[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015176921A - Coverlay for high frequency circuit board, and base material for flexible flat cable - Google Patents

Coverlay for high frequency circuit board, and base material for flexible flat cable Download PDF

Info

Publication number
JP2015176921A
JP2015176921A JP2014050759A JP2014050759A JP2015176921A JP 2015176921 A JP2015176921 A JP 2015176921A JP 2014050759 A JP2014050759 A JP 2014050759A JP 2014050759 A JP2014050759 A JP 2014050759A JP 2015176921 A JP2015176921 A JP 2015176921A
Authority
JP
Japan
Prior art keywords
coverlay
ffc
fluorine
polyimide film
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014050759A
Other languages
Japanese (ja)
Other versions
JP6388483B2 (en
Inventor
正太郎 日高
Shotaro Hidaka
正太郎 日高
町田 英明
Hideaki Machida
英明 町田
洋和 小森
Hirokazu Komori
洋和 小森
辰也 村上
Tatsuya Murakami
辰也 村上
剛志 稲葉
Tsuyoshi Inaba
剛志 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Du Pont Toray Co Ltd
Original Assignee
Daikin Industries Ltd
Du Pont Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Du Pont Toray Co Ltd filed Critical Daikin Industries Ltd
Priority to JP2014050759A priority Critical patent/JP6388483B2/en
Publication of JP2015176921A publication Critical patent/JP2015176921A/en
Application granted granted Critical
Publication of JP6388483B2 publication Critical patent/JP6388483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coverlay and a base material for flexible flat cable (FFC), each having a polyimide film and a fluorine resin used therein, which is superior in the adhesion between a polyimide film layer and a fluorine resin layer, especially the adhesion after having gone through a process under a high-temperature and high-humidity condition.SOLUTION: A coverlay or base material for a flexible flat cable (FFC) comprises: a polyimide film layer; and a fluorine resin layer. Even after an elapse of 96 hours under the environment of 85°C and 85 RH%, the adhesion force (damp-proof adhesion force) between the polyimide film layer and the fluorine resin layer is still retained to be 50% or larger to an initial adhesion force between the polyimide film layer and the fluorine resin layer.

Description

本発明は、耐湿密着力に優れた高周波回路基板用カバーレイ及びフレキシブルフラットケーブル用基材に関する。   The present invention relates to a high-frequency circuit board cover lay and a flexible flat cable base material having excellent moisture-proof adhesion.

フレキシブルプリント基板(以下、FPCともいう)やフレキシブルフラットケーブル(以下、FFCともいう)は、携帯電話やタブレット、パーソナルコンピュータのハードディスクなど、広く電子・電気機器に使用されている。一般的に、FPCは絶縁体層と銅箔層とからなる銅張り積層体(CCL)を加工し、非直線の複雑な電気回路を形成した後、該回路部を保護するために絶縁層と接着剤層からなるカバーレイ(CL)の接着剤部を回路部へ取り付ける工程を経て作られるものである。
また、FFCは、絶縁体層と接着剤層からなる基材と配線状に形成した銅箔などの導体を用い、基材の接着剤部同士の間に導体を複数本並べ、接着して得られる直線状の電気回路である。
よって、FPCにおけるカバーレイとFFCにおける基材とは、構造的には同一のものである。
Flexible printed circuit boards (hereinafter also referred to as FPCs) and flexible flat cables (hereinafter also referred to as FFCs) are widely used in electronic and electrical devices such as mobile phones, tablets, and hard disks of personal computers. In general, an FPC is formed by processing a copper clad laminate (CCL) composed of an insulator layer and a copper foil layer to form a non-linear complex electric circuit, and then protecting the circuit portion with an insulating layer. It is made through a process of attaching an adhesive part of a cover lay (CL) made of an adhesive layer to a circuit part.
The FFC is obtained by using a base material composed of an insulator layer and an adhesive layer and a conductor such as a copper foil formed in a wiring shape, and arranging and bonding a plurality of conductors between the adhesive parts of the base material. It is a linear electric circuit.
Accordingly, the coverlay in the FPC and the base material in the FFC are structurally the same.

上記カバーレイ又は基材としては、耐熱性、寸法安定性、柔軟性、高屈曲性、薄膜化の容易性等の性質を考慮して、FPCの場合は通常各種ポリイミドフィルムと接着剤を組み合わせたカバーレイが、FFCの場合は通常、各種ポリエチレンテレフタレート(以下、PETともいう)フィルムと接着剤を組み合わせたものが主に使用されている。   In consideration of properties such as heat resistance, dimensional stability, flexibility, high flexibility, and ease of thinning, the coverlay or base material is usually combined with various polyimide films and adhesives in the case of FPC. When the coverlay is FFC, usually a combination of various polyethylene terephthalate (hereinafter also referred to as PET) films and an adhesive is mainly used.

近年、伝送する情報量の増加に伴って、高周波数用途の回路基板の要求が高まっている。伝送する情報量を増大させるには回路の周波数を増大させる必要があるが、この場合、周波数の増加に伴い、伝送損失も高くなるという問題が発生する。伝送損失が高い回路は実用的ではないため、従来品よりも高い周波数領域で情報を効率的に伝送するためには、伝送損失を下げる必要がある。   In recent years, with an increase in the amount of information to be transmitted, there is an increasing demand for circuit boards for high frequency applications. In order to increase the amount of information to be transmitted, it is necessary to increase the frequency of the circuit. In this case, however, there is a problem that the transmission loss increases as the frequency increases. Since a circuit with a high transmission loss is not practical, it is necessary to reduce the transmission loss in order to efficiently transmit information in a higher frequency region than a conventional product.

伝送損失は、FPCにおける銅張り積層板やカバーレイ、FFC用基材の誘電率を低下させることによって下げることができるため、低誘電率の銅張り積層板、カバーレイ、及びFFC用基材が求められている。このような背景の中で、特許文献1には、高周波回路基板製造時の作業性に優れ、かつ低誘電率なカバーレイとして、ポリイミドフィルムとフッ素樹脂とを貼り合わせてなるカバーレイが開示されている。
しかしながら、前記カバーレイは、高温高湿下処理後のポリイミドフィルム層とフッ素樹脂層間の密着性が十分ではない場合があるため、高温高湿下処理後も密着性が良好な高周波回路に適したカバーレイが求められていた。
Transmission loss can be reduced by lowering the dielectric constant of copper-clad laminates, coverlays, and FFC substrates in FPCs, so low dielectric constant copper-clad laminates, coverlays, and FFC substrates It has been demanded. In such a background, Patent Document 1 discloses a coverlay formed by bonding a polyimide film and a fluororesin as a coverlay that is excellent in workability at the time of manufacturing a high-frequency circuit board and has a low dielectric constant. ing.
However, the coverlay may not be sufficient in the adhesion between the polyimide film layer and the fluororesin layer after the high-temperature and high-humidity treatment. A coverlay was sought.

また、FFC用基材としては、絶縁層をPETフィルム、接着剤層をフッ素樹脂とした組み合わせによる高周波回路に適した基材の開発も考えられる。しかしこの場合、絶縁体層と接着剤層とからなる基材を製造する際、もしくは該基材を用いてFFCを形成する際に、接着剤層であるフッ素樹脂層の融点以上の温度が基材にかかるが、絶縁体層のPETフィルムは、該温度における耐熱性が不足することから、絶縁体層として、フッ素樹脂よりも耐熱性の優れたポリイミドフィルムなどの高分子フィルムが求められると考えられる。
このため、特許文献1のカバーレイの構成は、高周波回路FFC用基材にも適用できると考えられるが、この場合においても、FPCにおけるカバーレイ同様、高温高湿下処理後のポリイミドフィルム層とフッ素樹脂層間の密着力が十分ではない場合があることが指摘されている。
従って、ポリイミドフィルム層とフッ素樹脂層間の高温高湿下処理後の密着性に優れた高周波回路基板用カバーレイ及びフレキシブルフラットケーブル用基材が望まれている。
In addition, as a substrate for FFC, it is conceivable to develop a substrate suitable for a high-frequency circuit by a combination in which an insulating layer is a PET film and an adhesive layer is a fluorine resin. However, in this case, when a base material composed of an insulator layer and an adhesive layer is manufactured, or when an FFC is formed using the base material, a temperature equal to or higher than the melting point of the fluororesin layer that is the adhesive layer is the basis. Although the insulation layer PET film is insufficient in heat resistance at the temperature, a polymer film such as a polyimide film having heat resistance superior to that of a fluororesin is required as the insulation layer. It is done.
For this reason, although it is thought that the structure of the coverlay of patent document 1 is applicable also to the base material for high frequency circuit FFCs, also in this case, like the coverlay in FPC, It has been pointed out that the adhesion between the fluororesin layers may not be sufficient.
Therefore, a high-frequency circuit board cover lay and a flexible flat cable base material having excellent adhesion after treatment under high temperature and high humidity between the polyimide film layer and the fluororesin layer are desired.

特願2013−072570号Japanese Patent Application No. 2013-072570

本発明は、上記現状に鑑み、高温高湿下処理後のポリイミドフィルム層とフッ素樹脂層間の密着性に優れた、ポリイミドフィルム及びフッ素樹脂を使用した高周波回路におけるFPC用カバーレイ及びFFC用基材を提供することを目的とする。   In view of the above situation, the present invention provides an FPC coverlay and an FFC base material in a high-frequency circuit using a polyimide film and a fluororesin that have excellent adhesion between the polyimide film layer and the fluororesin layer after being treated under high temperature and high humidity. The purpose is to provide.

すなわち、本発明は以下のカバーレイ又はFFC用基材等に関する。
[1]ポリイミドフィルム層とフッ素樹脂層とからなるカバーレイ又はフレキシブルフラットケーブル(FFC)用基材であって、ポリイミドフィルム層とフッ素樹脂層間の85℃、85RH%環境下での96時間経過後の密着力(耐湿密着力)が、ポリイミドフィルム層とフッ素樹脂層間の初期密着力に対して50%以上保持されることを特徴とするカバーレイ又はFFC用基材。
[2]ポリイミドフィルム層の少なくとも任意の一部分のガラス転移点が300℃以下であることを特徴とする前記[1]に記載のカバーレイ又はFFC用基材。
[3]ポリイミドフィルム層の少なくとも任意の一部分における30℃での貯蔵弾性率を100%とした際に、300℃における貯蔵弾性率が50%以下となることを特徴とする前記[1]又は[2]に記載のカバーレイ又はFFC用基材。
[4]ポリイミドフィルム層の少なくとも任意の一部分における30℃での損失弾性率を100%とした際に、30〜300℃領域における損失弾性率が、200%以上の値となる頂点を持つことを特徴とする前記[1]〜[3]のいずれか1項に記載のカバーレイ又はFFC用基材。
[5]フッ素樹脂の融点が200℃以下であることを特徴とする前記[1]〜[4]のいずれか1項に記載のカバーレイ又はFFC用基材。
[6]フッ素樹脂が、含フッ素エチレン性重合体であり、前記含フッ素エチレン性重合体はカルボニル基を含有することを特徴とする前記[1]〜[5]のいずれか1項に記載のカバーレイ又はFFC用基材。
[7]前記含フッ素エチレン性重合体のカルボニル基の含有量が、主鎖炭素数1×10個に対して合計3〜1000個であることを特徴とする前記[6]に記載のカバーレイ又はFFC用基材。
[8]フッ素樹脂が、カーボネート基、カルボン酸ハライド基及びカルボン酸基からなる群から選択される少なくとも1種を、主鎖炭素数1×10個に対して合計3〜1000個有する含フッ素エチレン性重合体からなることを特徴とする前記[1]〜[5]のいずれか1項に記載のカバーレイ又はFFC用基材。
[9]フッ素樹脂が、テトラフルオロエチレン、フッ化ビニリデン、クロロトリフルオロエチレン、フッ化ビニル、ヘキサフルオロプロピレン、ヘキサフルオロイソブテン、下記式(X):
CH=CR(CF2)n (X)
(式中、R1はH又はFを表し、R2はH、F又はClを表し、nは1〜10の正の整数を表す。)
で表される単量体及び炭素数2〜10のパーフルオロ(アルキルビニルエーテル)類からなる群から選ばれる1種以上の含フッ素エチレン性単量体、又は前記含フッ素エチレン性単量体と炭素数5以下のエチレン性単量体とを重合してなる含フッ素エチレン性重合体であることを特徴とする前記[1]〜[5]のいずれか1項に記載のカバーレイ又はFFC用基材。
[10]フッ素樹脂が、少なくとも下記(a)、(b)及び(c)を重合してなる共重合体である前記[1]〜[5]のいずれか1項に記載のカバーレイ又はFFC用基材。
(a)テトラフルオロエチレン20〜90モル%
(b)エチレン10〜80モル%
(c)式CF=CFR (Y)
(式中、RはCF又はORを表し、Rは炭素数1〜5のパーフルオロアルキル基を表す。)
で表される化合物1〜70モル%
That is, the present invention relates to the following coverlay or FFC base material.
[1] A base material for a coverlay or flexible flat cable (FFC) comprising a polyimide film layer and a fluororesin layer, after 96 hours in an 85 ° C. and 85 RH% environment between the polyimide film layer and the fluororesin layer The coverlay or the FFC base material is characterized in that the adhesion strength (moisture-resistant adhesion strength) is maintained at 50% or more with respect to the initial adhesion strength between the polyimide film layer and the fluororesin layer.
[2] The coverlay or FFC substrate according to [1] above, wherein the glass transition point of at least an arbitrary part of the polyimide film layer is 300 ° C. or lower.
[3] When the storage elastic modulus at 30 ° C. in at least an arbitrary part of the polyimide film layer is 100%, the storage elastic modulus at 300 ° C. is 50% or less [1] or [ [2] The coverlay or FFC substrate according to [2].
[4] When the loss elastic modulus at 30 ° C. in at least an arbitrary part of the polyimide film layer is 100%, the loss elastic modulus in the region of 30 to 300 ° C. has an apex that is 200% or more. The coverlay or FFC substrate according to any one of [1] to [3], which is characterized.
[5] The coverlay or FFC substrate according to any one of [1] to [4], wherein the fluororesin has a melting point of 200 ° C. or lower.
[6] The fluororesin is a fluorine-containing ethylenic polymer, and the fluorine-containing ethylenic polymer contains a carbonyl group, according to any one of the above [1] to [5] Coverlay or FFC substrate.
[7] The cover according to [6], wherein the content of carbonyl groups in the fluorine-containing ethylenic polymer is 3 to 1000 in total with respect to 1 × 10 6 main chain carbon atoms. Ray or FFC substrate.
[8] Fluorine-containing fluorine-containing resin having at least one selected from the group consisting of a carbonate group, a carboxylic acid halide group, and a carboxylic acid group for a total of 3 to 1000 carbon atoms with respect to 1 × 10 6 main chain carbon atoms The coverlay or FFC substrate according to any one of the above [1] to [5], comprising an ethylenic polymer.
[9] The fluororesin is tetrafluoroethylene, vinylidene fluoride, chlorotrifluoroethylene, vinyl fluoride, hexafluoropropylene, hexafluoroisobutene, the following formula (X):
CH 2 = CR 1 (CF 2 ) n R 2 (X)
(In the formula, R1 represents H or F, R2 represents H, F or Cl, and n represents a positive integer of 1 to 10.)
1 or more types of fluorine-containing ethylenic monomers selected from the group consisting of monomers represented by formula (2) and perfluoro (alkyl vinyl ethers) having 2 to 10 carbon atoms, or the fluorine-containing ethylenic monomers and carbon The coverlay or FFC group according to any one of [1] to [5] above, which is a fluorine-containing ethylenic polymer obtained by polymerizing an ethylenic monomer having a number of 5 or less Wood.
[10] The coverlay or FFC according to any one of [1] to [5], wherein the fluororesin is a copolymer obtained by polymerizing at least the following (a), (b) and (c): Substrate for use.
(A) Tetrafluoroethylene 20-90 mol%
(B) 10-80 mol% ethylene
(C) Formula CF 2 = CFR 3 (Y)
(In the formula, R 3 represents CF 3 or OR 4 , and R 4 represents a perfluoroalkyl group having 1 to 5 carbon atoms.)
1 to 70 mol% of a compound represented by

本発明のカバーレイ又はFFC用基材は、ポリイミドフィルム層とフッ素樹脂層間の耐湿密着力に優れ、高周波回路基板製造時の作業性を高めることができるため、工業的に有利である。また、本発明のカバーレイ又はFFC用基材を用いた高周波回路基板は、低誘電率のフッ素樹脂の誘電率が低く、伝送損失を抑えることができる。   The coverlay or FFC substrate of the present invention is industrially advantageous because it is excellent in moisture-resistant adhesion between the polyimide film layer and the fluororesin layer and can improve the workability during the production of the high-frequency circuit board. In addition, the high-frequency circuit board using the coverlay or FFC base material of the present invention has a low dielectric constant of fluororesin having a low dielectric constant, and can suppress transmission loss.

本発明のカバーレイ又はFFC用基材は、ポリイミドフィルム層とフッ素樹脂層とからなるカバーレイ又はFFC用基材であって、ポリイミドフィルム層とフッ素樹脂層間の85℃、85RH%環境下での96時間経過後の密着力(耐湿密着力)が、ポリイミドフィルム層とフッ素樹脂層間の初期密着力に対して50%以上保持されることを特徴とする。
本発明において、「ポリイミドフィルム層とフッ素樹脂層間の初期密着力」とは、ポリイミドフィルムとフッ素樹脂とを接着状態に積層させるもしくは貼り合わせることにより得られる本発明のカバーレイ又はFFC用基材において、FPC又はFFCに対応した例えば前記[0002]に記載したような加工を施してFPC又はFFCを作製した後で、該加工にかかる処理以外の加熱、加湿等の外的要因を負荷していない状態の、本発明におけるカバーレイ又はFFC用基材のポリイミドフィルム層とフッ素樹脂層間の密着力の事を指す。初期密着力を測定する際には、サンプルを加工後、24時間以内に測定することが好ましく、特に好ましくは、12時間以内である。
The coverlay or FFC base material of the present invention is a coverlay or FFC base material composed of a polyimide film layer and a fluororesin layer. The adhesive strength after 96 hours (moisture-resistant adhesive strength) is maintained at 50% or more of the initial adhesive strength between the polyimide film layer and the fluororesin layer.
In the present invention, “initial adhesion between the polyimide film layer and the fluororesin layer” is the coverlay or FFC substrate obtained by laminating or bonding the polyimide film and the fluororesin in an adhesive state. After processing FPC or FFC corresponding to FPC or FFC, for example, after manufacturing FPC or FFC, external factors such as heating and humidification other than the processing related to the processing are not loaded. It refers to the adhesion between the polyimide film layer and the fluororesin layer of the coverlay or FFC substrate in the present invention. When measuring the initial adhesion, it is preferable to measure within 24 hours after processing the sample, and particularly preferably within 12 hours.

前記カバーレイ又はFFC用基材に用いるポリイミドフィルムの製造に際しては、まず芳香族ジアミン成分と酸無水物成分とを有機溶媒中で重合させることにより、ポリアミック酸溶液を得る。   In producing a polyimide film used for the coverlay or FFC substrate, first, an aromatic diamine component and an acid anhydride component are polymerized in an organic solvent to obtain a polyamic acid solution.

