4’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、ビス[4−(4−アミノフェノキシ)フェニル]メタン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]エタン、1,2−ビス[4−(4−アミノフェノキシ)フェニル]エタン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,3−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、1,3−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、1,4−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2,3−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2−[4−(4−アミノフェノキシ)フェニル]−2−[4−(4−アミノフェノキシ)−3−メチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)−3−メチルフェニル]プロパン、2−[4−(4−アミノフェノキシ)フェニル]−2−[4−(4−アミノフェノキシ)−3,5−ジメチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)−3,5−ジメチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]ケトン、ビス[4−(4−アミノフェノキシ)フェニル]スルフィド、ビス[4−(4−アミノフェノキシ)フェニル]スルホキシド、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、1,3−ビス[4−(4−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,4−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、4,4’−ビス[(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,1−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、1,3−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、3,4’−ジアミノジフェニルスルフィド、2,2−ビス[3−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、ビス[4−(3−アミノフェノキシ)フェニル]メタン、1,1−ビス[4−(3−アミノフェノキシ)フェニル]エタン、1,2−ビス[4−(3−アミノフェノキシ)フェニル]エタン、ビス[4−(3−アミノフェノキシ)フェニル]スルホキシド、4,4’−ビス[3−(4−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[3−(3−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4−{4−(4−アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4−ビス[4−(4−アミノフェノキシ)フェノキシ−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノフェノキシ)フェノキシ−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−トリフルオロメチルフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−フルオロフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−メチルフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−シアノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、3,3’−ジアミノ−4,4’−ジフェノキシベンゾフェノン、4,4’−ジアミノ−5,5’−ジフェノキシベンゾフェノン、3,4’−ジアミノ−4,5’−ジフェノキシベンゾフェノン、3,3’−ジアミノ−4−フェノキシベンゾフェノン、4,4’−ジアミノ−5−フェノキシベンゾフェノン、3,4’−ジアミノ−4−フェノキシベンゾフェノン、3,4’−ジアミノ−5’−フェノキシベンゾフェノン、3,3’−ジアミノ−4,4’−ジビフェノキシベンゾフェノン、4,4’−ジアミノ−5,5’−ジビフェノキシベンゾフェノン、3,4’−ジアミノ−4,5’−ジビフェノキシベンゾフェノン、3,3’−ジアミノ−4−ビフェノキシベンゾフェノン、4,4’−ジアミノ−5−ビフェノキシベンゾフェノン、3,4’−ジアミノ−4−ビフェノキシベンゾフェノン、3,4’−ジアミノ−5’−ビフェノキシベンゾフェノン、1,3−ビス(3−アミノ−4−フェノキシベンゾイル)ベンゼン、1,4−ビス(3−アミノ−4−フェノキシベンゾイル)ベンゼン、1,3−ビス(4−アミノ−5−フェノキシベンゾイル)ベンゼン、1,4−ビス(4−アミノ−5−フェノキシベンゾイル)ベンゼン、1,3−ビス(3−アミノ−4−ビフェノキシベンゾイル)ベンゼン、1,4−ビス(3−アミノ−4−ビフェノキシベンゾイル)ベンゼン、1,3−ビス(4−アミノ−5−ビフェノキシベンゾイル)ベンゼン、1,4−ビス(4−アミノ−5−ビフェノキシベンゾイル)ベンゼン、2,6−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ベンゾニトリルおよび上記芳香族ジアミンの芳香環上の水素原子の一部もしくは全てがハロゲン原子、炭素数1〜3のアルキル基またはアルコキシル基、シアノ基、またはアルキル基またはアルコキシル基の水素原子の一部もしくは全部がハロゲン原子で置換された炭素数1〜3のハロゲン化アルキル基またはアルコキシル基で置換された芳香族ジアミン等が挙げられる。 Furthermore, as long as it is 30 mol% or less of the total diamine, one or more of the diamines exemplified below may be used in combination. Examples of such diamines include 4,4′-bis (3-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, and bis [4- (3-aminophenoxy) phenyl]. Sulfide, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, m-aminobenzylamine, p-aminobenzylamine, 3,3′-diamino Diphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-dia Nodiphenyl sulfide, 3,3′-diaminodiphenyl sulfoxide, 3,4′-diaminodiphenyl sulfoxide, 4,4′-diaminodiphenyl sulfoxide, 3,3′-diaminodiphenyl sulfone, 3,4′-diaminodiphenyl sulfone, 4 , 4′-diaminodiphenylsulfone, 3,3′-diaminobenzophenone, 3,4′-diaminobenzophenone, 4,4′-diaminobenzophenone, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4, 4′-diaminodiphenylmethane, bis [4- (4-aminophenoxy) phenyl] methane, 1,1-bis [4- (4-aminophenoxy) phenyl] ethane, 1,2-bis [4- (4-amino) Phenoxy) phenyl] ethane, 1,1-bis [4- 4-aminophenoxy) phenyl] propane, 1,2-bis [4- (4-aminophenoxy) phenyl] propane, 1,3-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 1,1-bis [4- (4-aminophenoxy) phenyl] butane, 1,3-bis [4- (4-aminophenoxy) phenyl] butane, , 4-bis [4- (4-aminophenoxy) phenyl] butane, 2,2-bis [4- (4-aminophenoxy) phenyl] butane, 2,3-bis [4- (4-aminophenoxy) phenyl ] Butane, 2- [4- (4-aminophenoxy) phenyl] -2- [4- (4-aminophenoxy) -3-methylphenyl] propane, 2,2-bis [4- (4-a Minophenoxy) -3-methylphenyl] propane, 2- [4- (4-aminophenoxy) phenyl] -2- [4- (4-aminophenoxy) -3,5-dimethylphenyl] propane, 2,2- Bis [4- (4-aminophenoxy) -3,5-dimethylphenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexa Fluoropropane, 1,4-bis (3-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4′-bis (4 -Aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ketone, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [4- (4-amino) Enoxy) phenyl] sulfoxide, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, 1, 3-bis [4- (4-aminophenoxy) benzoyl] benzene, 1,3-bis [4- (3-aminophenoxy) benzoyl] benzene, 1,4-bis [4- (3-aminophenoxy) benzoyl] Benzene, 4,4′-bis [(3-aminophenoxy) benzoyl] benzene, 1,1-bis [4- (3-aminophenoxy) phenyl] propane, 1,3-bis [4- (3-aminophenoxy) ) Phenyl] propane, 3,4'-diaminodiphenyl sulfide, 2,2-bis [3- (3-aminophenoxy) phenyl -1,1,1,3,3,3-hexafluoropropane, bis [4- (3-aminophenoxy) phenyl] methane, 1,1-bis [4- (3-aminophenoxy) phenyl] ethane, 1 , 2-bis [4- (3-aminophenoxy) phenyl] ethane, bis [4- (3-aminophenoxy) phenyl] sulfoxide, 4,4′-bis [3- (4-aminophenoxy) benzoyl] diphenyl ether, 4,4′-bis [3- (3-aminophenoxy) benzoyl] diphenyl ether, 4,4′-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] benzophenone, 4,4′-bis [4- (4-Amino-α, α-dimethylbenzyl) phenoxy] diphenylsulfone, bis [4- {4- (4-aminophenoxy) phenoxy} fe Sulfone, 1,4-bis [4- (4-aminophenoxy) phenoxy-α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-aminophenoxy) phenoxy-α, α-dimethyl Benzyl] benzene, 1,3-bis [4- (4-amino-6-trifluoromethylphenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-amino-6-fluoro) Phenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-amino-6-methylphenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4 -Amino-6-cyanophenoxy) -α, α-dimethylbenzyl] benzene, 3,3′-diamino-4,4′-diphenoxybenzophenone, 4,4′-diamino-5,5′-dipheno Cibenzophenone, 3,4'-diamino-4,5'-diphenoxybenzophenone, 3,3'-diamino-4-phenoxybenzophenone, 4,4'-diamino-5-phenoxybenzophenone, 3,4'-diamino- 4-phenoxybenzophenone, 3,4'-diamino-5'-phenoxybenzophenone, 3,3'-diamino-4,4'-dibiphenoxybenzophenone, 4,4'-diamino-5,5'-dibiphenoxybenzophenone, 3,4′-diamino-4,5′-dibiphenoxybenzophenone, 3,3′-diamino-4-biphenoxybenzophenone, 4,4′-diamino-5-biphenoxybenzophenone, 3,4′-diamino-4 -Biphenoxybenzophenone, 3,4'-diamino-5'-biphenoxybenzophenone 1,3-bis (3-amino-4-phenoxybenzoyl) benzene, 1,4-bis (3-amino-4-phenoxybenzoyl) benzene, 1,3-bis (4-amino-5-phenoxybenzoyl) Benzene, 1,4-bis (4-amino-5-phenoxybenzoyl) benzene, 1,3-bis (3-amino-4-biphenoxybenzoyl) benzene, 1,4-bis (3-amino-4-bi) Phenoxybenzoyl) benzene, 1,3-bis (4-amino-5-biphenoxybenzoyl) benzene, 1,4-bis (4-amino-5-biphenoxybenzoyl) benzene, 2,6-bis [4- ( 4-amino-α, α-dimethylbenzyl) phenoxy] benzonitrile and some or all of the hydrogen atoms on the aromatic ring of the aromatic diamine are halogen atoms, An alkyl group having 1 to 3 carbon atoms, an alkoxyl group, a cyano group, or an alkyl group or an alkoxyl group having 1 to 3 carbon atoms in which some or all of the hydrogen atoms of the alkyl group or alkoxyl group are substituted with halogen atoms. Examples thereof include substituted aromatic diamines.
前記の芳香族テトラカルボン酸無水物類の分子構造は特に限定されるものではなく、具体的には、以下のものが挙げられる。これらの酸無水物は全酸無水物の70モル%以上することが好ましく、より好ましくは80モル%以上である。 The molecular structure of the aromatic tetracarboxylic acid anhydrides is not particularly limited, and specific examples include the following. These acid anhydrides are preferably 70 mol% or more, more preferably 80 mol% or more of the total acid anhydride.
これらのテトラカルボン酸二無水物は単独で用いてもよいし、二種以上を併用してもよい。
さらに、全テトラカルボン酸二無水物の30モル%以下であれば下記に例示される非芳香族のテトラカルボン酸二無水物類を一種または二種以上を併用しても構わない。そのようなテトラカルボン酸無水物としては、例えば、ブタン−1,2,3,4−テトラカルボン酸二無水物、ペンタン−1,2,4,5−テトラカルボン酸二無水物、シクロブタンテトラカルボン酸二無水物、シクロペンタン−1,2,3,4−テトラカルボン酸二無水物、シクロヘキサン−1,2,4,5−テトラカルボン酸二無水物、シクロヘキサ−1−エン−2,3,5,6−テトラカルボン酸二無水物、3−エチルシクロヘキサ−1−エン−3−(1,2),5,6−テトラカルボン酸二無水物、1−メチル−3−エチルシクロヘキサン−3−(1,2),5,6−テトラカルボン酸二無水物、1−メチル−3−エチルシクロヘキサ−1−エン−3−(1,2),5,6−テトラカルボン酸二無水物、1−エチルシクロヘキサン−1−(1,2),3,4−テトラカルボン酸二無水物、1−プロピルシクロヘキサン−1−(2,3),3,4−テトラカルボン酸二無水物、1,3−ジプロピルシクロヘキサン−1−(2,3),3−(2,3)−テトラカルボン酸二無水物、ジシクロヘキシル−3,4,3’,4’−テトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタン−2,3,5,6−テトラカルボン酸二無水物、1−プロピルシクロヘキサン−1−(2,3),3,4−テトラカルボン酸二無水物、1,3−ジプロピルシクロヘキサン−1−(2,3),3−(2,3)−テトラカルボン酸二無水物、ジシクロヘキシル−3,4,3’,4’−テトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタン−2,3,5,6−テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン−2,3,5,6−テトラカルボン酸二無水物、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物等が挙げられる。
These tetracarboxylic dianhydrides may be used alone or in combination of two or more.