前記芳香族ジアミン成分の具体例としては、パラフェニレンジアミン、メタフェニレンジアミン、ベンジジン、パラキシリレンジアミン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルホン、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、1,5−ジアミノナフタレン、3,3’−ジメトキシベンチジン、1,4−ビス(3メチル−5アミノフェニル)ベンゼン、3,3’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノベンゾフェノン、9,9’−ビス(4−アミノフェニル)フルオレン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、4,4’−ビス(アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、2,2’−ビス(4−アミノフェノキシフェニル)プロパン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、3,3’−ジヒドロキシ−4,4’−ジアミノビフェニル等が挙げられる。これらは、1種単独で用いてもよく、2種以上を混合して用いてもよい。
芳香族ジアミン成分は、好ましくは、パラフェニレンジアミン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、4,4’−ビス(アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、2,2’−ビス(4−アミノフェノキシフェニル)プロパン等であり、より好ましくは、4,4’−ジアミノジフェニルエーテル、1,3−ビス(4−アミノフェノキシ)ベンゼン、2,2’−ビス(4−アミノフェノキシフェニル)プロパン等である。
Specific examples of the aromatic diamine component include paraphenylenediamine, metaphenylenediamine, benzidine, paraxylylenediamine, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, 3,3′-dimethyl-4,4′-diaminodiphenylmethane, 1,5-diaminonaphthalene, 3,3′-dimethoxybenzidine, 1,4-bis (3methyl-5 Aminophenyl) benzene, 3,3′-dimethyl-4,4′-diaminobiphenyl, 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2′-bis (trifluoromethyl) -4,4 '-Diaminobiphenyl, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 9,9'- Bis (4-aminophenyl) fluorene, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 4, 4'-bis (aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, 2,2'-bis (4-aminophenoxyphenyl) propane, bis [4- (4-aminophenoxy) phenyl ] Sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 3,3′-dihydroxy-4,4′-diamino Biphenyl etc. are mentioned. These may be used singly or in combination of two or more.
The aromatic diamine component is preferably paraphenylenediamine, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4- Aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 4,4′-bis (aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 2,2′-bis (4-aminophenoxyphenyl) propane and the like, more preferably 4,4′-diaminodiphenyl ether, 1,3-bis (4-aminophenoxy) benzene, 2,2′-bis (4-aminophenoxyphenyl) Propane and the like.

前記酸無水物成分の具体例としては、ピロメリット酸、3,3’,4,4’−ビフェニルテトラカルボン酸、2,3’,3,4’−ビフェニルテトラカルボン酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、2,3,6,7−ナフタレンジカルボン酸、
オキシジフタル酸、3,4,3’,4’−ビフェニルスルホンテトラカルボン酸、4,4’−(2,2−ヘキサフルオロイソプロピリデン)ジフタル酸、メタ(パラ)−フェニル−3,4,3,4’−テトラカルボン酸、オキシジフタル酸、2,2−ビス(3,4−ジカルボキシフェニル)エーテル、ピリジン−2,3,5,6−テトラカルボン酸及びこれらのアミド形成性誘導体等の酸無水物が挙げられる。これらは、1種単独で用いてもよく、2種以上を混合して用いてもよい。
酸無水物成分は、好ましくは、ピロメリット酸、3,3’,4,4’−ビフェニルテトラカルボン酸、オキシジフタル酸、2,3’,3,4’−ビフェニルテトラカルボン酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸等であり、より好ましくは、ピロメリット酸、3,3’,4,4’−ビフェニルテトラカルボン酸、オキシジフタル酸等である。
Specific examples of the acid anhydride component include pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3 ′, 3,4′-biphenyltetracarboxylic acid, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid, 2,3,6,7-naphthalenedicarboxylic acid,
Oxydiphthalic acid, 3,4,3 ′, 4′-biphenylsulfonetetracarboxylic acid, 4,4 ′-(2,2-hexafluoroisopropylidene) diphthalic acid, meta (para) -phenyl-3,4,3 Acid anhydrides such as 4'-tetracarboxylic acid, oxydiphthalic acid, 2,2-bis (3,4-dicarboxyphenyl) ether, pyridine-2,3,5,6-tetracarboxylic acid and amide-forming derivatives thereof Things. These may be used singly or in combination of two or more.
The acid anhydride component is preferably pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, oxydiphthalic acid, 2,3 ′, 3,4′-biphenyltetracarboxylic acid, 3,3 ′. 4,4′-benzophenone tetracarboxylic acid, and more preferably pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, oxydiphthalic acid, and the like.

本発明のカバーレイ又はFFC用基材に用いるポリイミドフィルムの製造原料としては、主として、パラフェニレンジアミン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、4,4’−ビス(アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、2,2’−ビス(4−アミノフェノキシフェニル)プロパンからなる群から選ばれる1以上の芳香族ジアミン成分と、ピロメリット酸、3,3’,4,4’−ビフェニルテトラカルボン酸、オキシジフタル酸、2,3’,3,4’−ビフェニルテトラカルボン酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸からなる群から選ばれる1以上の酸無水物成分を含むものが、好適に挙げられる。   The raw materials for producing the polyimide film used for the coverlay or FFC substrate of the present invention are mainly paraphenylenediamine, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 1,4-bis (4- Aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 4,4′-bis (aminophenoxy) biphenyl, 4,4′-bis ( One or more aromatic diamine components selected from the group consisting of 3-aminophenoxy) biphenyl and 2,2′-bis (4-aminophenoxyphenyl) propane, pyromellitic acid, 3,3 ′, 4,4′- Biphenyltetracarboxylic acid, oxydiphthalic acid, 2,3 ′, 3,4′-biphenyltetracarboxylic acid, 3,3 , Those containing one or more acid anhydride component selected from the group consisting of 4,4'-benzophenone tetracarboxylic acid, preferably exemplified.

また、本発明において、ポリアミック酸溶液の形成に使用される有機溶媒としては、例えば、ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド系溶媒、N,N−ジメチルホルムド、N,N−ジエチルホルムアミド等のホルムアミド系溶媒、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド等のアセトアミド系溶媒、N−メチル−2−ピロリドン、N−ビニル−2−ピロリドン等のピロリドン系溶媒、フェノール、o−,m−,又はp−クレゾール、キシレノール、ハロゲン化フェノール、カテコール等のフェノール系溶媒、又はヘキサメチルホスホルアミド、γ−ブチロラクトン等の非プロトン性極性溶媒等を挙げることができ、これらを単独又は2種以上を混合物として用いるのが望ましいが、さらにはキシレン、トルエン等の芳香族炭化水素も使用できる。   In the present invention, examples of the organic solvent used for forming the polyamic acid solution include sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide, and formamide such as N, N-dimethylform and N, N-diethylformamide. Solvents, acetamide solvents such as N, N-dimethylacetamide and N, N-diethylacetamide, pyrrolidone solvents such as N-methyl-2-pyrrolidone and N-vinyl-2-pyrrolidone, phenol, o-, m- , Or a phenolic solvent such as p-cresol, xylenol, halogenated phenol, and catechol, or an aprotic polar solvent such as hexamethylphosphoramide and γ-butyrolactone. These may be used alone or in combination of two or more. Is preferably used as a mixture. Emissions, also aromatic hydrocarbons such as toluene can be used.

重合方法は、特に限定されず、公知のいずれの方法で行ってもよく、例えば、(1)先に芳香族ジアミン成分全量を溶媒中に入れ、その後酸無水物成分を芳香族ジアミン成分全量と当量になるよう加えて重合する方法。   The polymerization method is not particularly limited and may be carried out by any known method. For example, (1) the aromatic diamine component total amount is first put in a solvent, and then the acid anhydride component is converted into the aromatic diamine component total amount. A method of polymerizing by adding to an equivalent amount.

(2)先に酸無水物成分全量を溶媒中に入れ、その後芳香族ジアミン成分を酸無水物成分と当量になるよう加えて重合する方法。   (2) A method in which the entire amount of the acid anhydride component is first put in a solvent, and then the aromatic diamine component is added in an amount equivalent to the acid anhydride component for polymerization.

(3)一方の芳香族ジアミン成分(a1)を溶媒中に入れた後、反応成分に対して一方の酸無水物成分(b1)が95〜105モル%となる比率で反応に必要な時間混合した後、もう一方の芳香族ジアミン成分(a2)を添加し、続いて、もう一方の酸無水物成分(b2)を全芳香族ジアミン成分と全酸無水物成分とがほぼ当量になるように添加して重合する方法。   (3) After putting one aromatic diamine component (a1) in a solvent, mixing for the time required for the reaction at a ratio of 95 to 105 mol% of one acid anhydride component (b1) with respect to the reaction component After that, the other aromatic diamine component (a2) is added, and then the other acid anhydride component (b2) is added so that the total aromatic diamine component and the total acid anhydride component are approximately equivalent. A method of adding and polymerizing.

(4)一方の酸無水物成分(b1)を溶媒中に入れた後、反応成分に対して一方の芳香族ジアミン成分(a1)が95〜105モル%となる比率で反応に必要な時間混合した後、もう一方の酸無水物成分(b2)を添加し、続いてもう一方の芳香族ジアミン成分(a2)を全芳香族ジアミン成分と全酸無水物成分とがほぼ当量になるように添加して重合する方法。   (4) After putting one acid anhydride component (b1) in a solvent, mixing for a time required for the reaction at a ratio of 95 to 105 mol% of one aromatic diamine component (a1) with respect to the reaction component After that, the other acid anhydride component (b2) is added, and then the other aromatic diamine component (a2) is added so that the total aromatic diamine component and the total acid anhydride component are approximately equivalent. And then polymerize.

(5)溶媒中で一方の芳香族ジアミン成分と酸無水物成分をどちらかが過剰になるよう反応させてポリアミック酸溶液(A)を調整し、別の溶媒中でもう一方の芳香族ジアミン成分と酸無水物成分をどちらかが過剰になるよう反応させポリアミック酸溶液(B)を調製し、得られた各ポリアミック酸溶液(A)と(B)を混合し、重合を完結する方法が挙げられる。前記(5)の方法において、ポリアミック酸溶液(A)を調整するに際し芳香族ジアミン成分が過剰の場合、ポリアミック酸溶液(B)では酸無水物成分を過剰に、またポリアミック酸溶液(A)で酸無水物成分が過剰の場合、ポリアミック酸溶液(B)では芳香族ジアミン成分を過剰にし、ポリアミック酸溶液(A)と(B)を混ぜ合わせこれら反応に使用される全芳香族ジアミン成分と酸無水物成分とがほぼ当量になるよう調整する。   (5) A polyamic acid solution (A) is prepared by reacting one aromatic diamine component and an acid anhydride component in a solvent so that either one becomes excessive, and the other aromatic diamine component in another solvent. The polyamic acid solution (B) is prepared by reacting the acid anhydride component with either acid anhydride component, and the resulting polyamic acid solutions (A) and (B) are mixed to complete the polymerization. It is done. In the method of (5), when the aromatic diamine component is excessive in preparing the polyamic acid solution (A), the polyamic acid solution (B) has an excess of acid anhydride component and the polyamic acid solution (A). When the acid anhydride component is excessive, the polyamic acid solution (B) makes the aromatic diamine component excessive, mixes the polyamic acid solutions (A) and (B), and uses the total aromatic diamine component and acid used in these reactions. Adjust so that the anhydride component is approximately equivalent.

なお、重合方法はこれらに限定されることはなく、その他公知の方法を用いてもよい。   The polymerization method is not limited to these, and other known methods may be used.

こうして得られるポリアミック酸溶液は、通常5〜40重量%の固形分を含有し、好ましくは10〜30重量%の固形分を含有する。また、その粘度は、ブルックフィールド粘度計による測定値で通常10〜10000Pa・sであり、安定した送液のために、好ましくは300〜5000Pa・sである。また、有機溶媒溶液中のポリアミック酸は部分的にイミド化されていてもよい。   The polyamic acid solution thus obtained usually contains 5 to 40% by weight of solid content, and preferably contains 10 to 30% by weight of solid content. The viscosity is usually 10 to 10000 Pa · s as measured by a Brookfield viscometer, and preferably 300 to 5000 Pa · s for stable liquid feeding. Moreover, the polyamic acid in the organic solvent solution may be partially imidized.

次に、前記ポリアミック酸溶液を用いた本発明のポリイミドフィルムの製造方法について説明する。   Next, the manufacturing method of the polyimide film of this invention using the said polyamic acid solution is demonstrated.

ポリイミドフィルムを製膜する方法としては、ポリアミック酸溶液をフィルム状にキャストし熱的に脱環化脱溶媒させてポリイミドフィルムを得る方法、及びポリアミック酸溶液に環化触媒及び脱水剤を混合し化学的に脱環化させてゲルフィルムを作製し、これを加熱脱溶媒することによりポリイミドフィルムを得る方法が挙げられる。   As a method for forming a polyimide film, a polyamic acid solution is cast into a film and thermally decyclized and desolvated to obtain a polyimide film, and a polyamic acid solution is mixed with a cyclization catalyst and a dehydrating agent. A method of obtaining a polyimide film by producing a gel film by thermally decyclizing and desolvating it by heating is mentioned.

前記ポリアミック酸溶液は、環化触媒(イミド化触媒)、脱水剤及びゲル化遅延剤等を含有することができる。   The polyamic acid solution may contain a cyclization catalyst (imidization catalyst), a dehydrating agent, a gelation retarder, and the like.

本発明で使用される環化触媒の具体例としては、トリメチルアミン、トリエチレンジアミン等の脂肪族第3級アミン、ジメチルアニリン等の芳香族第3級アミン、及びイソキノリン、ピリジン、ベータピコリン等の複素環第3級アミン等が挙げられるが、複素環式第3級アミンが好ましい。これらは、1種単独で使用してもよく、2種以上を混合して用いてもよい。   Specific examples of the cyclization catalyst used in the present invention include aliphatic tertiary amines such as trimethylamine and triethylenediamine, aromatic tertiary amines such as dimethylaniline, and heterocyclic rings such as isoquinoline, pyridine and betapicoline. Although a tertiary amine etc. are mentioned, a heterocyclic tertiary amine is preferable. These may be used individually by 1 type, and 2 or more types may be mixed and used for them.

本発明で使用される脱水剤の具体例としては、無水酢酸、無水プロピオン酸、無水酪酸等の脂肪族カルボン酸無水物、及び無水安息香酸等の芳香族カルボン酸無水物等が挙げられるが、無水酢酸及び/又は無水安息香酸が好ましい。   Specific examples of the dehydrating agent used in the present invention include aliphatic carboxylic acid anhydrides such as acetic anhydride, propionic anhydride and butyric anhydride, and aromatic carboxylic acid anhydrides such as benzoic anhydride. Acetic anhydride and / or benzoic anhydride are preferred.

ポリアミック酸溶液からポリイミドフィルムを製造する方法としては、前記環化触媒及び前記脱水剤を含有させたポリアミック酸溶液を、スリット付き口金から支持体上に流延してフィルム状に成型し、支持体上でイミド化を一部進行させて自己支持性を有するゲルフィルムとした後、支持体より剥離し、加熱乾燥/イミド化し、熱処理を行う方法が挙げられる。   As a method for producing a polyimide film from a polyamic acid solution, a polyamic acid solution containing the cyclization catalyst and the dehydrating agent is cast from a slit-attached base onto a support, and is molded into a film. Examples of the method include a method in which imidization is partially advanced to form a gel film having self-supporting property, and then peeled from the support, heat-dried / imidized, and heat-treated.

前記支持体とは、金属製の回転ドラムやエンドレスベルトであり、その温度は液体又は気体の熱媒により及び/又は電気ヒーター等の輻射熱により制御される。   The support is a metal rotating drum or endless belt, and its temperature is controlled by a liquid or gaseous heat medium and / or by radiant heat from an electric heater or the like.

前記ゲルフィルムは、支持体からの受熱及び/又は熱風や電気ヒーター等の熱源からの受熱により通常30〜200℃、好ましくは40〜150℃に加熱されて閉環反応し、遊離した有機溶媒等の揮発分を乾燥させることにより自己支持性を有するようになり、支持体から剥離される。   The gel film is usually heated to 30 to 200 ° C., preferably 40 to 150 ° C. by receiving heat from the support and / or receiving heat from a heat source such as hot air or an electric heater, and a ring-closing reaction is performed. By drying the volatile matter, it becomes self-supporting and is peeled off from the support.

前記支持体から剥離されたゲルフィルムは、必要に応じて、回転ロールにより走行速度を規制しながら走行方向に延伸処理を施されてもよい。機械搬送方向への延伸倍率(MDX)、及び機械搬送方向に直交する方向への延伸倍率(TDX)は、1.01〜3.0倍、好ましくは1.05〜2.0倍で実施される。   The gel film peeled off from the support may be stretched in the traveling direction while regulating the traveling speed with a rotating roll, if necessary. The draw ratio (MDX) in the machine conveyance direction and the draw ratio (TDX) in the direction perpendicular to the machine conveyance direction are 1.01 to 3.0 times, preferably 1.05 to 2.0 times. The

前記の乾燥ゾーンで乾燥したフィルムは、熱風、赤外ヒーター等で15秒から10分加熱される。次いで、熱風及び/又は電気ヒーター等により、250〜500℃の温度で15秒から20分熱処理を行う。   The film dried in the drying zone is heated for 15 seconds to 10 minutes with hot air, an infrared heater or the like. Next, heat treatment is performed at a temperature of 250 to 500 ° C. for 15 seconds to 20 minutes with hot air and / or an electric heater.

また、走行速度を調整しポリイミドフィルムの厚みを調整するが、ポリイミドフィルムの厚みとしては、通常2〜250μm程度であり、2〜100μm程度が好ましい。これより薄くても厚くてもフィルムの製膜性が著しく悪化するので好ましくない。   Moreover, although the running speed is adjusted and the thickness of a polyimide film is adjusted, as a thickness of a polyimide film, it is about 2-250 micrometers normally, and about 2-100 micrometers is preferable. If it is thinner or thicker than this, the film-forming property of the film is remarkably deteriorated.

本発明に用いるポリイミドフィルムとしては、市販品を用いてもよい。市販品としては、特に限定されないが、例えば、カプトンのENタイプ(例えば、50EN−S(商品名、東レ・デュポン株式会社製)、100EN(商品名、東レ・デュポン株式会社製)等)、カプトンのHタイプ(例えば、カプトン100H(商品名、東レ・デュポン株式会社製)等)、カプトンのKJタイプ(例えば、カプトン100KJ(商品名、米国デュポン社製)等)、カプトンJPタイプ(例えば、カプトン100JP(商品名、米国デュポン社製)等)等が挙げられる。   A commercially available product may be used as the polyimide film used in the present invention. Although it does not specifically limit as a commercial item, For example, EN type (For example, 50EN-S (brand name, the Toray DuPont company make), 100EN (brand name, the Toray DuPont company make) etc.) etc. of Kapton, Kapton H type (for example, Kapton 100H (trade name, manufactured by Toray DuPont), etc.), Kapton KJ type (for example, Kapton 100KJ (trade name, manufactured by DuPont, USA)), Kapton JP type (for example, Kapton) 100JP (trade name, manufactured by DuPont, USA) and the like.

本発明におけるポリイミドフィルムは、本発明の目的を損なわない範囲で、可塑剤や他の樹脂等を含んでいてもよい。   The polyimide film in the present invention may contain a plasticizer, other resin and the like as long as the object of the present invention is not impaired.

前記可塑剤としては、特に限定されず、例えば、ヘキシレングリコール、グリセリン、β−ナフトール、ジベンジルフェノール、オクチルクレゾール、ビスフェノールA等のビスフェノール化合物、p−ヒドロキシ安息香酸オクチル、p−ヒドロキシ安息香酸−2−エチルヘキシル、p−ヒドロキシ安息香酸ペプチル、p−ヒドロキシ安息香酸のエチレンオキサイド及び/又はプロピレンオキサイド付加物、ε−カプロラクトン、フェノール類のリン酸エステル化合物、N−メチルベンゼンスルホンアミド、N−エチルベンゼンスルホンアミド、N−ブチルベンゼンスルホンアミド、トルエンスルホンアミド、N−エチルトルエンスルホンアミド、N−シクロヘキシルトルエンスルホンアミド等が挙げられる。   The plasticizer is not particularly limited, and examples thereof include bisphenol compounds such as hexylene glycol, glycerin, β-naphthol, dibenzylphenol, octylcresol, bisphenol A, octyl p-hydroxybenzoate, p-hydroxybenzoic acid- 2-ethylhexyl, p-hydroxy p-hydroxybenzoate, ethylene oxide and / or propylene oxide adducts of p-hydroxybenzoic acid, ε-caprolactone, phosphate compounds of phenols, N-methylbenzenesulfonamide, N-ethylbenzenesulfone Examples include amide, N-butylbenzenesulfonamide, toluenesulfonamide, N-ethyltoluenesulfonamide, N-cyclohexyltoluenesulfonamide, and the like.

ポリイミドに配合する前記他の樹脂としては、相溶性に優れるものが好ましく、例えば、エステル及び/又はカルボン酸変性オレフィン樹脂、アクリル樹脂(特に、グルタルイミド基を有するアクリル樹脂)、アイオノマー樹脂、ポリエステル樹脂、フェノキシ樹脂、エチレン−プロピレン−ジエン共重合体、ポリフェニレンオキサイド等が挙げられる。   As said other resin mix | blended with a polyimide, what is excellent in compatibility is preferable, for example, ester and / or carboxylic acid modified olefin resin, acrylic resin (especially acrylic resin which has a glutarimide group), ionomer resin, polyester resin , Phenoxy resin, ethylene-propylene-diene copolymer, polyphenylene oxide and the like.

本発明におけるポリイミドフィルムは、また、本発明の目的を損なわない範囲で、着色剤、各種添加剤等を含んでいてもよい。前記添加剤としては、例えば、帯電防止剤、難燃剤、熱安定剤、紫外線吸収剤、滑剤、離型剤、結晶核剤、強化剤(フィラー)等を挙げることができる。また、ポリイミドフィルム表面をインク等でコーティングしても良い。   The polyimide film in the present invention may contain a colorant, various additives and the like as long as the object of the present invention is not impaired. Examples of the additive include an antistatic agent, a flame retardant, a heat stabilizer, an ultraviolet absorber, a lubricant, a mold release agent, a crystal nucleating agent, and a reinforcing agent (filler). The polyimide film surface may be coated with ink or the like.

本発明においては、ポリイミドフィルム層とフッ素樹脂層の間に、バインダーとして、ポリイミドフィルム又は一部ポリアミック酸を含むポリイミドフィルムを導入し、基材となるポリイミド層とバインダー層との多層ポリイミド層を形成することもできる。バインダー層に用いられるポリイミドフィルムを製造する際のポリアミック酸は、[0013]に記載のジアミンと[0014]に記載の酸無水物とを、例えば[0017]〜[0023]に記載の方法を用いて重縮合することによって得ることができる。多層ポリイミド層の形成方法としては特に指定はないが、重縮合によって得られたバインダー層のポリアミック酸を[0025]〜[0039]に記載の方法でポリイミドフィルムとし、その後、該ポリイミドフィルムを基材となるポリイミドフィルムと貼り合わせる方法、基材となるポリイミドフィルム上にバインダー層のポリアミック酸を塗布し、一部もしくは全体を化学的もしくは熱的に乾燥させて得る方法、さらには基材となるポリイミドフィルム層、バインダー層、フッ素樹脂層を一度に貼り合わせる方法などによって得ることができる。   In the present invention, a polyimide film or a polyimide film partially containing polyamic acid is introduced as a binder between the polyimide film layer and the fluororesin layer, and a multilayer polyimide layer of a polyimide layer and a binder layer as a base material is formed. You can also The polyamic acid used in producing the polyimide film used for the binder layer is the diamine described in [0013] and the acid anhydride described in [0014], for example, using the method described in [0017] to [0023]. Can be obtained by polycondensation. The method for forming the multilayer polyimide layer is not particularly specified, but the polyamic acid of the binder layer obtained by polycondensation is changed to a polyimide film by the method described in [0025] to [0039], and then the polyimide film is used as a base material. A method of bonding with a polyimide film to be used, a method of applying a polyamic acid of a binder layer on a polyimide film to be a base material, and partially or entirely drying it chemically or thermally, and a polyimide to be a base material It can be obtained by a method in which a film layer, a binder layer, or a fluororesin layer is bonded at a time.

本発明に用いるポリイミドフィルムは、少なくとも任意の一部分のガラス転移点が300℃以下であることが好ましい。また、本発明に用いるポリイミドフィルムは、少なくとも任意の一部分における30℃での貯蔵弾性率を100%とした際に、300℃における貯蔵弾性率が50%以下となることが好ましく、40%以下となることがより好ましく、30%以下となることがさらに好ましい。
また、本発明に用いるポリイミドフィルムは、少なくとも任意の一部分における30℃での損失弾性率を100%とした際に、30〜300℃領域における損失弾性率が、200%以上の値となる頂点を持つことが好ましい。前記「少なくとも任意の一部分」とは、フィルムを製造する過程での長手搬送方向(以下、MDとも言う)、もしくはMD方向に対して垂直方向(以下、TD方向とも言う)、さらにはTD方向から任意の角度に傾けた方向、それぞれにおけるサンプル長分の部分)である。
The polyimide film used in the present invention preferably has at least an arbitrary glass transition point of 300 ° C. or lower. In addition, the polyimide film used in the present invention preferably has a storage elastic modulus at 300 ° C. of 50% or less when the storage elastic modulus at 30 ° C. of at least an arbitrary part is 100%, and 40% or less. More preferably, it is more preferably 30% or less.
In addition, the polyimide film used in the present invention has an apex at which the loss elastic modulus in the region of 30 to 300 ° C. is a value of 200% or more when the loss elastic modulus at 30 ° C. in at least an arbitrary part is 100%. It is preferable to have it. The “at least an arbitrary part” means a longitudinal conveyance direction (hereinafter also referred to as MD) in the process of producing a film, a direction perpendicular to the MD direction (hereinafter also referred to as TD direction), and further from the TD direction. The direction inclined at an arbitrary angle, the portion corresponding to the sample length in each).

本発明のカバーレイ又はFFC用基材に用いるフッ素樹脂は、特に限定されないが、含フッ素エチレン性重合体が好ましい。本発明における含フッ素エチレン性重合体は、含フッ素エチレン性ポリマー鎖にカルボニル基又はカルボニル基含有官能基が結合されたものである。   Although the fluororesin used for the coverlay or FFC substrate of the present invention is not particularly limited, a fluorine-containing ethylenic polymer is preferable. The fluorinated ethylenic polymer in the present invention is one in which a carbonyl group or a carbonyl group-containing functional group is bonded to a fluorinated ethylenic polymer chain.

前記「カルボニル基」は、ポリイミドフィルム中のイミド基もしくはアミノ基と基本的に反応し得る−C(=O)−を有する官能基をいう。具体的には、カーボネート、カルボン酸ハライド、アルデヒド、ケトン、カルボン酸、エステル、酸無水物、イソシアネート基等が挙げられる。前記カルボニル基としては、特に限定されないが、導入が容易であり、ポリアミド系樹脂との反応性の高いことから、カーボネート基、カルボン酸ハライド基、カルボン酸基、エステル基及び酸無水物基が好ましく、カーボネート基及びカルボン酸ハライド基がより好ましい。   The “carbonyl group” refers to a functional group having —C (═O) — that can basically react with an imide group or an amino group in a polyimide film. Specific examples include carbonates, carboxylic acid halides, aldehydes, ketones, carboxylic acids, esters, acid anhydrides, and isocyanate groups. The carbonyl group is not particularly limited, but a carbonate group, a carboxylic acid halide group, a carboxylic acid group, an ester group, and an acid anhydride group are preferable because they can be easily introduced and have high reactivity with a polyamide-based resin. More preferred are carbonate groups and carboxylic acid halide groups.

本発明における含フッ素エチレン性重合体中のカルボニル基の数は、積層される相手材の種類、形状、接着の目的、用途、必要とされる接着力、該重合体の形態と接着方法等の違いにより適宜選択されうるが、カルボニル基の数が主鎖炭素数1×10個に対して合計3〜1000個であることが好ましい。上記カルボニル基の数が主鎖炭素数1×10個に対し、3個未満であると、充分な接着力が発現しない場合がある。また、1000個を超えると接着操作に伴い、カルボニル基の化学変化によって接着力を低下させる場合がある。より好ましくは3〜500個、更に好ましくは3〜300個、特に好ましくは5〜150個である。なお、含フッ素エチレン性重合体中のカルボニル基の含有量は、赤外吸収スペクトル分析により測定することができる。 The number of carbonyl groups in the fluorine-containing ethylenic polymer in the present invention is the type, shape, purpose of adhesion, use, required adhesive strength of the laminated material, the form of the polymer and the adhesion method, etc. Although it may be appropriately selected depending on the difference, the number of carbonyl groups is preferably 3 to 1000 in total with respect to 1 × 10 6 main chain carbon atoms. If the number of carbonyl groups is less than 3 with respect to 1 × 10 6 main chain carbon atoms, sufficient adhesive strength may not be exhibited. On the other hand, when the number exceeds 1,000, the adhesive force may be lowered due to a chemical change of the carbonyl group in accordance with the bonding operation. The number is more preferably 3 to 500, still more preferably 3 to 300, and particularly preferably 5 to 150. In addition, content of the carbonyl group in a fluorine-containing ethylenic polymer can be measured by infrared absorption spectrum analysis.

従って、本発明の含フッ素エチレン性重合体が、例えば、カーボネート基及び/又はカルボン酸ハライド基を有するものである場合、カーボネート基を有する場合、カーボネート基の数が主鎖炭素数1×10個に対し3〜1000個であることが好ましい。また、本発明の含フッ素エチレン性重合体が、カルボン酸ハライド基を有する場合、そのカルボン酸ハライド基の数が主鎖炭素数1×10個に対し3〜1000個であることが好ましい。本発明の含フッ素エチレン性重合体が、カーボネート基とカルボン酸ハライド基の両方を有する場合、カーボネート基とカルボン酸ハライド基の合計数が主鎖炭素数1×10個に対し3〜1000個であるものが好ましい。前記カーボネート基及び/又はカルボン酸ハライド基の数が主鎖炭素数1×10個に対し、3個未満であると、充分な接着力が発現しない場合がある。また、1000個を超えると接着操作に伴い、カーボネート基あるいはカルボン酸ハライド基の化学変化によって接着界面に出てくるガスの発生が悪影響を及ぼし、接着力を低下させる場合がある。耐熱性、耐薬品性の観点からより好ましくは、3〜500個、更に好ましくは3〜300個、特に好ましくは5〜150個である。なお、ポリアミド系樹脂との反応性に特に優れるカルボン酸ハライド基が、含フッ素エチレン性重合体中に、主鎖炭素数1×10個に対して10個以上、より好ましくは20個以上存在していれば、カルボニル基合計の含有量を主鎖炭素数1×10個に対して150個未満にしても、ポリアミド系樹脂からなる層(A)との優れた接着性を発現することができる。 Therefore, when the fluorine-containing ethylenic polymer of the present invention has, for example, a carbonate group and / or a carboxylic acid halide group, and has a carbonate group, the number of carbonate groups is 1 × 10 6 carbon atoms in the main chain. The number is preferably 3 to 1000. Moreover, when the fluorine-containing ethylenic polymer of this invention has a carboxylic acid halide group, it is preferable that the number of the carboxylic acid halide group is 3-1000 with respect to 1 * 10 < 6 > main chain carbon number. When the fluorine-containing ethylenic polymer of the present invention has both carbonate groups and carboxylic acid halide groups, the total number of carbonate groups and carboxylic acid halide groups is 3 to 1000 with respect to 1 × 10 6 main chain carbon atoms. Are preferred. If the number of carbonate groups and / or carboxylic acid halide groups is less than 3 with respect to 1 × 10 6 main chain carbon atoms, sufficient adhesive strength may not be exhibited. On the other hand, when the number exceeds 1,000, the generation of gas that appears at the bonding interface due to the chemical change of the carbonate group or the carboxylic acid halide group may be adversely affected and the adhesive force may be reduced. From the viewpoint of heat resistance and chemical resistance, the number is more preferably 3 to 500, still more preferably 3 to 300, and particularly preferably 5 to 150. In addition, 10 or more, more preferably 20 or more carboxylic acid halide groups having excellent reactivity with the polyamide-based resin are present in the fluorine-containing ethylenic polymer with respect to 1 × 10 6 main chain carbon atoms. If this is the case, even if the total carbonyl group content is less than 150 with respect to 1 × 10 6 carbon atoms in the main chain, excellent adhesion to the polyamide resin layer (A) can be exhibited. Can do.

本発明における含フッ素エチレン性重合体中のカーボネート基とは、一般に−OC(=O)O−の結合を有する基であり、具体的には、−OC(=O)O−R基〔Rは有機基(例えば、C〜C20アルキル基(好ましくはC〜C10アルキル基)、エーテル結合を有するC〜C20アルキル基等)又はVII族元素である。〕の構造のものである。カーボネート基としては、例えば、−OC(=O)OCH、−OC(=O)OC、−OC(=O)OC17、−OC(=O)OCHCHCHOCHCH等が好ましく挙げられる。 The carbonate group in the fluorine-containing ethylenic polymer in the present invention is generally a group having a bond of —OC (═O) O—, specifically, a —OC (═O) O—R group [R the organic group (e.g., C 1 -C 20 alkyl group (preferably C 1 -C 10 alkyl group), C 2 -C 20 alkyl group having an ether bond) or VII group element. ] Of the structure. The carbonate group, for example, -OC (= O) OCH 3 , -OC (= O) OC 3 H 7, -OC (= O) OC 8 H 17, -OC (= O) OCH 2 CH 2 CH 2 Preferred examples include OCH 2 CH 3 and the like.

本発明における含フッ素エチレン性重合体中のカルボン酸ハライド基とは、具体的には−COY〔Yはハロゲン元素〕の構造のもので、−COF、−COCl等が例示される。   The carboxylic acid halide group in the fluorine-containing ethylenic polymer in the present invention specifically has a structure of —COY [Y is a halogen element], and examples thereof include —COF and —COCl.

これらのカルボニル基を有する含フッ素エチレン性重合体はそれ自体、含フッ素樹脂がもつ優れた特性を維持することができ、成形後の積層体に含フッ素樹脂が有するこのような優れた特徴を低下させずに与えうる。   The fluorine-containing ethylenic polymer having these carbonyl groups can maintain the excellent characteristics of the fluorine-containing resin itself, reducing the excellent characteristics of the fluorine-containing resin in the laminate after molding. Can be given without.

本発明における含フッ素エチレン性重合体は、そのポリマー鎖にカルボニル基を含むが、該カルボニル基がポリマー鎖に含有される態様は特に限定されず、例えば、カルボニル基又はカルボニル基を含有する官能基がポリマー鎖末端又は側鎖に結合していてよい。そのなかでも、ポリマー鎖末端にカルボニル基を有するものが、耐熱性、機械特性、耐薬品性を著しく低下させない理由で又は生産性、コスト面で有利である理由で好ましいものである。このうち、パーオキシカーボネートやパーオキシエステルのようなカルボニル基を含むか、或いはカルボニル基に変換できる官能基を有する重合開始剤を使用してポリマー鎖末端にカルボニル基を導入する方法は、導入が非常に容易で、しかも導入量の制御も容易なことから好ましい態様である。なお、本発明では、パーオキサイドに由来するカルボニル基とは、パーオキサイドに含まれる官能基から直接又は間接的に導かれるカルボニル基をいう。   The fluorine-containing ethylenic polymer in the present invention contains a carbonyl group in the polymer chain, but the embodiment in which the carbonyl group is contained in the polymer chain is not particularly limited, for example, a carbonyl group or a functional group containing a carbonyl group May be bonded to the polymer chain end or side chain. Among them, those having a carbonyl group at the end of the polymer chain are preferable because they do not significantly reduce heat resistance, mechanical properties and chemical resistance, or are advantageous in terms of productivity and cost. Among these, a method of introducing a carbonyl group at the end of a polymer chain using a polymerization initiator containing a carbonyl group such as peroxycarbonate or peroxyester or having a functional group that can be converted into a carbonyl group is introduced. This is a preferred embodiment because it is very easy and the amount of introduction can be easily controlled. In the present invention, the carbonyl group derived from peroxide refers to a carbonyl group derived directly or indirectly from a functional group contained in the peroxide.

なお、本発明における含フッ素エチレン性重合体においては、カルボニル基を含まない含フッ素エチレン性重合体が存在していても、重合体全体として主鎖炭素1×10個に対して合計で上述の範囲の数のカルボニル基を持っていればよい。 In addition, in the fluorine-containing ethylenic polymer in the present invention, even if a fluorine-containing ethylenic polymer not containing a carbonyl group is present, the total amount of the polymer as described above is 1 × 10 6 main chain carbons. It is sufficient that the number of carbonyl groups is within the range.

本発明において、上記含フッ素エチレン性重合体の種類、構造は、目的、用途、使用方法により適宜選択されうるが、なかでも融点が160〜270℃であることが好ましい。このような重合体であれば、特に加熱溶融接着加工により積層化する場合、特にカルボニル基と相手材との接着性を充分に発揮でき、相手材と直接強固な接着力を与えうるので有利である。比較的耐熱性の低い有機材料との積層も可能となる点で、融点は、より好ましくは250℃以下、さらに好ましくは230℃以下、特に好ましくは200℃以下である。融点は、セイコー型DSC装置(セイコー電子社製)を用い、10℃/minの速度で昇温したときの融解ピークを記録し、極大値に対応する温度を融点(Tm)とした。   In the present invention, the type and structure of the fluorine-containing ethylenic polymer can be appropriately selected depending on the purpose, application, and method of use, and the melting point is preferably 160 to 270 ° C. Such a polymer is advantageous, especially when laminating by heating and melt-bonding, since it can sufficiently exert the adhesiveness between the carbonyl group and the counterpart material, and can give a strong adhesive force directly to the counterpart material. is there. The melting point is more preferably 250 ° C. or less, further preferably 230 ° C. or less, and particularly preferably 200 ° C. or less in that lamination with an organic material having relatively low heat resistance is possible. The melting point was recorded as the melting peak when the temperature was raised at a rate of 10 ° C./min using a Seiko DSC apparatus (manufactured by Seiko Denshi), and the temperature corresponding to the maximum value was defined as the melting point (Tm).