Furthermore, as long as it is 30 mol% or less of the total tetracarboxylic dianhydrides, one or more of the non-aromatic tetracarboxylic dianhydrides exemplified below may be used in combination. Examples of such tetracarboxylic acid anhydrides include butane-1,2,3,4-tetracarboxylic dianhydride, pentane-1,2,4,5-tetracarboxylic dianhydride, and cyclobutanetetracarboxylic acid. Acid dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, cyclohexane-1,2,4,5-tetracarboxylic dianhydride, cyclohex-1-ene-2,3 5,6-tetracarboxylic dianhydride, 3-ethylcyclohex-1-ene-3- (1,2), 5,6-tetracarboxylic dianhydride, 1-methyl-3-ethylcyclohexane-3 -(1,2), 5,6-tetracarboxylic dianhydride, 1-methyl-3-ethylcyclohex-1-ene-3- (1,2), 5,6-tetracarboxylic dianhydride 1-ethylcyclohexane -(1,2), 3,4-tetracarboxylic dianhydride, 1-propylcyclohexane-1- (2,3), 3,4-tetracarboxylic dianhydride, 1,3-dipropylcyclohexane- 1- (2,3), 3- (2,3) -tetracarboxylic dianhydride, dicyclohexyl-3,4,3 ′, 4′-tetracarboxylic dianhydride, bicyclo [2.2.1] Heptane-2,3,5,6-tetracarboxylic dianhydride, 1-propylcyclohexane-1- (2,3), 3,4-tetracarboxylic dianhydride, 1,3-dipropylcyclohexane-1 -(2,3), 3- (2,3) -tetracarboxylic dianhydride, dicyclohexyl-3,4,3 ', 4'-tetracarboxylic dianhydride, bicyclo [2.2.1] heptane -2,3,5,6-tetracarboxylic dianhydride, bisic [2.2.2] Octane-2,3,5,6-tetracarboxylic dianhydride, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride An anhydride etc. are mentioned.
前記の芳香族テトラカルボン酸類と芳香族ジアミン類とを反応(重合)させてポリアミド酸を得るときに用いる溶媒は、原料となるモノマーおよび生成するポリアミド酸のいずれをも溶解するものであれば特に限定されないが、極性有機溶媒が好ましく、例えば、N−メチル−2−ピロリドン、N−アセチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホリックアミド、エチルセロソルブアセテート、ジエチレングリコールジメチルエーテル、スルホラン、ハロゲン化フェノール類等があげられる。これらの溶媒は、単独あるいは混合して使用することができる。溶媒の使用量は、原料となるモノマーを溶解するのに十分な量であればよく、具体的な使用量としては、モノマーを溶解した溶液に占めるモノマーの重量が、通常5〜40重量%、好ましくは10〜30重量%となるような量が挙げられる。 The solvent used when reacting (polymerizing) the aromatic tetracarboxylic acid and the aromatic diamine to obtain a polyamic acid is particularly suitable as long as it can dissolve both the raw material monomer and the produced polyamic acid. Although not limited, polar organic solvents are preferred, such as N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, dimethyl Examples thereof include sulfoxide, hexamethylphosphoric amide, ethyl cellosolve acetate, diethylene glycol dimethyl ether, sulfolane, and halogenated phenols. These solvents can be used alone or in combination. The amount of the solvent used may be an amount sufficient to dissolve the monomer as a raw material. As a specific amount used, the weight of the monomer in the solution in which the monomer is dissolved is usually 5 to 40% by weight, The amount is preferably 10 to 30% by weight.
ポリアミド酸を得るための重合反応(以下、単に「重合反応」ともいう)の条件は従来公知の条件を適用すればよく、具体例として、有機溶媒中、0〜80℃の温度範囲で、10分〜30時間連続して撹拌および/または混合することが挙げられる。必要により重合反応を分割したり、温度を上下させてもかまわない。この場合に、両モノマーの添加順序には特に制限はないが、芳香族ジアミン類の溶液中に芳香族テトラカルボン酸無水物類を添加するのが好ましい。重合反応によって得られるポリアミド酸溶液の粘度はブルックフィールド粘度計による測定(25℃)で、送液の安定性の点から、好ましくは10〜2000Pa・sであり、より好ましくは100〜1000Pa・sである。 Conventionally known conditions may be applied for the polymerization reaction for obtaining the polyamic acid (hereinafter also simply referred to as “polymerization reaction”). As a specific example, in a temperature range of 0 to 80 ° C., 10 Stirring and / or mixing continuously for minutes to 30 hours. If necessary, the polymerization reaction may be divided or the temperature may be increased or decreased. In this case, the order of adding both monomers is not particularly limited, but it is preferable to add aromatic tetracarboxylic acid anhydrides to the solution of aromatic diamines. The viscosity of the polyamic acid solution obtained by the polymerization reaction is measured with a Brookfield viscometer (25 ° C.), and is preferably 10 to 2000 Pa · s, more preferably 100 to 1000 Pa · s, from the viewpoint of the stability of liquid feeding. It is.
重合反応中に真空脱泡することは、良質なポリアミド酸溶液を製造するのに有効である。また、重合反応の前に芳香族ジアミン類に少量の末端封止剤を添加して重合を制御することを行ってもよい。末端封止剤としては、無水マレイン酸等といった炭素−炭素二重結合を有する化合物が挙げられる。無水マレイン酸を使用する場合の使用量は、芳香族ジアミン類1モル当たり好ましくは0.001〜1.0モルである。
重合反応により得られるポリアミド酸溶液から、ポリイミドフィルムを形成するためには、ポリアミド酸溶液を支持体上に塗布して乾燥することによりグリーンフィルム(自己支持性の前駆体フィルムを得て、次いで、グリーンフィルムを熱処理に供することでイミド化反応させる方法が挙げられる。支持体へのポリアミド酸溶液の塗布は、スリット付き口金からの流延、押出機による押出し、等を含むが、これらに限られず、従来公知の溶液の塗布手段を適宜用いることができる。
Vacuum degassing during the polymerization reaction is effective in producing a good quality polyamic acid solution. Moreover, you may perform superposition | polymerization by adding a small amount of terminal blockers to aromatic diamine before polymerization reaction. Examples of the end capping agent include compounds having a carbon-carbon double bond such as maleic anhydride. The amount of maleic anhydride used is preferably 0.001 to 1.0 mol per mol of aromatic diamine.
In order to form a polyimide film from the polyamic acid solution obtained by the polymerization reaction, a green film (a self-supporting precursor film is obtained by applying the polyamic acid solution on a support and drying, then, Examples of the method of imidization reaction by subjecting the green film to heat treatment include, but are not limited to, application of the polyamic acid solution to the support, including casting from a slit-attached base and extrusion by an extruder. A conventionally known solution coating means can be appropriately used.
支持体上に塗布したポリアミド酸を乾燥してグリーンシートを得る条件は特に限定はなく、温度としては70〜150℃が例示され、乾燥時間としては、5〜180分間が例示される。そのような条件を達する乾燥装置も従来公知のものを適用でき、熱風、熱窒素、遠赤外線、高周波誘導加熱などを挙げることができる。次いで、得られたグリーンシートから目的のポリイミドフィルムを得るために、イミド化反応を行わせる。その具体的な方法としては、従来公知のイミド化反応を適宜用いることが可能である。例えば、閉環触媒や脱水剤を含まないポリアミド酸溶液を用いて、必要により延伸処理を施した後に、加熱処理に供することでイミド化反応を進行させる方法(所謂、熱閉環法)が挙げられる。この場合の加熱温度は100〜500℃が例示され、フィルム物性の点から、より好ましくは、150〜250℃で3〜20分間処理した後に350〜500℃で3〜20分間処理する2段階熱処理が挙げられる。 The conditions for drying the polyamic acid coated on the support to obtain a green sheet are not particularly limited, and examples include a temperature of 70 to 150 ° C. and a drying time of 5 to 180 minutes. A conventionally known drying apparatus that satisfies such conditions can be applied, and examples thereof include hot air, hot nitrogen, far infrared rays, and high frequency induction heating. Next, in order to obtain a target polyimide film from the obtained green sheet, an imidization reaction is performed. As a specific method thereof, a conventionally known imidation reaction can be appropriately used. For example, there may be mentioned a method (so-called thermal ring closure method) in which an imidization reaction proceeds by subjecting it to a heat treatment after performing a stretching treatment as necessary using a polyamic acid solution containing no ring closure catalyst or a dehydrating agent. The heating temperature in this case is exemplified by 100 to 500 ° C. From the viewpoint of film physical properties, more preferably, a two-stage heat treatment in which the treatment is performed at 150 to 250 ° C. for 3 to 20 minutes and then treatment at 350 to 500 ° C. for 3 to 20 minutes. Is mentioned.
別のイミド化反応の例として、ポリアミド酸溶液に閉環触媒および脱水剤を含有させておいて、上記閉環触媒および脱水剤の作用によってイミド化反応を行わせる、化学閉環法を挙げることもできる。この方法では、ポリアミド酸溶液を支持体に塗布した後、イミド化反応を一部進行させて自己支持性を有するフィルムを形成した後に、加熱によってイミド化を完全に行わせることができる。この場合、イミド化反応を一部進行させる条件としては、好ましくは100〜200℃による3〜20分間の熱処理であり、イミド化反応を完全に行わせるための条件は、好ましくは200〜400℃による3〜20分間の熱処理である。 Another example of the imidization reaction is a chemical ring closure method in which a polyamic acid solution contains a ring closure catalyst and a dehydrating agent, and the imidization reaction is performed by the action of the ring closing catalyst and the dehydrating agent. In this method, after the polyamic acid solution is applied to the support, the imidization reaction is partially advanced to form a film having self-supporting property, and then imidization can be performed completely by heating. In this case, the condition for partially proceeding with the imidization reaction is preferably a heat treatment for 3 to 20 minutes at 100 to 200 ° C., and the condition for allowing the imidization reaction to be completely performed is preferably 200 to 400 ° C. For 3 to 20 minutes.
前記ポリイミド樹脂層を形成するポリイミドフィルムの厚さは、1.0μm〜38μmが好ましく、より好ましくは1.0μm〜25μm、さらに好ましくは1.0μm〜20μmである。膜厚が38μmより厚いものは、電子部品の軽小化という目的からして好ましくない。また、積層体全体に対するポリイミドの比率が高くなり、吸水率や電気特性といった物性に悪影響を与えるため好ましくない。一方、膜厚が1.0μmより薄いと、搬送中に破断しやすく、また皺も入りやすいため製膜が非常に困難である。
前記ポリイミド樹脂層を形成するポリイミドフィルムの貯蔵弾性率:E’(B)は、特に限定されないが、6.0GPa以上が好ましく、より好ましくは7.0GPa以上、さらに好ましくは8.0GPa以上である。引張破断強度が6GPaより小さいと、ポリイミドフィルムによるフッ素樹脂層の補強効果が得られない恐れがある。
また、前記ポリイミド樹脂層を形成するポリイミドフィルムの線膨張係数は−10ppm/℃〜10ppm/℃であることが好ましく、より好ましくは−7.5ppm/℃〜7.5ppm/℃、さらに好ましくは−5ppm/℃〜5ppm/℃である。線膨張係数がこの範囲を超えると、半田付けなどの高温暴露において歪みや皺が発生する恐れがある。
As for the thickness of the polyimide film which forms the said polyimide resin layer, 1.0 micrometer-38 micrometers are preferable, More preferably, they are 1.0 micrometer-25 micrometers, More preferably, they are 1.0 micrometer-20 micrometers. A film thickness greater than 38 μm is not preferred for the purpose of reducing the weight of electronic components. Moreover, since the ratio of the polyimide with respect to the whole laminated body becomes high and exerts a bad influence on physical properties, such as a water absorption rate and an electrical property, it is unpreferable. On the other hand, if the film thickness is less than 1.0 μm, film formation is very difficult because the film is easily broken during conveyance and easily wrinkled.
The storage elastic modulus: E ′ (B) of the polyimide film forming the polyimide resin layer is not particularly limited, but is preferably 6.0 GPa or more, more preferably 7.0 GPa or more, and even more preferably 8.0 GPa or more. . If the tensile strength at break is less than 6 GPa, the effect of reinforcing the fluororesin layer by the polyimide film may not be obtained.