本発明における含フッ素エチレン性重合体の分子量については、該重合体が熱分解温度以下で成形でき、しかも得られた成形体が含フッ素エチレン性重合体本来の優れた機械特性等を発現できるような範囲であることが好ましい。具体的には、メルトフローレート(MFR)を分子量の指標として、フッ素樹脂一般の成形温度範囲である約230〜350℃の範囲の任意の温度におけるMFRが0.5〜100g/10分であることが好ましい。MFRは、メルトインデクサー(東洋精機製作所(株)社製)を用い、各種温度、5kg荷重下で直径2mm、長さ8mmのノズルから単位時間(10分間)に流出するポリマーの重量(g)を測定した。   Regarding the molecular weight of the fluorinated ethylenic polymer in the present invention, the polymer can be molded at a temperature lower than the thermal decomposition temperature, and the obtained molded product can express the original excellent mechanical properties and the like of the fluorinated ethylenic polymer. It is preferable that it is a range. Specifically, with the melt flow rate (MFR) as the molecular weight index, the MFR at an arbitrary temperature in the range of about 230 to 350 ° C., which is a general molding temperature range of fluororesin, is 0.5 to 100 g / 10 min. It is preferable. MFR uses a melt indexer (manufactured by Toyo Seiki Seisakusho Co., Ltd.), and the weight of the polymer flowing out in a unit time (10 minutes) from a nozzle having a diameter of 2 mm and a length of 8 mm under various temperatures and 5 kg load (g) Was measured.

前記含フッ素エチレン性ポリマー鎖の構造は、一般に、少なくとも1種の含フッ素エチレン性単量体から誘導される繰り返し単位を有するホモポリマー鎖又はコポリマー鎖であり、含フッ素エチレン性単量体のみ、又は含フッ素エチレン性単量体とフッ素原子を有さないエチレン性単量体を重合してなるポリマー鎖であってよい。   The structure of the fluorine-containing ethylenic polymer chain is generally a homopolymer chain or a copolymer chain having a repeating unit derived from at least one fluorine-containing ethylenic monomer, and only the fluorine-containing ethylenic monomer, Alternatively, it may be a polymer chain obtained by polymerizing a fluorine-containing ethylenic monomer and an ethylenic monomer having no fluorine atom.

上記含フッ素エチレン性単量体は、フッ素原子を有するオレフィン性不飽和単量体であり、具体的には、テトラフルオロエチレン、フッ化ビニリデン、クロロトリフルオロエチレン、フッ化ビニル、ヘキサフルオロプロピレン、ヘキサフルオロイソブテン、式(X):
CH=CR(CF)nR (X)
(式中、RはH又はFを表し、RはH、F又はClを表し、nは1〜10の正の整数を表す。)
で表される単量体、炭素数2〜10のパーフルオロ(アルキルビニルエーテル)類等が挙げられる。
The fluorine-containing ethylenic monomer is an olefinically unsaturated monomer having a fluorine atom, specifically, tetrafluoroethylene, vinylidene fluoride, chlorotrifluoroethylene, vinyl fluoride, hexafluoropropylene, Hexafluoroisobutene, formula (X):
CH 2 = CR 1 (CF 2 ) nR 2 (X)
(In the formula, R 1 represents H or F, R 2 represents H, F or Cl, and n represents a positive integer of 1 to 10.)
And perfluoro (alkyl vinyl ether) s having 2 to 10 carbon atoms.

上記フッ素原子を有さないエチレン性単量体は、耐熱性等を低下させないためにも炭素数5以下のエチレン性単量体から選ばれることが好ましい。具体的には、エチレン、プロピレン、1−ブテン、2−ブテン、塩化ビニル、塩化ビニリデン等が挙げられる。   The ethylenic monomer having no fluorine atom is preferably selected from ethylenic monomers having 5 or less carbon atoms in order not to lower the heat resistance and the like. Specific examples include ethylene, propylene, 1-butene, 2-butene, vinyl chloride, vinylidene chloride and the like.

含フッ素エチレン性単量体とフッ素原子を有さないエチレン性単量体とを使用する場合、その単量体組成は、含フッ素エチレン性単量体10モル%以上100モル%未満(例えば30モル%以上100モル%未満)とフッ素原子を有さないエチレン性単量体0モル%を超え90モル%以下(例えば0モル%を超え70モル%以下)の量比であってよい。   When a fluorine-containing ethylenic monomer and an ethylenic monomer having no fluorine atom are used, the monomer composition is 10 mol% or more and less than 100 mol% (for example, 30 mol%). The molar ratio may be greater than 0 mol% and less than 90 mol% (for example, greater than 0 mol% and less than 70 mol%).

本発明における含フッ素エチレン性重合体においては、含フッ素エチレン性単量体及びフッ素原子を有さないエチレン性単量体の種類、組合せ、組成比等を選ぶことによって重合体の融点又はガラス転移点を調整することができる。   In the fluorine-containing ethylenic polymer in the present invention, the melting point or glass transition of the polymer can be selected by selecting the type, combination, composition ratio, etc. of the fluorine-containing ethylenic monomer and the ethylenic monomer having no fluorine atom. The point can be adjusted.

本発明における含フッ素エチレン性重合体としては、耐熱性、耐薬品性の面では、テトラフルオロエチレン単位を必須成分とするカルボニル基含有含フッ素エチレン性重合体が好ましく、また、成形加工性の面では、フッ化ビニリデン単位を必須成分とするカルボニル基含有含フッ素エチレン性共重合体が好ましい。   As the fluorine-containing ethylenic polymer in the present invention, in terms of heat resistance and chemical resistance, a carbonyl group-containing fluorine-containing ethylenic polymer having a tetrafluoroethylene unit as an essential component is preferable, and in terms of molding processability. Then, a carbonyl group-containing fluorine-containing ethylenic copolymer having a vinylidene fluoride unit as an essential component is preferable.

本発明における含フッ素エチレン性重合体の好ましい具体例としては、含フッ素エチレン性重合体が本質的に下記の単量体を重合してなるカルボニル基含有含フッ素エチレン性共重合体(I)〜(V)等を挙げることができる:
(I)少なくとも、テトラフルオロエチレン及びエチレンを重合してなる共重合体、
(II)少なくとも、テトラフルオロエチレン及び下記式(Y):
CF=CFR (Y)
(式中、RはCF又はORを表し、Rは炭素数1〜5のパーフルオロアルキル基を表す。)
で表される化合物を重合してなる共重合体、
(III)少なくとも、フッ化ビニリデンを重合してなる共重合体、
(IV)少なくとも、下記(a)、(b)及び(c)を重合してなる共重合体、
(a)テトラフルオロエチレン20〜90モル%
(b)エチレン10〜80モル%
(c)CF=CFR (Y)
(式中、Rは前記と同一意味を表す。)
で表される化合物1〜70モル%、並びに、
(V)少なくとも、下記(d)、(e)及び(f)を重合してなる共重合体。
(d)フッ化ビニリデン15〜60モル%
(e)テトラフルオロエチレン35〜80モル%
(f)ヘキサフルオロプロピレン5〜30モル%
これらの具体例には、前記の単量体を含み、かつ本発明の効果を妨げない範囲で、他の公知の単量体を加えてもよい。
Preferable specific examples of the fluorine-containing ethylenic polymer in the present invention include a carbonyl group-containing fluorine-containing ethylenic copolymer (I), which is obtained by essentially polymerizing the following monomers. (V) and the like can be mentioned:
(I) a copolymer obtained by polymerizing at least tetrafluoroethylene and ethylene,
(II) At least tetrafluoroethylene and the following formula (Y):
CF 2 = CFR 3 (Y)
(In the formula, R 3 represents CF 3 or OR 4 , and R 4 represents a perfluoroalkyl group having 1 to 5 carbon atoms.)
A copolymer obtained by polymerizing a compound represented by
(III) a copolymer obtained by polymerizing at least vinylidene fluoride,
(IV) a copolymer obtained by polymerizing at least the following (a), (b) and (c):
(A) Tetrafluoroethylene 20-90 mol%
(B) 10-80 mol% ethylene
(C) CF 2 = CFR 3 (Y)
(Wherein R 3 represents the same meaning as described above.)
1 to 70 mol% of the compound represented by:
(V) A copolymer obtained by polymerizing at least the following (d), (e) and (f).
(D) 15-60 mol% vinylidene fluoride
(E) Tetrafluoroethylene 35-80 mol%
(F) 5-30 mol% hexafluoropropylene
In these specific examples, other known monomers may be added as long as they contain the aforementioned monomers and do not impair the effects of the present invention.

これら例示のカルボニル基含有含フッ素エチレン性重合体はいずれも、特に耐熱性に優れている点で好ましい。   All of these exemplified carbonyl group-containing fluorine-containing ethylenic polymers are particularly preferable in terms of excellent heat resistance.

前記共重合体(I)として、例えば、カルボニル基を有する単量体を除いた(側鎖にカルボニル基含有官能基を有する場合)単量体全体に対し、テトラフルオロエチレン単位20〜90モル%(例えば20〜60モル%)、エチレン単位10〜80モル%(例えば20〜60モル%)及びこれらと共重合可能な他の単量体単位0〜70モル%とからなるポリマー鎖のカルボニル基含有共重合体等が挙げられる。   As said copolymer (I), tetrafluoroethylene unit 20-90 mol% with respect to the whole monomer except the monomer which has a carbonyl group (when it has a carbonyl group containing functional group in a side chain), for example (For example, 20 to 60 mol%), 10 to 80 mol% (for example, 20 to 60 mol%) of ethylene units, and 0 to 70 mol% of other monomer units copolymerizable therewith. And a containing copolymer.

前記共重合可能な他の単量体としては、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、式(X):
CH=CR(CF2)n (X)
(式中、R1はH又はFを表し、R2はH、F又はClを表し、nは1〜10の正の整数を表す。)
で表される単量体、炭素数2〜10のパーフルオロ(アルキルビニルエーテル)類、プロピレン等が挙げられ、通常これらの1種又は2種以上が用いられる。
Examples of the other copolymerizable monomer include hexafluoropropylene, chlorotrifluoroethylene, and formula (X):
CH 2 = CR 1 (CF 2 ) n R 2 (X)
(In the formula, R1 represents H or F, R2 represents H, F or Cl, and n represents a positive integer of 1 to 10.)
, C2-C10 perfluoro (alkyl vinyl ether) s, propylene, and the like, and usually one or more of these are used.

また、前記共重合体(I)としては、例えば、以下のものが、テトラフルオロエチレン/エチレン共重合体の優れた性能を維持し、融点も比較的低くすることができ、他材との接着性を最大限に発揮できる点で好適に挙げられる。
(I−1)テトラフルオロエチレン単位62〜80モル%、エチレン単位20〜38モル%、その他の単量体単位0〜10モル%からなるポリマー鎖のカルボニル基含有共重合体、
(I−2)テトラフルオロエチレン単位20〜80モル%、エチレン単位10〜80モル%、ヘキサフルオロプロピレン単位0〜30モル%、その他の単量体単位0〜10モル%からなるポリマー鎖のカルボニル基含有共重合体。
Further, as the copolymer (I), for example, the following can maintain the excellent performance of the tetrafluoroethylene / ethylene copolymer, can have a relatively low melting point, and can adhere to other materials. It is preferably mentioned in that it can exhibit the maximum properties.
(I-1) a carbonyl group-containing copolymer of a polymer chain comprising 62 to 80 mol% of tetrafluoroethylene units, 20 to 38 mol% of ethylene units, and 0 to 10 mol% of other monomer units,
(I-2) Polymer chain carbonyl comprising 20 to 80 mol% tetrafluoroethylene units, 10 to 80 mol% ethylene units, 0 to 30 mol% hexafluoropropylene units, and 0 to 10 mol% other monomer units Group-containing copolymer.

前記共重合体(II)としては、例えば、以下のものが、好適に挙げられる。
(II−1)テトラフルオロエチレン単位65〜95モル%(好ましくは75〜95モル%)、ヘキサフルオロプロピレン単位5〜35モル%(好ましくは5〜25モル%)からなるポリマー鎖のカルボニル基含有共重合体、
(II−2)テトラフルオロエチレン単位70〜97モル%、CF=CFOR(Rは炭素数1〜5のパーフルオロアルキル基)単位3〜30モル%からなるポリマー鎖のカルボニル基含有共重合体、
(II−3)テトラフルオロエチレン単位、ヘキサフルオロプロピレン単位、CF=CFOR(Rは前記と同じ)単位からなるポリマー鎖のカルボニル基を有する共重合体であって、ヘキサフルオロプロピレン単位とCF=CFOR単位の合計が5〜30モル%である共重合体。
As said copolymer (II), the following are mentioned suitably, for example.
(II-1) containing a carbonyl group in a polymer chain composed of 65 to 95 mol% (preferably 75 to 95 mol%) tetrafluoroethylene units and 5 to 35 mol% (preferably 5 to 25 mol%) hexafluoropropylene units Copolymer,
(II-2) tetrafluoroethylene units 70 to 97 mol%, CF 2 = CFOR 4 ( R 4 is a perfluoroalkyl group having 1 to 5 carbon atoms) copolymer containing carbonyl groups in the polymer chain of 3 to 30 mole percent Polymer,
(II-3) a copolymer having a carbonyl group of a polymer chain comprising a tetrafluoroethylene unit, a hexafluoropropylene unit, and a CF 2 ═CFOR 4 (R 4 is the same as above) unit, A copolymer in which the total of CF 2 = CFOR 4 units is 5 to 30 mol%.

前記(II−1)〜(II−3)は、パーフルオロ系共重合体でもあり、含フッ素ポリマーの中でも耐熱性、電気絶縁性等に最も優れている。   Said (II-1)-(II-3) is also a perfluoro-type copolymer, and is the most excellent in heat resistance, electrical insulation, etc. among a fluorine-containing polymer.

前記共重合体(III)としては、例えば、カルボニル基を有する単量体を除いた(側鎖にカルボニル基含有官能基を有する場合)単量体全体に対し、フッ化ビニリデン単位15〜99モル%、テトラフルオロエチレン単位0〜80モル%、ヘキサフルオロプロピレン又はクロロトリフルオロエチレンのいずれか1種以上の単位0〜30モル%からなるポリマー鎖のカルボニル基含有共重合体等が挙げられる。
前記共重合体(III)の具体例としては、以下のものが、好適に挙げられる。
(III−1)フッ化ビニリデン単位30〜99モル%、テトラフルオロエチレン単位1〜70モル%からなるポリマー鎖のカルボニル基含有共重合体、
(III−2)フッ化ビニリデン単位60〜90モル%、テトラフルオロエチレン単位0〜30モル%、クロロトリフルオロエチレン単位1〜20モル%からなるポリマー鎖のカルボニル基含有共重合体、
(III−3)フッ化ビニリデン単位60〜99モル%、テトラフルオロエチレン単位0〜30モル%、ヘキサフルオロプロピレン単位5〜30モル%からなるポリマー鎖のカルボニル基含有共重合体、
(III−4)フッ化ビニリデン単位15〜60モル%、テトラフルオロエチレン単位35〜80モル%、ヘキサフルオロプロピレン単位5〜30モル%からなるポリマー鎖のカルボニル基含有共重合体。
Examples of the copolymer (III) include vinylidene fluoride units of 15 to 99 mol with respect to the whole monomer excluding the monomer having a carbonyl group (when the side chain has a carbonyl group-containing functional group). %, A carbonyl group-containing copolymer of a polymer chain composed of 0 to 30 mol% of tetrafluoroethylene units and 0 to 30 mol% of one or more units of hexafluoropropylene or chlorotrifluoroethylene.
Specific examples of the copolymer (III) include the following.
(III-1) a carbonyl group-containing copolymer of a polymer chain comprising 30 to 99 mol% of vinylidene fluoride units and 1 to 70 mol% of tetrafluoroethylene units,
(III-2) a carbonyl group-containing copolymer of a polymer chain comprising vinylidene fluoride units 60 to 90 mol%, tetrafluoroethylene units 0 to 30 mol%, chlorotrifluoroethylene units 1 to 20 mol%,
(III-3) a carbonyl group-containing copolymer of a polymer chain comprising 60 to 99 mol% of vinylidene fluoride units, 0 to 30 mol% of tetrafluoroethylene units, and 5 to 30 mol% of hexafluoropropylene units,
(III-4) A carbonyl group-containing copolymer of a polymer chain comprising 15 to 60 mol% of vinylidene fluoride units, 35 to 80 mol% of tetrafluoroethylene units, and 5 to 30 mol% of hexafluoropropylene units.

本発明における含フッ素エチレン性重合体の製造方法としては、特に限定されない。本発明の含フッ素エチレン性重合体は、カルボニル基を有するエチレン性単量体を、目的の含フッ素ポリマーに合わせた種類、配合の含フッ素及び/又はエチレン性単量体と共重合することにより製造することができる。前記カルボニル基を有するエチレン性単量体としては、好適には、パーフルオロアクリル酸(フルオライド)、1−フルオロアクリル酸(フルオライド)、アクリル酸フルオライド、1−トリフルオロメタクリル酸(フルオライド)、パーフルオロブテン酸等の含フッ素単量体;アクリル酸、メタクリル酸、アクリル酸クロライド、ビニレンカーボネート、イタコン酸、シトラコン酸等のフッ素を含まない単量体が挙げられる。   It does not specifically limit as a manufacturing method of the fluorine-containing ethylenic polymer in this invention. The fluorine-containing ethylenic polymer of the present invention is obtained by copolymerizing an ethylenic monomer having a carbonyl group with a fluorine-containing and / or ethylenic monomer of a type and blended with the target fluorine-containing polymer. Can be manufactured. The ethylenic monomer having a carbonyl group is preferably perfluoroacrylic acid (fluoride), 1-fluoroacrylic acid (fluoride), acrylic acid fluoride, 1-trifluoromethacrylic acid (fluoride), perfluoro. Fluorine-containing monomers such as butenoic acid; monomers not containing fluorine, such as acrylic acid, methacrylic acid, acrylic acid chloride, vinylene carbonate, itaconic acid, citraconic acid, and the like.

一方、ポリマー分子末端にカルボニル基を有する含フッ素エチレン性重合体を得るためには種々の方法を採用することができるが、パーオキサイド、特に、パーオキシカーボネートやパーオキシエステルを重合開始剤として用いる方法が、経済性の面、耐熱性、耐薬品性等の品質面で好ましく採用できる。この方法によれば、パーオキサイドに由来するカルボニル基(例えば、パーオキシカーボネートに由来するカーボネート基;パーオキシエステルに由来するエステル基;又は、これらの官能基を変換して得られるカルボン酸ハライド基若しくはカルボン酸基)を、ポリマー鎖末端に導入することができる。これらの重合開始剤のうち、パーオキシカーボネートを用いた場合には、重合温度を低くすることができ、開始反応に副反応を伴わないことからより好ましい。   On the other hand, in order to obtain a fluorine-containing ethylenic polymer having a carbonyl group at the polymer molecule end, various methods can be employed, but peroxides, particularly peroxycarbonates and peroxyesters are used as polymerization initiators. The method can be preferably employed in terms of quality such as economy, heat resistance and chemical resistance. According to this method, a carbonyl group derived from peroxide (for example, a carbonate group derived from peroxycarbonate; an ester group derived from peroxyester; or a carboxylic acid halide group obtained by converting these functional groups Alternatively, carboxylic acid groups) can be introduced at the polymer chain ends. Among these polymerization initiators, when peroxycarbonate is used, the polymerization temperature can be lowered, and it is more preferable because no side reaction is involved in the initiation reaction.

前記パーオキシカーボネートとしては、下記式(1)〜(4):
〔式中、R及びRaは、炭素数1〜15の直鎖状若しくは分岐状の一価飽和炭化水素基、又は末端にアルコキシ基を含有する炭素数1〜15の直鎖状又は分岐状の一価飽和炭化水素基を表し、Rbは、炭素数1〜15の直鎖状若しくは分岐状の二価飽和炭化水素基、又は末端にアルコキシ基を含有する炭素数1〜15の直鎖状若しくは分岐状の二価飽和炭化水素基を表す。〕
で表される化合物等が好適に挙げられる。とりわけ、ジイソプロピルパーオキシカーボネート、ジ−n−プロピルパーオキシジカーボネート、t−ブチルパーオキシイソプロピルカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート等が好ましい。
Examples of the peroxycarbonate include the following formulas (1) to (4):
[In the formula, R and Ra are linear or branched monovalent saturated hydrocarbon groups having 1 to 15 carbon atoms, or linear or branched groups having 1 to 15 carbon atoms containing an alkoxy group at the terminal. Represents a monovalent saturated hydrocarbon group, and Rb is a linear or branched divalent saturated hydrocarbon group having 1 to 15 carbon atoms, or a linear or branched chain having 1 to 15 carbon atoms containing an alkoxy group at the end, or A branched divalent saturated hydrocarbon group is represented. ]
The compound etc. which are represented by these are mentioned suitably. In particular, diisopropyl peroxycarbonate, di-n-propyl peroxydicarbonate, t-butyl peroxyisopropyl carbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, etc. preferable.

パーオキシカーボネート、パーオキシエステル等の開始剤の使用量は、目的とする重合体の種類(組成等)、分子量、重合条件、使用する開始剤の種類によって異なるが、重合で得られる重合体100重量部に対して通常0.05〜20重量部であり、特に0.1〜10重量部であることが好ましい。   The amount of initiator used such as peroxycarbonate and peroxyester varies depending on the type of polymer (composition, etc.), the molecular weight, the polymerization conditions, and the type of initiator used. It is 0.05-20 weight part normally with respect to a weight part, and it is especially preferable that it is 0.1-10 weight part.

重合方法としては、工業的にはフッ素系溶媒を用い、重合開始剤としてパーオキシカーボネート等を使用した水性媒体中での懸濁重合が好ましいが、他の重合方法、例えば、溶液重合、乳化重合、塊状重合等も採用できる。懸濁重合においては、水に加えてフッ素系溶媒を使用してよい。懸濁重合に用いるフッ素系溶媒としては、例えば、ハイドロクロロフルオロアルカン類(例えば、CHCClF、CHCClF、CFCFCCl H、CFClCFCFHCl)、クロロフルオロアルカン類(例えば、CFClCFClCFCF、CFCFClCFClCF)、パーフルオロアルカン類(例えば、パーフルオロシクロブタン、CFCFCFCF、CFCFCFCFCF、CFCFCFCFCFCF)が使用でき、パーフルオロアルカン類が好ましい。フッ素溶媒の使用量は、特に限定されないが、懸濁重合の場合、懸濁性、経済性の面から、水性媒体に対して10〜100重量%とするのが好ましい。 As the polymerization method, suspension polymerization in an aqueous medium using a fluorine-based solvent industrially and using peroxycarbonate or the like as a polymerization initiator is preferable, but other polymerization methods such as solution polymerization and emulsion polymerization are preferable. Also, bulk polymerization and the like can be employed. In suspension polymerization, a fluorinated solvent may be used in addition to water. Examples of the fluorine-based solvent used for suspension polymerization include hydrochlorofluoroalkanes (for example, CH 3 CClF 2 , CH 3 CCl 2 F, CF 3 CF 2 CCl 2 H, CF 2 ClCF 2 CFHCl), and chlorofluoroalkanes. class (e.g., CF 2 ClCFClCF 2 CF 3, CF 3 CFClCFClCF 3), perfluoroalkanes (e.g., perfluorocyclobutane, CF 3 CF 2 CF 2 CF 3, CF 3 CF 2 CF 2 CF 2 CF 3, CF 3 CF 2 CF 2 CF 2 CF 2 CF 3 ) can be used, and perfluoroalkanes are preferred. The amount of the fluorine solvent to be used is not particularly limited, but in the case of suspension polymerization, it is preferably 10 to 100% by weight with respect to the aqueous medium from the viewpoint of suspension and economy.

重合温度は、特に限定されず、0〜100℃であってもよい。重合圧力は、用いる溶媒の種類、量及び蒸気圧、重合温度等の他の重合条件に応じて適宜定められるが、0〜9.8MPaGであってもよい。   The polymerization temperature is not particularly limited, and may be 0 to 100 ° C. The polymerization pressure is appropriately determined according to other polymerization conditions such as the type, amount and vapor pressure of the solvent used, and the polymerization temperature, but may be 0 to 9.8 MPaG.

なお、分子量調整のために、公知の連鎖移動剤を用いることができる。連鎖移動剤としは、例えば、イソペンタン、n−ペンタン、n−ヘキサン、シクロヘキサン等の炭化水素;メタノール、エタノール等のアルコール;四塩化炭素、クロロホルム、塩化メチレン、塩化メチル等のハロゲン化炭化水素を用いることができる。また、末端のカーボネート基又はエステル基の含有量は、重合条件を調整することによってコントロールでき、パーオキシカーボネート又はパーオキシエステルの使用量、連鎖移動剤の使用量、重合温度等によってコントロールできる。   A known chain transfer agent can be used for adjusting the molecular weight. Examples of the chain transfer agent include hydrocarbons such as isopentane, n-pentane, n-hexane, and cyclohexane; alcohols such as methanol and ethanol; halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, and methyl chloride. be able to. The content of the terminal carbonate group or ester group can be controlled by adjusting the polymerization conditions, and can be controlled by the amount of peroxycarbonate or peroxyester used, the amount of chain transfer agent used, the polymerization temperature, or the like.

ポリマー分子末端にカルボン酸ハライド基若しくはカルボン酸基を有する含フッ素エチレン性重合体を得るためには種々の方法を採用でき、例えば、上述のカーボネート基又はエステル基を末端に有する含フッ素エチレン性重合体を加熱させ、熱分解(脱炭酸)させることにより得ることができる。加熱温度は、カーボネート基又はエステル基の種類、含フッ素エチレン性重合体の種類によって異なるが、通常270℃以上であり、好ましくは280℃以上であり、特に好ましくは300℃以上である。また、加熱温度は、含フッ素エチレン性重合体のカーボネート基又はエステル基以外の部位の熱分解温度以下にすることが好ましく、具体的には400℃以下が好ましく、350℃以下がより好ましい。   In order to obtain a fluorinated ethylenic polymer having a carboxylic acid halide group or a carboxylic acid group at the polymer molecule end, various methods can be employed. For example, the fluorinated ethylenic polymer having the above-mentioned carbonate group or ester group at the end can be adopted. The coalescence can be obtained by heating and pyrolysis (decarboxylation). The heating temperature varies depending on the type of carbonate group or ester group and the type of fluorine-containing ethylenic polymer, but is usually 270 ° C or higher, preferably 280 ° C or higher, and particularly preferably 300 ° C or higher. Moreover, it is preferable to make heating temperature below the thermal decomposition temperature of parts other than the carbonate group or ester group of a fluorine-containing ethylenic polymer, specifically 400 degrees C or less is preferable, and 350 degrees C or less is more preferable.

<カーボネート基の個数の測定方法>
得られた含フッ素エチレン性重合体の白色粉末又は溶融押出しペレットの切断片を室温にて圧縮成形し、厚さ0.05〜0.2mmの均一なフィルムを作製した。このフィルムの赤外吸収スペクトル分析によって、カーボネート基(−OC(=O)O−)のカルボニル基に由来するピークが1809cm−1(νC=O)の吸収波長に現れ、そのνC=O ピークの吸光度を測定した。下記式(5)によって主鎖炭素数10個当たりのカーボネート基の個数(N)を算出した。
N=500AW/εdf (5)
A:カーボネート基(−OC(=O)O−)のνC=O ピークの吸光度
ε:カーボネート基(−OC(=O)O−)のνC=O ピークのモル吸光度係数〔l・cm−1・mol−1〕。モデル化合物からε=170とした。
W:モノマー組成から計算される単量体の平均分子量
d:フィルムの密度〔g/cm
f:フィルムの厚さ〔mm〕
なお、赤外吸収スペクトル分析は、Perkin−Elmer FTIRスペクトロメーター1760X(パーキンエルマー社製)を用いて40回スキャンして行った。得られたIRスペクトルをPerkin−Elmer Spectrum for Windows(登録商標) Ver. 1.4Cにて自動でベースラインを判定させ1809cm−1のピークの吸光度を測定した。また、フィルムの厚さはマイクロメーターにて測定した。
<Method for measuring the number of carbonate groups>
The obtained white powder of the fluoroethylenic polymer or a cut piece of the melt-extruded pellet was compression molded at room temperature to produce a uniform film having a thickness of 0.05 to 0.2 mm. According to infrared absorption spectrum analysis of this film, a peak derived from a carbonyl group of a carbonate group (—OC (═O) O—) appears at an absorption wavelength of 1809 cm −1C═O ), and its ν C═O The absorbance of the peak was measured. The number (N) of carbonate groups per 10 6 main chain carbon atoms was calculated by the following formula (5).
N = 500 AW / εdf (5)
A: Absorbance of ν C = O peak of carbonate group (—OC (═O) O—) ε: Molar absorbance coefficient of ν C = O peak of carbonate group (—OC (═O) O—) [l · cm −1 · mol −1 ]. Ε = 170 from the model compound.
W: Average molecular weight of monomer calculated from monomer composition d: Film density [g / cm 3 ]
f: Film thickness [mm]
The infrared absorption spectrum analysis was performed by scanning 40 times using a Perkin-Elmer FTIR spectrometer 1760X (manufactured by PerkinElmer). The obtained IR spectrum was analyzed using Perkin-Elmer Spectrum for Windows (registered trademark) Ver. The baseline was automatically determined at 1.4 C, and the absorbance of the peak at 1809 cm −1 was measured. The film thickness was measured with a micrometer.

<カルボン酸フルオライド基の個数の測定方法>
上記のカーボネート基の個数の測定方法と同様にして得られたフィルムの赤外スペクトル分析により、カルボン酸フルオライド基(−C(=O)F)のカルボニル基に由来するピークが1880cm−1(νC=O )の吸収波長に現れ、そのνC=O ピークの吸光度を測定した。カルボン酸フルオライド基のνC=O ピークのモル吸光度係数〔l・cm−1・mol−1〕をモデル化合物によりε=600とした以外は、上記式(5)を用いて上述のカーボネート基の個数の測定方法と同様にしてカルボン酸フルオライド基の個数を測定した。
<Method for measuring the number of carboxylic acid fluoride groups>
A peak derived from the carbonyl group of the carboxylic acid fluoride group (—C (═O) F) was found to be 1880 cm −1 (ν) by infrared spectrum analysis of the film obtained in the same manner as in the above method for measuring the number of carbonate groups. The absorbance at the ν C═O peak appears at the absorption wavelength of C═O 2 ). Except that the molar absorbance coefficient [l · cm −1 · mol −1 ] of the ν C═O peak of the carboxylic acid fluoride group was set to ε = 600 by the model compound, The number of carboxylic acid fluoride groups was measured in the same manner as the number measurement method.

<その他のカルボニル基の個数の測定方法>
上記カーボネート基の個数の測定方法と同様にして得られたフィルムの赤外スペクトル分析により、カルボン酸基、エステル基、酸無水物基等のポリアミド系樹脂中のアミド基やアミノ基等の官能基と基本的に反応し得るその他のカルボニル基の個数も測定することができる。但し、これらのカルボニル基に由来するνC=O ピークのモル吸光度係数〔l・cm−1・mol−1〕はε=530とした以外は、上記式(5)を用いて上述のカーボネート基の個数の測定方法と同様にしてその他のカルボニル基の個数を測定した。
<Measurement method of the number of other carbonyl groups>
Functional groups such as amide groups and amino groups in polyamide-based resins such as carboxylic acid groups, ester groups, and acid anhydride groups by infrared spectrum analysis of the film obtained in the same manner as the method for measuring the number of carbonate groups. The number of other carbonyl groups that can basically react with can also be measured. However, except that the molar absorbance coefficient [l · cm −1 · mol −1 ] of the ν C═O peak derived from these carbonyl groups is ε = 530, the above carbonate group is obtained using the above formula (5). The number of other carbonyl groups was measured in the same manner as the method for measuring the number of carbonyl groups.

<含フッ素エチレン性重合体の組成の測定方法>
19F−NMR分析により測定した。
<Method for measuring composition of fluorine-containing ethylenic polymer>
It was measured by 19 F-NMR analysis.

本発明における含フッ素エチレン性重合体は、それ自体が有する接着性と耐熱性や耐薬品性等を損なわないため、単独で用いることが好ましいが、目的や用途に応じてその性能を損なわない範囲で、無機質粉末、ガラス繊維、炭素繊維、金属酸化物又はカーボン等の種々の公知の充填剤を配合できる。また、充填剤以外に、顔料、紫外線吸収剤、その他任意の添加剤を混合できる。添加剤以外に、他のフッ素樹脂や熱可塑性樹脂、熱硬化性樹脂等の樹脂、合成ゴム等を配合することもでき、機械特性の改善、耐候性の改善、意匠性の付与、静電防止、成形性改善等が可能となる。   The fluorine-containing ethylenic polymer in the present invention is preferably used alone because it does not impair the adhesiveness, heat resistance, chemical resistance, etc. of itself, but it does not impair the performance depending on the purpose and application. Thus, various known fillers such as inorganic powder, glass fiber, carbon fiber, metal oxide or carbon can be blended. In addition to the filler, a pigment, an ultraviolet absorber, and other optional additives can be mixed. In addition to additives, other fluororesins, thermoplastic resins, thermosetting resins, etc., synthetic rubber, etc. can also be blended, improving mechanical properties, improving weather resistance, imparting design, and preventing static electricity It becomes possible to improve moldability.

また、本発明における含フッ素エチレン性重合体は、上述のようにそれ自体が接着性を有するものであるが、さらに接着性を向上させる目的で、該含フッ素エチレン性重合体やその成形体(例えば、フィルムなど)にコロナ処理、プラズマ処理、電子線照射処理、スパッタリング処理、コーティング処理などの表面処理を施すことにより、表面自由エネルギーのコントロール、もしくは接着性官能基の導入、表面粗度の調整を行ってもよい。これらの処理は、従来公知の方法を使用することができる。
コロナ処理,プラズマ処理,電子線照射処理においては、放電雰囲気中にフィルムを通過させることによってフィルム表面に生じるエッチング効果によって微細な凹凸を形成して接着面積の向上やアンカー効果による接着力向上を図る。また、これらの処理では、放電雰囲気中に酸素、水素を導入することで表面自由エネルギーをコントロールできる他、例えばアクリル酸を導入した含フッ素エチレン性重合体を用いることでフィルム表面にカルボキシル基などの接着性官能基を形成することもできる。
スパッタリング処理においては、エッチング効果により表面粗度が調整され、分子鎖が切断されることで反応が活性化し、接着性が向上する。
有機溶剤に溶解させた接着性を有する樹脂をコーティング処理によって含フッ素エチレン性重合体表面に形成することで、接着性を向上することもできる。接着性を有する樹脂は被着物に応じて適当なものを選定することが出来るが、含フッ素エチレン性重合体表面への濡れが不十分弾きや剥離などを生じる場合、上記表面処理加工と組み合わせることも出来る。
In addition, the fluorine-containing ethylenic polymer in the present invention itself has adhesiveness as described above, but for the purpose of further improving the adhesiveness, the fluorine-containing ethylenic polymer and its molded body ( For example, by applying surface treatment such as corona treatment, plasma treatment, electron beam irradiation treatment, sputtering treatment, coating treatment to films, etc., control of surface free energy or introduction of adhesive functional groups, adjustment of surface roughness May be performed. Conventionally known methods can be used for these treatments.
In corona treatment, plasma treatment, and electron beam irradiation treatment, fine irregularities are formed by the etching effect generated on the film surface by passing the film through the discharge atmosphere, thereby improving the adhesion area and the adhesion effect by the anchor effect. . In addition, in these treatments, the surface free energy can be controlled by introducing oxygen and hydrogen into the discharge atmosphere. For example, by using a fluorine-containing ethylenic polymer into which acrylic acid is introduced, a carboxyl group or the like is added to the film surface. Adhesive functional groups can also be formed.
In the sputtering process, the surface roughness is adjusted by the etching effect, and the reaction is activated and the adhesion is improved by cutting the molecular chain.
By forming a resin having adhesiveness dissolved in an organic solvent on the surface of the fluorinated ethylenic polymer by a coating treatment, the adhesiveness can be improved. Adhesive resin can be selected appropriately depending on the adherend, but if the wetness to the fluorine-containing ethylenic polymer surface is insufficiently repelled or peeled off, combine it with the above surface treatment. You can also.

本発明のカバーレイ又はFFC用基材は、前記ポリイミドフィルムと前記フッ素樹脂を組み合わせることにより優れた耐湿密着力を有し、十分な接着強度を有する。本発明のカバーレイ、又はFFC用基材は、少なくとも、前記ポリイミドフィルムと前記フッ素樹脂を接着状態に積層もしくは貼り合わせることにより形成される。   The coverlay or FFC substrate of the present invention has excellent moisture-resistant adhesion by combining the polyimide film and the fluororesin, and has sufficient adhesive strength. The coverlay or FFC substrate of the present invention is formed by laminating or bonding at least the polyimide film and the fluororesin in an adhesive state.

本発明のカバーレイ又はFFC用基材は、260℃、30分間での熱膨張係数が、±0.1%未満であることが好ましい。   The coverlay or FFC substrate of the present invention preferably has a thermal expansion coefficient of less than ± 0.1% at 260 ° C. for 30 minutes.

<カバーレイ又はFFC用基材>
本発明のカバーレイ又はFFC用基材の製造には、前記ポリイミドフィルムの前駆体(ポリアミック酸溶液)と前記フッ素樹脂とを含む構成層を、逐次又は共押出し成形する製造方法;ポリイミドフィルムとフッ素樹脂の各成形体を加熱圧着する製造方法;ポリイミドフィルム又はフッ素樹脂のどちらかの成形体上に、他方の樹脂の前駆体又は溶融させたものを塗布、流延し、樹脂組成物とするように処理を行う製造方法等の製造方法を適用することができ、前記ポリイミドフィルムと前記フッ素樹脂とを含む構成層の間の良好な接着状態が形成される。上記製造は、通常用いられる熱可塑性樹脂の公知の成形機、例えば、射出成形機、圧縮成形機、ブロー成形機、押出し成形機等を使用することができる。
<Coverlay or FFC base material>
For the production of the coverlay or FFC substrate of the present invention, a production method in which a constituent layer containing the polyimide film precursor (polyamic acid solution) and the fluororesin is sequentially or coextruded; polyimide film and fluorine Production method of thermocompression bonding each molded product of resin; on the molded product of either polyimide film or fluororesin, the precursor of the other resin or melted one is applied and cast to obtain a resin composition A manufacturing method such as a manufacturing method for performing the treatment can be applied, and a good adhesion state between the constituent layers containing the polyimide film and the fluororesin is formed. The said manufacture can use the well-known molding machine of the thermoplastic resin used normally, for example, an injection molding machine, a compression molding machine, a blow molding machine, an extrusion molding machine, etc.