The linear expansion coefficient of the polyimide film forming the polyimide resin layer is preferably −10 ppm / ° C. to 10 ppm / ° C., more preferably −7.5 ppm / ° C. to 7.5 ppm / ° C., more preferably − 5 ppm / ° C to 5 ppm / ° C. If the linear expansion coefficient exceeds this range, distortion and wrinkles may occur during high temperature exposure such as soldering.
前記ポリイミド樹脂層を形成するポリイミドフィルムには、必要に応じてカップリング剤(アミノシラン、エポキシシランなど)による処理、サンドプラスト処理、ホ−リング処理、コロナ処理、プラズマ処理、イオンガン処理、エッチング処理などに供してもよい。 For the polyimide film forming the polyimide resin layer, treatment with a coupling agent (aminosilane, epoxysilane, etc.), sandplast treatment, rolling treatment, corona treatment, plasma treatment, ion gun treatment, etching treatment, etc. You may use for.
本発明における、多層ポリイミドフィルムの線膨張係数は10ppm/℃〜25ppm/℃であることが好ましく、より好ましくは10ppm/℃〜23ppm/℃、さらに好ましくは10ppm/℃〜20ppm/℃である。線膨張係数がこの範囲を超えると、線膨張係数が16ppm/℃である銅層を積層した際に、互いの線膨張係数の乖離が大きく、使用中に剥離してしまう恐れや、反りが発生する恐れがある。
多層ポリイミドフィルムの線膨張係数を10ppm/℃〜25ppm/℃の範囲内にするためには、多層ポリイミドフィルムにおける(A)層の厚さ比{全(A)層/多層ポリイミドフィルム}が60%〜90%であり、かつ(A)層の室温での貯蔵弾性率:E’(A)と(B)層の室温での貯蔵弾性率:E’(B)の比{E’(A)/E’(B)}が2.0%〜20%であることが好ましく、より好ましくは厚さ比が65%〜90%、かつ貯蔵弾性率比が2.5%〜15%であり、さらに好ましくは厚さ比が65%〜85%、かつ貯蔵弾性率比が3.0%〜10%である。
厚さ比、もしくは貯蔵弾性率比をこの範囲とすることで、目標とする線膨張係数の多層ポリイミドフィルムを得ることができる。
The linear expansion coefficient of the multilayer polyimide film in the present invention is preferably 10 ppm / ° C. to 25 ppm / ° C., more preferably 10 ppm / ° C. to 23 ppm / ° C., further preferably 10 ppm / ° C. to 20 ppm / ° C. When the coefficient of linear expansion exceeds this range, when a copper layer having a coefficient of linear expansion of 16 ppm / ° C is laminated, the difference between the coefficients of linear expansion is large, and there is a risk of peeling during use or warping. There is a fear.
In order to set the linear expansion coefficient of the multilayer polyimide film within the range of 10 ppm / ° C. to 25 ppm / ° C., the thickness ratio of the (A) layer in the multilayer polyimide film {total (A) layer / multilayer polyimide film} is 60%. The storage elastic modulus at room temperature of the (A) layer: E ′ (A) and the storage elastic modulus at room temperature of the (B) layer: E ′ (B) ratio {E ′ (A) / E ′ (B)} is preferably 2.0% to 20%, more preferably a thickness ratio of 65% to 90% and a storage modulus ratio of 2.5% to 15%, More preferably, the thickness ratio is 65% to 85%, and the storage modulus ratio is 3.0% to 10%.
By setting the thickness ratio or the storage elastic modulus ratio within this range, a multilayer polyimide film having a target linear expansion coefficient can be obtained.
本発明で用いる銅層の厚さは1.0μm〜25μmであることが好ましく、より好ましくは1.0μm〜12.5μm、さらに好ましくは1.0μm〜10μmである。
本発明で用いる銅貼り多層ポリイミドフィルムの銅層積層方法は特に問わず、以下のような手段が例示される。
・多層ポリイミドフィルムに蒸着、スパッタリング、イオンプレーティングなどの真空コーティング技術を用いて銅層を形成する手段。
・多層ポリイミドフィルムに無電解メッキ、電気メッキなどの湿式メッキ法により銅層を形成する手段。
これらの手段を単独で、あるいは組み合わせることによって多層ポリイミドフィルムの少なくとも片面に銅層を積層することができる。
The thickness of the copper layer used in the present invention is preferably 1.0 μm to 25 μm, more preferably 1.0 μm to 12.5 μm, still more preferably 1.0 μm to 10 μm.
The copper layer lamination method of the copper-clad multilayer polyimide film used in the present invention is not particularly limited, and the following means are exemplified.
A means for forming a copper layer on a multilayer polyimide film using vacuum coating techniques such as vapor deposition, sputtering, and ion plating.
A means for forming a copper layer on a multilayer polyimide film by a wet plating method such as electroless plating or electroplating.
A copper layer can be laminated on at least one surface of the multilayer polyimide film by combining these means alone or in combination.
本発明の銅貼り多層ポリイミドフィルムは、通常の方法によって、例えば導電性の銅層又は必要に応じてその上に形成される後付けの厚膜銅層側にフォトレジストを塗布し乾燥後、露光、現像、エッチング、フォトレジスト剥離の工程により、配線回路パターンを形成し、さらに必要に応じてソルダーレジスト塗布、可塑および無電解スズメッキを行い、フレキシブルプリント配線板、それらを多層化した多層プリント配線板、また半導体チップを直接この上に実装したプリント配線板が得られる。これら回路の作成、多層化、半導体チップの実装における方法は特に限定されるものではなく、従来公知の方式から適宜選択し実施すればよい。 The copper-clad multilayer polyimide film of the present invention is coated with a photoresist on the side of a conductive copper layer or a post-added thick film copper layer formed on the conductive copper layer, if necessary, by an ordinary method, and after exposure, A wiring circuit pattern is formed by the steps of development, etching, and photoresist stripping. Further, if necessary, solder resist coating, plastic and electroless tin plating are performed, a flexible printed wiring board, a multilayer printed wiring board obtained by multilayering them, Further, a printed wiring board having a semiconductor chip directly mounted thereon can be obtained. There are no particular limitations on the method for creating these circuits, making them multi-layered, and mounting a semiconductor chip, and the methods may be appropriately selected from known methods.
本発明で使用する銅層又は必要に応じてその上に形成される後付けの厚膜金属層側の表面には、金属単体や金属酸化物などといった無機物の塗膜を形成してもよい。また銅層又は必要に応じてその上に形成される後付けの厚膜金属層の表面を、カップリング剤(アミノシラン、エポキシシランなど)による処理、サンドプラスト処理、ホ−リング処理、コロナ処理、プラズマ処理、イオンガン処理、エッチング処理などに供してもよい。 An inorganic coating such as a single metal or a metal oxide may be formed on the surface of the copper layer used in the present invention or, if necessary, the surface of the thick film metal layer that is formed later. In addition, the surface of the copper layer or later thick film metal layer formed on the copper layer, if necessary, treatment with a coupling agent (aminosilane, epoxysilane, etc.), sandplast treatment, rolling treatment, corona treatment, plasma You may use for a process, an ion gun process, an etching process, etc.
以下、実施例および比較例を示して本発明をより具体的に説明するが、本発明は以下の実施例によって限定されるものではない。なお、以下の実施例における物性の評価方法は以下の通りである。 EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited by a following example. In addition, the evaluation method of the physical property in the following examples is as follows.
1.還元粘度(ηsp/C)
ポリマー濃度が0.2g/dlとなるようにN−メチル−2−ピロリドン(又は、N,N−ジメチルアセトアミド)に溶解した溶液をウベローデ型の粘度管により30℃で測定した。
2.厚さ
測定対象のフィルムについて、マイクロメーター(ファインリューフ社製、ミリトロン1245D)を用いて測定した。
1. Reduced viscosity (ηsp / C)
A solution dissolved in N-methyl-2-pyrrolidone (or N, N-dimethylacetamide) so that the polymer concentration was 0.2 g / dl was measured at 30 ° C. with an Ubbelohde type viscosity tube.
2. Thickness The film to be measured was measured using a micrometer (Minetron 1245D, manufactured by Finelfu).
3.貯蔵弾性率
測定対象のフィルムについて、下記条件で粘弾性測定(DMA)を行い、25℃における貯蔵弾性率:E’の値を求めた。
装置名 : ユービーエム社製 Rheogel−E4000
冶具 : 伸張冶具
試料長さ : 14mm
試料幅 : 5mm
周波数 : 10Hz
昇温開始温度 : 0℃
昇温速度 : 5℃/min
雰囲気 : 窒素
3. About the film | membrane of storage elastic modulus measurement object, viscoelasticity measurement (DMA) was performed on the following conditions, and the value of storage elastic modulus: E 'in 25 degreeC was calculated | required.
Device name: Rheogel-E4000 manufactured by UBM
Jig: Stretch jig
Sample length: 14mm
Sample width: 5 mm
Frequency: 10Hz
Temperature rise start temperature: 0 ° C
Temperature increase rate: 5 ° C / min
Atmosphere: Nitrogen
4.線膨張係数(CTE)
測定対象のフィルムについて、下記条件にてMD方向およびTD方向の伸縮率を測定し、90〜100℃、100〜110℃、…と10℃の間隔での伸縮率/温度を測定し、この測定を400℃まで行い、100℃から350℃までの全測定値の平均値をCTE(平均値)として算出した。
装置名 : MACサイエンス社製 TMA4000S
サンプル長さ : 10mm
サンプル幅 : 2mm
初荷重 : 34.5g/mm2
昇温開始温度 : 25℃
昇温終了温度 : 400℃
昇温速度 : 5℃/min
雰囲気 : アルゴン
4). Linear expansion coefficient (CTE)
For the film to be measured, the stretch rate in the MD direction and the TD direction is measured under the following conditions, and the stretch rate / temperature at intervals of 90 to 100 ° C., 100 to 110 ° C.,. Was performed up to 400 ° C., and the average value of all measured values from 100 ° C. to 350 ° C. was calculated as CTE (average value).
Device name: TMA4000S manufactured by MAC Science
Sample length: 10mm
Sample width: 2mm
Initial load: 34.5 g / mm 2
Temperature rise start temperature: 25 ° C
Temperature rise end temperature: 400 ° C
Temperature increase rate: 5 ° C / min
Atmosphere: Argon
5.融点
測定対象のフィルムについて、下記条件で示差走査熱量測定(DSC)を行い、融点(Tm)をJIS K 7121に準拠して求めた。
装置名 : MACサイエンス社製 DSC3100S
パン : アルミパン(非気密型)
試料質量 : 4mg
昇温開始温度 : 30℃
昇温終了温度 : 400℃
昇温速度 : 20℃/min
雰囲気 : アルゴン
6.誘電率、誘電正接
測定対象のフッ素樹脂フィルムについて、3mm(厚さ)×200mm×120mmの大きさに切断し試験フィルムを作成した。試験フィルムの両面に導電ペーストを塗布して配線し、1MHzにおける誘電率および誘電正接を測定した。
5). The film to be measured was subjected to differential scanning calorimetry (DSC) under the following conditions, and the melting point (Tm) was determined according to JIS K7121.
Device name: DSC3100S manufactured by MAC Science
Bread: Aluminum bread (non-airtight type)
Sample mass: 4mg
Temperature rising start temperature: 30 ° C
Temperature rise end temperature: 400 ° C
Temperature increase rate: 20 ° C / min
Atmosphere: Argon A fluororesin film to be measured for dielectric constant and dielectric loss tangent was cut into a size of 3 mm (thickness) × 200 mm × 120 mm to prepare a test film. Conductive paste was applied to both sides of the test film and wired, and the dielectric constant and dielectric loss tangent at 1 MHz were measured.
7.剥離強度(樹脂)
測定対象の多層ポリイミドフィルムのポリイミド樹脂層/フッ素樹脂層間の剥離強度は、下記条件で90°剥離試験を行うことで求めた。
装置名 : 島津製作所社製 オートグラフAG−IS
サンプル長さ : 100mm
サンプル幅 : 10mm
測定温度 : 25℃
剥離速度 : 50mm/min
雰囲気 : 大気
7). Peel strength (resin)
The peel strength between the polyimide resin layer / fluororesin layer of the multilayer polyimide film to be measured was determined by performing a 90 ° peel test under the following conditions.