成形条件としては、カルボニル基、特にカーボネート基の種類、含フッ素エチレン性重合体の種類によって異なるが、押出し又はブロー成形にあっては、シリンダー温度が200℃以上になるよう加熱することが適当である。加熱温度は、含フッ素エチレン性重合体自体の熱分解による発泡等の悪影響を抑えられる温度以下にすることが好ましく、具体的には、400℃以下が好ましく、350℃以下がより好ましい。   The molding conditions differ depending on the type of carbonyl group, particularly carbonate group, and the type of fluorine-containing ethylenic polymer. However, in extrusion or blow molding, it is appropriate to heat the cylinder so that the cylinder temperature is 200 ° C or higher. is there. The heating temperature is preferably not more than a temperature at which adverse effects such as foaming due to thermal decomposition of the fluorine-containing ethylenic polymer itself can be suppressed, specifically 400 ° C. or less, more preferably 350 ° C. or less.

前記加熱圧着による製造方法としては、特に限定されないが、例えば、真空プレス、ラミネーション方法(熱ラミネート法等)やコーティング法が挙げられる。また、フッ素樹脂層は、ポリイミドフィルムの片面又は両面にラミネーション、コーティングしてもよい。   Although it does not specifically limit as a manufacturing method by the said thermocompression bonding, For example, a vacuum press, a lamination method (thermal laminating method etc.), and a coating method are mentioned. The fluororesin layer may be laminated or coated on one or both sides of the polyimide film.

真空プレスでは、例えば、公知の真空プレス機を用いてポリイミド樹脂とフッ素樹脂とを所定の温度、圧力で加熱圧着することにより、カバーレイ又はFFC用基材が得られる。この際のプレス温度は100〜250℃の範囲で行うことが加工を簡単に行う点で好ましい。また、プレス後にアニール処理を行ってもよく、アニール処理温度は100〜250℃の範囲で行うことが好ましい。加熱時間及び圧力は、特に限定されず、必要に応じて、適宜設定できる。   In the vacuum press, for example, a cover lay or an FFC substrate is obtained by heat-pressing a polyimide resin and a fluororesin at a predetermined temperature and pressure using a known vacuum press. The press temperature at this time is preferably in the range of 100 to 250 ° C. from the viewpoint of easy processing. Further, annealing may be performed after pressing, and the annealing temperature is preferably in the range of 100 to 250 ° C. The heating time and pressure are not particularly limited, and can be appropriately set as necessary.

熱ラミネート法では、特に限定されず、例えば、加熱可能でかつローラー間の距離を任意に調整可能な2つのローラーを用いて、ローラー間に2種類以上のフィルムを重ねて挟み、熱と圧力をかけながら、圧着することにより、カバーレイ又はFFC用基材が得られる。また、必要に応じて、ラミネートを行った直後に、加熱処理を連続で行うことも可能である。同処理は、フッ素樹脂のガラス転移温度(Tg)以上、融点+50℃以下の範囲が、密着力を向上させることができるため好ましい。Tg以下では目的とする密着力が得られず、融点+50℃以上では、フッ素樹脂の分解が始まり密着力が低下するため好ましくない。加熱時間及び圧力は、特に限定されず、必要に応じて、適宜設定できる。前記装置は、本発明の効果を妨げない限り特に限定されない。   In the heat laminating method, there is no particular limitation. For example, using two rollers that can be heated and the distance between the rollers can be arbitrarily adjusted, two or more kinds of films are stacked between the rollers, and heat and pressure are set. A coverlay or an FFC substrate is obtained by pressure bonding while applying. Moreover, it is also possible to perform heat processing continuously immediately after performing lamination as needed. The treatment is preferably in the range from the glass transition temperature (Tg) of the fluororesin to the melting point + 50 ° C. because the adhesion can be improved. Below Tg, the desired adhesion cannot be obtained, and when the melting point is + 50 ° C. or more, decomposition of the fluororesin starts and the adhesion decreases, which is not preferable. The heating time and pressure are not particularly limited, and can be appropriately set as necessary. The said apparatus is not specifically limited unless the effect of this invention is prevented.

FPC、もしくはFFCとして加工する前の本発明のカバーレイ又はFFC用基材のポリイミドフィルム層とフッ素樹脂層間の接着強度は、位置合わせにおいて精度が向上し、作業効率も高まる点から、3.0N/cmを超えることが好ましく、5.0N/cm以上がより好ましく、8.0N/cm以上がさらに好ましい。前記接着強度の上限値は特に限定されない。   Prior to processing as FPC or FFC, the adhesive strength between the polyimide film layer and fluororesin layer of the coverlay or FFC substrate of the present invention is 3.0N in terms of accuracy in alignment and increased work efficiency. / N, more preferably 5.0 N / cm or more, and even more preferably 8.0 N / cm or more. The upper limit value of the adhesive strength is not particularly limited.

本発明のポリイミドフィルム層の厚さとしては、特に限定されないが、カバーレイ又はFFC用基材のポリイミドフィルム層とフッ素樹脂層の密着力に影響するため、フッ素樹脂層の厚さの0.01〜2.0倍程度が好ましく、0.05〜1.0倍程度がより好ましく、0.1〜0.9倍程度がさらに好ましい。ポリイミド層の厚さが、2.0倍を超えると、基板としての剛性や寸法安定性は向上するものの、誘電率が増加するため好ましくない。また、0.01倍未満であると、ポリイミド層の剛性が低下し、線膨張係数が増加する傾向となり、基板としての剛性や寸法安定性は低下する。   The thickness of the polyimide film layer of the present invention is not particularly limited, but it affects the adhesion between the polyimide film layer of the coverlay or FFC substrate and the fluororesin layer, so that the thickness of the fluororesin layer is 0.01. About -2.0 times are preferable, About 0.05-1.0 times are more preferable, About 0.1-0.9 times are further more preferable. When the thickness of the polyimide layer exceeds 2.0 times, the rigidity and dimensional stability as a substrate are improved, but the dielectric constant increases, which is not preferable. If it is less than 0.01 times, the rigidity of the polyimide layer decreases and the linear expansion coefficient tends to increase, and the rigidity and dimensional stability as a substrate decrease.

本発明のカバーレイ又はFFC用基材は、260℃、30分で測定した熱収縮率が、通常±0.1%未満であり、好ましくは±0.08%未満であり、より好ましくは±0.06%未満である。熱収縮率は、株式会社ニコン製CNC画像処理装置システムNEXIV VM−250を用いて、熱処理前のサンプル、及び260℃に設定したオーブンへ入れて30分間熱処理後さらに恒温高湿下で12時間以上調湿したサンプル(熱処理後サンプル)の寸法を測定し、熱処理前後での寸法変化率の百分率を熱収縮率とした。   The base material for coverlay or FFC of the present invention has a heat shrinkage rate measured at 260 ° C. for 30 minutes of usually less than ± 0.1%, preferably less than ± 0.08%, more preferably ± It is less than 0.06%. The heat shrinkage rate is 12 hours or more under constant temperature and high humidity after being heat-treated for 30 minutes after being put into a sample before heat treatment and an oven set at 260 ° C. using a CNC image processing system NEXIV VM-250 manufactured by Nikon Corporation. The dimension of the conditioned sample (sample after heat treatment) was measured, and the percentage of the dimensional change rate before and after the heat treatment was defined as the heat shrinkage rate.

本発明のカバーレイ又はFFC用基材を各種加工し、FPC又はFFCとしての高周波回路基板を製造することができる。高周波回路基板の製造方法は特に限定されず、公知の方法により製造することができる。   The coverlay or FFC substrate of the present invention can be variously processed to produce a high-frequency circuit board as FPC or FFC. The manufacturing method of a high frequency circuit board is not specifically limited, It can manufacture by a well-known method.

<FPC>
FPCは、本発明のカバーレイと銅張積層体を貼り合わせることにより、製造することができる。該銅張積層体の製造方法としては、例えば、基材フィルムと銅箔とを接着剤を介して積層した3層CCLや、基材フィルムに蒸着やスパッタ加工と電気めっきを利用して銅層を形成してなるもの、銅箔上にポリイミド層をキャスティングして形成した所謂キャスト型2層CCL(COC)、基材フィルムに無電解めっきを用いて銅層を形成したもの等が挙げられる。
<FPC>
FPC can be manufactured by bonding the coverlay of the present invention and a copper clad laminate. Examples of the method for producing the copper-clad laminate include a three-layer CCL in which a base film and a copper foil are laminated via an adhesive, and a copper layer using vapor deposition, sputtering, and electroplating on the base film. , A so-called cast type two-layer CCL (COC) formed by casting a polyimide layer on a copper foil, and a base film formed by forming a copper layer using electroless plating.

前記基材フィルムとしては、高周波回路用にポリイミドフィルムやLCPフィルム等が挙げられる。また、接着剤層としては、エポキシ系やアクリル系、ポリイミド系接着剤、フッ素樹脂等が挙げられる。接着剤は市販品を使用することができる。市販品としては、特に限定されないが、パイララックス(Pyralux、デュポン株式会社製)のLFシリーズ(アクリル系接着剤)等が挙げられる。これらの中で好ましい形態は、LCPフィルムを用いた銅張積層体、基材フィルムと銅箔とをフッ素樹脂を介して積層体とした銅張積層体である。   Examples of the base film include polyimide films and LCP films for high-frequency circuits. Examples of the adhesive layer include epoxy-based, acrylic-based, polyimide-based adhesive, and fluororesin. A commercially available product can be used as the adhesive. Although it does not specifically limit as a commercial item, LF series (acrylic adhesive) etc. of Pirarax (Pyralux, DuPont Co., Ltd.) etc. are mentioned. Among these, preferred forms are a copper clad laminate using an LCP film, and a copper clad laminate in which a base film and a copper foil are laminated via a fluororesin.

前記銅張積層体に用いるポリイミドフィルムとしては、上記のFPC用カバーレイのポリイミドフィルムと同様のものが挙げられ、その組成はカバーレイ用のポリイミドフィルムと同一であってもよく、異なっていてもよい。   The polyimide film used for the copper clad laminate may be the same as the polyimide film for the FPC coverlay, and the composition may be the same as or different from the polyimide film for the coverlay. Good.

前記銅張積層体に用いるフッ素樹脂としては、特に限定されないが、公知のフッ素系樹脂を使用でき、市販品を用いてもよい。前記市販品としては、例えば、トヨフロンF、FE、FL、FR、FV(商品名;以上、東レフィルム加工株式会社製)等が挙げられる。   Although it does not specifically limit as a fluorine resin used for the said copper clad laminated body, A well-known fluorine resin can be used and a commercial item may be used. Examples of the commercially available products include Toyoflon F, FE, FL, FR, and FV (trade names; above, manufactured by Toray Film Processing Co., Ltd.).

前記銅張積層体におけるポリイミド層(ポリイミド接着剤を使用する場合、接着剤を含めた層)の厚さとしては、特に限定されないが、フッ素樹脂層の厚さの0.01〜2.0倍程度が好ましく、0.05〜1.0倍程度がより好ましく、0.1〜0.9倍程度がさらに好ましい。ポリイミド層の厚さが、フッ素樹脂層の厚さの2.0倍を超えると、銅張積層体としての剛性や寸法安定性は向上するものの、誘電率が増加するため好ましくない。また、0.01倍未満であると、ポリイミド層の剛性が低下し、線膨張係数が増加する傾向となり、銅張積層体としての剛性や寸法安定性は低下する。   The thickness of the polyimide layer in the copper-clad laminate (when using a polyimide adhesive, the layer including the adhesive) is not particularly limited, but is 0.01 to 2.0 times the thickness of the fluororesin layer. The degree is preferable, about 0.05 to 1.0 times is more preferable, and about 0.1 to 0.9 times is more preferable. When the thickness of the polyimide layer exceeds 2.0 times the thickness of the fluororesin layer, although the rigidity and dimensional stability as a copper clad laminate are improved, the dielectric constant increases, which is not preferable. Moreover, when it is less than 0.01 times, the rigidity of the polyimide layer decreases and the linear expansion coefficient tends to increase, and the rigidity and dimensional stability as a copper clad laminate decrease.

前記銅張積層体をエッチング処理し、配線加工した銅張積層体が得られる。エッチング処理の方法は、特に限定されず、公知の方法を使用することができる。   The copper clad laminate is etched to obtain a copper clad laminate obtained by wiring. The method for the etching treatment is not particularly limited, and a known method can be used.

高周波回路基板の製造において、前記FPC用カバーレイのフッ素樹脂側を銅張積層体の回路に接するように積層し、カバーレイと銅張積層体とを仮止めを行う。   In the manufacture of the high-frequency circuit board, the FPC coverlay is laminated so that the fluororesin side is in contact with the circuit of the copper clad laminate, and the coverlay and the copper clad laminate are temporarily fixed.

銅張積層体とカバーレイとの仮止め工程としては、公知の方法を使用することができ、特に限定されないが、例えば、銅張積層体とカバーレイとの位置合わせをし、キスラミネーションをした後に、必要に応じてクイックプレスをして、150〜200℃程度でラミネーションする方法、銅張積層体とカバーレイとの位置合わせをし、多段プレスする方法等が挙げられる。前記仮止め工程における最大温度は、カバーレイに使用するフッ素樹脂の融点より低ければ、特に限定されないが、続いて行うアニール処理によって十分な接着強度が得られる点から、100〜250℃の範囲内とするのが好適である。仮止め工程の処理時間は特に限定されない。   As a temporary fixing process of the copper clad laminate and the cover lay, a known method can be used, and is not particularly limited. For example, the copper clad laminate and the cover lay are aligned and kiss-laminated. Later, if necessary, a method of laminating at a temperature of about 150 to 200 ° C. by quick pressing, a method of aligning the copper clad laminate and the cover lay, and a method of multi-stage pressing can be mentioned. The maximum temperature in the temporary fixing step is not particularly limited as long as it is lower than the melting point of the fluororesin used for the coverlay, but is within the range of 100 to 250 ° C. from the viewpoint that sufficient adhesive strength can be obtained by the subsequent annealing treatment. Is preferable. The processing time of the temporary fixing process is not particularly limited.

高周波回路基板の製造において、特に限定されないが、前記仮止め工程に続いて、カバーレイを取り付けた銅張積層体をアニール処理する工程を行うことが好ましい。   Although it does not specifically limit in manufacture of a high frequency circuit board, It is preferable to perform the process of annealing the copper clad laminated body to which the coverlay was attached following the said temporary fixing process.

アニール処理工程での加熱最大温度は、特に限定されないが、150℃以上350℃以下の範囲内で、前記仮止め工程の最大温度より高い温度とするのが、得られる高周波回路基板の接着強度が良好である点から好ましく、前記温度差は、20℃以上とするのが好ましい。また、前記アニール処理工程では、フリーテンションで、かつ150℃以上350℃以下で行うのが好ましい。フリーテンションは処理工程を簡単にするという利点があり、アニール温度については、200℃以上280℃以下がより好ましく、205℃以上275℃以下がさらに好ましい。アニール処理時間は特に限定されない。   The maximum heating temperature in the annealing process is not particularly limited, but the temperature higher than the maximum temperature in the temporary fixing process within the range of 150 ° C. or higher and 350 ° C. or lower is the adhesive strength of the resulting high-frequency circuit board. The temperature difference is preferably 20 ° C. or more. Moreover, it is preferable that the annealing process is performed with free tension at 150 ° C. or more and 350 ° C. or less. Free tension has the advantage of simplifying the treatment process, and the annealing temperature is more preferably 200 ° C. or higher and 280 ° C. or lower, and further preferably 205 ° C. or higher and 275 ° C. or lower. The annealing time is not particularly limited.

前記アニール処理によって、フッ素樹脂層の接着力に基づいて密着力が高まり、実用的な接着強度(ピール強度)を有する高周波回路基板が得られる。得られる高周波回路基板のアニール処理後の接着強度は、カバーレイとしての性能を確保する面から、8N/cmを超える値が好ましく、10N/cm以上がより好ましい。さらに好ましくは14N/cm以上である。本発明における接着強度は、後記する実施例に記載の方法で測定した値である。   By the annealing treatment, the adhesive strength is increased based on the adhesive strength of the fluororesin layer, and a high-frequency circuit board having a practical adhesive strength (peel strength) is obtained. The adhesive strength after annealing treatment of the obtained high-frequency circuit board is preferably a value exceeding 8 N / cm, more preferably 10 N / cm or more from the viewpoint of securing the performance as a coverlay. More preferably, it is 14 N / cm or more. The adhesive strength in the present invention is a value measured by the method described in Examples described later.

<FFC>
FFCは、本発明のFFC用基材によって導体を挟んで加熱圧着することによって製造することができる。
FFCは、例えば、前記ポリイミドフィルムと前記フッ素樹脂を接着状態に貼り合わせることにより形成される本発明のFFC用基材2枚を、導体を間にして、前記フッ素樹脂層が互いに向かい合うように加熱しながら張り合わせて加熱圧着する方法;前記フッ素樹脂層の成形体2枚を、導体を間にして該成形体が互いに向かい合うように加熱しながら張り合わせて加熱圧着した後、前記ポリイミドフィルム2枚を、貼り合わせ後のフッ素樹脂層の成形体の上下に張り合わせる方法等を用いて製造することができる。加熱圧着は、上述したカバーレイ又はFFC用基材の製造方法において使用する方法と同様の方法を用いて行なうことができる。
<FFC>
The FFC can be manufactured by thermocompression bonding with a conductor sandwiched between the FFC substrates of the present invention.
FFC, for example, heats two FFC base materials of the present invention formed by bonding the polyimide film and the fluororesin in an adhesive state so that the fluororesin layer faces each other with a conductor in between. A method in which the two pieces of the fluororesin layer are bonded to each other while being heated so that the molded members face each other with the conductor interposed therebetween, and then the two polyimide films are It can manufacture using the method etc. which laminate | paste up and down the molded object of the fluororesin layer after bonding. The thermocompression bonding can be performed using a method similar to the method used in the above-described manufacturing method of the coverlay or FFC substrate.

前記導体としては、特に限定されないが、例えば、導電性金属の扁平箔や丸線、長方形の断面を持つ平角導体、有機導電体などが挙げられる。導電性金属としては、特に限定されないが、銅、銀、錫、インジウム、アルミニウム、モリブデン、これらの合金等を使用することができる。導体の幅や厚さは、特に限定されないが、例えば、約20μm〜0.5mm程度である。   The conductor is not particularly limited, and examples thereof include a flat foil or round wire of conductive metal, a rectangular conductor having a rectangular cross section, and an organic conductor. Although it does not specifically limit as a conductive metal, Copper, silver, tin, indium, aluminum, molybdenum, these alloys, etc. can be used. The width and thickness of the conductor are not particularly limited, but are, for example, about 20 μm to 0.5 mm.

本発明のカバーレイと配線加工した銅張積層体とを積層することにより、もしくは、本発明のFFC用基材によって導体を挟みこむことにより、高周波回路基板を製造することができる。前記高周波回路基板は、ポリイミドフィルムの厚みとフッ素樹脂の厚みが上記の特定の割合となることで、電気特性や機械的特性がより一層高まるだけでなく、寸法安定性が優れるため、銅層の回路形成のためのエッチング処理や、回路形成後の後工程における各種の加熱工程を施しても、カール、ねじれ、反り等の発生をより一層抑制することができる。   A high frequency circuit board can be produced by laminating the coverlay of the present invention and a copper-clad laminate subjected to wiring processing, or by sandwiching a conductor with the FFC base material of the present invention. The high-frequency circuit board has not only the electrical characteristics and mechanical characteristics further increased, but also excellent dimensional stability because the thickness of the polyimide film and the thickness of the fluororesin is the specific ratio described above. Even if an etching process for forming a circuit or various heating processes in the post-process after the circuit is formed, the occurrence of curling, twisting, warping, etc. can be further suppressed.