Device name: Autograph AG-IS, manufactured by Shimadzu Corporation
Sample length: 100mm
Sample width: 10mm
Measurement temperature: 25 ° C
Peeling speed: 50mm / min
Atmosphere: Atmosphere
《基板の評価》反り
多層ポリイミドフィルム、銅層から成る各片面銅貼り多層ポリイミドフィルムにつき、外観検査により、反りがないものを○、反りがあるもの△、ロール状に包まるものを×と評価した。
《基板の評価》耐湿熱性
多層ポリイミドフィルム、銅層から成る各両面銅貼り多層ポリイミドフィルムにつき、JEDEC LEVEL1条件下(85℃/85%RH−168hr+245℃/3sec×3回)で処理を行い、試験後の剥離強度を評価した。また、試験後の外観検査により、剥がれ,膨れ,変色の全く見られないものを○、剥がれ,膨れ,変色が僅か見られるものを△、剥がれ,膨れ,変色が見られるものを×とした。
《基板の評価》耐熱性
多層ポリイミドフィルム、銅層から成る各両面銅貼り多層ポリイミドフィルムにつき、ステンレスメッシュ性の籠に入れ、大気中で250℃−24hr、加熱処理を行い試験後の剥離強度を評価した。また、試験後の外観検査により、剥がれ,膨れ,変色の全く見られないものを○、剥がれ,膨れ,変色が僅か見られるものを△、剥がれ,膨れ,変色が見られるものを×とした。
<< Evaluation of Substrate >> For each single-sided copper-coated polyimide film consisting of a warped multilayer polyimide film and a copper layer, according to the appearance inspection, those having no warpage are evaluated as ◯, those having warpage are evaluated as △, and those wrapped in a roll shape are evaluated as ×. did.
<< Evaluation of Substrate >> Each double-sided copper-bonded multilayer polyimide film consisting of a moisture and heat resistant multilayer polyimide film and a copper layer is processed under JEDEC LEVEL1 conditions (85 ° C / 85% RH-168hr + 245 ° C / 3sec × 3 times), and tested. The subsequent peel strength was evaluated. In addition, in the appearance inspection after the test, the case where peeling, blistering, or discoloration was not observed was indicated as “◯”, the case where peeling, blistering, or discoloration was slightly observed was indicated as Δ, and the case where peeling, blistering, or discoloration was observed was indicated as “X”.
<< Evaluation of Substrate >> Each double-sided copper-bonded multilayer polyimide film consisting of a heat-resistant multilayer polyimide film and a copper layer is placed in a stainless mesh cage and subjected to heat treatment at 250 ° C. for 24 hours in the atmosphere to determine the peel strength after the test. evaluated. In addition, in the appearance inspection after the test, the case where peeling, blistering, or discoloration was not observed was indicated as “◯”, the case where peeling, blistering, or discoloration was slightly observed was indicated as Δ, and the case where peeling, blistering, or discoloration was observed was indicated as “X”.
〔製造例1〕
(ポリイミドフィルムAの作成)
窒素導入管,温度計,攪拌棒を備えた反応容器内を窒素置換した後、5−アミノ−2−(p−アミノフェニル)ベンゾオキサゾール223質量部、N,N−ジメチルアセトアミド4416質量部を加えて完全に溶解させた後,コロイダルシリカをジメチルアセトアミドに分散してなるスノーテックス(DMAC−ST30、日産化学工業社製)40.5質量部(シリカを8.1質量部含む)、ピロメリット酸二無水物217質量部を加え、25℃の反応温度で24時間攪拌すると、褐色で粘調なポリアミド酸溶液Aが得られた。この還元粘度は3.9dl/gであった。
このポリアミド酸溶液Aを、ポリエチレンテレフタレート製フィルムA−4100(東洋紡績社製)の無滑剤面上に、コンマコーターを用いてコーティングし、110℃にて5分間乾燥後、支持体から剥がさずにポリアミド酸フィルムを巻き取った。ポリアミド酸フィルムを3つの熱処理ゾーンを有するピンテンターに通し、一段目150℃×2分、2段目220℃×2分、3段目475℃×4分間の熱処理を行い、テンター通過後20分間に6本のロールを通過させて両面フリーのプロセスを与え、最終的に500mm幅にスリットして、ポリイミドフィルムA1〜A4を得た。
得られたポリイミドフィルムA1〜A4の物性値を表1に示す。
次いで、スパッタリング、めっきを行った。
ポリイミドフィルムA1〜A4をA4サイズに切り取り、開口部を有するステンレス製の枠に挟んで固定した。この枠をスパッタリング装置内の基板ホルダーに固定した。基板ホルダーと、ポリイミドフィルムは密着するように固定する。このため、基板ホルダー内に冷媒を流すことによってポリイミドフィルムの温度を設定できる。次いで、ポリイミドフィルム表面のプラズマ処理を行った。プラズマ処理条件はアルゴンガス中で、周波数13.56MHz、出力200W、ガス圧1×10−3Torrの条件であり、処理時の温度は2℃、処理時間は2分間であった。次いで、周波数13.56MHz、出力450W、ガス圧3×10−3Torrの条件、ニッケル−クロム(クロム10質量%)合金のターゲットを用い、アルゴン雰囲気下にてDCマグネトロンスパッタリング法により、1nm/秒のレートで厚さ7nmのニッケル−クロム合金被膜(下地層)を形成し、その後、基板の温度を2℃に設定するよう、基板のスパッタ面の裏面を2℃に温度コントロールした冷媒を中に流した。次いで、基板ホルダーのSUSプレートと接する状態でスパッタリングを行い、厚さ0.25μmの銅薄膜を形成させ、片面下地金属薄膜形成ポリイミドフィルムA1〜A4を得た。ここで、銅およびNiCr層の厚さは蛍光X線法によって確認した。得られた片面下地金属薄膜形成ポリイミドフィルムA1〜A4をプラスチック製の枠に固定し、硫酸銅めっき浴をもちいて、厚さ9μmの銅層を形成した。電解めっき条件は電解めっき液(硫酸銅80g/l、硫酸210g/l、HCl、光沢剤少量)に浸漬、電気を1.5Adm2流した。引き続き120℃で10分間熱処理乾燥し、片面に銅層を形成したポリイミドフィルムである銅貼り積層板(CCL)A1〜A4を得た。
[Production Example 1]
(Preparation of polyimide film A)
The inside of the reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod was purged with nitrogen, and then 223 parts by mass of 5-amino-2- (p-aminophenyl) benzoxazole and 4416 parts by mass of N, N-dimethylacetamide were added. 40.5 parts by mass of Snowtex (DMAC-ST30, manufactured by Nissan Chemical Industries, Ltd.) (containing 8.1 parts by mass of silica), pyromellitic acid, which is prepared by completely dissolving the colloidal silica in dimethylacetamide. When 217 parts by mass of dianhydride was added and stirred for 24 hours at a reaction temperature of 25 ° C., a brown and viscous polyamic acid solution A was obtained. This reduced viscosity was 3.9 dl / g.
This polyamic acid solution A was coated on a non-lubricant surface of polyethylene terephthalate film A-4100 (manufactured by Toyobo Co., Ltd.) using a comma coater, dried at 110 ° C. for 5 minutes, and then not peeled off from the support. The polyamic acid film was wound up. The polyamic acid film is passed through a pin tenter having three heat treatment zones, the first stage 150 ° C. × 2 minutes, the second stage 220 ° C. × 2 minutes, the third stage 475 ° C. × 4 minutes, and 20 minutes after passing through the tenter. Six rolls were passed to give a double-sided free process, and finally slit to 500 mm width to obtain polyimide films A1 to A4.
Table 1 shows the physical property values of the obtained polyimide films A1 to A4.
Next, sputtering and plating were performed.
Polyimide films A1 to A4 were cut to A4 size and fixed by being sandwiched between stainless steel frames having openings. This frame was fixed to a substrate holder in the sputtering apparatus. The substrate holder and the polyimide film are fixed in close contact. For this reason, the temperature of a polyimide film can be set by flowing a refrigerant in a substrate holder. Next, plasma treatment of the polyimide film surface was performed. The plasma treatment conditions were argon gas, frequency 13.56 MHz, output 200 W, gas pressure 1 × 10 −3 Torr, treatment temperature 2 ° C., treatment time 2 minutes. Next, a frequency of 13.56 MHz, an output of 450 W, a gas pressure of 3 × 10 −3 Torr, a nickel-chromium (chromium 10 mass%) alloy target, and a DC magnetron sputtering method in an argon atmosphere, 1 nm / second. A nickel-chromium alloy film (underlayer) having a thickness of 7 nm is formed at a rate of 5 mm, and then a refrigerant whose temperature on the back side of the sputtered surface of the substrate is controlled to 2 ° C. is set inside so that the temperature of the substrate is set to 2 ° C. Washed away. Next, sputtering was performed in contact with the SUS plate of the substrate holder to form a copper thin film having a thickness of 0.25 μm, thereby obtaining single-side underlying metal thin film-formed polyimide films A1 to A4. Here, the thickness of the copper and NiCr layers was confirmed by a fluorescent X-ray method. The obtained single-sided underlying metal thin film forming polyimide films A1 to A4 were fixed to a plastic frame, and a copper layer having a thickness of 9 μm was formed using a copper sulfate plating bath. The electrolytic plating conditions were immersion in an electrolytic plating solution (copper sulfate 80 g / l, sulfuric acid 210 g / l, HCl, a small amount of brightener), and electricity was passed through 1.5 Adm 2 . Then, it heat-dried at 120 degreeC for 10 minute (s), and obtained copper-clad laminated board (CCL) A1-A4 which is a polyimide film which formed the copper layer in the single side | surface.
〔製造例2〕
(ポリイミドフィルムBの作成)
窒素導入管,温度計,攪拌棒を備えた反応容器内を窒素置換した後、ジアミノジフェニルエーテル200質量部、N−メチル−2−ピロリドン4170質量部を加えて完全に溶解させた後、コロイダルシリカをジメチルアセトアミドに分散してなるスノーテックス(DMAC−ST30、日産化学工業社製)40.5質量部(シリカを8.1質量部含む)、ピロメリット酸二無水物217質量部を加え、25℃の反応温度で5時間攪拌すると、褐色の粘調なポリアミド酸溶液Bが得られた。この還元粘度は3.6dl/gであった。
このポリアミド酸溶液Bを、ポリエチレンテレフタレート製フィルムA−4100(東洋紡績社製)の無滑剤面上に、コンマコーターを用いてコーティングし、110℃にて5分間乾燥後、支持体から剥がさずにポリアミド酸フィルムを巻き取った。ポリアミド酸フィルムを3つの熱処理ゾーンを有するピンテンターに通し、一段目150℃×2分、2段目220℃×2分、3段目400℃×4分間の熱処理を行い、テンター通過後20分間に6本のロールを通過させて両面フリーのプロセスを与え、最終的に500mm幅にスリットして、ポリイミドフィルムBを得た。
得られたポリイミドフィルムBの物性値を表1に示す。
次いで、製造例1と同様の方法でスパッタリング、めっきを行い、銅貼り積層板(CCL)Bを得た。
[Production Example 2]
(Preparation of polyimide film B)
After the inside of the reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod was purged with nitrogen, 200 parts by mass of diaminodiphenyl ether and 4170 parts by mass of N-methyl-2-pyrrolidone were added and completely dissolved, and then colloidal silica was added. 40.5 parts by mass of Snowtex (DMAC-ST30, manufactured by Nissan Chemical Industries, Ltd.) dispersed in dimethylacetamide (containing 8.1 parts by mass of silica), 217 parts by mass of pyromellitic dianhydride were added, and 25 ° C. When the mixture was stirred at the reaction temperature of 5 hours, a brown viscous polyamic acid solution B was obtained. This reduced viscosity was 3.6 dl / g.
This polyamic acid solution B was coated on a non-lubricant surface of polyethylene terephthalate film A-4100 (manufactured by Toyobo Co., Ltd.) using a comma coater, dried at 110 ° C. for 5 minutes, and then not peeled off from the support. The polyamic acid film was wound up. The polyamic acid film is passed through a pin tenter having three heat treatment zones, the first stage is 150 ° C. × 2 minutes, the second stage is 220 ° C. × 2 minutes, the third stage is 400 ° C. × 4 minutes, and 20 minutes after passing through the tenter. Six rolls were passed to give a double-side free process, and finally slit to 500 mm width to obtain polyimide film B.