次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。   EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples at all, and many variations are within the technical idea of the present invention. This is possible by those with ordinary knowledge.

本発明における各種特性の測定方法について以下に説明する。   A method for measuring various characteristics in the present invention will be described below.

(1)ピール強度
サンプルを10mm幅で短冊状へ裁断し、島津製作所製万能引張試験器オートグラフAG−ISを用いて、90℃引き試験(引張速度:50mm/min、測定長:20mm、測定範囲:5.0−20.0mm)にてピール強度を測定した(単位:N/cm)。
(1) Peel strength A sample is cut into a strip shape with a width of 10 mm, and a 90 ° C pull test (tensile speed: 50 mm / min, measurement length: 20 mm, measurement using Shimadzu Universal Tensile Tester Autograph AG-IS) The peel strength was measured in the range (5.0-20.0 mm) (unit: N / cm).

(2)貯蔵弾性率、損失弾性率、Tg
5mm×50mmのサイズにサンプルを切り、SII社製 粘弾性装置DMS EXSTER6000を用いて、窒素雰囲気下中、室温から400℃の範囲で、周波数を10Hzとして貯蔵弾性率、損失弾性率を測定した。
得られた損失弾性率のデータより、ピークを持つ時の温度をTgとした。
(2) Storage elastic modulus, loss elastic modulus, Tg
Samples were cut to a size of 5 mm × 50 mm, and storage elastic modulus and loss elastic modulus were measured using a viscoelastic device DMS EXSTER6000 manufactured by SII in a nitrogen atmosphere in the range of room temperature to 400 ° C. and a frequency of 10 Hz.
From the obtained loss elastic modulus data, the temperature at the time of peaking was defined as Tg.

(3)密着力測定
10mm×150mmのサイズにサンプルを切り、島津製作所製万能試験機(型番)を用いて、90°引き、測定長20mmで測定した。
測定は、サンプル作成後10時間以内に測定した値を初期密着力、サンプルを85℃、85RH%環境下で96時間処理した後に測定した値を耐湿密着力とした。
(3) Measurement of adhesion force A sample was cut into a size of 10 mm x 150 mm, and was measured with a universal length tester (model number) manufactured by Shimadzu Corporation by 90 ° and a measurement length of 20 mm.
The value measured within 10 hours after the preparation of the sample was the initial adhesion, and the value measured after the sample was treated for 96 hours in an environment of 85 ° C. and 85 RH% was defined as the moisture adhesion resistance.

[合成例1]
ピロメリット酸二無水物(分子量218.12)/3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(分子量294.22)/4,4’−ジアミノジフェニルエーテル(分子量200.24)を、モル比で45/55/100の割合で用意し、DMAc(N,N−ジメチルアセトアミド)中20重量%溶液にして重合し、3500poiseのポリアミック酸溶液を得た。
[Synthesis Example 1]
Pyromellitic dianhydride (molecular weight 218.12) / 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (molecular weight 294.22) / 4,4′-diaminodiphenyl ether (molecular weight 200.24) Was prepared in a molar ratio of 45/55/100 and polymerized to a 20 wt% solution in DMAc (N, N-dimethylacetamide) to obtain a 3500 poise polyamic acid solution.

[合成例2]
ピロメリット酸二無水物(分子量218.12)/3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(分子量294.22)/4,4’−ジアミノジフェニルエーテル(分子量200.24)/パラフェニレンジアミン(分子量108.14)を、モル比で95/5/85/15の割合で用意し、DMAc(N,N−ジメチルアセトアミド)中20重量%溶液にして重合し、3500poiseのポリアミック酸溶液を得た。
[Synthesis Example 2]
Pyromellitic dianhydride (molecular weight 218.12) / 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (molecular weight 294.22) / 4,4′-diaminodiphenyl ether (molecular weight 200.24) / Paraphenylenediamine (molecular weight 108.14) is prepared in a molar ratio of 95/5/85/15, polymerized to a 20 wt% solution in DMAc (N, N-dimethylacetamide), and polymerized to 3500 poise An acid solution was obtained.

[合成例3]
3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(分子量294.22)/1,3−ビス(3−アミノフェノキシ)ベンゼン(分子量292.34)を、モル比で100/100の割合で用意し、DMAc(N,N−ジメチルアセトアミド)中20重量%溶液にして重合し、3300poiseのポリアミック酸溶液を得た。
[Synthesis Example 3]
3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (molecular weight 294.22) / 1,3-bis (3-aminophenoxy) benzene (molecular weight 292.34) in a molar ratio of 100/100 Was prepared in a ratio of 20 wt% in DMAc (N, N-dimethylacetamide) and polymerized to obtain a 3300 poise polyamic acid solution.

[合成例4]
オートクレーブに蒸留水380Lを投入し、充分に窒素置換を行った後、1−フルオロ−1,1−ジクロロエタン75kg、ヘキサフルオロプロピレン155kg、パーフルオロ(1,1,5−トリハイドロ−1−ペンテン)0.5kgを仕込み、系内を35℃、攪拌速度200rpmに保った。その後、テトラフルオロエチレンを0.7MPaまで圧入し、更に引き続いてエチレンを1.0MPaまで圧入し、その後にジ−n−プロピルパーオキシジカーボネート2.4kgを投入して重合を開始した。重合の進行と共に系内圧力が低下するので、テトラフルオロエチレン/エチレン/ヘキサフルオロプロピレン=40.5/44.5/15.0モル%の混合ガスを連続して供給し、系内圧力を1.0MPaに保った。そして、パーフルオロ(1,1,5−トリハイドロ−1−ペンテン)についても合計量1.5kgを連続して仕込み、20時間、攪拌を継続した。そして、放圧して大気圧に戻した後、反応生成物を水洗、乾燥して200kgの粉末(含フッ素エチレン性重合体F−A)を得た。
[Synthesis Example 4]
After 380 L of distilled water was charged into the autoclave and sufficiently substituted with nitrogen, 75 kg of 1-fluoro-1,1-dichloroethane, 155 kg of hexafluoropropylene, perfluoro (1,1,5-trihydro-1-pentene) 0.5 kg was charged, and the inside of the system was maintained at 35 ° C. and a stirring speed of 200 rpm. Thereafter, tetrafluoroethylene was injected to 0.7 MPa, ethylene was subsequently injected to 1.0 MPa, and then 2.4 kg of di-n-propyl peroxydicarbonate was added to initiate polymerization. Since the system pressure decreases as the polymerization proceeds, a mixed gas of tetrafluoroethylene / ethylene / hexafluoropropylene = 40.5 / 44.5 / 15.0 mol% is continuously supplied, and the system pressure is reduced to 1 It was kept at 0.0 MPa. And perfluoro (1,1,5-trihydro-1-pentene) was continuously charged with a total amount of 1.5 kg, and stirring was continued for 20 hours. And after releasing pressure and returning to atmospheric pressure, the reaction product was washed with water and dried to obtain 200 kg of powder (fluorinated ethylenic polymer FA).

[合成例5]
合成例4と同様にして、表1に示した配合で含フッ素エチレン性重合体F−Bを得た。
[Synthesis Example 5]
In the same manner as in Synthesis Example 4, a fluorine-containing ethylenic polymer FB was obtained with the formulation shown in Table 1.

[合成例6]
合成例5で得られた含フッ素エチレン性重合体F−Bの粉末9.5kg、28%アンモニア水700g及び蒸留水10Lをオートクレーブに仕込み、攪拌しながら系を加熱し、80℃に保って7時間攪拌を継続した。そして、内容物を水洗、乾燥処理して粉末9.2kgを得た(含フッ素エチレン性重合体F−C)。このような処理を施すことによって、該樹脂中に含有されている活性な官能基(カーボネート基とカルボン酸フルオライド基)を化学的にも熱的にも安定なアミド基に変換した。なお、この変換が定量的に進んだことは赤外スペクトル分析により確認した。
合成例4〜6の分析結果を表1に示した。
[Synthesis Example 6]
9.5 kg of the fluorine-containing ethylenic polymer FB powder obtained in Synthesis Example 5, 700 g of 28% ammonia water and 10 L of distilled water were charged into an autoclave, and the system was heated while stirring and maintained at 80 ° C. Stirring was continued for an hour. The contents were washed with water and dried to obtain 9.2 kg of powder (fluorinated ethylenic polymer FC). By performing such treatment, the active functional groups (carbonate groups and carboxylic acid fluoride groups) contained in the resin were converted into chemically and thermally stable amide groups. In addition, it was confirmed by infrared spectrum analysis that this conversion progressed quantitatively.
The analysis results of Synthesis Examples 4 to 6 are shown in Table 1.

[実施例1]
(1)ポリイミドフィルムの作製
合成例1で得たポリアミック酸溶液に無水酢酸(分子量102.09)とβ−ピコリンを、ポリアミック酸溶液に対しそれぞれ17重量%、17重量%の割合で混合、攪拌した。得られた混合物を、T型スリットダイより回転する75℃のステンレス製ドラム上にキャストし、30秒流延させた後、得られたゲルフィルムを100℃で5分間加熱しながら、走行方向に1.2倍延伸した。次いで幅方向両端部を把持して、270℃で2分間加熱しながら幅方向に1.3倍延伸した後、380℃にて5分間加熱し、12.5μm厚のポリイミドフィルムを得た。
得られたポリイミドフィルムの貯蔵弾性率、及び損失弾性率を測定した。結果を表2に示す。表2において、貯蔵弾性率の保存率とは、30℃における貯蔵弾性率に対する、300℃における貯蔵弾性率の割合を示し、損失弾性率の保存率とは、30℃における損失弾性率に対する、300℃における損失弾性率の割合を示す。
(2)フッ素樹脂フィルムの作製
合成例4で重合した含フッ素エチレン性重合体F−Aを、設定温度を230℃〜280℃とした65φ短軸押出機を用いてペレット化し、その後、設定温度を230℃〜280℃としたTダイを備えた50φ短軸押出機でフィルム化を行い、25μm厚のフッ素樹脂フィルムを得た。
[Example 1]
(1) Preparation of polyimide film Acetic anhydride (molecular weight 102.09) and β-picoline were mixed and stirred in the polyamic acid solution obtained in Synthesis Example 1 at a ratio of 17% by weight and 17% by weight, respectively. did. The obtained mixture was cast on a 75 ° C. stainless steel drum rotated by a T-shaped slit die, cast for 30 seconds, and then heated in the running direction while heating the obtained gel film at 100 ° C. for 5 minutes. The film was stretched 1.2 times. Next, both ends in the width direction were held and stretched 1.3 times in the width direction while heating at 270 ° C. for 2 minutes, and then heated at 380 ° C. for 5 minutes to obtain a polyimide film having a thickness of 12.5 μm.
The storage elastic modulus and loss elastic modulus of the obtained polyimide film were measured. The results are shown in Table 2. In Table 2, the storage modulus of the storage elastic modulus indicates the ratio of the storage elastic modulus at 300 ° C. with respect to the storage elastic modulus at 30 ° C., and the storage modulus of the loss elastic modulus is 300% with respect to the loss elastic modulus at 30 ° C. The ratio of loss elastic modulus at ° C is shown.
(2) Production of fluororesin film The fluorine-containing ethylenic polymer FA polymerized in Synthesis Example 4 was pelletized using a 65φ short-axis extruder with a set temperature of 230 ° C to 280 ° C, and then set temperature Was formed into a film with a 50φ short-shaft extruder equipped with a T die at 230 ° C. to 280 ° C. to obtain a 25 μm-thick fluororesin film.

(3)カバーレイの作製
上記(1)で得たポリイミドフィルムと、上記(2)で得たフッ素樹脂フィルムとを用いて、真空プレス法により、カバーレイを作製した。具体的には、ポリイミドフィルムとフッ素樹脂フィルムを重ね合わせ、真空プレス機で200℃、3MPaで15分間プレスしてカバーレイフィルムを得た。
(3) Production of coverlay A coverlay was produced by a vacuum press method using the polyimide film obtained in (1) above and the fluororesin film obtained in (2) above. Specifically, a polyimide film and a fluororesin film were superposed and pressed with a vacuum press machine at 200 ° C. and 3 MPa for 15 minutes to obtain a coverlay film.

(4)FPCサンプルの作成
両面銅張り板の片面をエッチング処理によりライン/スペースを0.5mm/0.5mmに形成し、上記(3)で得られたカバーレイを真空プレス機を用いて180℃、3MPaの状態で15分間プレスし、その後、230℃で15分間アニール処理を実施した。
(4) Preparation of FPC sample One side of a double-sided copper-clad plate was etched to form lines / spaces of 0.5 mm / 0.5 mm, and the coverlay obtained in (3) above was 180 using a vacuum press. Pressing was performed at 3 ° C. for 15 minutes, followed by annealing at 230 ° C. for 15 minutes.

(5)初期密着力、耐湿密着力評価
上記(4)で得られたFPCサンプルを用いて、ポリイミドフィルム層とフッ素樹脂層間の初期密着力及び耐湿密着力を測定した。また、密着力保持率は、耐湿密着力に対する初期密着力の割合を算出した。これらの結果を表3に示す。
(5) Evaluation of initial adhesion and moisture-resistant adhesion The initial adhesion and moisture-resistant adhesion between the polyimide film layer and the fluororesin layer were measured using the FPC sample obtained in (4) above. Moreover, the adhesive force retention rate calculated the ratio of the initial adhesive force with respect to moisture-proof adhesive force. These results are shown in Table 3.

[実施例2]
実施例1の(1)で得たポリイミドフィルム、実施例1(2)で得たフッ素樹脂フィルムを用いて下記サンプルを作成し、密着力の評価を行った。
(1)FFCサンプルの作成
FFCは、幅0.50mm、厚さ0.022mmの銅線51本を0.50mmの導
体間ピッチで、本発明のFFC用基材のフッ素樹脂層側に配置し、さらにその上から本発明FFC用基材のフッ素樹脂層側を重ねる構造とし、熱ロールで200℃、0.5MPaで加圧することにより難燃性フレキシブルフラットケーブルを製造した。
(2)初期密着力、耐湿密着力評価
得られたFFCサンプルを用いて、初期密着力、耐湿密着力を測定した。結果を表3に示す。
[Example 2]
The following samples were prepared using the polyimide film obtained in Example 1 (1) and the fluororesin film obtained in Example 1 (2), and the adhesion was evaluated.
(1) Preparation of FFC sample FFC arranges 51 copper wires of width 0.50mm and thickness 0.022mm in the pitch between conductors of 0.50mm on the fluororesin layer side of the FFC substrate of the present invention. Further, a flame retardant flexible flat cable was manufactured by applying a structure in which the fluororesin layer side of the FFC substrate of the present invention was further stacked thereon, and pressurizing with a hot roll at 200 ° C. and 0.5 MPa.
(2) Evaluation of initial adhesion and moisture-resistant adhesion Using the obtained FFC sample, initial adhesion and moisture-resistant adhesion were measured. The results are shown in Table 3.

[実施例3]
ポリイミドフィルム層に米国デュポン社製カプトンKJタイプ(厚さ:25μm)を使用し、フッ素樹脂層に実施例1(2)で得たフッ素樹脂フィルムを用いた以外は、実施例1(3)、(4)及び(5)と同様にし、FPCサンプル作成、初期密着力及び耐湿密着力の評価を実施した。結果を表3に示す。
[Example 3]
Example 1 (3), except that a Kapton KJ type (thickness: 25 μm) manufactured by DuPont USA was used for the polyimide film layer and the fluororesin film obtained in Example 1 (2) was used for the fluororesin layer. In the same manner as in (4) and (5), FPC sample preparation, initial adhesion and moisture resistance adhesion were evaluated. The results are shown in Table 3.

[実施例4]
合成例4で得た含フッ素エチレン性重合体(F−A)に代えて、合成例5で得た含フッ素エチレン性重合体(F−B)を使用した以外は、実施例1(3)、(4)及び(5)と同様にし、FPCサンプル作成、初期密着力及び耐湿密着力の評価を実施した。結果を表3に示す。
[Example 4]
Example 1 (3) except that the fluorine-containing ethylenic polymer (F-B) obtained in Synthesis Example 5 was used in place of the fluorine-containing ethylenic polymer (F-A) obtained in Synthesis Example 4. In the same manner as in (4) and (5), FPC sample preparation, initial adhesion and moisture resistance adhesion were evaluated. The results are shown in Table 3.

[実施例5]
合成例2で得られたポリアミック酸を用い、実施例1の(1)と同様に加工して得たポリイミドフィルム上に、合成例3で得たポリアミック酸溶液を5μmの厚さになるように塗布し、加熱炉を用い、200度から400度まで段階的に温度を上げ、多層ポリイミドフィルム層を得た。
ポリイミドフィルム層として上記多層ポリイミドフィルムを用いた以外は、実施例1(3)、(4)及び(5)と同様にして、FPCサンプル作成、初期密着力及び耐湿密着力の評価を実施した。この際の多層ポリイミドフィルム層とフッ素樹脂フィルム層との接合面は、合成例3で得られたポリアミック酸を用いたフィルム層と含フッ素エチレン性重合体(F−A)である。
また、別途、合成例2から得られたポリアミック酸を用いて作製されたポリイミドフィルムのみの貯蔵弾性率及び損失弾性率を測定した。結果を表2に示す。
さらに、合成例3で得られたポリアミック酸を用い、実施例1の(1)と同様にしてポリイミドフィルムを作製し、得られたポリイミドフィルムの貯蔵弾性率及び損失弾性率を測定した。結果を表2に示す。
[Example 5]
Using the polyamic acid obtained in Synthesis Example 2 on the polyimide film obtained by processing in the same manner as in Example 1 (1), the polyamic acid solution obtained in Synthesis Example 3 is 5 μm thick. It was applied and the temperature was raised stepwise from 200 degrees to 400 degrees using a heating furnace to obtain a multilayer polyimide film layer.
FPC sample creation, initial adhesion strength, and moisture-resistant adhesion strength were evaluated in the same manner as in Example 1 (3), (4), and (5) except that the multilayer polyimide film was used as the polyimide film layer. The joint surface of the multilayer polyimide film layer and the fluororesin film layer at this time is a film layer using the polyamic acid obtained in Synthesis Example 3 and a fluorine-containing ethylenic polymer (FA).
Separately, the storage elastic modulus and loss elastic modulus of only the polyimide film produced using the polyamic acid obtained from Synthesis Example 2 were measured. The results are shown in Table 2.
Furthermore, using the polyamic acid obtained in Synthesis Example 3, a polyimide film was produced in the same manner as in (1) of Example 1, and the storage elastic modulus and loss elastic modulus of the obtained polyimide film were measured. The results are shown in Table 2.

本発明に使用するポリイミドフィルムは、少なくとも一部分において、ガラス転移点が300℃以下であり、貯蔵弾性率の保存率が50%以下であり、損失弾性率の保存率が200%以上となることが確認できた。   At least in part, the polyimide film used in the present invention has a glass transition point of 300 ° C. or less, a storage modulus storage rate of 50% or less, and a loss modulus storage rate of 200% or more. It could be confirmed.

[比較例1]
合成例2で得られたポリアミック酸を用い、実施例1の(1)と同様にして得られたポリイミドフィルムと、合成例4で得た含フッ素エチレン性重合体(F−A)を用いた以外は、実施例1(3)、(4)及び(5)と同様にして、FPCサンプル作成、初期密着力及び耐湿密着力の評価を実施した。結果を表3に示す。
[Comparative Example 1]
Using the polyamic acid obtained in Synthesis Example 2, the polyimide film obtained in the same manner as in Example 1 (1) and the fluorine-containing ethylenic polymer (FA) obtained in Synthesis Example 4 were used. Except for the above, FPC sample preparation, initial adhesion and moisture resistance adhesion were evaluated in the same manner as in Examples 1 (3), (4) and (5). The results are shown in Table 3.

[比較例2]
フッ素樹脂層として合成例6で得た含フッ素エチレン性重合体(F−C)を用いた以外は、実施例1(3)、(4)及び(5)と同様にして、FPCサンプル作成、初期密着力及び耐湿密着力の評価を実施した。結果を表3に示す。
[Comparative Example 2]
An FPC sample was prepared in the same manner as in Examples 1 (3), (4) and (5) except that the fluorine-containing ethylenic polymer (F-C) obtained in Synthesis Example 6 was used as the fluororesin layer. Evaluation of initial adhesion and moisture-resistant adhesion was carried out. The results are shown in Table 3.

以上の結果から、本発明のカバーレイを用いて製造されたFPC、及び本発明のFFC用基材を用いて製造されたFFCは、ポリイミドフィルム層とフッ素樹脂層間の85℃、85RH%環境下での96時間経過後の密着力(耐湿密着力)が、ポリイミドフィルム層とフッ素樹脂層間の初期密着力に対して50%以上保持されることが確認できた。   From the above results, the FPC manufactured using the coverlay of the present invention and the FFC manufactured using the FFC substrate of the present invention are under an environment of 85 ° C. and 85 RH% between the polyimide film layer and the fluororesin layer. It was confirmed that the adhesion strength (moisture resistance adhesion strength) after 96 hours was maintained at 50% or more with respect to the initial adhesion strength between the polyimide film layer and the fluororesin layer.

上記のように、本発明のカバーレイ又はFFC用基材を用いると、高周波回路基板製造時の作業性に優れ、ポリイミドフィルム層とフッ素樹脂層間の85℃、85RH%環境下での96時間経過後の密着力(耐湿密着力)に優れた高周波回路基板が得られた。   As described above, when the coverlay or FFC base material of the present invention is used, it is excellent in workability at the time of manufacturing a high-frequency circuit board, and 96 hours have elapsed under an environment of 85 ° C. and 85 RH% between the polyimide film layer and the fluororesin layer A high-frequency circuit board excellent in later adhesion (moisture-resistant adhesion) was obtained.

本発明のFPC用カバーレイ及びFFC用基材は、ポリイミドフィルム層とフッ素樹脂層間の85℃、85RH%環境下での96時間経過後の密着力(耐湿密着力)に優れ、ポリイミドフィルム層とフッ素樹脂層間の密着性に優れるため、加工容易性に優れた高周波回路基板フレキシブルプリント配線板及びフレキシブルフラットケーブルを得ることができる。また、本発明のFPC用カバーレイ及びFFC用基材を用いて製造された高周波回路基板は、低誘電率であるため、伝送損失を抑えることができる。   The FPC coverlay and FFC substrate of the present invention are excellent in adhesion (moisture-resistant adhesion) after 96 hours in an environment of 85 ° C. and 85 RH% between the polyimide film layer and the fluororesin layer. Since the adhesiveness between the fluororesin layers is excellent, a high-frequency circuit board flexible printed wiring board and a flexible flat cable excellent in processability can be obtained. Moreover, since the high frequency circuit board manufactured using the FPC coverlay and the FFC base material of the present invention has a low dielectric constant, transmission loss can be suppressed.

Claims (10)

ポリイミドフィルム層とフッ素樹脂層とからなるカバーレイ又はフレキシブルフラットケーブル(FFC)用基材であって、ポリイミドフィルム層とフッ素樹脂層間の85℃、85RH%環境下での96時間経過後の密着力(耐湿密着力)が、ポリイミドフィルム層とフッ素樹脂層間の初期密着力に対して50%以上保持されることを特徴とするカバーレイ又はFFC用基材。   A base material for a coverlay or a flexible flat cable (FFC) comprising a polyimide film layer and a fluororesin layer, and an adhesive force after 96 hours in an environment of 85 ° C. and 85 RH% between the polyimide film layer and the fluororesin layer. (Moisture resistant adhesion) is maintained at 50% or more of the initial adhesion between the polyimide film layer and the fluororesin layer, a coverlay or FFC substrate. ポリイミドフィルム層の少なくとも任意の一部分のガラス転移点が300℃以下であることを特徴とする請求項1に記載のカバーレイ又はFFC用基材。   The base material for coverlay or FFC according to claim 1, wherein the glass transition point of at least an arbitrary part of the polyimide film layer is 300 ° C or lower. ポリイミドフィルム層の少なくとも任意の一部分における30℃での貯蔵弾性率を100%とした際に、300℃における貯蔵弾性率が50%以下となることを特徴とする請求項1又は2に記載のカバーレイ又はFFC用基材。   The cover according to claim 1 or 2, wherein the storage elastic modulus at 300 ° C is 50% or less when the storage elastic modulus at 30 ° C in at least an arbitrary part of the polyimide film layer is 100%. Ray or FFC substrate. ポリイミドフィルム層の少なくとも任意の一部分における30℃での損失弾性率を100%とした際に、30〜300℃領域における損失弾性率が、200%以上の値となる頂点を持つことを特徴とする請求項1〜3のいずれか1項に記載のカバーレイ又はFFC用基材。   When the loss elastic modulus at 30 ° C. in at least an arbitrary part of the polyimide film layer is 100%, the loss elastic modulus in the region of 30 to 300 ° C. has an apex that is a value of 200% or more. The base material for coverlays or FFC of any one of Claims 1-3. フッ素樹脂の融点が200℃以下であることを特徴とする請求項1〜4のいずれか1項に記載のカバーレイ又はFFC用基材。   The coverlay or FFC substrate according to any one of claims 1 to 4, wherein the melting point of the fluororesin is 200 ° C or lower. フッ素樹脂が、含フッ素エチレン性重合体であり、前記含フッ素エチレン性重合体はカルボニル基を含有することを特徴とする請求項1〜5のいずれか1項に記載のカバーレイ又はFFC用基材。   The coverlay or FFC group according to any one of claims 1 to 5, wherein the fluororesin is a fluorine-containing ethylenic polymer, and the fluorine-containing ethylenic polymer contains a carbonyl group. Wood. 前記含フッ素エチレン性重合体のカルボニル基の含有量が、主鎖炭素数1×10個に対して合計3〜1000個であることを特徴とする請求項6に記載のカバーレイ又はFFC用基材。 7. The coverlay or FFC according to claim 6, wherein the carbonyl group content of the fluorine-containing ethylenic polymer is 3 to 1000 in total with respect to 1 × 10 6 main chain carbon atoms. Base material. フッ素樹脂が、カーボネート基、カルボン酸ハライド基及びカルボン酸基からなる群から選択される少なくとも1種を、主鎖炭素数1×10個に対して合計3〜1000個有する含フッ素エチレン性重合体からなることを特徴とする請求項1〜5のいずれか1項に記載のカバーレイ又はFFC用基材。 The fluorine-containing ethylenic heavy polymer having at least one selected from the group consisting of a carbonate group, a carboxylic acid halide group and a carboxylic acid group with a total of 3 to 1000 carbon atoms per 1 × 10 6 main chain carbon atoms. The coverlay or FFC substrate according to any one of claims 1 to 5, wherein the coverlay or the FFC substrate is formed of a coalescence. フッ素樹脂が、テトラフルオロエチレン、フッ化ビニリデン、クロロトリフルオロエチレン、フッ化ビニル、ヘキサフルオロプロピレン、ヘキサフルオロイソブテン、下記式(X):
CH=CR(CF2)n (X)
(式中、R1はH又はFを表し、R2はH、F又はClを表し、nは1〜10の正の整数を表す。)
で表される単量体及び炭素数2〜10のパーフルオロ(アルキルビニルエーテル)類からなる群から選ばれる1種以上の含フッ素エチレン性単量体、又は前記含フッ素エチレン性単量体と炭素数5以下のエチレン性単量体とを重合してなる含フッ素エチレン性重合体であることを特徴とする請求項1〜5のいずれか1項に記載のカバーレイ又はFFC用基材。
The fluororesin is tetrafluoroethylene, vinylidene fluoride, chlorotrifluoroethylene, vinyl fluoride, hexafluoropropylene, hexafluoroisobutene, the following formula (X):
CH 2 = CR 1 (CF 2 ) n R 2 (X)
(In the formula, R1 represents H or F, R2 represents H, F or Cl, and n represents a positive integer of 1 to 10.)
1 or more types of fluorine-containing ethylenic monomers selected from the group consisting of monomers represented by formula (2) and perfluoro (alkyl vinyl ethers) having 2 to 10 carbon atoms, or the fluorine-containing ethylenic monomers and carbon The coverlay or FFC substrate according to any one of claims 1 to 5, which is a fluorine-containing ethylenic polymer obtained by polymerizing an ethylenic monomer having a number of 5 or less.
フッ素樹脂が、少なくとも下記(a)、(b)及び(c)を重合してなる共重合体である請求項1〜5のいずれか1項に記載のカバーレイ又はFFC用基材。
(a)テトラフルオロエチレン20〜90モル%
(b)エチレン10〜80モル%
(c)式CF=CFR (Y)
(式中、RはCF又はORを表し、Rは炭素数1〜5のパーフルオロアルキル基を表す。)
で表される化合物1〜70モル%
The coverlay or FFC substrate according to any one of claims 1 to 5, wherein the fluororesin is a copolymer obtained by polymerizing at least the following (a), (b) and (c).
(A) Tetrafluoroethylene 20-90 mol%
(B) 10-80 mol% ethylene
(C) Formula CF 2 = CFR 3 (Y)
(In the formula, R 3 represents CF 3 or OR 4 , and R 4 represents a perfluoroalkyl group having 1 to 5 carbon atoms.)
1 to 70 mol% of a compound represented by
JP2014050759A 2014-03-13 2014-03-13 High frequency circuit board coverlay and flexible flat cable base material Active JP6388483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014050759A JP6388483B2 (en) 2014-03-13 2014-03-13 High frequency circuit board coverlay and flexible flat cable base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014050759A JP6388483B2 (en) 2014-03-13 2014-03-13 High frequency circuit board coverlay and flexible flat cable base material

Publications (2)

Publication Number Publication Date
JP2015176921A true JP2015176921A (en) 2015-10-05
JP6388483B2 JP6388483B2 (en) 2018-09-12

Family

ID=54255880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014050759A Active JP6388483B2 (en) 2014-03-13 2014-03-13 High frequency circuit board coverlay and flexible flat cable base material

Country Status (1)

Country Link
JP (1) JP6388483B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069217A1 (en) * 2015-10-22 2017-04-27 旭硝子株式会社 Production method for wiring substrate
WO2017069216A1 (en) * 2015-10-22 2017-04-27 旭硝子株式会社 Production method for wiring substrate
JP2017137418A (en) * 2016-02-03 2017-08-10 東レ・デュポン株式会社 Adhesive-fitted polyimide film
KR20180035715A (en) * 2016-09-29 2018-04-06 듀폰 도레이 컴파니, 리미티드 Polyimide film having adhesives attached thereto
WO2019054335A1 (en) 2017-09-15 2019-03-21 Jsr株式会社 Circuit board
WO2019054334A1 (en) 2017-09-15 2019-03-21 Jsr株式会社 High-frequency circuit laminate, method for manufacturing same, and b-stage sheet
KR20200100592A (en) 2017-12-19 2020-08-26 에이지씨 가부시키가이샤 Processed circuit board, multi-layer circuit board and circuit board manufacturing method with coverlay film, and film with adhesive layer
WO2021200630A1 (en) * 2020-03-31 2021-10-07 Agc株式会社 Multilayer film, method for producing same, metal-clad laminate, and method for producing printed wiring board
CN113619224A (en) * 2021-07-23 2021-11-09 中山新高电子材料股份有限公司 Low-water-absorption flexible fluorine copper-clad plate and preparation method thereof
KR20210134641A (en) 2019-03-01 2021-11-10 제이에스알 가부시끼가이샤 Laminate for high-frequency circuits and manufacturing method thereof, flexible printed circuit board, B-stage sheet, and wound laminated body
US11505651B2 (en) 2016-04-20 2022-11-22 Jsr Corporation Polymer, composition, molded article, cured product and laminate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045044A1 (en) * 1998-03-06 1999-09-10 Daikin Industries, Ltd. Fluorochemical adhesive material and laminate made with the same
JP2010129847A (en) * 2008-11-28 2010-06-10 Fujikura Ltd Flexible printed wiring board and flexible flat cable
JP2011051203A (en) * 2009-09-01 2011-03-17 Toyobo Co Ltd Multilayer polyimide film and printed wiring board
JP2014032980A (en) * 2012-08-01 2014-02-20 Du Pont-Toray Co Ltd Method of attaching coverlay for high-frequency circuit board, and the coverlay

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045044A1 (en) * 1998-03-06 1999-09-10 Daikin Industries, Ltd. Fluorochemical adhesive material and laminate made with the same
JP2010129847A (en) * 2008-11-28 2010-06-10 Fujikura Ltd Flexible printed wiring board and flexible flat cable
JP2011051203A (en) * 2009-09-01 2011-03-17 Toyobo Co Ltd Multilayer polyimide film and printed wiring board
JP2014032980A (en) * 2012-08-01 2014-02-20 Du Pont-Toray Co Ltd Method of attaching coverlay for high-frequency circuit board, and the coverlay

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10271428B2 (en) 2015-10-22 2019-04-23 AGC Inc. Process for producing wiring substrate
WO2017069216A1 (en) * 2015-10-22 2017-04-27 旭硝子株式会社 Production method for wiring substrate
KR102587271B1 (en) * 2015-10-22 2023-10-10 에이지씨 가부시키가이샤 Manufacturing method of wiring board
KR20180071245A (en) * 2015-10-22 2018-06-27 아사히 가라스 가부시키가이샤 Method for manufacturing wiring board
JPWO2017069216A1 (en) * 2015-10-22 2018-08-09 旭硝子株式会社 Wiring board manufacturing method
JPWO2017069217A1 (en) * 2015-10-22 2018-08-09 旭硝子株式会社 Wiring board manufacturing method
WO2017069217A1 (en) * 2015-10-22 2017-04-27 旭硝子株式会社 Production method for wiring substrate
JP2017137418A (en) * 2016-02-03 2017-08-10 東レ・デュポン株式会社 Adhesive-fitted polyimide film
US11505651B2 (en) 2016-04-20 2022-11-22 Jsr Corporation Polymer, composition, molded article, cured product and laminate
US12043702B2 (en) 2016-04-20 2024-07-23 Jsr Corporation Polymer, composition, molded article, cured product and laminate
KR102387220B1 (en) 2016-09-29 2022-04-15 듀폰 도레이 컴파니, 리미티드 Polyimide film having adhesives attached thereto
KR20180035715A (en) * 2016-09-29 2018-04-06 듀폰 도레이 컴파니, 리미티드 Polyimide film having adhesives attached thereto
US11134568B2 (en) 2017-09-15 2021-09-28 Jsr Corporation High-frequency circuit laminate and method for producing same, and B-stage sheet
WO2019054334A1 (en) 2017-09-15 2019-03-21 Jsr株式会社 High-frequency circuit laminate, method for manufacturing same, and b-stage sheet
WO2019054335A1 (en) 2017-09-15 2019-03-21 Jsr株式会社 Circuit board
US11582860B2 (en) 2017-09-15 2023-02-14 Jsr Corporation Circuit board
KR20200054194A (en) 2017-09-15 2020-05-19 제이에스알 가부시끼가이샤 Circuit board
KR20200053494A (en) 2017-09-15 2020-05-18 제이에스알 가부시끼가이샤 High-frequency circuit laminate and manufacturing method thereof, and B-stage sheet
KR20200100592A (en) 2017-12-19 2020-08-26 에이지씨 가부시키가이샤 Processed circuit board, multi-layer circuit board and circuit board manufacturing method with coverlay film, and film with adhesive layer
KR20210134641A (en) 2019-03-01 2021-11-10 제이에스알 가부시끼가이샤 Laminate for high-frequency circuits and manufacturing method thereof, flexible printed circuit board, B-stage sheet, and wound laminated body
WO2021200630A1 (en) * 2020-03-31 2021-10-07 Agc株式会社 Multilayer film, method for producing same, metal-clad laminate, and method for producing printed wiring board
CN115397672A (en) * 2020-03-31 2022-11-25 Agc株式会社 Multilayer film, method for producing same, metal-clad laminate, and method for producing printed wiring board
KR20220162688A (en) 2020-03-31 2022-12-08 에이지씨 가부시키가이샤 Multilayer film, manufacturing method thereof, manufacturing method of metal-clad laminate and printed wiring board
CN113619224A (en) * 2021-07-23 2021-11-09 中山新高电子材料股份有限公司 Low-water-absorption flexible fluorine copper-clad plate and preparation method thereof
CN113619224B (en) * 2021-07-23 2024-02-02 中山新高电子材料股份有限公司 Low-water-absorption fluorine material flexible copper-clad plate and preparation method thereof

Also Published As

Publication number Publication date
JP6388483B2 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
JP6388483B2 (en) High frequency circuit board coverlay and flexible flat cable base material
JP6235787B2 (en) Coverlay for high frequency circuit boards
JP2016087799A (en) Long-sized laminate for high frequency circuit board, and method for manufacturing the same
JP6822523B2 (en) Adhesive film, flexible metal laminate, adhesive film manufacturing method, flexible metal laminate manufacturing method, flexible printed substrate and flexible printed substrate manufacturing method
JP6590568B2 (en) Insulating film, method for producing insulating film, and method for producing metal-clad laminate
US20140295189A1 (en) Coverlay for high-frequency circuit substrate
JP6819579B2 (en) Materials for printed circuit boards, metal laminates, their manufacturing methods and printed circuit board manufacturing methods
KR102334130B1 (en) Multilayer polyimide film having improved adhesion and low dielectric loss, method for preparing the same
JP6907379B2 (en) Insulation coating material with excellent wear resistance
WO2017154926A1 (en) Method for producing laminate and method for manufacturing printed board
JP2017136755A (en) Low dielectric multilayer polyimide film
JP6014406B2 (en) Method of attaching coverlay for high frequency circuit board and coverlay thereof
JP4901509B2 (en) Multilayer film of polyimide precursor solution, multilayer polyimide film, single-sided metal-clad laminate, and method for producing multilayer polyimide film
US10703860B2 (en) Insulating coating material having excellent wear resistance
JP2008188843A (en) Multilayer film of polyimide precursor solution, multilayer polyimide film, single sided metal-clad laminated sheet and manufacturing method of multilayer polyimide film
JP2021195446A (en) Resin film and method for producing the same, metal-clad laminate and printed wiring board
WO2015153026A1 (en) Coverlay for high-frequency circuit substrate
TWI851891B (en) Polyimide composite film for flexible metal-clad substrates
JP2009286094A (en) Multilayered polyimide film
KR101690058B1 (en) Thermoplastic polyimide adhesive film with excellent slip property and flexible laminated plate including the same
KR20160088844A (en) Polyimide heat resistance adhesive having low dielectric constant and flexible laminated plate using the same
JP2022060624A (en) Multilayer polyimide film
JP2012096491A (en) Method of manufacturing multilayer film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180814

R150 Certificate of patent or registration of utility model

Ref document number: 6388483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250