Table 1 shows the physical property values of the obtained polyimide film B.
Next, sputtering and plating were performed in the same manner as in Production Example 1 to obtain a copper-clad laminate (CCL) B.
〔製造例3〕
(ポリイミドフィルムCの作成)
窒素導入管,温度計,攪拌棒を備えた反応容器内を窒素置換した後、フェニレンジアミン108質量部、N−メチル−2−ピロリドン4010質量部を加えて完全に溶解させた後、コロイダルシリカをジメチルアセトアミドに分散してなるスノーテックス(DMAC−ST30、日産化学工業社製)40.5質量部(シリカを8.1質量部含む)と、ジフェニルテトラカルボン酸二無水物292.5質量部を加え、25℃の反応温度で12時間攪拌すると、褐色の粘調なポリアミド酸溶液Cが得られた。この還元粘度は4.3dl/gであった。
このポリアミド酸溶液Cを、ポリエチレンテレフタレート製フィルムA−4100(東洋紡績社製)の無滑剤面上に、コンマコーターを用いてコーティングし、110℃にて5分間乾燥後、支持体から剥がさずにポリアミド酸フィルムを巻き取った。ポリアミド酸フィルムを3つの熱処理ゾーンを有するピンテンターに通し、一段目150℃×2分、2段目220℃×2分、3段目460℃×4分間の熱処理を行い、テンター通過後20分間に6本のロールを通過させて両面フリーのプロセスを与え、最終的に500mm幅にスリットして、厚さ25μmのポリイミドフィルムCを得た。
得られたポリイミドフィルムCの物性値を表1に示す。
次いで、製造例1と同様の方法でスパッタリング、めっきを行い、銅貼り積層板(CCL)Cを得た。
[Production Example 3]
(Preparation of polyimide film C)
After the inside of the reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod was replaced with nitrogen, 108 parts by mass of phenylenediamine and 4010 parts by mass of N-methyl-2-pyrrolidone were added and completely dissolved, and then colloidal silica was added. Snowtex (DMAC-ST30, manufactured by Nissan Chemical Industries, Ltd.) 40.5 parts by mass (including 8.1 parts by mass of silica) dispersed in dimethylacetamide and 292.5 parts by mass of diphenyltetracarboxylic dianhydride In addition, when the mixture was stirred at a reaction temperature of 25 ° C. for 12 hours, a brown viscous polyamic acid solution C was obtained. This reduced viscosity was 4.3 dl / g.
This polyamic acid solution C was coated on a non-lubricant surface of polyethylene terephthalate film A-4100 (manufactured by Toyobo Co., Ltd.) using a comma coater, dried at 110 ° C. for 5 minutes, and then not peeled off from the support. The polyamic acid film was wound up. The polyamic acid film is passed through a pin tenter having three heat treatment zones, the first stage is 150 ° C. × 2 minutes, the second stage is 220 ° C. × 2 minutes, the third stage is 460 ° C. × 4 minutes, and 20 minutes after passing through the tenter. Six rolls were passed to give a double-side free process, and finally slit to a width of 500 mm to obtain a polyimide film C having a thickness of 25 μm.
Table 1 shows the physical property values of the obtained polyimide film C.
Next, sputtering and plating were performed in the same manner as in Production Example 1 to obtain a copper-clad laminate (CCL) C.
〔製造例4〕
(フッ素樹脂フィルムの作成)
市販のフッ素樹脂を用い、従来公知の手法にてフッ素樹脂フィルムを作成した。
得られたフッ素樹脂フィルムの種類とその物性を表2、3に示す。
[Production Example 4]
(Create fluororesin film)
Using a commercially available fluororesin, a fluororesin film was prepared by a conventionally known method.
The types and physical properties of the obtained fluororesin film are shown in Tables 2 and 3.
〔実施例1〕
150mm×150mmのサイズに切り出したポリイミドフィルムA1の片面に官能基含有フッ素樹脂フィルムD1(Fluon PFA 接着グレード、旭硝子社製)、ポリイミドフィルムA1をこの順に配し、フッ素樹脂フィルムの融点以上である330℃、5MPaにて30分間加熱加圧成形を行い、ポリイミド樹脂層/フッ素樹脂層/ポリイミド樹脂層の多層ポリイミドフィルムを得た。得られた多層ポリイミドフィルムの厚さ比、貯蔵弾性率比、および線膨張係数の評価結果を表4に示す。
一方、150mm×150mmのサイズに切り出した銅貼り積層板(CCL)A1のポリイミドフィルムA1面に官能基含有フッ素樹脂フィルムD1、ポリイミドフィルムA1をこの順に配し、フッ素樹脂フィルムの融点以上である330℃、5MPaにて30分間加熱加圧成形を行い、銅層/ポリイミド樹脂層/フッ素樹脂層/ポリイミド樹脂層の片面銅貼り多層ポリイミドフィルムを得た。得られた片面銅貼り多層ポリイミドフィルムの反りの評価結果を表4に示す。
さらに、150mm×150mmのサイズに切り出した銅貼り積層板(CCL)A1のポリイミドフィルムA1面に官能基含有フッ素樹脂フィルムD1、銅貼り積層板(CCL)A1をこの順に配し、フッ素樹脂フィルムの融点以上である330℃、5MPaにて30分間加熱加圧成形を行い、銅層/ポリイミド樹脂層/フッ素樹脂層/ポリイミド樹脂層/銅層の両面銅貼り多層ポリイミドフィルムを得た。得られた両面銅貼り多層ポリイミドフィルムの耐湿熱試験、耐熱試験の評価結果を表4に示す。
[Example 1]
A functional group-containing fluororesin film D1 (Fluon PFA adhesive grade, manufactured by Asahi Glass Co., Ltd.) and a polyimide film A1 are arranged in this order on one side of a polyimide film A1 cut out to a size of 150 mm × 150 mm, and is 330 or higher than the melting point of the fluororesin film. Heat-press molding was performed at 5 ° C. for 30 minutes at a temperature of 5 ° C. to obtain a multilayer polyimide film of polyimide resin layer / fluorine resin layer / polyimide resin layer. Table 4 shows the evaluation results of the thickness ratio, storage elastic modulus ratio, and linear expansion coefficient of the obtained multilayer polyimide film.
On the other hand, the functional group-containing fluororesin film D1 and the polyimide film A1 are arranged in this order on the surface of the polyimide film A1 of the copper-clad laminate (CCL) A1 cut into a size of 150 mm × 150 mm, and the melting point of the fluororesin film is 330 or more. Heat-press molding was performed at 5 ° C. for 30 minutes at a temperature of 5 ° C. to obtain a single-sided copper-bonded multilayer polyimide film of copper layer / polyimide resin layer / fluorine resin layer / polyimide resin layer. Table 4 shows the evaluation results of the warpage of the obtained single-sided copper-clad multilayer polyimide film.
Furthermore, the functional group-containing fluororesin film D1 and the copper-clad laminate (CCL) A1 are arranged in this order on the polyimide film A1 surface of the copper-clad laminate (CCL) A1 cut into a size of 150 mm × 150 mm, and the fluororesin film Heating and pressing were performed for 30 minutes at 330 ° C. and 5 MPa, which is equal to or higher than the melting point, to obtain a double-sided copper-bonded multilayer polyimide film of copper layer / polyimide resin layer / fluorine resin layer / polyimide resin layer / copper layer. Table 4 shows the evaluation results of the moisture and heat resistance test and heat resistance test of the obtained double-sided copper-coated multilayer polyimide film.
〔実施例2〕
ポリイミドフィルムA1の代わりにポリイミドフィルムA2を、銅貼り積層板(CCL)A1の代わりに銅貼り積層板(CCL)A2を使用する以外は、実施例1と同様の方法で積層体を作成し、評価した。得られた多層ポリイミドフィルムの厚さ比、貯蔵弾性率比、および線膨張係数の評価結果、片面銅貼り多層ポリイミドフィルムの反りの評価結果、両面銅貼り多層ポリイミドフィルムの耐湿熱試験、耐熱試験の評価結果を表4に示す。
[Example 2]
A laminate is prepared in the same manner as in Example 1 except that polyimide film A2 is used instead of polyimide film A1, and copper-clad laminate (CCL) A2 is used instead of copper-clad laminate (CCL) A1. evaluated. Evaluation results of thickness ratio, storage elastic modulus ratio, and linear expansion coefficient of the obtained multilayer polyimide film, evaluation results of warpage of multilayer polyimide film with single-sided copper adhesion, wet heat resistance test of multilayer polyimide film with double-sided copper adhesion, heat resistance test The evaluation results are shown in Table 4.
〔実施例3、4〕
官能基含有フッ素樹脂フィルムD1の代わりに官能基含有フッ素樹脂フィルムD2を使用する以外は、実施例1、2と同様の方法で積層体を作成し、評価した。得られた多層ポリイミドフィルムの厚さ比、貯蔵弾性率比、および線膨張係数の評価結果、片面銅貼り多層ポリイミドフィルムの反りの評価結果、両面銅貼り多層ポリイミドフィルムの耐湿熱試験、耐熱試験の評価結果を表4に示す。
[Examples 3 and 4]
A laminate was prepared and evaluated in the same manner as in Examples 1 and 2 except that the functional group-containing fluororesin film D2 was used instead of the functional group-containing fluororesin film D1. Evaluation results of thickness ratio, storage elastic modulus ratio, and linear expansion coefficient of the obtained multilayer polyimide film, evaluation results of warpage of multilayer polyimide film with single-sided copper adhesion, wet heat resistance test of multilayer polyimide film with double-sided copper adhesion, heat resistance test The evaluation results are shown in Table 4.
〔実施例5、6〕
官能基含有フッ素樹脂フィルムD1の代わりに官能基含有フッ素樹脂フィルムD3を使用する以外は、実施例1、2と同様の方法で積層体を作成し、評価した。得られた多層ポリイミドフィルムの厚さ比、貯蔵弾性率比、および線膨張係数の評価結果、片面銅貼り多層ポリイミドフィルムの反りの評価結果、両面銅貼り多層ポリイミドフィルムの耐湿熱試験、耐熱試験の評価結果を表5に示す。
[Examples 5 and 6]
A laminate was prepared and evaluated in the same manner as in Examples 1 and 2 except that the functional group-containing fluororesin film D3 was used instead of the functional group-containing fluororesin film D1. Evaluation results of thickness ratio, storage elastic modulus ratio, and linear expansion coefficient of the obtained multilayer polyimide film, evaluation results of warpage of multilayer polyimide film with single-sided copper adhesion, wet heat resistance test of multilayer polyimide film with double-sided copper adhesion, heat resistance test The evaluation results are shown in Table 5.
〔実施例7〕
ポリイミドフィルムA1の代わりにポリイミドフィルムA3を、銅貼り積層板(CCL)A1の代わりに銅貼り積層板(CCL)A3を使用する以外は、実施例5と同様の方法で積層体を作成し、評価した。得られた多層ポリイミドフィルムの厚さ比、貯蔵弾性率比、および線膨張係数の評価結果、片面銅貼り多層ポリイミドフィルムの反りの評価結果、両面銅貼り多層ポリイミドフィルムの耐湿熱試験、耐熱試験の評価結果を表5に示す。
Example 7
A laminate is prepared in the same manner as in Example 5 except that polyimide film A3 is used instead of polyimide film A1, and copper-clad laminate (CCL) A3 is used instead of copper-clad laminate (CCL) A1. evaluated. Evaluation results of thickness ratio, storage elastic modulus ratio, and linear expansion coefficient of the obtained multilayer polyimide film, evaluation results of warpage of multilayer polyimide film with single-sided copper adhesion, wet heat resistance test of multilayer polyimide film with double-sided copper adhesion, heat resistance test The evaluation results are shown in Table 5.
〔実施例8〕
官能基含有フッ素樹脂フィルムD3の代わりに官能基含有フッ素樹脂フィルムD4を使用する以外は、実施例7と同様の方法で積層体を作成し、評価した。得られた多層ポリイミドフィルムの厚さ比、貯蔵弾性率比、および線膨張係数の評価結果、片面銅貼り多層ポリイミドフィルムの反りの評価結果、両面銅貼り多層ポリイミドフィルムの耐湿熱試験、耐熱試験の評価結果を表5に示す。
Example 8
A laminate was prepared and evaluated in the same manner as in Example 7 except that the functional group-containing fluororesin film D4 was used instead of the functional group-containing fluororesin film D3. Evaluation results of thickness ratio, storage elastic modulus ratio, and linear expansion coefficient of the obtained multilayer polyimide film, evaluation results of warpage of multilayer polyimide film with single-sided copper adhesion, wet heat resistance test of multilayer polyimide film with double-sided copper adhesion, heat resistance test The evaluation results are shown in Table 5.
〔実施例9〕
ポリイミドフィルムA3の代わりにポリイミドフィルムA4を、銅貼り積層板(CCL)A3の代わりに銅貼り積層板(CCL)A4を使用する以外は、実施例8と同様の方法で積層体を作成し、評価した。得られた多層ポリイミドフィルムの厚さ比、貯蔵弾性率比、および線膨張係数の評価結果、片面銅貼り多層ポリイミドフィルムの反りの評価結果、両面銅貼り多層ポリイミドフィルムの耐湿熱試験、耐熱試験の評価結果を表5に示す。
Example 9
Create a laminate in the same manner as in Example 8 except that polyimide film A4 is used instead of polyimide film A3, and copper-clad laminate (CCL) A4 is used instead of copper-clad laminate (CCL) A3. evaluated. Evaluation results of thickness ratio, storage elastic modulus ratio, and linear expansion coefficient of the obtained multilayer polyimide film, evaluation results of warpage of multilayer polyimide film with single-sided copper adhesion, wet heat resistance test of multilayer polyimide film with double-sided copper adhesion, heat resistance test The evaluation results are shown in Table 5.
〔実施例10〜13〕
150mm×150mmのサイズに切り出したポリイミドフィルムA2を日放電子製プラズマ処理機にセットし、真空に排気した後に、酸素ガスを導入し、放電を起こして、プラズマ処理をおこなった。処理条件は、真空度3×10Pa、ガス流量1.5SLM、放電電力12KWである。得られたプラズマ処理ポリイミドフィルムA2の片面に官能基未含有フッ素樹脂フィルムE(Fluon PFA、旭硝子社製)、F(ネオフロン PFA、ダイキン工業社製)、G(ネオフロン FEP、ダイキン工業社製)、H(EPE、ダイキン工業社製)をそれぞれ配し、フッ素樹脂フィルムの融点以上である330℃、5MPaにて30分間加熱加圧成形を行い、多層ポリイミドフィルムを得た。得られた多層ポリイミドフィルムの厚さ比、貯蔵弾性率比、および線膨張係数の評価結果を表6に示す。
一方、銅貼り積層板(CCL)A2を日放電子製プラズマ処理機にセットし、真空に排気した後に、酸素ガスを導入し、放電を起こして、プラズマ処理をおこなった。処理条件は、真空度3×10Pa、ガス流量1.5SLM、放電電力12KWである。得られたプラズマ処理銅貼り積層板(CCL)A2を150mm×150mmのサイズに切り出し、そのポリイミドフィルムA2面に官能基未含有フッ素樹脂フィルムE〜H、プラズマ処理ポリイミドフィルムA2をこの順に配し、フッ素樹脂フィルムの融点以上である330℃、5MPaにて30分間加熱加圧成形を行い、銅層/ポリイミド樹脂層/フッ素樹脂層/ポリイミド樹脂層の片面銅貼り多層ポリイミドフィルムを得た。得られた片面銅貼り多層ポリイミドフィルムの反りの評価結果を表6に示す。
さらに、150mm×150mmのサイズに切り出したプラズマ処理銅貼り積層板(CCL)A2のポリイミドフィルムA2面に官能基未含有フッ素樹脂フィルムE〜H、プラズマ処理銅貼り積層板(CCL)A2をこの順に配し、フッ素樹脂フィルムの融点以上である330℃、5MPaにて30分間加熱加圧成形を行い、銅層/ポリイミド樹脂層/フッ素樹脂層/ポリイミド樹脂層/銅層の両面銅貼り多層ポリイミドフィルムを得た。得られた両面銅貼り多層ポリイミドフィルムの耐湿熱試験、耐熱試験の評価結果を表6に示す。
[Examples 10 to 13]
The polyimide film A2 cut out to a size of 150 mm × 150 mm was set in a Nikketsu plasma treatment machine and evacuated to a vacuum. Then, oxygen gas was introduced to cause discharge, and plasma treatment was performed. The processing conditions are a degree of vacuum of 3 × 10 Pa, a gas flow rate of 1.5 SLM, and a discharge power of 12 KW. Functional group-free fluororesin film E (Fluon PFA, manufactured by Asahi Glass Co., Ltd.), F (neoflon PFA, manufactured by Daikin Industries, Ltd.), G (neoflon FEP, manufactured by Daikin Industries, Inc.), H (EPE, manufactured by Daikin Industries, Ltd.) was disposed, and heat-pressure molding was performed for 30 minutes at 330 ° C. and 5 MPa, which is higher than the melting point of the fluororesin film, to obtain a multilayer polyimide film. Table 6 shows the evaluation results of the thickness ratio, storage elastic modulus ratio, and linear expansion coefficient of the obtained multilayer polyimide film.
On the other hand, the copper-clad laminate (CCL) A2 was set in a Nikketsu plasma processing machine and evacuated to a vacuum, and then oxygen gas was introduced to cause discharge to perform plasma processing. The processing conditions are a degree of vacuum of 3 × 10 Pa, a gas flow rate of 1.5 SLM, and a discharge power of 12 KW. The obtained plasma-treated copper-clad laminate (CCL) A2 was cut into a size of 150 mm × 150 mm, and the functional group-free fluororesin films E to H and the plasma-treated polyimide film A2 were arranged in this order on the surface of the polyimide film A2, Heat-press molding was performed at 330 ° C. and 5 MPa, which is equal to or higher than the melting point of the fluororesin film, for 30 minutes to obtain a single-sided copper-bonded multilayer polyimide film of copper layer / polyimide resin layer / fluororesin layer / polyimide resin layer. Table 6 shows the evaluation results of the warpage of the obtained single-sided copper-clad multilayer polyimide film.
Furthermore, functional group-free fluororesin films E to H and plasma-treated copper-clad laminate (CCL) A2 are placed in this order on the polyimide film A2 surface of the plasma-treated copper-clad laminate (CCL) A2 cut into a size of 150 mm × 150 mm. And heat-pressure molding for 30 minutes at 330 ° C. and 5 MPa, which is above the melting point of the fluororesin film, and a copper layer / polyimide resin layer / fluororesin layer / polyimide resin layer / copper layer double-sided copper-bonded multilayer polyimide film Got. Table 6 shows the evaluation results of the heat and moisture resistance test and heat resistance test of the obtained double-sided copper-clad multilayer polyimide film.
〔比較例1〕
ポリイミドフィルムA2の代わりにポリイミドフィルムBを、銅貼り積層板(CCL)A2の代わりに銅貼り積層板(CCL)Bを使用する以外は、実施例2と同様の方法で積層体を作成し、評価した。得られた多層ポリイミドフィルムの厚さ比、貯蔵弾性率比、および線膨張係数の評価結果、片面銅貼り多層ポリイミドフィルムの反りの評価結果、両面銅貼り多層ポリイミドフィルムの耐湿熱試験、耐熱試験の評価結果を表7に示す。
ポリイミドフィルムの線膨張係数が大きいと、得られる多層ポリイミドフィルムの線膨張係数も大きくなり、銅の線膨張係数との乖離が大きくなるため、信頼性試験後の接着性および品位が低下した。
[Comparative Example 1]
A laminate is created in the same manner as in Example 2 except that polyimide film B is used instead of polyimide film A2, and copper-clad laminate (CCL) B is used instead of copper-clad laminate (CCL) A2. evaluated. Evaluation results of thickness ratio, storage elastic modulus ratio, and linear expansion coefficient of the obtained multilayer polyimide film, evaluation results of warpage of multilayer polyimide film with single-sided copper adhesion, wet heat resistance test of multilayer polyimide film with double-sided copper adhesion, heat resistance test Table 7 shows the evaluation results.
When the linear expansion coefficient of the polyimide film is large, the linear expansion coefficient of the obtained multilayer polyimide film is also large, and the difference from the linear expansion coefficient of copper is large, so that the adhesion and quality after the reliability test are lowered.
〔比較例2、3〕
官能基含有フッ素樹脂フィルムD1の代わりに官能基含有フッ素樹脂フィルムI(Fluon LM−ETFE AH2000、旭硝子社製)、J(ネオフロン EFEP RP5000、ダイキン工業社製)を使用する以外は、実施例2と同様の方法で積層体を作成し、評価した。得られた多層ポリイミドフィルムの厚さ比、貯蔵弾性率比、および線膨張係数の評価結果、片面銅貼り多層ポリイミドフィルムの反りの評価結果、両面銅貼り多層ポリイミドフィルムの耐湿熱試験、耐熱試験の評価結果を表7に示す。
ETFEは、PFA、FEP、EPE等の全フッ素系の樹脂と比較して、耐熱性、耐湿熱性、および電気特性に劣るため、信頼性試験後の接着性および品位が低下した。
[Comparative Examples 2 and 3]
Example 2 except that functional group-containing fluororesin film I (Fluon LM-ETFE AH2000, manufactured by Asahi Glass Co., Ltd.) and J (neoflon EFEP RP5000, manufactured by Daikin Industries, Ltd.) are used instead of functional group-containing fluororesin film D1. A laminate was prepared and evaluated in the same manner. Evaluation results of thickness ratio, storage elastic modulus ratio, and linear expansion coefficient of the obtained multilayer polyimide film, evaluation results of warpage of multilayer polyimide film with single-sided copper adhesion, wet heat resistance test of multilayer polyimide film with double-sided copper adhesion, heat resistance test Table 7 shows the evaluation results.
Since ETFE is inferior in heat resistance, moist heat resistance, and electrical properties as compared with perfluorinated resins such as PFA, FEP, and EPE, the adhesiveness and quality after the reliability test are lowered.
〔比較例4、5〕
官能基未含有フッ素樹脂フィルムEの代わりに官能基未含有フッ素樹脂フィルムK(Fluon ETFE、旭硝子社製)、L(ネオフロン ETFE、ダイキン工業社製)を使用する以外は、実施例10と同様の方法で積層体を作成し、評価した。得られた多層ポリイミドフィルムの厚さ比、貯蔵弾性率比、および線膨張係数の評価結果、片面銅貼り多層ポリイミドフィルムの反りの評価結果、両面銅貼り多層ポリイミドフィルムの耐湿熱試験、耐熱試験の評価結果を表7に示す。
ETFEは、PFA、FEP、EPE等の全フッ素系の樹脂と比較して、耐熱性、耐湿熱性、および電気特性に劣るため、信頼性試験後の接着性および品位が低下した。
[Comparative Examples 4 and 5]
A functional group-free fluororesin film K (Fluon ETFE, manufactured by Asahi Glass Co., Ltd.) and L (neoflon ETFE, manufactured by Daikin Industries, Ltd.) are used in place of the functional group-free fluororesin film E. A laminate was prepared by the method and evaluated. Evaluation results of thickness ratio, storage elastic modulus ratio, and linear expansion coefficient of the obtained multilayer polyimide film, evaluation results of warpage of multilayer polyimide film with single-sided copper adhesion, wet heat resistance test of multilayer polyimide film with double-sided copper adhesion, heat resistance test Table 7 shows the evaluation results.
Since ETFE is inferior in heat resistance, moist heat resistance, and electrical properties as compared with perfluorinated resins such as PFA, FEP, and EPE, the adhesiveness and quality after the reliability test are lowered.
〔比較例6〕
ポリイミドフィルムA1の代わりにポリイミドフィルムA4を、銅貼り積層板(CCL)A1の代わりに銅貼り積層板(CCL)A4を使用する以外は、実施例1と同様の方法で積層体を作成し、評価した。得られた多層ポリイミドフィルムの厚さ比、貯蔵弾性率比、および線膨張係数の評価結果、片面銅貼り多層ポリイミドフィルムの反りの評価結果、両面銅貼り多層ポリイミドフィルムの耐湿熱試験、耐熱試験の評価結果を表8に示す。
フッ素樹脂の厚さ比が小さすぎると、得られる多層フッ素樹脂の線膨張係数は小さくなるが、フッ素樹脂の特長である低吸湿率の寄与が小さくなるため、信頼性試験後の接着性および品位が低下した。
[Comparative Example 6]
A laminate is created in the same manner as in Example 1 except that polyimide film A4 is used instead of polyimide film A1, and copper-clad laminate (CCL) A4 is used instead of copper-clad laminate (CCL) A1. evaluated. Evaluation results of thickness ratio, storage elastic modulus ratio, and linear expansion coefficient of the obtained multilayer polyimide film, evaluation results of warpage of multilayer polyimide film with single-sided copper adhesion, wet heat resistance test of multilayer polyimide film with double-sided copper adhesion, heat resistance test The evaluation results are shown in Table 8.
If the thickness ratio of the fluororesin is too small, the linear expansion coefficient of the resulting multi-layer fluororesin will be small, but the contribution of low moisture absorption, which is a feature of the fluororesin, will be small. Decreased.
〔比較例7、8〕
官能基含有フッ素樹脂フィルムD1の代わりに官能基含有フッ素樹脂フィルムD2、D3を使用する以外は、比較例6と同様の方法で積層体を作成し、評価した。得られた多層ポリイミドフィルムの厚さ比、貯蔵弾性率比、および線膨張係数の評価結果、片面銅貼り多層ポリイミドフィルムの反りの評価結果、両面銅貼り多層ポリイミドフィルムの耐湿熱試験、耐熱試験の評価結果を表8に示す。
フッ素樹脂の厚さ比が小さすぎると、得られる多層フッ素樹脂の線膨張係数は小さくなるが、フッ素樹脂の特長である低吸湿率の寄与が小さくなるため、信頼性試験後の接着性および品位が低下した。
[Comparative Examples 7 and 8]
A laminate was prepared and evaluated in the same manner as in Comparative Example 6 except that functional group-containing fluororesin films D2 and D3 were used instead of functional group-containing fluororesin film D1. Evaluation results of thickness ratio, storage elastic modulus ratio, and linear expansion coefficient of the obtained multilayer polyimide film, evaluation results of warpage of multilayer polyimide film with single-sided copper adhesion, wet heat resistance test of multilayer polyimide film with double-sided copper adhesion, heat resistance test The evaluation results are shown in Table 8.
If the thickness ratio of the fluororesin is too small, the linear expansion coefficient of the resulting multi-layer fluororesin will be small, but the contribution of low moisture absorption, which is a feature of the fluororesin, will be small. Decreased.
〔比較例9、10〕
ポリイミドフィルムA3の代わりにポリイミドフィルムA1、A2を、銅貼り積層板(CCL)A3の代わりに銅貼り積層板(CCL)A1、A2を使用する以外は、実施例8と同様の方法で積層体を作成し、評価した。得られた多層ポリイミドフィルムの厚さ比、貯蔵弾性率比、および線膨張係数の評価結果、片面銅貼り多層ポリイミドフィルムの反りの評価結果、両面銅貼り多層ポリイミドフィルムの耐湿熱試験、耐熱試験の評価結果を表8に示す。
フッ素樹脂の厚さ比が大きすぎると、得られる多層フッ素樹脂の線膨張係数も大きくなり、銅の線膨張係数との乖離が大きくなるため、信頼性試験後の接着性および品位が低下した。
[Comparative Examples 9 and 10]
A laminate in the same manner as in Example 8 except that polyimide films A1 and A2 are used instead of polyimide film A3, and copper-clad laminates (CCL) A1 and A2 are used instead of copper-clad laminate (CCL) A3. Was created and evaluated. Evaluation results of thickness ratio, storage elastic modulus ratio, and linear expansion coefficient of the obtained multilayer polyimide film, evaluation results of warpage of multilayer polyimide film with single-sided copper adhesion, wet heat resistance test of multilayer polyimide film with double-sided copper adhesion, heat resistance test The evaluation results are shown in Table 8.
When the thickness ratio of the fluororesin is too large, the linear expansion coefficient of the obtained multilayer fluororesin is also increased, and the difference from the linear expansion coefficient of copper is increased, so that the adhesiveness and quality after the reliability test are lowered.
〔応用例1〕
150mm×150mmのサイズに切り出した銅貼り積層板(CCL)A2のポリイミドフィルムA2面に官能基含有フッ素樹脂フィルムD2を配し、フッ素樹脂フィルムの融点以上である330℃、5MPaにて30分間加熱加圧成形を行い、銅層/ポリイミド樹脂層/フッ素樹脂層の3層積層体を得た。
一方、実施例4で得られた銅層/ポリイミド樹脂層/フッ素樹脂層/ポリイミド樹脂層/銅層の両面銅貼り多層ポリイミドフィルムを使用し、銅層の片面にフォトレジスト(FR−200、シプレー社製)を塗布・乾燥後にガラスフォトマスクで密着露光し、さらに1.2質量%KOH水溶液にて現像した。次に、HClと過酸化水素を含む塩化第二銅のエッチングラインで、40℃、2kgf/cm2のスプレー圧でエッチングし、テストパターンを形成後、洗浄を行い、125℃、1時間のアニール処理を行い、片面パターン付片面銅貼り多層ポリイミドフィルムを得た。
片面パターン付片面銅貼り多層ポリイミドフィルムのパターン形成面と、3層積層体のフッ素樹脂面を向かい合わせ、フッ素樹脂フィルムの融点以上である330℃、5MPaにて30分間加熱加圧成形を行い、図1に示すような多層プリント配線板を得た。得られた多層プリント配線板は、銅配線が誘電率の低いフッ素樹脂に覆われているため、高周波用部材として非常に有用である。
[Application 1]
A functional group-containing fluororesin film D2 is arranged on the surface of the polyimide film A2 of a copper-clad laminate (CCL) A2 cut out to a size of 150 mm × 150 mm, and heated at 330 ° C. and 5 MPa, which is higher than the melting point of the fluororesin film, for 30 minutes. Pressure forming was performed to obtain a three-layer laminate of copper layer / polyimide resin layer / fluorine resin layer.
On the other hand, a multilayer polyimide film with a copper layer / polyimide resin layer / fluorine resin layer / polyimide resin layer / copper layer obtained in Example 4 was used, and a photoresist (FR-200, Shipley on one side of the copper layer was used. After application and drying, the film was exposed to light with a glass photomask, and further developed with a 1.2 mass% KOH aqueous solution. Next, using a cupric chloride etching line containing HCl and hydrogen peroxide, etching is performed at a spray pressure of 40 ° C. and 2 kgf / cm 2 to form a test pattern, followed by cleaning, and annealing at 125 ° C. for 1 hour. Processing was performed to obtain a single-sided copper-clad multilayer polyimide film with a single-sided pattern.
The pattern forming surface of the single-sided copper-clad multilayer polyimide film with a single-sided pattern faces the fluororesin surface of the three-layer laminate, and heat-press molding is performed at 330 ° C. and 5 MPa, which is higher than the melting point of the fluororesin film, for 30 minutes, A multilayer printed wiring board as shown in FIG. 1 was obtained. The obtained multilayer printed wiring board is very useful as a high-frequency member because the copper wiring is covered with a fluororesin having a low dielectric constant.
〔応用例2〕
実施例4で得られた銅層/ポリイミド樹脂層/フッ素樹脂層/ポリイミド樹脂層/銅層の両面銅貼り多層ポリイミドフィルムを使用し、銅層の両面にフォトレジスト(FR−200、シプレー社製)を塗布・乾燥後にガラスフォトマスクで密着露光し、さらに1.2質量%KOH水溶液にて現像した。次に、HClと過酸化水素を含む塩化第二銅のエッチングラインで、40℃、2kgf/cm2のスプレー圧でエッチングし、テストパターンを形成後、洗浄を行い、125℃、1時間のアニール処理を行い、両面パターン付多層ポリイミドフィルムを得た。
両面パターン付多層ポリイミドフィルムの両面に、応用例1で得られた3層積層体のフッ素樹脂面をそれぞれ向かい合わせ、フッ素樹脂フィルムの融点以上である330℃、5MPaにて30分間加熱加圧成形を行い、図2に示すような多層プリント配線板を得た。得られた多層プリント配線板は、銅配線が誘電率の低いフッ素樹脂に覆われているため、高周波用部材として非常に有用である。
[Application 2]
The copper layer / polyimide resin layer / fluorine resin layer / polyimide resin layer / copper layer double-sided copper-bonded multilayer polyimide film obtained in Example 4 was used, and photoresist (FR-200, manufactured by Shipley Co., Ltd.) was used on both sides of the copper layer. After coating and drying, the film was exposed to light with a glass photomask, and further developed with a 1.2% by mass aqueous KOH solution. Next, using a cupric chloride etching line containing HCl and hydrogen peroxide, etching is performed at a spray pressure of 40 ° C. and 2 kgf / cm 2 to form a test pattern, followed by cleaning, and annealing at 125 ° C. for 1 hour. It processed and obtained the multilayer polyimide film with a double-sided pattern.
The fluororesin surfaces of the three-layer laminate obtained in Application Example 1 are faced to both sides of the multilayer polyimide film with a double-sided pattern, and heat-press molding at 330 ° C. and 5 MPa, which is higher than the melting point of the fluororesin film, for 30 minutes. A multilayer printed wiring board as shown in FIG. 2 was obtained. The obtained multilayer printed wiring board is very useful as a high-frequency member because the copper wiring is covered with a fluororesin having a low dielectric constant.
本発明のポリイミド樹脂層/フッ素樹脂層/ポリイミド樹脂層がこの順に積層されてなる多層ポリイミドフィルムで、その線膨張係数が10ppm/℃〜25ppm/℃である多層ポリイミドフィルム、この多層ポリイミドフィルムの少なくとも片面に銅層が積層された銅貼り多層ポリイミドフィルムおよびこの銅層を一部除去して回路パターンとしたプリント配線板は、高温高湿などの環境下においても、反りや歪みを殆ど生じなく、その結果得られたプリント配線板などの品質、生産時の歩留まりも向上し、電気特性に優れた高品質の電子部品製造が実現できるため、産業上極めて有意義である。 A multilayer polyimide film in which the polyimide resin layer / fluorine resin layer / polyimide resin layer of the present invention is laminated in this order, the multilayer polyimide film having a linear expansion coefficient of 10 ppm / ° C. to 25 ppm / ° C., at least of the multilayer polyimide film Copper-coated multilayer polyimide film with a copper layer laminated on one side and a printed wiring board with a circuit pattern obtained by removing a part of this copper layer produce almost no warping or distortion even in an environment such as high temperature and high humidity. As a result, the quality of the printed wiring board obtained and the yield at the time of production are improved, and high-quality electronic component manufacturing with excellent electrical characteristics can be realized.
1 銅
2 フッ素樹脂層
3 ポリイミド樹脂層
1 Copper 2 Fluorine resin layer 3 Polyimide resin layer
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009201542A JP2011051203A (en) | 2009-09-01 | 2009-09-01 | Multilayer polyimide film and printed wiring board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009201542A JP2011051203A (en) | 2009-09-01 | 2009-09-01 | Multilayer polyimide film and printed wiring board |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011051203A true JP2011051203A (en) | 2011-03-17 |
Family
ID=43940738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009201542A Pending JP2011051203A (en) | 2009-09-01 | 2009-09-01 | Multilayer polyimide film and printed wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011051203A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101299652B1 (en) * | 2011-09-07 | 2013-08-23 | 주식회사 엘지화학 | Flexible metal laminate containing fluoropolymer |
WO2014106930A1 (en) * | 2013-01-07 | 2014-07-10 | 日本化薬株式会社 | High-frequency circuit substrate |
JP2015133480A (en) * | 2013-12-10 | 2015-07-23 | 旭硝子株式会社 | Adhesive film for coverlay, coverlay, wiring board and method of manufacturing electronic apparatus |
JP2015176921A (en) * | 2014-03-13 | 2015-10-05 | 東レ・デュポン株式会社 | Coverlay for high frequency circuit board, and base material for flexible flat cable |
JP2016097677A (en) * | 2014-11-18 | 2016-05-30 | エルジー・ケム・リミテッド | Flexible metal laminate |
US9462688B2 (en) | 2011-09-07 | 2016-10-04 | Lg Chem, Ltd. | Flexible metal laminate containing fluoropolymer |
JP2017024265A (en) * | 2015-07-22 | 2017-02-02 | 株式会社カネカ | Insulating film, method for manufacturing insulating film, and method for manufacturing metal-clad laminate |
WO2017069216A1 (en) * | 2015-10-22 | 2017-04-27 | 旭硝子株式会社 | Production method for wiring substrate |
WO2017069217A1 (en) * | 2015-10-22 | 2017-04-27 | 旭硝子株式会社 | Production method for wiring substrate |
KR101740802B1 (en) | 2015-07-07 | 2017-06-08 | 마이크로코즘 테크놀리지 씨오.,엘티디 | Polyimide resin, thin film and method for manufacturing thereof |
KR101769101B1 (en) | 2013-12-13 | 2017-08-30 | 주식회사 엘지화학 | Poly-imide resin with low dielectric constant and flexible metal laminate using the same |
WO2020213515A1 (en) * | 2019-04-16 | 2020-10-22 | Agc株式会社 | Laminate, method for manufacturing printed circuit board, printed circuit board, and antenna |
CN112533364A (en) * | 2019-09-17 | 2021-03-19 | 日本梅克特隆株式会社 | Substrate for flexible printed wiring board and method for manufacturing the same |
JP2021048180A (en) * | 2019-09-17 | 2021-03-25 | 日本メクトロン株式会社 | Method for manufacturing fluorine-containing core base material, method for manufacturing substrate for flexible printed wiring board, fluorine-containing core base material and substrate for flexible printed wiring board |
KR102268708B1 (en) * | 2020-09-10 | 2021-06-25 | (주)상아프론테크 | Low dielectric composite film for copper clad laminate and low dielectric copper clad laminate comprising the same |
KR102374540B1 (en) * | 2021-06-02 | 2022-03-16 | (주)상아프론테크 | low dielectric composite film for high speed communication, manufacturing method thereof and copper clad laminate containing the same |
KR102374543B1 (en) * | 2021-06-02 | 2022-03-17 | (주)상아프론테크 | low dielectric composite film for high speed communication, manufacturing method thereof and copper clad laminate containing the same |
CN114590000A (en) * | 2022-03-04 | 2022-06-07 | 佛山市达孚新材料有限公司 | Polyetherimide composite film and preparation method thereof |
WO2023145135A1 (en) * | 2022-01-28 | 2023-08-03 | 信越ポリマー株式会社 | Laminated body and metal-clad laminate having laminated body |
WO2023157369A1 (en) * | 2022-02-16 | 2023-08-24 | 信越ポリマー株式会社 | Laminate and metal-clad laminate board having said laminate |
JP7482104B2 (en) | 2021-12-28 | 2024-05-13 | ニチアス株式会社 | LAMINATE AND METHOD FOR MANUFACTURING LAMINATE |
-
2009
- 2009-09-01 JP JP2009201542A patent/JP2011051203A/en active Pending
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014526399A (en) * | 2011-09-07 | 2014-10-06 | エルジー・ケム・リミテッド | Fluorine resin-containing soft metal laminate |
US9462688B2 (en) | 2011-09-07 | 2016-10-04 | Lg Chem, Ltd. | Flexible metal laminate containing fluoropolymer |
KR101299652B1 (en) * | 2011-09-07 | 2013-08-23 | 주식회사 엘지화학 | Flexible metal laminate containing fluoropolymer |
WO2014106930A1 (en) * | 2013-01-07 | 2014-07-10 | 日本化薬株式会社 | High-frequency circuit substrate |
JP2015133480A (en) * | 2013-12-10 | 2015-07-23 | 旭硝子株式会社 | Adhesive film for coverlay, coverlay, wiring board and method of manufacturing electronic apparatus |
KR101769101B1 (en) | 2013-12-13 | 2017-08-30 | 주식회사 엘지화학 | Poly-imide resin with low dielectric constant and flexible metal laminate using the same |
JP2015176921A (en) * | 2014-03-13 | 2015-10-05 | 東レ・デュポン株式会社 | Coverlay for high frequency circuit board, and base material for flexible flat cable |
JP2016097677A (en) * | 2014-11-18 | 2016-05-30 | エルジー・ケム・リミテッド | Flexible metal laminate |
US10226914B2 (en) | 2014-11-18 | 2019-03-12 | Shengyi Technology Co., Ltd. | Flexible metal laminate |
KR101740802B1 (en) | 2015-07-07 | 2017-06-08 | 마이크로코즘 테크놀리지 씨오.,엘티디 | Polyimide resin, thin film and method for manufacturing thereof |
JP2017024265A (en) * | 2015-07-22 | 2017-02-02 | 株式会社カネカ | Insulating film, method for manufacturing insulating film, and method for manufacturing metal-clad laminate |
CN108141968B (en) * | 2015-10-22 | 2020-07-07 | Agc株式会社 | Method for manufacturing wiring board |
KR102546379B1 (en) * | 2015-10-22 | 2023-06-21 | 에이지씨 가부시키가이샤 | Manufacturing method of wiring board |
CN108141967A (en) * | 2015-10-22 | 2018-06-08 | 旭硝子株式会社 | The manufacturing method of wiring substrate |
KR20180071244A (en) * | 2015-10-22 | 2018-06-27 | 아사히 가라스 가부시키가이샤 | Method for manufacturing wiring board |
KR20180071245A (en) * | 2015-10-22 | 2018-06-27 | 아사히 가라스 가부시키가이샤 | Method for manufacturing wiring board |
JPWO2017069216A1 (en) * | 2015-10-22 | 2018-08-09 | 旭硝子株式会社 | Wiring board manufacturing method |
JPWO2017069217A1 (en) * | 2015-10-22 | 2018-08-09 | 旭硝子株式会社 | Wiring board manufacturing method |
WO2017069217A1 (en) * | 2015-10-22 | 2017-04-27 | 旭硝子株式会社 | Production method for wiring substrate |
US10271428B2 (en) | 2015-10-22 | 2019-04-23 | AGC Inc. | Process for producing wiring substrate |
WO2017069216A1 (en) * | 2015-10-22 | 2017-04-27 | 旭硝子株式会社 | Production method for wiring substrate |
KR102587271B1 (en) * | 2015-10-22 | 2023-10-10 | 에이지씨 가부시키가이샤 | Manufacturing method of wiring board |
CN108141968A (en) * | 2015-10-22 | 2018-06-08 | 旭硝子株式会社 | The manufacturing method of wiring substrate |
CN113677532A (en) * | 2019-04-16 | 2021-11-19 | Agc株式会社 | Laminate, method for manufacturing printed circuit board, and antenna |
WO2020213515A1 (en) * | 2019-04-16 | 2020-10-22 | Agc株式会社 | Laminate, method for manufacturing printed circuit board, printed circuit board, and antenna |
CN112533364A (en) * | 2019-09-17 | 2021-03-19 | 日本梅克特隆株式会社 | Substrate for flexible printed wiring board and method for manufacturing the same |
JP2021048180A (en) * | 2019-09-17 | 2021-03-25 | 日本メクトロン株式会社 | Method for manufacturing fluorine-containing core base material, method for manufacturing substrate for flexible printed wiring board, fluorine-containing core base material and substrate for flexible printed wiring board |
JP7349301B2 (en) | 2019-09-17 | 2023-09-22 | 日本メクトロン株式会社 | Method for manufacturing a flexible printed wiring board substrate, and flexible printed wiring board substrate |
JP2021048178A (en) * | 2019-09-17 | 2021-03-25 | 日本メクトロン株式会社 | Method for manufacturing substrate for flexible printed wiring board and substrate for flexible printed wiring board |
CN112533364B (en) * | 2019-09-17 | 2024-08-09 | 日本梅克特隆株式会社 | Substrate for flexible printed wiring board and method for manufacturing same |
JP7349302B2 (en) | 2019-09-17 | 2023-09-22 | 日本メクトロン株式会社 | Method for manufacturing fluorine-containing core base material and method for manufacturing substrate for flexible printed wiring board |
WO2022055028A1 (en) * | 2020-09-10 | 2022-03-17 | (주)상아프론테크 | Low dielectric composite film for copper clad laminate (ccl), and low dielectric copper clad laminte (ccl) comprising same |
JP2023518535A (en) * | 2020-09-10 | 2023-05-02 | サン―ア フロンテック カンパニー,リミテッド | Low dielectric composite film for copper clad laminate (CCL) and low dielectric copper clad laminate (CCL) including the same |
CN115210077A (en) * | 2020-09-10 | 2022-10-18 | 象牙弗隆泰克株式会社 | Low dielectric composite film for copper-clad laminate and copper-clad laminate comprising same |
JP7465365B2 (en) | 2020-09-10 | 2024-04-10 | サン―ア フロンテック カンパニー,リミテッド | Low dielectric composite film for copper foil laminates (CCL) and low dielectric copper foil laminates (CCL) including the same |
KR102268708B1 (en) * | 2020-09-10 | 2021-06-25 | (주)상아프론테크 | Low dielectric composite film for copper clad laminate and low dielectric copper clad laminate comprising the same |
KR102374540B1 (en) * | 2021-06-02 | 2022-03-16 | (주)상아프론테크 | low dielectric composite film for high speed communication, manufacturing method thereof and copper clad laminate containing the same |
KR102374543B1 (en) * | 2021-06-02 | 2022-03-17 | (주)상아프론테크 | low dielectric composite film for high speed communication, manufacturing method thereof and copper clad laminate containing the same |
JP7482104B2 (en) | 2021-12-28 | 2024-05-13 | ニチアス株式会社 | LAMINATE AND METHOD FOR MANUFACTURING LAMINATE |
WO2023145135A1 (en) * | 2022-01-28 | 2023-08-03 | 信越ポリマー株式会社 | Laminated body and metal-clad laminate having laminated body |
WO2023157369A1 (en) * | 2022-02-16 | 2023-08-24 | 信越ポリマー株式会社 | Laminate and metal-clad laminate board having said laminate |
CN114590000A (en) * | 2022-03-04 | 2022-06-07 | 佛山市达孚新材料有限公司 | Polyetherimide composite film and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5625906B2 (en) | Multilayer fluororesin film and printed wiring board | |
JP2011051203A (en) | Multilayer polyimide film and printed wiring board | |
JP5476821B2 (en) | Multilayer fluoropolymer substrate | |
JP3953051B2 (en) | Polyimide film and copper-clad laminated film using the same | |
JP5556416B2 (en) | Polyimide board, metal laminated polyimide board, and printed wiring board | |
KR102635402B1 (en) | Polyimide film, metal-clad laminate and circuit board | |
JP2009056771A (en) | Metal/resin composite, circuit substrate and laminated circuit substrate | |
JP2011011456A (en) | Multilayered fluoroplastic film, and multilayered fluoroplastic substrate | |
JP2017177604A (en) | Polyimide laminate film | |
JP2009083201A (en) | Multi-layer polyimide film and structure, multi-layer circuit substrate | |
JP2009269372A (en) | Polyimide laminated board pasted with metal and printed wiring board | |
JP2006269615A (en) | Printed wiring board | |
JP3912619B2 (en) | Adhesive sheet, metal laminate sheet and printed wiring board | |
JP4257587B2 (en) | Flexible metal foil laminate | |
JP2009286094A (en) | Multilayered polyimide film | |
JP5610018B2 (en) | Multilayer fluoropolymer substrate | |
JP2024066870A (en) | Polyimide Laminate | |
JP2009272583A (en) | Polyimide multilayer substrate | |
JP4876396B2 (en) | Printed wiring board | |
JP5737530B2 (en) | Metal foil laminate in which aromatic polyamideimide is laminated on metal foil | |
JP2007254530A (en) | Laminated adhesive sheet, metal layer-adhered laminated adhesive sheet and circuit substrate | |
JP4872466B2 (en) | Metallized polyimide film and method for producing the same | |
JP2006199740A (en) | Polyimide film and its manufacturing method | |
JP2007302756A (en) | Metallized polyimide film | |
JP5206310B2 (en) | Polyimide film and method for producing the same |